blob: 5e8b81eaa168b8307f601117f32fd769d9dc446e [file] [log] [blame]
Eric Anholt4078f572017-01-31 11:29:11 -08001/*
2 * Copyright (C) 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17/**
18 * DOC: VC4 DSI0/DSI1 module
19 *
20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22 * controller.
23 *
24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25 * while the compute module brings both DSI0 and DSI1 out.
26 *
27 * This driver has been tested for DSI1 video-mode display only
28 * currently, with most of the information necessary for DSI0
29 * hopefully present.
30 */
31
Masahiro Yamadab7e8e252017-05-18 13:29:38 +090032#include <drm/drm_atomic_helper.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include <drm/drm_mipi_dsi.h>
36#include <drm/drm_panel.h>
37#include <linux/clk.h>
38#include <linux/clk-provider.h>
39#include <linux/completion.h>
40#include <linux/component.h>
41#include <linux/dmaengine.h>
42#include <linux/i2c.h>
43#include <linux/of_address.h>
44#include <linux/of_platform.h>
45#include <linux/pm_runtime.h>
Eric Anholt4078f572017-01-31 11:29:11 -080046#include "vc4_drv.h"
47#include "vc4_regs.h"
48
49#define DSI_CMD_FIFO_DEPTH 16
50#define DSI_PIX_FIFO_DEPTH 256
51#define DSI_PIX_FIFO_WIDTH 4
52
53#define DSI0_CTRL 0x00
54
55/* Command packet control. */
56#define DSI0_TXPKT1C 0x04 /* AKA PKTC */
57#define DSI1_TXPKT1C 0x04
58# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
59# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
60# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
61# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
62
63# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
64# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
65/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
66# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
67/* Primary display where cmdfifo provides part of the payload and
68 * pixelvalve the rest.
69 */
70# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
71/* Secondary display where cmdfifo provides part of the payload and
72 * pixfifo the rest.
73 */
74# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
75
76# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
77# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
78
79# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
80# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
81/* Command only. Uses TXPKT1H and DISPLAY_NO */
82# define DSI_TXPKT1C_CMD_CTRL_TX 0
83/* Command with BTA for either ack or read data. */
84# define DSI_TXPKT1C_CMD_CTRL_RX 1
85/* Trigger according to TRIG_CMD */
86# define DSI_TXPKT1C_CMD_CTRL_TRIG 2
87/* BTA alone for getting error status after a command, or a TE trigger
88 * without a previous command.
89 */
90# define DSI_TXPKT1C_CMD_CTRL_BTA 3
91
92# define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
93# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
94# define DSI_TXPKT1C_CMD_TE_EN BIT(1)
95# define DSI_TXPKT1C_CMD_EN BIT(0)
96
97/* Command packet header. */
98#define DSI0_TXPKT1H 0x08 /* AKA PKTH */
99#define DSI1_TXPKT1H 0x08
100# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
101# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
102# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
103# define DSI_TXPKT1H_BC_PARAM_SHIFT 8
104# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
105# define DSI_TXPKT1H_BC_DT_SHIFT 0
106
107#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
108#define DSI1_RXPKT1H 0x14
109# define DSI_RXPKT1H_CRC_ERR BIT(31)
110# define DSI_RXPKT1H_DET_ERR BIT(30)
111# define DSI_RXPKT1H_ECC_ERR BIT(29)
112# define DSI_RXPKT1H_COR_ERR BIT(28)
113# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
114# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
115/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
116# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
117# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
118/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
119# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
120# define DSI_RXPKT1H_SHORT_1_SHIFT 16
121# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
122# define DSI_RXPKT1H_SHORT_0_SHIFT 8
123# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
124# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
125
126#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
127#define DSI1_RXPKT2H 0x18
128# define DSI_RXPKT1H_DET_ERR BIT(30)
129# define DSI_RXPKT1H_ECC_ERR BIT(29)
130# define DSI_RXPKT1H_COR_ERR BIT(28)
131# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
132# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
133# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
134# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
135# define DSI_RXPKT1H_DT_SHIFT 0
136
137#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
138#define DSI1_TXPKT_CMD_FIFO 0x1c
139
140#define DSI0_DISP0_CTRL 0x18
141# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
142# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
143# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
144# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
145# define DSI_DISP0_LP_STOP_DISABLE 0
146# define DSI_DISP0_LP_STOP_PERLINE 1
147# define DSI_DISP0_LP_STOP_PERFRAME 2
148
149/* Transmit RGB pixels and null packets only during HACTIVE, instead
150 * of going to LP-STOP.
151 */
152# define DSI_DISP_HACTIVE_NULL BIT(10)
153/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
154# define DSI_DISP_VBLP_CTRL BIT(9)
155/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
156# define DSI_DISP_HFP_CTRL BIT(8)
157/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
158# define DSI_DISP_HBP_CTRL BIT(7)
159# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
160# define DSI_DISP0_CHANNEL_SHIFT 5
161/* Enables end events for HSYNC/VSYNC, not just start events. */
162# define DSI_DISP0_ST_END BIT(4)
163# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
164# define DSI_DISP0_PFORMAT_SHIFT 2
165# define DSI_PFORMAT_RGB565 0
166# define DSI_PFORMAT_RGB666_PACKED 1
167# define DSI_PFORMAT_RGB666 2
168# define DSI_PFORMAT_RGB888 3
169/* Default is VIDEO mode. */
170# define DSI_DISP0_COMMAND_MODE BIT(1)
171# define DSI_DISP0_ENABLE BIT(0)
172
173#define DSI0_DISP1_CTRL 0x1c
174#define DSI1_DISP1_CTRL 0x2c
175/* Format of the data written to TXPKT_PIX_FIFO. */
176# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
177# define DSI_DISP1_PFORMAT_SHIFT 1
178# define DSI_DISP1_PFORMAT_16BIT 0
179# define DSI_DISP1_PFORMAT_24BIT 1
180# define DSI_DISP1_PFORMAT_32BIT_LE 2
181# define DSI_DISP1_PFORMAT_32BIT_BE 3
182
183/* DISP1 is always command mode. */
184# define DSI_DISP1_ENABLE BIT(0)
185
186#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
187
188#define DSI0_INT_STAT 0x24
189#define DSI0_INT_EN 0x28
190# define DSI1_INT_PHY_D3_ULPS BIT(30)
191# define DSI1_INT_PHY_D3_STOP BIT(29)
192# define DSI1_INT_PHY_D2_ULPS BIT(28)
193# define DSI1_INT_PHY_D2_STOP BIT(27)
194# define DSI1_INT_PHY_D1_ULPS BIT(26)
195# define DSI1_INT_PHY_D1_STOP BIT(25)
196# define DSI1_INT_PHY_D0_ULPS BIT(24)
197# define DSI1_INT_PHY_D0_STOP BIT(23)
198# define DSI1_INT_FIFO_ERR BIT(22)
199# define DSI1_INT_PHY_DIR_RTF BIT(21)
200# define DSI1_INT_PHY_RXLPDT BIT(20)
201# define DSI1_INT_PHY_RXTRIG BIT(19)
202# define DSI1_INT_PHY_D0_LPDT BIT(18)
203# define DSI1_INT_PHY_DIR_FTR BIT(17)
204
205/* Signaled when the clock lane enters the given state. */
206# define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
207# define DSI1_INT_PHY_CLOCK_HS BIT(15)
208# define DSI1_INT_PHY_CLOCK_STOP BIT(14)
209
210/* Signaled on timeouts */
211# define DSI1_INT_PR_TO BIT(13)
212# define DSI1_INT_TA_TO BIT(12)
213# define DSI1_INT_LPRX_TO BIT(11)
214# define DSI1_INT_HSTX_TO BIT(10)
215
216/* Contention on a line when trying to drive the line low */
217# define DSI1_INT_ERR_CONT_LP1 BIT(9)
218# define DSI1_INT_ERR_CONT_LP0 BIT(8)
219
220/* Control error: incorrect line state sequence on data lane 0. */
221# define DSI1_INT_ERR_CONTROL BIT(7)
222/* LPDT synchronization error (bits received not a multiple of 8. */
223
224# define DSI1_INT_ERR_SYNC_ESC BIT(6)
225/* Signaled after receiving an error packet from the display in
226 * response to a read.
