blob: 0ef41df3915f7266c3d34b890043e10f91394eae [file] [log] [blame]
Eric Anholt4078f572017-01-31 11:29:11 -08001/*
2 * Copyright (C) 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17/**
18 * DOC: VC4 DSI0/DSI1 module
19 *
20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22 * controller.
23 *
24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25 * while the compute module brings both DSI0 and DSI1 out.
26 *
27 * This driver has been tested for DSI1 video-mode display only
28 * currently, with most of the information necessary for DSI0
29 * hopefully present.
30 */
31
Masahiro Yamadab7e8e252017-05-18 13:29:38 +090032#include <drm/drm_atomic_helper.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include <drm/drm_mipi_dsi.h>
36#include <drm/drm_panel.h>
37#include <linux/clk.h>
38#include <linux/clk-provider.h>
39#include <linux/completion.h>
40#include <linux/component.h>
41#include <linux/dmaengine.h>
42#include <linux/i2c.h>
43#include <linux/of_address.h>
44#include <linux/of_platform.h>
45#include <linux/pm_runtime.h>
Eric Anholt4078f572017-01-31 11:29:11 -080046#include "vc4_drv.h"
47#include "vc4_regs.h"
48
49#define DSI_CMD_FIFO_DEPTH 16
50#define DSI_PIX_FIFO_DEPTH 256
51#define DSI_PIX_FIFO_WIDTH 4
52
53#define DSI0_CTRL 0x00
54
55/* Command packet control. */
56#define DSI0_TXPKT1C 0x04 /* AKA PKTC */
57#define DSI1_TXPKT1C 0x04
58# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
59# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
60# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
61# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
62
63# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
64# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
65/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
66# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
67/* Primary display where cmdfifo provides part of the payload and
68 * pixelvalve the rest.
69 */
70# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
71/* Secondary display where cmdfifo provides part of the payload and
72 * pixfifo the rest.
73 */
74# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
75
76# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
77# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
78
79# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
80# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
81/* Command only. Uses TXPKT1H and DISPLAY_NO */
82# define DSI_TXPKT1C_CMD_CTRL_TX 0
83/* Command with BTA for either ack or read data. */
84# define DSI_TXPKT1C_CMD_CTRL_RX 1
85/* Trigger according to TRIG_CMD */
86# define DSI_TXPKT1C_CMD_CTRL_TRIG 2
87/* BTA alone for getting error status after a command, or a TE trigger
88 * without a previous command.
89 */
90# define DSI_TXPKT1C_CMD_CTRL_BTA 3
91
92# define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
93# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
94# define DSI_TXPKT1C_CMD_TE_EN BIT(1)
95# define DSI_TXPKT1C_CMD_EN BIT(0)
96
97/* Command packet header. */
98#define DSI0_TXPKT1H 0x08 /* AKA PKTH */
99#define DSI1_TXPKT1H 0x08
100# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
101# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
102# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
103# define DSI_TXPKT1H_BC_PARAM_SHIFT 8
104# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
105# define DSI_TXPKT1H_BC_DT_SHIFT 0
106
107#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
108#define DSI1_RXPKT1H 0x14
109# define DSI_RXPKT1H_CRC_ERR BIT(31)
110# define DSI_RXPKT1H_DET_ERR BIT(30)
111# define DSI_RXPKT1H_ECC_ERR BIT(29)
112# define DSI_RXPKT1H_COR_ERR BIT(28)
113# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
114# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
115/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
116# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
117# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
118/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
119# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
120# define DSI_RXPKT1H_SHORT_1_SHIFT 16
121# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
122# define DSI_RXPKT1H_SHORT_0_SHIFT 8
123# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
124# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
125
126#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
127#define DSI1_RXPKT2H 0x18
128# define DSI_RXPKT1H_DET_ERR BIT(30)
129# define DSI_RXPKT1H_ECC_ERR BIT(29)
130# define DSI_RXPKT1H_COR_ERR BIT(28)
131# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
132# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
133# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
134# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
135# define DSI_RXPKT1H_DT_SHIFT 0
136
137#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
138#define DSI1_TXPKT_CMD_FIFO 0x1c
139
140#define DSI0_DISP0_CTRL 0x18
141# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
142# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
143# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
144# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
145# define DSI_DISP0_LP_STOP_DISABLE 0
146# define DSI_DISP0_LP_STOP_PERLINE 1
147# define DSI_DISP0_LP_STOP_PERFRAME 2
148
149/* Transmit RGB pixels and null packets only during HACTIVE, instead
150 * of going to LP-STOP.
151 */
152# define DSI_DISP_HACTIVE_NULL BIT(10)
153/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
154# define DSI_DISP_VBLP_CTRL BIT(9)
155/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
156# define DSI_DISP_HFP_CTRL BIT(8)
157/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
158# define DSI_DISP_HBP_CTRL BIT(7)
159# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
160# define DSI_DISP0_CHANNEL_SHIFT 5
161/* Enables end events for HSYNC/VSYNC, not just start events. */
162# define DSI_DISP0_ST_END BIT(4)
163# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
164# define DSI_DISP0_PFORMAT_SHIFT 2
165# define DSI_PFORMAT_RGB565 0
166# define DSI_PFORMAT_RGB666_PACKED 1
167# define DSI_PFORMAT_RGB666 2
168# define DSI_PFORMAT_RGB888 3
169/* Default is VIDEO mode. */
170# define DSI_DISP0_COMMAND_MODE BIT(1)
171# define DSI_DISP0_ENABLE BIT(0)
172
173#define DSI0_DISP1_CTRL 0x1c
174#define DSI1_DISP1_CTRL 0x2c
175/* Format of the data written to TXPKT_PIX_FIFO. */
176# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
177# define DSI_DISP1_PFORMAT_SHIFT 1
178# define DSI_DISP1_PFORMAT_16BIT 0
179# define DSI_DISP1_PFORMAT_24BIT 1
180# define DSI_DISP1_PFORMAT_32BIT_LE 2
181# define DSI_DISP1_PFORMAT_32BIT_BE 3
182
183/* DISP1 is always command mode. */
184# define DSI_DISP1_ENABLE BIT(0)
185
186#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
187
188#define DSI0_INT_STAT 0x24
189#define DSI0_INT_EN 0x28
190# define DSI1_INT_PHY_D3_ULPS BIT(30)
191# define DSI1_INT_PHY_D3_STOP BIT(29)
192# define DSI1_INT_PHY_D2_ULPS BIT(28)
193# define DSI1_INT_PHY_D2_STOP BIT(27)
194# define DSI1_INT_PHY_D1_ULPS BIT(26)
195# define DSI1_INT_PHY_D1_STOP BIT(25)
196# define DSI1_INT_PHY_D0_ULPS BIT(24)
197# define DSI1_INT_PHY_D0_STOP BIT(23)
198# define DSI1_INT_FIFO_ERR BIT(22)
199# define DSI1_INT_PHY_DIR_RTF BIT(21)
200# define DSI1_INT_PHY_RXLPDT BIT(20)
201# define DSI1_INT_PHY_RXTRIG BIT(19)
202# define DSI1_INT_PHY_D0_LPDT BIT(18)
203# define DSI1_INT_PHY_DIR_FTR BIT(17)
204
205/* Signaled when the clock lane enters the given state. */
206# define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
207# define DSI1_INT_PHY_CLOCK_HS BIT(15)
208# define DSI1_INT_PHY_CLOCK_STOP BIT(14)
209
210/* Signaled on timeouts */
211# define DSI1_INT_PR_TO BIT(13)
212# define DSI1_INT_TA_TO BIT(12)
213# define DSI1_INT_LPRX_TO BIT(11)
214# define DSI1_INT_HSTX_TO BIT(10)
215
216/* Contention on a line when trying to drive the line low */
217# define DSI1_INT_ERR_CONT_LP1 BIT(9)
218# define DSI1_INT_ERR_CONT_LP0 BIT(8)
219
220/* Control error: incorrect line state sequence on data lane 0. */
221# define DSI1_INT_ERR_CONTROL BIT(7)
222/* LPDT synchronization error (bits received not a multiple of 8. */
223
224# define DSI1_INT_ERR_SYNC_ESC BIT(6)
225/* Signaled after receiving an error packet from the display in
226 * response to a read.