227 */
228# define DSI1_INT_RXPKT2 BIT(5)
229/* Signaled after receiving a packet. The header and optional short
230 * response will be in RXPKT1H, and a long response will be in the
231 * RXPKT_FIFO.
232 */
233# define DSI1_INT_RXPKT1 BIT(4)
234# define DSI1_INT_TXPKT2_DONE BIT(3)
235# define DSI1_INT_TXPKT2_END BIT(2)
236/* Signaled after all repeats of TXPKT1 are transferred. */
237# define DSI1_INT_TXPKT1_DONE BIT(1)
238/* Signaled after each TXPKT1 repeat is scheduled. */
239# define DSI1_INT_TXPKT1_END BIT(0)
240
241#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
242 DSI1_INT_ERR_CONTROL | \
243 DSI1_INT_ERR_CONT_LP0 | \
244 DSI1_INT_ERR_CONT_LP1 | \
245 DSI1_INT_HSTX_TO | \
246 DSI1_INT_LPRX_TO | \
247 DSI1_INT_TA_TO | \
248 DSI1_INT_PR_TO)
249
250#define DSI0_STAT 0x2c
251#define DSI0_HSTX_TO_CNT 0x30
252#define DSI0_LPRX_TO_CNT 0x34
253#define DSI0_TA_TO_CNT 0x38
254#define DSI0_PR_TO_CNT 0x3c
255#define DSI0_PHYC 0x40
256# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
257# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
258# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
259# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
260# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
261# define DSI1_PHYC_CLANE_ULPS BIT(17)
262# define DSI1_PHYC_CLANE_ENABLE BIT(16)
263# define DSI_PHYC_DLANE3_ULPS BIT(13)
264# define DSI_PHYC_DLANE3_ENABLE BIT(12)
265# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
266# define DSI0_PHYC_CLANE_ULPS BIT(9)
267# define DSI_PHYC_DLANE2_ULPS BIT(9)
268# define DSI0_PHYC_CLANE_ENABLE BIT(8)
269# define DSI_PHYC_DLANE2_ENABLE BIT(8)
270# define DSI_PHYC_DLANE1_ULPS BIT(5)
271# define DSI_PHYC_DLANE1_ENABLE BIT(4)
272# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
273# define DSI_PHYC_DLANE0_ULPS BIT(1)
274# define DSI_PHYC_DLANE0_ENABLE BIT(0)
275
276#define DSI0_HS_CLT0 0x44
277#define DSI0_HS_CLT1 0x48
278#define DSI0_HS_CLT2 0x4c
279#define DSI0_HS_DLT3 0x50
280#define DSI0_HS_DLT4 0x54
281#define DSI0_HS_DLT5 0x58
282#define DSI0_HS_DLT6 0x5c
283#define DSI0_HS_DLT7 0x60
284
285#define DSI0_PHY_AFEC0 0x64
286# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
287# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
288# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
289# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
290# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
291# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
292# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
293# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
294# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
295# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
296# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
297# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
298# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
299# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
300# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
301# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
302# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
303# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
304# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
305# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
306# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
307# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
308# define DSI1_PHY_AFEC0_RESET BIT(13)
309# define DSI1_PHY_AFEC0_PD BIT(12)
310# define DSI0_PHY_AFEC0_RESET BIT(11)
311# define DSI1_PHY_AFEC0_PD_BG BIT(11)
312# define DSI0_PHY_AFEC0_PD BIT(10)
313# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
314# define DSI0_PHY_AFEC0_PD_BG BIT(9)
315# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
316# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
317# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
318# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
319# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
320# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
321# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
322
323#define DSI0_PHY_AFEC1 0x68
324# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
325# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
326# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
327# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
328# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
329# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
330
331#define DSI0_TST_SEL 0x6c
332#define DSI0_TST_MON 0x70
333#define DSI0_ID 0x74
334# define DSI_ID_VALUE 0x00647369
335
336#define DSI1_CTRL 0x00
337# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
338# define DSI_CTRL_HS_CLKC_SHIFT 14
339# define DSI_CTRL_HS_CLKC_BYTE 0
340# define DSI_CTRL_HS_CLKC_DDR2 1
341# define DSI_CTRL_HS_CLKC_DDR 2
342
343# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
344# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
345# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
346# define DSI_CTRL_SOFT_RESET_CFG BIT(10)
347# define DSI_CTRL_CAL_BYTE BIT(9)
348# define DSI_CTRL_INV_BYTE BIT(8)
349# define DSI_CTRL_CLR_LDF BIT(7)
350# define DSI0_CTRL_CLR_PBCF BIT(6)
351# define DSI1_CTRL_CLR_RXF BIT(6)
352# define DSI0_CTRL_CLR_CPBCF BIT(5)
353# define DSI1_CTRL_CLR_PDF BIT(5)
354# define DSI0_CTRL_CLR_PDF BIT(4)
355# define DSI1_CTRL_CLR_CDF BIT(4)
356# define DSI0_CTRL_CLR_CDF BIT(3)
357# define DSI0_CTRL_CTRL2 BIT(2)
358# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
359# define DSI0_CTRL_CTRL1 BIT(1)
360# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
361# define DSI0_CTRL_CTRL0 BIT(0)
362# define DSI1_CTRL_EN BIT(0)
363# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
364 DSI0_CTRL_CLR_PBCF | \
365 DSI0_CTRL_CLR_CPBCF | \
366 DSI0_CTRL_CLR_PDF | \
367 DSI0_CTRL_CLR_CDF)
368# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
369 DSI1_CTRL_CLR_RXF | \
370 DSI1_CTRL_CLR_PDF | \
371 DSI1_CTRL_CLR_CDF)
372
373#define DSI1_TXPKT2C 0x0c
374#define DSI1_TXPKT2H 0x10
375#define DSI1_TXPKT_PIX_FIFO 0x20
376#define DSI1_RXPKT_FIFO 0x24
377#define DSI1_DISP0_CTRL 0x28
378#define DSI1_INT_STAT 0x30
379#define DSI1_INT_EN 0x34
380/* State reporting bits. These mostly behave like INT_STAT, where
381 * writing a 1 clears the bit.