227 */
228# define DSI1_INT_RXPKT2 BIT(5)
229/* Signaled after receiving a packet. The header and optional short
230 * response will be in RXPKT1H, and a long response will be in the
231 * RXPKT_FIFO.
232 */
233# define DSI1_INT_RXPKT1 BIT(4)
234# define DSI1_INT_TXPKT2_DONE BIT(3)
235# define DSI1_INT_TXPKT2_END BIT(2)
236/* Signaled after all repeats of TXPKT1 are transferred. */
237# define DSI1_INT_TXPKT1_DONE BIT(1)
238/* Signaled after each TXPKT1 repeat is scheduled. */
239# define DSI1_INT_TXPKT1_END BIT(0)
240
241#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
242 DSI1_INT_ERR_CONTROL | \
243 DSI1_INT_ERR_CONT_LP0 | \
244 DSI1_INT_ERR_CONT_LP1 | \
245 DSI1_INT_HSTX_TO | \
246 DSI1_INT_LPRX_TO | \
247 DSI1_INT_TA_TO | \
248 DSI1_INT_PR_TO)
249
250#define DSI0_STAT 0x2c
251#define DSI0_HSTX_TO_CNT 0x30
252#define DSI0_LPRX_TO_CNT 0x34
253#define DSI0_TA_TO_CNT 0x38
254#define DSI0_PR_TO_CNT 0x3c
255#define DSI0_PHYC 0x40
256# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
257# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
258# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
259# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
260# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
261# define DSI1_PHYC_CLANE_ULPS BIT(17)
262# define DSI1_PHYC_CLANE_ENABLE BIT(16)
263# define DSI_PHYC_DLANE3_ULPS BIT(13)
264# define DSI_PHYC_DLANE3_ENABLE BIT(12)
265# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
266# define DSI0_PHYC_CLANE_ULPS BIT(9)
267# define DSI_PHYC_DLANE2_ULPS BIT(9)
268# define DSI0_PHYC_CLANE_ENABLE BIT(8)
269# define DSI_PHYC_DLANE2_ENABLE BIT(8)
270# define DSI_PHYC_DLANE1_ULPS BIT(5)
271# define DSI_PHYC_DLANE1_ENABLE BIT(4)
272# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
273# define DSI_PHYC_DLANE0_ULPS BIT(1)
274# define DSI_PHYC_DLANE0_ENABLE BIT(0)
275
276#define DSI0_HS_CLT0 0x44
277#define DSI0_HS_CLT1 0x48
278#define DSI0_HS_CLT2 0x4c
279#define DSI0_HS_DLT3 0x50
280#define DSI0_HS_DLT4 0x54
281#define DSI0_HS_DLT5 0x58
282#define DSI0_HS_DLT6 0x5c
283#define DSI0_HS_DLT7 0x60
284
285#define DSI0_PHY_AFEC0 0x64
286# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
287# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
288# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
289# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
290# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
291# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
292# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
293# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
294# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
295# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
296# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
297# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
298# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
299# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
300# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
301# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
302# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
303# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
304# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
305# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
306# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
307# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
308# define DSI1_PHY_AFEC0_RESET BIT(13)
309# define DSI1_PHY_AFEC0_PD BIT(12)
310# define DSI0_PHY_AFEC0_RESET BIT(11)
311# define DSI1_PHY_AFEC0_PD_BG BIT(11)
312# define DSI0_PHY_AFEC0_PD BIT(10)
313# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
314# define DSI0_PHY_AFEC0_PD_BG BIT(9)
315# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
316# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
317# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
318# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
319# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
320# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
321# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
322
323#define DSI0_PHY_AFEC1 0x68
324# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
325# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
326# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
327# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
328# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
329# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
330
331#define DSI0_TST_SEL 0x6c
332#define DSI0_TST_MON 0x70
333#define DSI0_ID 0x74
334# define DSI_ID_VALUE 0x00647369
335
336#define DSI1_CTRL 0x00
337# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
338# define DSI_CTRL_HS_CLKC_SHIFT 14
339# define DSI_CTRL_HS_CLKC_BYTE 0
340# define DSI_CTRL_HS_CLKC_DDR2 1
341# define DSI_CTRL_HS_CLKC_DDR 2
342
343# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
344# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
345# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
346# define DSI_CTRL_SOFT_RESET_CFG BIT(10)
347# define DSI_CTRL_CAL_BYTE BIT(9)
348# define DSI_CTRL_INV_BYTE BIT(8)
349# define DSI_CTRL_CLR_LDF BIT(7)
350# define DSI0_CTRL_CLR_PBCF BIT(6)
351# define DSI1_CTRL_CLR_RXF BIT(6)
352# define DSI0_CTRL_CLR_CPBCF BIT(5)
353# define DSI1_CTRL_CLR_PDF BIT(5)
354# define DSI0_CTRL_CLR_PDF BIT(4)
355# define DSI1_CTRL_CLR_CDF BIT(4)
356# define DSI0_CTRL_CLR_CDF BIT(3)
357# define DSI0_CTRL_CTRL2 BIT(2)
358# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
359# define DSI0_CTRL_CTRL1 BIT(1)
360# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
361# define DSI0_CTRL_CTRL0 BIT(0)
362# define DSI1_CTRL_EN BIT(0)
363# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
364 DSI0_CTRL_CLR_PBCF | \
365 DSI0_CTRL_CLR_CPBCF | \
366 DSI0_CTRL_CLR_PDF | \
367 DSI0_CTRL_CLR_CDF)
368# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
369 DSI1_CTRL_CLR_RXF | \
370 DSI1_CTRL_CLR_PDF | \
371 DSI1_CTRL_CLR_CDF)
372
373#define DSI1_TXPKT2C 0x0c
374#define DSI1_TXPKT2H 0x10
375#define DSI1_TXPKT_PIX_FIFO 0x20
376#define DSI1_RXPKT_FIFO 0x24
377#define DSI1_DISP0_CTRL 0x28
378#define DSI1_INT_STAT 0x30
379#define DSI1_INT_EN 0x34
380/* State reporting bits. These mostly behave like INT_STAT, where
381 * writing a 1 clears the bit.
382 */
383#define DSI1_STAT 0x38
384# define DSI1_STAT_PHY_D3_ULPS BIT(31)
385# define DSI1_STAT_PHY_D3_STOP BIT(30)
386# define DSI1_STAT_PHY_D2_ULPS BIT(29)
387# define DSI1_STAT_PHY_D2_STOP BIT(28)
388# define DSI1_STAT_PHY_D1_ULPS BIT(27)
389# define DSI1_STAT_PHY_D1_STOP BIT(26)
390# define DSI1_STAT_PHY_D0_ULPS BIT(25)
391# define DSI1_STAT_PHY_D0_STOP BIT(24)
392# define DSI1_STAT_FIFO_ERR BIT(23)
393# define DSI1_STAT_PHY_RXLPDT BIT(22)
394# define DSI1_STAT_PHY_RXTRIG BIT(21)
395# define DSI1_STAT_PHY_D0_LPDT BIT(20)
396/* Set when in forward direction */
397# define DSI1_STAT_PHY_DIR BIT(19)
398# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
399# define DSI1_STAT_PHY_CLOCK_HS BIT(17)
400# define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
401# define DSI1_STAT_PR_TO BIT(15)
402# define DSI1_STAT_TA_TO BIT(14)
403# define DSI1_STAT_LPRX_TO BIT(13)
404# define DSI1_STAT_HSTX_TO BIT(12)
405# define DSI1_STAT_ERR_CONT_LP1 BIT(11)
406# define DSI1_STAT_ERR_CONT_LP0 BIT(10)
407# define DSI1_STAT_ERR_CONTROL BIT(9)
408# define DSI1_STAT_ERR_SYNC_ESC BIT(8)
409# define DSI1_STAT_RXPKT2 BIT(7)
410# define DSI1_STAT_RXPKT1 BIT(6)
411# define DSI1_STAT_TXPKT2_BUSY BIT(5)
412# define DSI1_STAT_TXPKT2_DONE BIT(4)
413# define DSI1_STAT_TXPKT2_END BIT(3)
414# define DSI1_STAT_TXPKT1_BUSY BIT(2)
415# define DSI1_STAT_TXPKT1_DONE BIT(1)
416# define DSI1_STAT_TXPKT1_END BIT(0)
417
418#define DSI1_HSTX_TO_CNT 0x3c
419#define DSI1_LPRX_TO_CNT 0x40
420#define DSI1_TA_TO_CNT 0x44
421#define DSI1_PR_TO_CNT 0x48
422#define DSI1_PHYC 0x4c
423
424#define DSI1_HS_CLT0 0x50
425# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
426# define DSI_HS_CLT0_CZERO_SHIFT 18
427# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
428# define DSI_HS_CLT0_CPRE_SHIFT 9
429# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
430# define DSI_HS_CLT0_CPREP_SHIFT 0
431
432#define DSI1_HS_CLT1 0x54
433# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
434# define DSI_HS_CLT1_CTRAIL_SHIFT 9
435# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
436# define DSI_HS_CLT1_CPOST_SHIFT 0
437
438#define DSI1_HS_CLT2 0x58
439# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
440# define DSI_HS_CLT2_WUP_SHIFT 0
441
442#define DSI1_HS_DLT3 0x5c
443# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
444# define DSI_HS_DLT3_EXIT_SHIFT 18
445# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
446# define DSI_HS_DLT3_ZERO_SHIFT 9
447# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
448# define DSI_HS_DLT3_PRE_SHIFT 0
449
450#define DSI1_HS_DLT4 0x60
451# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
452# define DSI_HS_DLT4_ANLAT_SHIFT 18
453# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
454# define DSI_HS_DLT4_TRAIL_SHIFT 9
455# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
456# define DSI_HS_DLT4_LPX_SHIFT 0
457
458#define DSI1_HS_DLT5 0x64
459# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
460# define DSI_HS_DLT5_INIT_SHIFT 0
461
462#define DSI1_HS_DLT6 0x68
463# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
464# define DSI_HS_DLT6_TA_GET_SHIFT 24
465# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
466# define DSI_HS_DLT6_TA_SURE_SHIFT 16
467# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
468# define DSI_HS_DLT6_TA_GO_SHIFT 8
469# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
470# define DSI_HS_DLT6_LP_LPX_SHIFT 0
471
472#define DSI1_HS_DLT7 0x6c
473# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
474# define DSI_HS_DLT7_LP_WUP_SHIFT 0
475
476#define DSI1_PHY_AFEC0 0x70
477
478#define DSI1_PHY_AFEC1 0x74
479# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
480# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
481# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
482# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
483# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
484# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
485# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
486# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
487# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
488# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
489
490#define DSI1_TST_SEL 0x78
491#define DSI1_TST_MON 0x7c
492#define DSI1_PHY_TST1 0x80
493#define DSI1_PHY_TST2 0x84
494#define DSI1_PHY_FIFO_STAT 0x88
495/* Actually, all registers in the range that aren't otherwise claimed
496 * will return the ID.
497 */
498#define DSI1_ID 0x8c
499
500/* General DSI hardware state. */
501struct vc4_dsi {
502 struct platform_device *pdev;
503
504 struct mipi_dsi_host dsi_host;
505 struct drm_encoder *encoder;
506 struct drm_connector *connector;
507 struct drm_panel *panel;
508
509 void __iomem *regs;
510
511 struct dma_chan *reg_dma_chan;
512 dma_addr_t reg_dma_paddr;
513 u32 *reg_dma_mem;
514 dma_addr_t reg_paddr;
515
516 /* Whether we're on bcm2835's DSI0 or DSI1. */
517 int port;
518
519 /* DSI channel for the panel we're connected to. */
520 u32 channel;
521 u32 lanes;
Eric Anholt86c1b9e2017-05-11 16:56:22 -0700522 u32 format;
523 u32 divider;
Eric Anholt4078f572017-01-31 11:29:11 -0800524 u32 mode_flags;
525
526 /* Input clock from CPRMAN to the digital PHY, for the DSI
527 * escape clock.
528 */
529 struct clk *escape_clock;
530
531 /* Input clock to the analog PHY, used to generate the DSI bit
532 * clock.
533 */
534 struct clk *pll_phy_clock;
535
536 /* HS Clocks generated within the DSI analog PHY. */
537 struct clk_fixed_factor phy_clocks[3];
538
539 struct clk_hw_onecell_data *clk_onecell;
540
541 /* Pixel clock output to the pixelvalve, generated from the HS
542 * clock.