382 */
383#define DSI1_STAT 0x38
384# define DSI1_STAT_PHY_D3_ULPS BIT(31)
385# define DSI1_STAT_PHY_D3_STOP BIT(30)
386# define DSI1_STAT_PHY_D2_ULPS BIT(29)
387# define DSI1_STAT_PHY_D2_STOP BIT(28)
388# define DSI1_STAT_PHY_D1_ULPS BIT(27)
389# define DSI1_STAT_PHY_D1_STOP BIT(26)
390# define DSI1_STAT_PHY_D0_ULPS BIT(25)
391# define DSI1_STAT_PHY_D0_STOP BIT(24)
392# define DSI1_STAT_FIFO_ERR BIT(23)
393# define DSI1_STAT_PHY_RXLPDT BIT(22)
394# define DSI1_STAT_PHY_RXTRIG BIT(21)
395# define DSI1_STAT_PHY_D0_LPDT BIT(20)
396/* Set when in forward direction */
397# define DSI1_STAT_PHY_DIR BIT(19)
398# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
399# define DSI1_STAT_PHY_CLOCK_HS BIT(17)
400# define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
401# define DSI1_STAT_PR_TO BIT(15)
402# define DSI1_STAT_TA_TO BIT(14)
403# define DSI1_STAT_LPRX_TO BIT(13)
404# define DSI1_STAT_HSTX_TO BIT(12)
405# define DSI1_STAT_ERR_CONT_LP1 BIT(11)
406# define DSI1_STAT_ERR_CONT_LP0 BIT(10)
407# define DSI1_STAT_ERR_CONTROL BIT(9)
408# define DSI1_STAT_ERR_SYNC_ESC BIT(8)
409# define DSI1_STAT_RXPKT2 BIT(7)
410# define DSI1_STAT_RXPKT1 BIT(6)
411# define DSI1_STAT_TXPKT2_BUSY BIT(5)
412# define DSI1_STAT_TXPKT2_DONE BIT(4)
413# define DSI1_STAT_TXPKT2_END BIT(3)
414# define DSI1_STAT_TXPKT1_BUSY BIT(2)
415# define DSI1_STAT_TXPKT1_DONE BIT(1)
416# define DSI1_STAT_TXPKT1_END BIT(0)
417
418#define DSI1_HSTX_TO_CNT 0x3c
419#define DSI1_LPRX_TO_CNT 0x40
420#define DSI1_TA_TO_CNT 0x44
421#define DSI1_PR_TO_CNT 0x48
422#define DSI1_PHYC 0x4c
423
424#define DSI1_HS_CLT0 0x50
425# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
426# define DSI_HS_CLT0_CZERO_SHIFT 18
427# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
428# define DSI_HS_CLT0_CPRE_SHIFT 9
429# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
430# define DSI_HS_CLT0_CPREP_SHIFT 0
431
432#define DSI1_HS_CLT1 0x54
433# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
434# define DSI_HS_CLT1_CTRAIL_SHIFT 9
435# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
436# define DSI_HS_CLT1_CPOST_SHIFT 0
437
438#define DSI1_HS_CLT2 0x58
439# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
440# define DSI_HS_CLT2_WUP_SHIFT 0
441
442#define DSI1_HS_DLT3 0x5c
443# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
444# define DSI_HS_DLT3_EXIT_SHIFT 18
445# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
446# define DSI_HS_DLT3_ZERO_SHIFT 9
447# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
448# define DSI_HS_DLT3_PRE_SHIFT 0
449
450#define DSI1_HS_DLT4 0x60
451# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
452# define DSI_HS_DLT4_ANLAT_SHIFT 18
453# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
454# define DSI_HS_DLT4_TRAIL_SHIFT 9
455# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
456# define DSI_HS_DLT4_LPX_SHIFT 0
457
458#define DSI1_HS_DLT5 0x64
459# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
460# define DSI_HS_DLT5_INIT_SHIFT 0
461
462#define DSI1_HS_DLT6 0x68
463# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
464# define DSI_HS_DLT6_TA_GET_SHIFT 24
465# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
466# define DSI_HS_DLT6_TA_SURE_SHIFT 16
467# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
468# define DSI_HS_DLT6_TA_GO_SHIFT 8
469# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
470# define DSI_HS_DLT6_LP_LPX_SHIFT 0
471
472#define DSI1_HS_DLT7 0x6c
473# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
474# define DSI_HS_DLT7_LP_WUP_SHIFT 0
475
476#define DSI1_PHY_AFEC0 0x70
477
478#define DSI1_PHY_AFEC1 0x74
479# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
480# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
481# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
482# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
483# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
484# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
485# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
486# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
487# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
488# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
489
490#define DSI1_TST_SEL 0x78
491#define DSI1_TST_MON 0x7c
492#define DSI1_PHY_TST1 0x80
493#define DSI1_PHY_TST2 0x84
494#define DSI1_PHY_FIFO_STAT 0x88
495/* Actually, all registers in the range that aren't otherwise claimed
496 * will return the ID.
497 */
498#define DSI1_ID 0x8c
499
500/* General DSI hardware state. */
501struct vc4_dsi {
502 struct platform_device *pdev;
503
504 struct mipi_dsi_host dsi_host;
505 struct drm_encoder *encoder;
Eric Anholt656fa222017-05-11 11:31:23 -0700506 struct drm_bridge *bridge;
507 bool is_panel_bridge;
Eric Anholt4078f572017-01-31 11:29:11 -0800508
509 void __iomem *regs;
510
511 struct dma_chan *reg_dma_chan;
512 dma_addr_t reg_dma_paddr;
513 u32 *reg_dma_mem;
514 dma_addr_t reg_paddr;
515
516 /* Whether we're on bcm2835's DSI0 or DSI1. */
517 int port;
518
519 /* DSI channel for the panel we're connected to. */
520 u32 channel;
521 u32 lanes;
Eric Anholt86c1b9e2017-05-11 16:56:22 -0700522 u32 format;
523 u32 divider;
Eric Anholt4078f572017-01-31 11:29:11 -0800524 u32 mode_flags;
525
526 /* Input clock from CPRMAN to the digital PHY, for the DSI
527 * escape clock.
528 */
529 struct clk *escape_clock;
530
531 /* Input clock to the analog PHY, used to generate the DSI bit
532 * clock.
533 */
534 struct clk *pll_phy_clock;
535
536 /* HS Clocks generated within the DSI analog PHY. */
537 struct clk_fixed_factor phy_clocks[3];
538
539 struct clk_hw_onecell_data *clk_onecell;
540
541 /* Pixel clock output to the pixelvalve, generated from the HS
542 * clock.