543 */
544 struct clk *pixel_clock;
545
546 struct completion xfer_completion;
547 int xfer_result;
548};
549
550#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
551
552static inline void
553dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
554{
555 struct dma_chan *chan = dsi->reg_dma_chan;
556 struct dma_async_tx_descriptor *tx;
557 dma_cookie_t cookie;
558 int ret;
559
560 /* DSI0 should be able to write normally. */
561 if (!chan) {
562 writel(val, dsi->regs + offset);
563 return;
564 }
565
566 *dsi->reg_dma_mem = val;
567
568 tx = chan->device->device_prep_dma_memcpy(chan,
569 dsi->reg_paddr + offset,
570 dsi->reg_dma_paddr,
571 4, 0);
572 if (!tx) {
573 DRM_ERROR("Failed to set up DMA register write\n");
574 return;
575 }
576
577 cookie = tx->tx_submit(tx);
578 ret = dma_submit_error(cookie);
579 if (ret) {
580 DRM_ERROR("Failed to submit DMA: %d\n", ret);
581 return;
582 }
583 ret = dma_sync_wait(chan, cookie);
584 if (ret)
585 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
586}
587
588#define DSI_READ(offset) readl(dsi->regs + (offset))
589#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
590#define DSI_PORT_READ(offset) \
591 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
592#define DSI_PORT_WRITE(offset, val) \
593 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
594#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
595
596/* VC4 DSI encoder KMS struct */
597struct vc4_dsi_encoder {
598 struct vc4_encoder base;
599 struct vc4_dsi *dsi;
600};
601
602static inline struct vc4_dsi_encoder *
603to_vc4_dsi_encoder(struct drm_encoder *encoder)
604{
605 return container_of(encoder, struct vc4_dsi_encoder, base.base);
606}
607
608/* VC4 DSI connector KMS struct */
609struct vc4_dsi_connector {
610 struct drm_connector base;
611 struct vc4_dsi *dsi;
612};
613
614static inline struct vc4_dsi_connector *
615to_vc4_dsi_connector(struct drm_connector *connector)
616{
617 return container_of(connector, struct vc4_dsi_connector, base);
618}
619
620#define DSI_REG(reg) { reg, #reg }
621static const struct {
622 u32 reg;
623 const char *name;
624} dsi0_regs[] = {
625 DSI_REG(DSI0_CTRL),
626 DSI_REG(DSI0_STAT),
627 DSI_REG(DSI0_HSTX_TO_CNT),
628 DSI_REG(DSI0_LPRX_TO_CNT),
629 DSI_REG(DSI0_TA_TO_CNT),
630 DSI_REG(DSI0_PR_TO_CNT),
631 DSI_REG(DSI0_DISP0_CTRL),
632 DSI_REG(DSI0_DISP1_CTRL),
633 DSI_REG(DSI0_INT_STAT),
634 DSI_REG(DSI0_INT_EN),
635 DSI_REG(DSI0_PHYC),
636 DSI_REG(DSI0_HS_CLT0),
637 DSI_REG(DSI0_HS_CLT1),
638 DSI_REG(DSI0_HS_CLT2),
639 DSI_REG(DSI0_HS_DLT3),
640 DSI_REG(DSI0_HS_DLT4),
641 DSI_REG(DSI0_HS_DLT5),
642 DSI_REG(DSI0_HS_DLT6),
643 DSI_REG(DSI0_HS_DLT7),
644 DSI_REG(DSI0_PHY_AFEC0),
645 DSI_REG(DSI0_PHY_AFEC1),
646 DSI_REG(DSI0_ID),
647};
648
649static const struct {
650 u32 reg;
651 const char *name;
652} dsi1_regs[] = {
653 DSI_REG(DSI1_CTRL),
654 DSI_REG(DSI1_STAT),
655 DSI_REG(DSI1_HSTX_TO_CNT),
656 DSI_REG(DSI1_LPRX_TO_CNT),
657 DSI_REG(DSI1_TA_TO_CNT),
658 DSI_REG(DSI1_PR_TO_CNT),
659 DSI_REG(DSI1_DISP0_CTRL),
660 DSI_REG(DSI1_DISP1_CTRL),
661 DSI_REG(DSI1_INT_STAT),
662 DSI_REG(DSI1_INT_EN),
663 DSI_REG(DSI1_PHYC),
664 DSI_REG(DSI1_HS_CLT0),
665 DSI_REG(DSI1_HS_CLT1),
666 DSI_REG(DSI1_HS_CLT2),
667 DSI_REG(DSI1_HS_DLT3),
668 DSI_REG(DSI1_HS_DLT4),
669 DSI_REG(DSI1_HS_DLT5),
670 DSI_REG(DSI1_HS_DLT6),
671 DSI_REG(DSI1_HS_DLT7),
672 DSI_REG(DSI1_PHY_AFEC0),
673 DSI_REG(DSI1_PHY_AFEC1),
674 DSI_REG(DSI1_ID),
675};
676
677static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
678{
679 int i;
680
681 if (dsi->port == 0) {
682 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
683 DRM_INFO("0x%04x (%s): 0x%08x\n",
684 dsi0_regs[i].reg, dsi0_regs[i].name,
685 DSI_READ(dsi0_regs[i].reg));
686 }
687 } else {
688 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
689 DRM_INFO("0x%04x (%s): 0x%08x\n",
690 dsi1_regs[i].reg, dsi1_regs[i].name,
691 DSI_READ(dsi1_regs[i].reg));
692 }
693 }
694}
695
696#ifdef CONFIG_DEBUG_FS
697int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
698{
699 struct drm_info_node *node = (struct drm_info_node *)m->private;
700 struct drm_device *drm = node->minor->dev;
701 struct vc4_dev *vc4 = to_vc4_dev(drm);
702 int dsi_index = (uintptr_t)node->info_ent->data;
703 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
704 int i;
705
706 if (!dsi)
707 return 0;
708
709 if (dsi->port == 0) {
710 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
711 seq_printf(m, "0x%04x (%s): 0x%08x\n",
712 dsi0_regs[i].reg, dsi0_regs[i].name,
713 DSI_READ(dsi0_regs[i].reg));
714 }
715 } else {
716 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
717 seq_printf(m, "0x%04x (%s): 0x%08x\n",
718 dsi1_regs[i].reg, dsi1_regs[i].name,
719 DSI_READ(dsi1_regs[i].reg));
720 }
721 }
722
723 return 0;
724}
725#endif
726
727static enum drm_connector_status
728vc4_dsi_connector_detect(struct drm_connector *connector, bool force)
729{
730 struct vc4_dsi_connector *vc4_connector =
731 to_vc4_dsi_connector(connector);
732 struct vc4_dsi *dsi = vc4_connector->dsi;
733
734 if (dsi->panel)
735 return connector_status_connected;
736 else
737 return connector_status_disconnected;
738}
739
740static void vc4_dsi_connector_destroy(struct drm_connector *connector)
741{
742 drm_connector_unregister(connector);
743 drm_connector_cleanup(connector);
744}
745
746static int vc4_dsi_connector_get_modes(struct drm_connector *connector)
747{
748 struct vc4_dsi_connector *vc4_connector =
749 to_vc4_dsi_connector(connector);
750 struct vc4_dsi *dsi = vc4_connector->dsi;
751
752 if (dsi->panel)
753 return drm_panel_get_modes(dsi->panel);
754
755 return 0;
756}
757
758static const struct drm_connector_funcs vc4_dsi_connector_funcs = {
759 .dpms = drm_atomic_helper_connector_dpms,
760 .detect = vc4_dsi_connector_detect,
761 .fill_modes = drm_helper_probe_single_connector_modes,
762 .destroy = vc4_dsi_connector_destroy,
763 .reset = drm_atomic_helper_connector_reset,
764 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
765 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
766};
767
768static const struct drm_connector_helper_funcs vc4_dsi_connector_helper_funcs = {
769 .get_modes = vc4_dsi_connector_get_modes,
770};
771