543 */
544 struct clk *pixel_clock;
545
546 struct completion xfer_completion;
547 int xfer_result;
548};
549
550#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
551
552static inline void
553dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
554{
555 struct dma_chan *chan = dsi->reg_dma_chan;
556 struct dma_async_tx_descriptor *tx;
557 dma_cookie_t cookie;
558 int ret;
559
560 /* DSI0 should be able to write normally. */
561 if (!chan) {
562 writel(val, dsi->regs + offset);
563 return;
564 }
565
566 *dsi->reg_dma_mem = val;
567
568 tx = chan->device->device_prep_dma_memcpy(chan,
569 dsi->reg_paddr + offset,
570 dsi->reg_dma_paddr,
571 4, 0);
572 if (!tx) {
573 DRM_ERROR("Failed to set up DMA register write\n");
574 return;
575 }
576
577 cookie = tx->tx_submit(tx);
578 ret = dma_submit_error(cookie);
579 if (ret) {
580 DRM_ERROR("Failed to submit DMA: %d\n", ret);
581 return;
582 }
583 ret = dma_sync_wait(chan, cookie);
584 if (ret)
585 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
586}
587
588#define DSI_READ(offset) readl(dsi->regs + (offset))
589#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
590#define DSI_PORT_READ(offset) \
591 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
592#define DSI_PORT_WRITE(offset, val) \
593 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
594#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
595
596/* VC4 DSI encoder KMS struct */
597struct vc4_dsi_encoder {
598 struct vc4_encoder base;
599 struct vc4_dsi *dsi;
600};
601
602static inline struct vc4_dsi_encoder *
603to_vc4_dsi_encoder(struct drm_encoder *encoder)
604{
605 return container_of(encoder, struct vc4_dsi_encoder, base.base);
606}
607
Eric Anholt4078f572017-01-31 11:29:11 -0800608#define DSI_REG(reg) { reg, #reg }
609static const struct {
610 u32 reg;
611 const char *name;
612} dsi0_regs[] = {
613 DSI_REG(DSI0_CTRL),
614 DSI_REG(DSI0_STAT),
615 DSI_REG(DSI0_HSTX_TO_CNT),
616 DSI_REG(DSI0_LPRX_TO_CNT),
617 DSI_REG(DSI0_TA_TO_CNT),
618 DSI_REG(DSI0_PR_TO_CNT),
619 DSI_REG(DSI0_DISP0_CTRL),
620 DSI_REG(DSI0_DISP1_CTRL),
621 DSI_REG(DSI0_INT_STAT),
622 DSI_REG(DSI0_INT_EN),
623 DSI_REG(DSI0_PHYC),
624 DSI_REG(DSI0_HS_CLT0),
625 DSI_REG(DSI0_HS_CLT1),
626 DSI_REG(DSI0_HS_CLT2),
627 DSI_REG(DSI0_HS_DLT3),
628 DSI_REG(DSI0_HS_DLT4),
629 DSI_REG(DSI0_HS_DLT5),
630 DSI_REG(DSI0_HS_DLT6),
631 DSI_REG(DSI0_HS_DLT7),
632 DSI_REG(DSI0_PHY_AFEC0),
633 DSI_REG(DSI0_PHY_AFEC1),
634 DSI_REG(DSI0_ID),
635};
636
637static const struct {
638 u32 reg;
639 const char *name;
640} dsi1_regs[] = {
641 DSI_REG(DSI1_CTRL),
642 DSI_REG(DSI1_STAT),
643 DSI_REG(DSI1_HSTX_TO_CNT),
644 DSI_REG(DSI1_LPRX_TO_CNT),
645 DSI_REG(DSI1_TA_TO_CNT),
646 DSI_REG(DSI1_PR_TO_CNT),
647 DSI_REG(DSI1_DISP0_CTRL),
648 DSI_REG(DSI1_DISP1_CTRL),
649 DSI_REG(DSI1_INT_STAT),
650 DSI_REG(DSI1_INT_EN),
651 DSI_REG(DSI1_PHYC),
652 DSI_REG(DSI1_HS_CLT0),
653 DSI_REG(DSI1_HS_CLT1),
654 DSI_REG(DSI1_HS_CLT2),
655 DSI_REG(DSI1_HS_DLT3),
656 DSI_REG(DSI1_HS_DLT4),
657 DSI_REG(DSI1_HS_DLT5),
658 DSI_REG(DSI1_HS_DLT6),
659 DSI_REG(DSI1_HS_DLT7),
660 DSI_REG(DSI1_PHY_AFEC0),
661 DSI_REG(DSI1_PHY_AFEC1),
662 DSI_REG(DSI1_ID),
663};
664
665static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
666{
667 int i;
668
669 if (dsi->port == 0) {
670 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
671 DRM_INFO("0x%04x (%s): 0x%08x\n",
672 dsi0_regs[i].reg, dsi0_regs[i].name,
673 DSI_READ(dsi0_regs[i].reg));
674 }
675 } else {
676 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
677 DRM_INFO("0x%04x (%s): 0x%08x\n",
678 dsi1_regs[i].reg, dsi1_regs[i].name,
679 DSI_READ(dsi1_regs[i].reg));
680 }
681 }
682}
683
684#ifdef CONFIG_DEBUG_FS
685int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
686{
687 struct drm_info_node *node = (struct drm_info_node *)m->private;
688 struct drm_device *drm = node->minor->dev;
689 struct vc4_dev *vc4 = to_vc4_dev(drm);
690 int dsi_index = (uintptr_t)node->info_ent->data;
691 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
692 int i;
693
694 if (!dsi)
695 return 0;
696
697 if (dsi->port == 0) {
698 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
699 seq_printf(m, "0x%04x (%s): 0x%08x\n",
700 dsi0_regs[i].reg, dsi0_regs[i].name,
701 DSI_READ(dsi0_regs[i].reg));
702 }
703 } else {
704 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
705 seq_printf(m, "0x%04x (%s): 0x%08x\n",
706 dsi1_regs[i].reg, dsi1_regs[i].name,
707 DSI_READ(dsi1_regs[i].reg));
708 }
709 }
710
711 return 0;
712}
713#endif
714
Eric Anholt4078f572017-01-31 11:29:11 -0800715static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
716{
717 drm_encoder_cleanup(encoder);
718}
719
720static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
721 .destroy = vc4_dsi_encoder_destroy,
722};
723
724static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
725{
726 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
727
728 if (latch)
729 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
730 else
731 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
732
733 DSI_PORT_WRITE(PHY_AFEC0, afec0);
734}
735
736/* Enters or exits Ultra Low Power State. */
737static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
738{
739 bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
740 u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
741 DSI_PHYC_DLANE0_ULPS |
742 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
743 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
744 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
745 u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
746 DSI1_STAT_PHY_D0_ULPS |
747 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
748 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
749 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
750 u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
751 DSI1_STAT_PHY_D0_STOP |
752 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
753 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
754 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
755 int ret;
756
757 DSI_PORT_WRITE(STAT, stat_ulps);
758 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
759 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
760 if (ret) {
761 dev_warn(&dsi->pdev->dev,
762 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
763 DSI_PORT_READ(STAT));
764 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
765 vc4_dsi_latch_ulps(dsi, false);
766 return;
767 }
768
769 /* The DSI module can't be disabled while the module is
770 * generating ULPS state. So, to be able to disable the
771 * module, we have the AFE latch the ULPS state and continue
772 * on to having the module enter STOP.
773 */
774 vc4_dsi_latch_ulps(dsi, ulps);
775
776 DSI_PORT_WRITE(STAT, stat_stop);
777 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
778 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
779 if (ret) {
780 dev_warn(&dsi->pdev->dev,
781 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
782 DSI_PORT_READ(STAT));
783 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
784 return;
785 }
786}
787
788static u32
789dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
790{
791 /* The HS timings have to be rounded up to a multiple of 8
792 * because we're using the byte clock.
793 */
794 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
795}
796
797/* ESC always runs at 100Mhz. */
798#define ESC_TIME_NS 10
799
800static u32
801dsi_esc_timing(u32 ns)
802{
803 return DIV_ROUND_UP(ns, ESC_TIME_NS);
804}
805
806static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
807{
808 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
809 struct vc4_dsi *dsi = vc4_encoder->dsi;
810 struct device *dev = &dsi->pdev->dev;
811
Eric Anholt4078f572017-01-31 11:29:11 -0800812 vc4_dsi_ulps(dsi, true);
813
Eric Anholt4078f572017-01-31 11:29:11 -0800814 clk_disable_unprepare(dsi->pll_phy_clock);
815 clk_disable_unprepare(dsi->escape_clock);
816 clk_disable_unprepare(dsi->pixel_clock);
817
818 pm_runtime_put(dev);
819}
820
Eric Anholt86c1b9e2017-05-11 16:56:22 -0700821/* Extends the mode's blank intervals to handle BCM2835's integer-only
822 * DSI PLL divider.
823 *
824 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
825 * driver since most peripherals are hanging off of the PLLD_PER
826 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
827 * the pixel clock), only has an integer divider off of DSI.
828 *
829 * To get our panel mode to refresh at the expected 60Hz, we need to
830 * extend the horizontal blank time. This means we drive a
831 * higher-than-expected clock rate to the panel, but that's what the
832 * firmware does too.
833 */
834static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
835 const struct drm_display_mode *mode,
836 struct drm_display_mode *adjusted_mode)
837{
838 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
839 struct vc4_dsi *dsi = vc4_encoder->dsi;
840 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
841 unsigned long parent_rate = clk_get_rate(phy_parent);
842 unsigned long pixel_clock_hz = mode->clock * 1000;
843 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
844 int divider;
845
846 /* Find what divider gets us a faster clock than the requested
847 * pixel clock.
848 */
849 for (divider = 1; divider < 8; divider++) {
850 if (parent_rate / divider < pll_clock) {
851 divider--;
852 break;
853 }
854 }
855
856 /* Now that we've picked a PLL divider, calculate back to its
857 * pixel clock.
858 */
859 pll_clock = parent_rate / divider;
860 pixel_clock_hz = pll_clock / dsi->divider;
861
862 /* Round up the clk_set_rate() request slightly, since
863 * PLLD_DSI1 is an integer divider and its rate selection will
864 * never round up.
865 */
866 adjusted_mode->clock = pixel_clock_hz / 1000 + 1;
867
868 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
869 adjusted_mode->htotal = pixel_clock_hz / (mode->vrefresh * mode->vtotal);
870 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
871 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
872
873 return true;
874}
875
Eric Anholt4078f572017-01-31 11:29:11 -0800876static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
877{
Eric Anholt86c1b9e2017-05-11 16:56:22 -0700878 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
Eric Anholt4078f572017-01-31 11:29:11 -0800879 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
880 struct vc4_dsi *dsi = vc4_encoder->dsi;
881 struct device *dev = &dsi->pdev->dev;
Eric Anholt4078f572017-01-31 11:29:11 -0800882 bool debug_dump_regs = false;
883 unsigned long hs_clock;
884 u32 ui_ns;
885 /* Minimum LP state duration in escape clock cycles. */
886 u32 lpx = dsi_esc_timing(60);
887 unsigned long pixel_clock_hz = mode->clock * 1000;
888 unsigned long dsip_clock;
889 unsigned long phy_clock;
890 int ret;
891
892 ret = pm_runtime_get_sync(dev);
893 if (ret) {
894 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
895 return;
896 }
897
Eric Anholt4078f572017-01-31 11:29:11 -0800898 if (debug_dump_regs) {
899 DRM_INFO("DSI regs before:\n");
900 vc4_dsi_dump_regs(dsi);
901 }
902
Eric Anholt86c1b9e2017-05-11 16:56:22 -0700903 phy_clock = pixel_clock_hz * dsi->divider;
Eric Anholt4078f572017-01-31 11:29:11 -0800904 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
905 if (ret) {
906 dev_err(&dsi->pdev->dev,
907 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
908 }
909
910 /* Reset the DSI and all its fifos. */
911 DSI_PORT_WRITE(CTRL,
912 DSI_CTRL_SOFT_RESET_CFG |
913 DSI_PORT_BIT(CTRL_RESET_FIFOS));
914
915 DSI_PORT_WRITE(CTRL,
916 DSI_CTRL_HSDT_EOT_DISABLE |
917 DSI_CTRL_RX_LPDT_EOT_DISABLE);
918
919 /* Clear all stat bits so we see what has happened during enable. */
920 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
921
922 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
923 if (dsi->port == 0) {
924 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
925 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
926
927 if (dsi->lanes < 2)
928 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
929
930 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
931 afec0 |= DSI0_PHY_AFEC0_RESET;
932
933 DSI_PORT_WRITE(PHY_AFEC0, afec0);
934
935 DSI_PORT_WRITE(PHY_AFEC1,
936 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
937 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
938 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
939 } else {
940 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
941 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
942 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
943 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
944 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
945 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
946 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
947
948 if (dsi->lanes < 4)
949 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
950 if (dsi->lanes < 3)
951 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
952 if (dsi->lanes < 2)
953 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
954
955 afec0 |= DSI1_PHY_AFEC0_RESET;
956
957 DSI_PORT_WRITE(PHY_AFEC0, afec0);
958
959 DSI_PORT_WRITE(PHY_AFEC1, 0);
960
961 /* AFEC reset hold time */
962 mdelay(1);
963 }
964
965 ret = clk_prepare_enable(dsi->escape_clock);
966 if (ret) {
967 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
968 return;
969 }
970
971 ret = clk_prepare_enable(dsi->pll_phy_clock);
972 if (ret) {
973 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
974 return;
975 }
976
977 hs_clock = clk_get_rate(dsi->pll_phy_clock);
978
979 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
980 * not the pixel clock rate. DSIxP take from the APHY's byte,
981 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
982 * that rate. Separately, a value derived from PIX_CLK_DIV
983 * and HS_CLKC is fed into the PV to divide down to the actual
984 * pixel clock for pushing pixels into DSI.
985 */
986 dsip_clock = phy_clock / 8;
987 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
988 if (ret) {
989 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
990 dsip_clock, ret);
991 }
992
993 ret = clk_prepare_enable(dsi->pixel_clock);
994 if (ret) {
995 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
996 return;
997 }
998
999 /* How many ns one DSI unit interval is. Note that the clock
1000 * is DDR, so there's an extra divide by 2.