772static struct drm_connector *vc4_dsi_connector_init(struct drm_device *dev,
773 struct vc4_dsi *dsi)
774{
Colin Ian Kingfce6a7b2017-02-03 19:56:24 +0000775 struct drm_connector *connector;
Eric Anholt4078f572017-01-31 11:29:11 -0800776 struct vc4_dsi_connector *dsi_connector;
Eric Anholt4078f572017-01-31 11:29:11 -0800777
778 dsi_connector = devm_kzalloc(dev->dev, sizeof(*dsi_connector),
779 GFP_KERNEL);
Colin Ian Kingfce6a7b2017-02-03 19:56:24 +0000780 if (!dsi_connector)
781 return ERR_PTR(-ENOMEM);
782
Eric Anholt4078f572017-01-31 11:29:11 -0800783 connector = &dsi_connector->base;
784
785 dsi_connector->dsi = dsi;
786
787 drm_connector_init(dev, connector, &vc4_dsi_connector_funcs,
788 DRM_MODE_CONNECTOR_DSI);
789 drm_connector_helper_add(connector, &vc4_dsi_connector_helper_funcs);
790
791 connector->polled = 0;
792 connector->interlace_allowed = 0;
793 connector->doublescan_allowed = 0;
794
795 drm_mode_connector_attach_encoder(connector, dsi->encoder);
796
797 return connector;
Eric Anholt4078f572017-01-31 11:29:11 -0800798}
799
800static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
801{
802 drm_encoder_cleanup(encoder);
803}
804
805static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
806 .destroy = vc4_dsi_encoder_destroy,
807};
808
809static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
810{
811 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
812
813 if (latch)
814 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
815 else
816 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
817
818 DSI_PORT_WRITE(PHY_AFEC0, afec0);
819}
820
821/* Enters or exits Ultra Low Power State. */
822static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
823{
824 bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
825 u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
826 DSI_PHYC_DLANE0_ULPS |
827 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
828 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
829 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
830 u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
831 DSI1_STAT_PHY_D0_ULPS |
832 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
833 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
834 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
835 u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
836 DSI1_STAT_PHY_D0_STOP |
837 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
838 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
839 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
840 int ret;
841
842 DSI_PORT_WRITE(STAT, stat_ulps);
843 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
844 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
845 if (ret) {
846 dev_warn(&dsi->pdev->dev,
847 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
848 DSI_PORT_READ(STAT));
849 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
850 vc4_dsi_latch_ulps(dsi, false);
851 return;
852 }
853
854 /* The DSI module can't be disabled while the module is
855 * generating ULPS state. So, to be able to disable the
856 * module, we have the AFE latch the ULPS state and continue
857 * on to having the module enter STOP.
858 */
859 vc4_dsi_latch_ulps(dsi, ulps);
860
861 DSI_PORT_WRITE(STAT, stat_stop);
862 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
863 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
864 if (ret) {
865 dev_warn(&dsi->pdev->dev,
866 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
867 DSI_PORT_READ(STAT));
868 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
869 return;
870 }
871}
872
873static u32
874dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
875{
876 /* The HS timings have to be rounded up to a multiple of 8
877 * because we're using the byte clock.
878 */
879 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
880}
881
882/* ESC always runs at 100Mhz. */
883#define ESC_TIME_NS 10
884
885static u32
886dsi_esc_timing(u32 ns)
887{
888 return DIV_ROUND_UP(ns, ESC_TIME_NS);
889}
890
891static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
892{
893 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
894 struct vc4_dsi *dsi = vc4_encoder->dsi;
895 struct device *dev = &dsi->pdev->dev;
896
897 drm_panel_disable(dsi->panel);
898
899 vc4_dsi_ulps(dsi, true);
900
901 drm_panel_unprepare(dsi->panel);
902
903 clk_disable_unprepare(dsi->pll_phy_clock);
904 clk_disable_unprepare(dsi->escape_clock);
905 clk_disable_unprepare(dsi->pixel_clock);
906
907 pm_runtime_put(dev);
908}
909
Eric Anholt86c1b9e2017-05-11 16:56:22 -0700910/* Extends the mode's blank intervals to handle BCM2835's integer-only
911 * DSI PLL divider.
912 *
913 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
914 * driver since most peripherals are hanging off of the PLLD_PER
915 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
916 * the pixel clock), only has an integer divider off of DSI.
917 *
918 * To get our panel mode to refresh at the expected 60Hz, we need to
919 * extend the horizontal blank time. This means we drive a
920 * higher-than-expected clock rate to the panel, but that's what the
921 * firmware does too.
922 */
923static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
924 const struct drm_display_mode *mode,
925 struct drm_display_mode *adjusted_mode)
926{
927 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
928 struct vc4_dsi *dsi = vc4_encoder->dsi;
929 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
930 unsigned long parent_rate = clk_get_rate(phy_parent);
931 unsigned long pixel_clock_hz = mode->clock * 1000;
932 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
933 int divider;
934
935 /* Find what divider gets us a faster clock than the requested
936 * pixel clock.
937 */
938 for (divider = 1; divider < 8; divider++) {
939 if (parent_rate / divider < pll_clock) {
940 divider--;
941 break;
942 }
943 }
944
945 /* Now that we've picked a PLL divider, calculate back to its
946 * pixel clock.
947 */
948 pll_clock = parent_rate / divider;
949 pixel_clock_hz = pll_clock / dsi->divider;
950
951 /* Round up the clk_set_rate() request slightly, since
952 * PLLD_DSI1 is an integer divider and its rate selection will
953 * never round up.
954 */
955 adjusted_mode->clock = pixel_clock_hz / 1000 + 1;
956
957 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
958 adjusted_mode->htotal = pixel_clock_hz / (mode->vrefresh * mode->vtotal);
959 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
960 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
961
962 return true;
963}
964
Eric Anholt4078f572017-01-31 11:29:11 -0800965static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
966{
Eric Anholt86c1b9e2017-05-11 16:56:22 -0700967 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
Eric Anholt4078f572017-01-31 11:29:11 -0800968 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
969 struct vc4_dsi *dsi = vc4_encoder->dsi;
970 struct device *dev = &dsi->pdev->dev;
Eric Anholt4078f572017-01-31 11:29:11 -0800971 bool debug_dump_regs = false;
972 unsigned long hs_clock;
973 u32 ui_ns;
974 /* Minimum LP state duration in escape clock cycles. */
975 u32 lpx = dsi_esc_timing(60);
976 unsigned long pixel_clock_hz = mode->clock * 1000;
977 unsigned long dsip_clock;
978 unsigned long phy_clock;
979 int ret;
980
981 ret = pm_runtime_get_sync(dev);
982 if (ret) {
983 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
984 return;
985 }
986
987 ret = drm_panel_prepare(dsi->panel);
988 if (ret) {
989 DRM_ERROR("Panel failed to prepare\n");
990 return;
991 }
992
993 if (debug_dump_regs) {
994 DRM_INFO("DSI regs before:\n");
995 vc4_dsi_dump_regs(dsi);
996 }
997
Eric Anholt86c1b9e2017-05-11 16:56:22 -0700998 phy_clock = pixel_clock_hz * dsi->divider;
Eric Anholt4078f572017-01-31 11:29:11 -0800999 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
1000 if (ret) {
1001 dev_err(&dsi->pdev->dev,
1002 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
1003 }
1004
1005 /* Reset the DSI and all its fifos. */
1006 DSI_PORT_WRITE(CTRL,
1007 DSI_CTRL_SOFT_RESET_CFG |
1008 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1009
1010 DSI_PORT_WRITE(CTRL,
1011 DSI_CTRL_HSDT_EOT_DISABLE |
1012 DSI_CTRL_RX_LPDT_EOT_DISABLE);
1013
1014 /* Clear all stat bits so we see what has happened during enable. */
1015 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
1016
1017 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
1018 if (dsi->port == 0) {
1019 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
1020 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
1021
1022 if (dsi->lanes < 2)
1023 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
1024
1025 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
1026 afec0 |= DSI0_PHY_AFEC0_RESET;
1027
1028 DSI_PORT_WRITE(PHY_AFEC0, afec0);
1029
1030 DSI_PORT_WRITE(PHY_AFEC1,
1031 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
1032 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
1033 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
1034 } else {
1035 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
1036 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
1037 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
1038 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
1039 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
1040 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
1041 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
1042
1043 if (dsi->lanes < 4)
1044 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
1045 if (dsi->lanes < 3)
1046 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
1047 if (dsi->lanes < 2)
1048 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
1049
1050 afec0 |= DSI1_PHY_AFEC0_RESET;
1051
1052 DSI_PORT_WRITE(PHY_AFEC0, afec0);
1053
1054 DSI_PORT_WRITE(PHY_AFEC1, 0);
1055
1056 /* AFEC reset hold time */
1057 mdelay(1);
1058 }
1059
1060 ret = clk_prepare_enable(dsi->escape_clock);
1061 if (ret) {
1062 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
1063 return;
1064 }
1065
1066 ret = clk_prepare_enable(dsi->pll_phy_clock);
1067 if (ret) {
1068 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
1069 return;
1070 }
1071
1072 hs_clock = clk_get_rate(dsi->pll_phy_clock);
1073
1074 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1075 * not the pixel clock rate. DSIxP take from the APHY's byte,
1076 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1077 * that rate. Separately, a value derived from PIX_CLK_DIV
1078 * and HS_CLKC is fed into the PV to divide down to the actual
1079 * pixel clock for pushing pixels into DSI.
1080 */
1081 dsip_clock = phy_clock / 8;
1082 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1083 if (ret) {
1084 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1085 dsip_clock, ret);
1086 }
1087
1088 ret = clk_prepare_enable(dsi->pixel_clock);
1089 if (ret) {
1090 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1091 return;
1092 }
1093
1094 /* How many ns one DSI unit interval is. Note that the clock
1095 * is DDR, so there's an extra divide by 2.
1096 */
1097 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1098
1099 DSI_PORT_WRITE(HS_CLT0,
1100 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1101 DSI_HS_CLT0_CZERO) |
1102 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1103 DSI_HS_CLT0_CPRE) |
1104 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1105 DSI_HS_CLT0_CPREP));
1106
1107 DSI_PORT_WRITE(HS_CLT1,
1108 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1109 DSI_HS_CLT1_CTRAIL) |
1110 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1111 DSI_HS_CLT1_CPOST));
1112
1113 DSI_PORT_WRITE(HS_CLT2,
1114 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1115 DSI_HS_CLT2_WUP));
1116
1117 DSI_PORT_WRITE(HS_DLT3,
1118 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1119 DSI_HS_DLT3_EXIT) |
1120 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1121 DSI_HS_DLT3_ZERO) |
1122 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1123 DSI_HS_DLT3_PRE));
1124
1125 DSI_PORT_WRITE(HS_DLT4,
1126 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1127 DSI_HS_DLT4_LPX) |
1128 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1129 dsi_hs_timing(ui_ns, 60, 4)),
1130 DSI_HS_DLT4_TRAIL) |
1131 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1132
1133 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000),
1134 DSI_HS_DLT5_INIT));
1135
1136 DSI_PORT_WRITE(HS_DLT6,
1137 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1138 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1139 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1140 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1141
1142 DSI_PORT_WRITE(HS_DLT7,
1143 VC4_SET_FIELD(dsi_esc_timing(1000000),
1144 DSI_HS_DLT7_LP_WUP));
1145
1146 DSI_PORT_WRITE(PHYC,
1147 DSI_PHYC_DLANE0_ENABLE |
1148 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1149 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1150 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1151 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1152 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1153 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1154 (dsi->port == 0 ?
1155 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1156 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1157
1158 DSI_PORT_WRITE(CTRL,
1159 DSI_PORT_READ(CTRL) |
1160 DSI_CTRL_CAL_BYTE);
1161
1162 /* HS timeout in HS clock cycles: disabled. */
1163 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1164 /* LP receive timeout in HS clocks. */
1165 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1166 /* Bus turnaround timeout */
1167 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1168 /* Display reset sequence timeout */
1169 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1170
1171 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1172 DSI_PORT_WRITE(DISP0_CTRL,
Eric Anholt86c1b9e2017-05-11 16:56:22 -07001173 VC4_SET_FIELD(dsi->divider,
1174 DSI_DISP0_PIX_CLK_DIV) |
1175 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
Eric Anholt4078f572017-01-31 11:29:11 -08001176 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1177 DSI_DISP0_LP_STOP_CTRL) |
1178 DSI_DISP0_ST_END |
1179 DSI_DISP0_ENABLE);
1180 } else {
1181 DSI_PORT_WRITE(DISP0_CTRL,
1182 DSI_DISP0_COMMAND_MODE |
1183 DSI_DISP0_ENABLE);
1184 }
1185
1186 /* Set up DISP1 for transferring long command payloads through
1187 * the pixfifo.
1188 */
1189 DSI_PORT_WRITE(DISP1_CTRL,
1190 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1191 DSI_DISP1_PFORMAT) |
1192 DSI_DISP1_ENABLE);
1193
1194 /* Ungate the block. */
1195 if (dsi->port == 0)
1196 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1197 else
1198 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1199
1200 /* Bring AFE out of reset. */
1201 if (dsi->port == 0) {
1202 } else {
1203 DSI_PORT_WRITE(PHY_AFEC0,
1204 DSI_PORT_READ(PHY_AFEC0) &
1205 ~DSI1_PHY_AFEC0_RESET);
1206 }
1207
1208 vc4_dsi_ulps(dsi, false);
1209
1210 if (debug_dump_regs) {
1211 DRM_INFO("DSI regs after:\n");
1212 vc4_dsi_dump_regs(dsi);
1213 }
1214
1215 ret = drm_panel_enable(dsi->panel);
1216 if (ret) {
1217 DRM_ERROR("Panel failed to enable\n");
1218 drm_panel_unprepare(dsi->panel);
1219 return;
1220 }
1221}
1222
1223static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1224 const struct mipi_dsi_msg *msg)
1225{
1226 struct vc4_dsi *dsi = host_to_dsi(host);
1227 struct mipi_dsi_packet packet;
1228 u32 pkth = 0, pktc = 0;
1229 int i, ret;
1230 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1231 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1232
1233 mipi_dsi_create_packet(&packet, msg);
1234
1235 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1236 pkth |= VC4_SET_FIELD(packet.header[1] |
1237 (packet.header[2] << 8),
1238 DSI_TXPKT1H_BC_PARAM);
1239 if (is_long) {
1240 /* Divide data across the various FIFOs we have available.