1001 */
1002 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1003
1004 DSI_PORT_WRITE(HS_CLT0,
1005 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1006 DSI_HS_CLT0_CZERO) |
1007 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1008 DSI_HS_CLT0_CPRE) |
1009 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1010 DSI_HS_CLT0_CPREP));
1011
1012 DSI_PORT_WRITE(HS_CLT1,
1013 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1014 DSI_HS_CLT1_CTRAIL) |
1015 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1016 DSI_HS_CLT1_CPOST));
1017
1018 DSI_PORT_WRITE(HS_CLT2,
1019 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1020 DSI_HS_CLT2_WUP));
1021
1022 DSI_PORT_WRITE(HS_DLT3,
1023 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1024 DSI_HS_DLT3_EXIT) |
1025 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1026 DSI_HS_DLT3_ZERO) |
1027 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1028 DSI_HS_DLT3_PRE));
1029
1030 DSI_PORT_WRITE(HS_DLT4,
1031 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1032 DSI_HS_DLT4_LPX) |
1033 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1034 dsi_hs_timing(ui_ns, 60, 4)),
1035 DSI_HS_DLT4_TRAIL) |
1036 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1037
1038 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000),
1039 DSI_HS_DLT5_INIT));
1040
1041 DSI_PORT_WRITE(HS_DLT6,
1042 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1043 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1044 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1045 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1046
1047 DSI_PORT_WRITE(HS_DLT7,
1048 VC4_SET_FIELD(dsi_esc_timing(1000000),
1049 DSI_HS_DLT7_LP_WUP));
1050
1051 DSI_PORT_WRITE(PHYC,
1052 DSI_PHYC_DLANE0_ENABLE |
1053 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1054 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1055 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1056 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1057 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1058 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1059 (dsi->port == 0 ?
1060 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1061 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1062
1063 DSI_PORT_WRITE(CTRL,
1064 DSI_PORT_READ(CTRL) |
1065 DSI_CTRL_CAL_BYTE);
1066
1067 /* HS timeout in HS clock cycles: disabled. */
1068 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1069 /* LP receive timeout in HS clocks. */
1070 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1071 /* Bus turnaround timeout */
1072 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1073 /* Display reset sequence timeout */
1074 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1075
1076 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1077 DSI_PORT_WRITE(DISP0_CTRL,
Eric Anholt86c1b9e2017-05-11 16:56:22 -07001078 VC4_SET_FIELD(dsi->divider,
1079 DSI_DISP0_PIX_CLK_DIV) |
1080 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
Eric Anholt4078f572017-01-31 11:29:11 -08001081 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1082 DSI_DISP0_LP_STOP_CTRL) |
1083 DSI_DISP0_ST_END |
1084 DSI_DISP0_ENABLE);
1085 } else {
1086 DSI_PORT_WRITE(DISP0_CTRL,
1087 DSI_DISP0_COMMAND_MODE |
1088 DSI_DISP0_ENABLE);
1089 }
1090
1091 /* Set up DISP1 for transferring long command payloads through
1092 * the pixfifo.
1093 */
1094 DSI_PORT_WRITE(DISP1_CTRL,
1095 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1096 DSI_DISP1_PFORMAT) |
1097 DSI_DISP1_ENABLE);
1098
1099 /* Ungate the block. */
1100 if (dsi->port == 0)
1101 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1102 else
1103 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1104
1105 /* Bring AFE out of reset. */
1106 if (dsi->port == 0) {
1107 } else {
1108 DSI_PORT_WRITE(PHY_AFEC0,
1109 DSI_PORT_READ(PHY_AFEC0) &
1110 ~DSI1_PHY_AFEC0_RESET);
1111 }
1112
1113 vc4_dsi_ulps(dsi, false);
1114
1115 if (debug_dump_regs) {
1116 DRM_INFO("DSI regs after:\n");
1117 vc4_dsi_dump_regs(dsi);
1118 }
Eric Anholt4078f572017-01-31 11:29:11 -08001119}
1120
1121static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1122 const struct mipi_dsi_msg *msg)
1123{
1124 struct vc4_dsi *dsi = host_to_dsi(host);
1125 struct mipi_dsi_packet packet;
1126 u32 pkth = 0, pktc = 0;
1127 int i, ret;
1128 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1129 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1130
1131 mipi_dsi_create_packet(&packet, msg);
1132
1133 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1134 pkth |= VC4_SET_FIELD(packet.header[1] |
1135 (packet.header[2] << 8),
1136 DSI_TXPKT1H_BC_PARAM);
1137 if (is_long) {
1138 /* Divide data across the various FIFOs we have available.
1139 * The command FIFO takes byte-oriented data, but is of
1140 * limited size. The pixel FIFO (never actually used for
1141 * pixel data in reality) is word oriented, and substantially
1142 * larger. So, we use the pixel FIFO for most of the data,
1143 * sending the residual bytes in the command FIFO at the start.
1144 *
1145 * With this arrangement, the command FIFO will never get full.
1146 */
1147 if (packet.payload_length <= 16) {
1148 cmd_fifo_len = packet.payload_length;
1149 pix_fifo_len = 0;
1150 } else {
1151 cmd_fifo_len = (packet.payload_length %
1152 DSI_PIX_FIFO_WIDTH);
1153 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1154 DSI_PIX_FIFO_WIDTH);
1155 }
1156
1157 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1158
1159 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1160 }
1161
1162 if (msg->rx_len) {
1163 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1164 DSI_TXPKT1C_CMD_CTRL);
1165 } else {
1166 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1167 DSI_TXPKT1C_CMD_CTRL);
1168 }
1169
1170 for (i = 0; i < cmd_fifo_len; i++)
1171 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1172 for (i = 0; i < pix_fifo_len; i++) {
1173 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1174
1175 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1176 pix[0] |
1177 pix[1] << 8 |
1178 pix[2] << 16 |
1179 pix[3] << 24);
1180 }
1181
1182 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1183 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1184 if (is_long)
1185 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1186
1187 /* Send one copy of the packet. Larger repeats are used for pixel
1188 * data in command mode.