1241 * The command FIFO takes byte-oriented data, but is of
1242 * limited size. The pixel FIFO (never actually used for
1243 * pixel data in reality) is word oriented, and substantially
1244 * larger. So, we use the pixel FIFO for most of the data,
1245 * sending the residual bytes in the command FIFO at the start.
1246 *
1247 * With this arrangement, the command FIFO will never get full.
1248 */
1249 if (packet.payload_length <= 16) {
1250 cmd_fifo_len = packet.payload_length;
1251 pix_fifo_len = 0;
1252 } else {
1253 cmd_fifo_len = (packet.payload_length %
1254 DSI_PIX_FIFO_WIDTH);
1255 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1256 DSI_PIX_FIFO_WIDTH);
1257 }
1258
1259 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1260
1261 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1262 }
1263
1264 if (msg->rx_len) {
1265 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1266 DSI_TXPKT1C_CMD_CTRL);
1267 } else {
1268 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1269 DSI_TXPKT1C_CMD_CTRL);
1270 }
1271
1272 for (i = 0; i < cmd_fifo_len; i++)
1273 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1274 for (i = 0; i < pix_fifo_len; i++) {
1275 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1276
1277 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1278 pix[0] |
1279 pix[1] << 8 |
1280 pix[2] << 16 |
1281 pix[3] << 24);
1282 }
1283
1284 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1285 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1286 if (is_long)
1287 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1288
1289 /* Send one copy of the packet. Larger repeats are used for pixel
1290 * data in command mode.
1291 */
1292 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1293
1294 pktc |= DSI_TXPKT1C_CMD_EN;
1295 if (pix_fifo_len) {
1296 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1297 DSI_TXPKT1C_DISPLAY_NO);
1298 } else {
1299 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1300 DSI_TXPKT1C_DISPLAY_NO);
1301 }
1302
1303 /* Enable the appropriate interrupt for the transfer completion. */
1304 dsi->xfer_result = 0;
1305 reinit_completion(&dsi->xfer_completion);
1306 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1307 if (msg->rx_len) {
1308 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1309 DSI1_INT_PHY_DIR_RTF));
1310 } else {
1311 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1312 DSI1_INT_TXPKT1_DONE));
1313 }
1314
1315 /* Send the packet. */
1316 DSI_PORT_WRITE(TXPKT1H, pkth);
1317 DSI_PORT_WRITE(TXPKT1C, pktc);
1318
1319 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1320 msecs_to_jiffies(1000))) {
1321 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1322 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1323 DSI_PORT_READ(INT_STAT));
1324 ret = -ETIMEDOUT;
1325 } else {
1326 ret = dsi->xfer_result;
1327 }
1328
1329 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1330
1331 if (ret)
1332 goto reset_fifo_and_return;
1333
1334 if (ret == 0 && msg->rx_len) {
1335 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1336 u8 *msg_rx = msg->rx_buf;
1337
1338 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1339 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1340 DSI_RXPKT1H_BC_PARAM);
1341
1342 if (rxlen != msg->rx_len) {
1343 DRM_ERROR("DSI returned %db, expecting %db\n",
1344 rxlen, (int)msg->rx_len);
1345 ret = -ENXIO;
1346 goto reset_fifo_and_return;
1347 }
1348
1349 for (i = 0; i < msg->rx_len; i++)
1350 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1351 } else {
1352 /* FINISHME: Handle AWER */
1353
1354 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1355 DSI_RXPKT1H_SHORT_0);
1356 if (msg->rx_len > 1) {
1357 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1358 DSI_RXPKT1H_SHORT_1);
1359 }
1360 }
1361 }
1362
1363 return ret;
1364
1365reset_fifo_and_return:
1366 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1367
1368 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1369 udelay(1);
1370 DSI_PORT_WRITE(CTRL,
1371 DSI_PORT_READ(CTRL) |
1372 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1373
1374 DSI_PORT_WRITE(TXPKT1C, 0);
1375 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1376 return ret;
1377}
1378
1379static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1380 struct mipi_dsi_device *device)
1381{
1382 struct vc4_dsi *dsi = host_to_dsi(host);
1383 int ret = 0;
1384
1385 dsi->lanes = device->lanes;
1386 dsi->channel = device->channel;
Eric Anholt4078f572017-01-31 11:29:11 -08001387 dsi->mode_flags = device->mode_flags;
1388
Eric Anholt86c1b9e2017-05-11 16:56:22 -07001389 switch (device->format) {
1390 case MIPI_DSI_FMT_RGB888:
1391 dsi->format = DSI_PFORMAT_RGB888;
1392 dsi->divider = 24 / dsi->lanes;
1393 break;
1394 case MIPI_DSI_FMT_RGB666:
1395 dsi->format = DSI_PFORMAT_RGB666;
1396 dsi->divider = 24 / dsi->lanes;
1397 break;
1398 case MIPI_DSI_FMT_RGB666_PACKED:
1399 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1400 dsi->divider = 18 / dsi->lanes;
1401 break;
1402 case MIPI_DSI_FMT_RGB565:
1403 dsi->format = DSI_PFORMAT_RGB565;
1404 dsi->divider = 16 / dsi->lanes;
1405 break;
1406 default:
1407 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1408 dsi->format);
1409 return 0;
1410 }
1411
Eric Anholt4078f572017-01-31 11:29:11 -08001412 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1413 dev_err(&dsi->pdev->dev,
1414 "Only VIDEO mode panels supported currently.\n");
1415 return 0;
1416 }
1417
1418 dsi->panel = of_drm_find_panel(device->dev.of_node);
1419 if (!dsi->panel)
1420 return 0;
1421
1422 ret = drm_panel_attach(dsi->panel, dsi->connector);
1423 if (ret != 0)
1424 return ret;
1425
1426 drm_helper_hpd_irq_event(dsi->connector->dev);
1427
1428 return 0;
1429}
1430
1431static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1432 struct mipi_dsi_device *device)
1433{
1434 struct vc4_dsi *dsi = host_to_dsi(host);
1435
1436 if (dsi->panel) {
1437 int ret = drm_panel_detach(dsi->panel);
1438
1439 if (ret)
1440 return ret;
1441
1442 dsi->panel = NULL;
1443
1444 drm_helper_hpd_irq_event(dsi->connector->dev);
1445 }
1446
1447 return 0;
1448}
1449
1450static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1451 .attach = vc4_dsi_host_attach,
1452 .detach = vc4_dsi_host_detach,
1453 .transfer = vc4_dsi_host_transfer,
1454};
1455
1456static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1457 .disable = vc4_dsi_encoder_disable,
1458 .enable = vc4_dsi_encoder_enable,
Eric Anholt86c1b9e2017-05-11 16:56:22 -07001459 .mode_fixup = vc4_dsi_encoder_mode_fixup,
Eric Anholt4078f572017-01-31 11:29:11 -08001460};
1461
1462static const struct of_device_id vc4_dsi_dt_match[] = {