1189 */
1190 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1191
1192 pktc |= DSI_TXPKT1C_CMD_EN;
1193 if (pix_fifo_len) {
1194 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1195 DSI_TXPKT1C_DISPLAY_NO);
1196 } else {
1197 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1198 DSI_TXPKT1C_DISPLAY_NO);
1199 }
1200
1201 /* Enable the appropriate interrupt for the transfer completion. */
1202 dsi->xfer_result = 0;
1203 reinit_completion(&dsi->xfer_completion);
1204 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1205 if (msg->rx_len) {
1206 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1207 DSI1_INT_PHY_DIR_RTF));
1208 } else {
1209 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1210 DSI1_INT_TXPKT1_DONE));
1211 }
1212
1213 /* Send the packet. */
1214 DSI_PORT_WRITE(TXPKT1H, pkth);
1215 DSI_PORT_WRITE(TXPKT1C, pktc);
1216
1217 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1218 msecs_to_jiffies(1000))) {
1219 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1220 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1221 DSI_PORT_READ(INT_STAT));
1222 ret = -ETIMEDOUT;
1223 } else {
1224 ret = dsi->xfer_result;
1225 }
1226
1227 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1228
1229 if (ret)
1230 goto reset_fifo_and_return;
1231
1232 if (ret == 0 && msg->rx_len) {
1233 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1234 u8 *msg_rx = msg->rx_buf;
1235
1236 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1237 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1238 DSI_RXPKT1H_BC_PARAM);
1239
1240 if (rxlen != msg->rx_len) {
1241 DRM_ERROR("DSI returned %db, expecting %db\n",
1242 rxlen, (int)msg->rx_len);
1243 ret = -ENXIO;
1244 goto reset_fifo_and_return;
1245 }
1246
1247 for (i = 0; i < msg->rx_len; i++)
1248 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1249 } else {
1250 /* FINISHME: Handle AWER */
1251
1252 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1253 DSI_RXPKT1H_SHORT_0);
1254 if (msg->rx_len > 1) {
1255 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1256 DSI_RXPKT1H_SHORT_1);
1257 }
1258 }
1259 }
1260
1261 return ret;
1262
1263reset_fifo_and_return:
1264 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1265
1266 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1267 udelay(1);
1268 DSI_PORT_WRITE(CTRL,
1269 DSI_PORT_READ(CTRL) |
1270 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1271
1272 DSI_PORT_WRITE(TXPKT1C, 0);
1273 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1274 return ret;
1275}
1276
1277static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1278 struct mipi_dsi_device *device)
1279{
1280 struct vc4_dsi *dsi = host_to_dsi(host);
1281 int ret = 0;
1282
1283 dsi->lanes = device->lanes;
1284 dsi->channel = device->channel;
Eric Anholt4078f572017-01-31 11:29:11 -08001285 dsi->mode_flags = device->mode_flags;
1286
Eric Anholt86c1b9e2017-05-11 16:56:22 -07001287 switch (device->format) {
1288 case MIPI_DSI_FMT_RGB888:
1289 dsi->format = DSI_PFORMAT_RGB888;
1290 dsi->divider = 24 / dsi->lanes;
1291 break;
1292 case MIPI_DSI_FMT_RGB666:
1293 dsi->format = DSI_PFORMAT_RGB666;
1294 dsi->divider = 24 / dsi->lanes;
1295 break;
1296 case MIPI_DSI_FMT_RGB666_PACKED:
1297 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1298 dsi->divider = 18 / dsi->lanes;
1299 break;
1300 case MIPI_DSI_FMT_RGB565:
1301 dsi->format = DSI_PFORMAT_RGB565;
1302 dsi->divider = 16 / dsi->lanes;
1303 break;
1304 default:
1305 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1306 dsi->format);
1307 return 0;
1308 }
1309
Eric Anholt4078f572017-01-31 11:29:11 -08001310 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1311 dev_err(&dsi->pdev->dev,
1312 "Only VIDEO mode panels supported currently.\n");
1313 return 0;
1314 }
1315
Eric Anholt656fa222017-05-11 11:31:23 -07001316 dsi->bridge = of_drm_find_bridge(device->dev.of_node);
1317 if (!dsi->bridge) {
1318 struct drm_panel *panel =
1319 of_drm_find_panel(device->dev.of_node);
Eric Anholt4078f572017-01-31 11:29:11 -08001320
Eric Anholt656fa222017-05-11 11:31:23 -07001321 dsi->bridge = drm_panel_bridge_add(panel,
1322 DRM_MODE_CONNECTOR_DSI);
1323 if (IS_ERR(dsi->bridge)) {
1324 ret = PTR_ERR(dsi->bridge);
1325 dsi->bridge = NULL;
1326 return ret;
1327 }
1328 dsi->is_panel_bridge = true;
1329 }
Eric Anholt4078f572017-01-31 11:29:11 -08001330
Eric Anholt656fa222017-05-11 11:31:23 -07001331 return drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
Eric Anholt4078f572017-01-31 11:29:11 -08001332}
1333
1334static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1335 struct mipi_dsi_device *device)
1336{
1337 struct vc4_dsi *dsi = host_to_dsi(host);
1338
Eric Anholt656fa222017-05-11 11:31:23 -07001339 if (dsi->is_panel_bridge) {
1340 drm_panel_bridge_remove(dsi->bridge);
1341 dsi->bridge = NULL;
Eric Anholt4078f572017-01-31 11:29:11 -08001342 }
1343
1344 return 0;
1345}
1346
1347static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1348 .attach = vc4_dsi_host_attach,
1349 .detach = vc4_dsi_host_detach,
1350 .transfer = vc4_dsi_host_transfer,
1351};
1352
1353static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1354 .disable = vc4_dsi_encoder_disable,
1355 .enable = vc4_dsi_encoder_enable,
Eric Anholt86c1b9e2017-05-11 16:56:22 -07001356 .mode_fixup = vc4_dsi_encoder_mode_fixup,
Eric Anholt4078f572017-01-31 11:29:11 -08001357};
1358
1359static const struct of_device_id vc4_dsi_dt_match[] = {
1360 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1361 {}
1362};
1363
1364static void dsi_handle_error(struct vc4_dsi *dsi,
1365 irqreturn_t *ret, u32 stat, u32 bit,
1366 const char *type)
1367{
1368 if (!(stat & bit))
1369 return;
1370
1371 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1372 *ret = IRQ_HANDLED;
1373}
1374
1375static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1376{
1377 struct vc4_dsi *dsi = data;
1378 u32 stat = DSI_PORT_READ(INT_STAT);
1379 irqreturn_t ret = IRQ_NONE;
1380
1381 DSI_PORT_WRITE(INT_STAT, stat);
1382
1383 dsi_handle_error(dsi, &ret, stat,
1384 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1385 dsi_handle_error(dsi, &ret, stat,
1386 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1387 dsi_handle_error(dsi, &ret, stat,
1388 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1389 dsi_handle_error(dsi, &ret, stat,
1390 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1391 dsi_handle_error(dsi, &ret, stat,
1392 DSI1_INT_HSTX_TO, "HSTX timeout");
1393 dsi_handle_error(dsi, &ret, stat,
1394 DSI1_INT_LPRX_TO, "LPRX timeout");
1395 dsi_handle_error(dsi, &ret, stat,
1396 DSI1_INT_TA_TO, "turnaround timeout");
1397 dsi_handle_error(dsi, &ret, stat,
1398 DSI1_INT_PR_TO, "peripheral reset timeout");
1399
1400 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1401 complete(&dsi->xfer_completion);
1402 ret = IRQ_HANDLED;
1403 } else if (stat & DSI1_INT_HSTX_TO) {
1404 complete(&dsi->xfer_completion);
1405 dsi->xfer_result = -ETIMEDOUT;
1406 ret = IRQ_HANDLED;
1407 }
1408
1409 return ret;
1410}
1411
1412/**
Eric Anholt72f793f2017-02-27 12:11:41 -08001413 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1414 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1415 * @dsi: DSI encoder
Eric Anholt4078f572017-01-31 11:29:11 -08001416 */
1417static int
1418vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1419{
1420 struct device *dev = &dsi->pdev->dev;
1421 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1422 static const struct {
1423 const char *dsi0_name, *dsi1_name;
1424 int div;
1425 } phy_clocks[] = {
1426 { "dsi0_byte", "dsi1_byte", 8 },
1427 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1428 { "dsi0_ddr", "dsi1_ddr", 2 },
1429 };
1430 int i;
1431
1432 dsi->clk_onecell = devm_kzalloc(dev,
1433 sizeof(*dsi->clk_onecell) +
1434 ARRAY_SIZE(phy_clocks) *
1435 sizeof(struct clk_hw *),
1436 GFP_KERNEL);
1437 if (!dsi->clk_onecell)
1438 return -ENOMEM;
1439 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1440
1441 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1442 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1443 struct clk_init_data init;
1444 int ret;
1445
1446 /* We just use core fixed factor clock ops for the PHY
1447 * clocks. The clocks are actually gated by the
1448 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1449 * setting if we use the DDR/DDR2 clocks. However,
1450 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1451 * setting both our parent DSI PLL's rate and this
1452 * clock's rate, so it knows if DDR/DDR2 are going to
1453 * be used and could enable the gates itself.
1454 */
1455 fix->mult = 1;
1456 fix->div = phy_clocks[i].div;
1457 fix->hw.init = &init;
1458
1459 memset(&init, 0, sizeof(init));
1460 init.parent_names = &parent_name;
1461 init.num_parents = 1;
1462 if (dsi->port == 1)
1463 init.name = phy_clocks[i].dsi1_name;
1464 else
1465 init.name = phy_clocks[i].dsi0_name;
1466 init.ops = &clk_fixed_factor_ops;
1467
1468 ret = devm_clk_hw_register(dev, &fix->hw);
1469 if (ret)
1470 return ret;
1471
1472 dsi->clk_onecell->hws[i] = &fix->hw;
1473 }
1474
1475 return of_clk_add_hw_provider(dev->of_node,
1476 of_clk_hw_onecell_get,
1477 dsi->clk_onecell);
1478}
1479
1480static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1481{
1482 struct platform_device *pdev = to_platform_device(dev);
1483 struct drm_device *drm = dev_get_drvdata(master);
1484 struct vc4_dev *vc4 = to_vc4_dev(drm);
1485 struct vc4_dsi *dsi;
1486 struct vc4_dsi_encoder *vc4_dsi_encoder;
1487 const struct of_device_id *match;
1488 dma_cap_mask_t dma_mask;
1489 int ret;
1490
1491 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1492 if (!dsi)
1493 return -ENOMEM;
1494
1495 match = of_match_device(vc4_dsi_dt_match, dev);
1496 if (!match)
1497 return -ENODEV;
1498
1499 dsi->port = (uintptr_t)match->data;
1500
1501 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1502 GFP_KERNEL);
1503 if (!vc4_dsi_encoder)
1504 return -ENOMEM;
1505 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1506 vc4_dsi_encoder->dsi = dsi;
1507 dsi->encoder = &vc4_dsi_encoder->base.base;
1508
1509 dsi->pdev = pdev;
1510 dsi->regs = vc4_ioremap_regs(pdev, 0);
1511 if (IS_ERR(dsi->regs))
1512 return PTR_ERR(dsi->regs);
1513
1514 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1515 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1516 DSI_PORT_READ(ID), DSI_ID_VALUE);
1517 return -ENODEV;
1518 }
1519
1520 /* DSI1 has a broken AXI slave that doesn't respond to writes
1521 * from the ARM. It does handle writes from the DMA engine,
1522 * so set up a channel for talking to it.
1523 */
1524 if (dsi->port == 1) {
1525 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1526 &dsi->reg_dma_paddr,
1527 GFP_KERNEL);
1528 if (!dsi->reg_dma_mem) {
1529 DRM_ERROR("Failed to get DMA memory\n");
1530 return -ENOMEM;
1531 }
1532
1533 dma_cap_zero(dma_mask);
1534 dma_cap_set(DMA_MEMCPY, dma_mask);
1535 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1536 if (IS_ERR(dsi->reg_dma_chan)) {
1537 ret = PTR_ERR(dsi->reg_dma_chan);
1538 if (ret != -EPROBE_DEFER)
1539 DRM_ERROR("Failed to get DMA channel: %d\n",
1540 ret);
1541 return ret;
1542 }
1543
1544 /* Get the physical address of the device's registers. The
1545 * struct resource for the regs gives us the bus address
1546 * instead.
1547 */
1548 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1549 0, NULL, NULL));
1550 }
1551
1552 init_completion(&dsi->xfer_completion);
1553 /* At startup enable error-reporting interrupts and nothing else. */
1554 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1555 /* Clear any existing interrupt state. */
1556 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1557
1558 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1559 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1560 if (ret) {
1561 if (ret != -EPROBE_DEFER)
1562 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1563 return ret;
1564 }
1565
1566 dsi->escape_clock = devm_clk_get(dev, "escape");
1567 if (IS_ERR(dsi->escape_clock)) {
1568 ret = PTR_ERR(dsi->escape_clock);
1569 if (ret != -EPROBE_DEFER)
1570 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1571 return ret;
1572 }
1573
1574 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1575 if (IS_ERR(dsi->pll_phy_clock)) {
1576 ret = PTR_ERR(dsi->pll_phy_clock);
1577 if (ret != -EPROBE_DEFER)
1578 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1579 return ret;
1580 }
1581
1582 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1583 if (IS_ERR(dsi->pixel_clock)) {
1584 ret = PTR_ERR(dsi->pixel_clock);
1585 if (ret != -EPROBE_DEFER)
1586 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1587 return ret;
1588 }
1589
1590 /* The esc clock rate is supposed to always be 100Mhz. */
1591 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1592 if (ret) {
1593 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1594 return ret;
1595 }
1596
1597 ret = vc4_dsi_init_phy_clocks(dsi);
1598 if (ret)
1599 return ret;
1600
1601 if (dsi->port == 1)
1602 vc4->dsi1 = dsi;
1603
1604 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1605 DRM_MODE_ENCODER_DSI, NULL);
1606 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1607
Eric Anholt4078f572017-01-31 11:29:11 -08001608 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1609 dsi->dsi_host.dev = dev;
1610
1611 mipi_dsi_host_register(&dsi->dsi_host);
1612
1613 dev_set_drvdata(dev, dsi);
1614
1615 pm_runtime_enable(dev);
1616
1617 return 0;
Eric Anholt4078f572017-01-31 11:29:11 -08001618}
1619
1620static void vc4_dsi_unbind(struct device *dev, struct device *master,
1621 void *data)
1622{
1623 struct drm_device *drm = dev_get_drvdata(master);
1624 struct vc4_dev *vc4 = to_vc4_dev(drm);
1625 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1626
1627 pm_runtime_disable(dev);
1628
Eric Anholt656fa222017-05-11 11:31:23 -07001629 drm_bridge_remove(dsi->bridge);
Eric Anholt4078f572017-01-31 11:29:11 -08001630 vc4_dsi_encoder_destroy(dsi->encoder);
1631
1632 mipi_dsi_host_unregister(&dsi->dsi_host);
1633
1634 clk_disable_unprepare(dsi->pll_phy_clock);
1635 clk_disable_unprepare(dsi->escape_clock);
1636
1637 if (dsi->port == 1)
1638 vc4->dsi1 = NULL;
1639}
1640
1641static const struct component_ops vc4_dsi_ops = {
1642 .bind = vc4_dsi_bind,
1643 .unbind = vc4_dsi_unbind,
1644};
1645
1646static int vc4_dsi_dev_probe(struct platform_device *pdev)
1647{
1648 return component_add(&pdev->dev, &vc4_dsi_ops);
1649}
1650
1651static int vc4_dsi_dev_remove(struct platform_device *pdev)
1652{
1653 component_del(&pdev->dev, &vc4_dsi_ops);
1654 return 0;
1655}
1656
1657struct platform_driver vc4_dsi_driver = {
1658 .probe = vc4_dsi_dev_probe,
1659 .remove = vc4_dsi_dev_remove,
1660 .driver = {
1661 .name = "vc4_dsi",
1662 .of_match_table = vc4_dsi_dt_match,
1663 },
1664};