1463 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1464 {}
1465};
1466
1467static void dsi_handle_error(struct vc4_dsi *dsi,
1468 irqreturn_t *ret, u32 stat, u32 bit,
1469 const char *type)
1470{
1471 if (!(stat & bit))
1472 return;
1473
1474 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1475 *ret = IRQ_HANDLED;
1476}
1477
1478static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1479{
1480 struct vc4_dsi *dsi = data;
1481 u32 stat = DSI_PORT_READ(INT_STAT);
1482 irqreturn_t ret = IRQ_NONE;
1483
1484 DSI_PORT_WRITE(INT_STAT, stat);
1485
1486 dsi_handle_error(dsi, &ret, stat,
1487 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1488 dsi_handle_error(dsi, &ret, stat,
1489 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1490 dsi_handle_error(dsi, &ret, stat,
1491 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1492 dsi_handle_error(dsi, &ret, stat,
1493 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1494 dsi_handle_error(dsi, &ret, stat,
1495 DSI1_INT_HSTX_TO, "HSTX timeout");
1496 dsi_handle_error(dsi, &ret, stat,
1497 DSI1_INT_LPRX_TO, "LPRX timeout");
1498 dsi_handle_error(dsi, &ret, stat,
1499 DSI1_INT_TA_TO, "turnaround timeout");
1500 dsi_handle_error(dsi, &ret, stat,
1501 DSI1_INT_PR_TO, "peripheral reset timeout");
1502
1503 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1504 complete(&dsi->xfer_completion);
1505 ret = IRQ_HANDLED;
1506 } else if (stat & DSI1_INT_HSTX_TO) {
1507 complete(&dsi->xfer_completion);
1508 dsi->xfer_result = -ETIMEDOUT;
1509 ret = IRQ_HANDLED;
1510 }
1511
1512 return ret;
1513}
1514
1515/**
Eric Anholt72f793f2017-02-27 12:11:41 -08001516 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1517 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1518 * @dsi: DSI encoder
Eric Anholt4078f572017-01-31 11:29:11 -08001519 */
1520static int
1521vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1522{
1523 struct device *dev = &dsi->pdev->dev;
1524 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1525 static const struct {
1526 const char *dsi0_name, *dsi1_name;
1527 int div;
1528 } phy_clocks[] = {
1529 { "dsi0_byte", "dsi1_byte", 8 },
1530 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1531 { "dsi0_ddr", "dsi1_ddr", 2 },
1532 };
1533 int i;
1534
1535 dsi->clk_onecell = devm_kzalloc(dev,
1536 sizeof(*dsi->clk_onecell) +
1537 ARRAY_SIZE(phy_clocks) *
1538 sizeof(struct clk_hw *),
1539 GFP_KERNEL);
1540 if (!dsi->clk_onecell)
1541 return -ENOMEM;
1542 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1543
1544 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1545 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1546 struct clk_init_data init;
1547 int ret;
1548
1549 /* We just use core fixed factor clock ops for the PHY
1550 * clocks. The clocks are actually gated by the
1551 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1552 * setting if we use the DDR/DDR2 clocks. However,
1553 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1554 * setting both our parent DSI PLL's rate and this
1555 * clock's rate, so it knows if DDR/DDR2 are going to
1556 * be used and could enable the gates itself.
1557 */
1558 fix->mult = 1;
1559 fix->div = phy_clocks[i].div;
1560 fix->hw.init = &init;
1561
1562 memset(&init, 0, sizeof(init));
1563 init.parent_names = &parent_name;
1564 init.num_parents = 1;
1565 if (dsi->port == 1)
1566 init.name = phy_clocks[i].dsi1_name;
1567 else
1568 init.name = phy_clocks[i].dsi0_name;
1569 init.ops = &clk_fixed_factor_ops;
1570
1571 ret = devm_clk_hw_register(dev, &fix->hw);
1572 if (ret)
1573 return ret;
1574
1575 dsi->clk_onecell->hws[i] = &fix->hw;
1576 }
1577
1578 return of_clk_add_hw_provider(dev->of_node,
1579 of_clk_hw_onecell_get,
1580 dsi->clk_onecell);
1581}
1582
1583static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1584{
1585 struct platform_device *pdev = to_platform_device(dev);
1586 struct drm_device *drm = dev_get_drvdata(master);
1587 struct vc4_dev *vc4 = to_vc4_dev(drm);
1588 struct vc4_dsi *dsi;
1589 struct vc4_dsi_encoder *vc4_dsi_encoder;
1590 const struct of_device_id *match;
1591 dma_cap_mask_t dma_mask;
1592 int ret;
1593
1594 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1595 if (!dsi)
1596 return -ENOMEM;
1597
1598 match = of_match_device(vc4_dsi_dt_match, dev);
1599 if (!match)
1600 return -ENODEV;
1601
1602 dsi->port = (uintptr_t)match->data;
1603
1604 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1605 GFP_KERNEL);
1606 if (!vc4_dsi_encoder)
1607 return -ENOMEM;
1608 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1609 vc4_dsi_encoder->dsi = dsi;
1610 dsi->encoder = &vc4_dsi_encoder->base.base;
1611
1612 dsi->pdev = pdev;
1613 dsi->regs = vc4_ioremap_regs(pdev, 0);
1614 if (IS_ERR(dsi->regs))
1615 return PTR_ERR(dsi->regs);
1616
1617 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1618 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1619 DSI_PORT_READ(ID), DSI_ID_VALUE);
1620 return -ENODEV;
1621 }
1622
1623 /* DSI1 has a broken AXI slave that doesn't respond to writes
1624 * from the ARM. It does handle writes from the DMA engine,
1625 * so set up a channel for talking to it.
1626 */
1627 if (dsi->port == 1) {
1628 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1629 &dsi->reg_dma_paddr,
1630 GFP_KERNEL);
1631 if (!dsi->reg_dma_mem) {
1632 DRM_ERROR("Failed to get DMA memory\n");
1633 return -ENOMEM;
1634 }
1635
1636 dma_cap_zero(dma_mask);
1637 dma_cap_set(DMA_MEMCPY, dma_mask);
1638 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1639 if (IS_ERR(dsi->reg_dma_chan)) {
1640 ret = PTR_ERR(dsi->reg_dma_chan);
1641 if (ret != -EPROBE_DEFER)
1642 DRM_ERROR("Failed to get DMA channel: %d\n",
1643 ret);
1644 return ret;
1645 }
1646
1647 /* Get the physical address of the device's registers. The
1648 * struct resource for the regs gives us the bus address
1649 * instead.
1650 */
1651 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1652 0, NULL, NULL));
1653 }
1654
1655 init_completion(&dsi->xfer_completion);
1656 /* At startup enable error-reporting interrupts and nothing else. */
1657 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1658 /* Clear any existing interrupt state. */
1659 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1660
1661 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1662 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1663 if (ret) {
1664 if (ret != -EPROBE_DEFER)
1665 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1666 return ret;
1667 }
1668
1669 dsi->escape_clock = devm_clk_get(dev, "escape");
1670 if (IS_ERR(dsi->escape_clock)) {
1671 ret = PTR_ERR(dsi->escape_clock);
1672 if (ret != -EPROBE_DEFER)
1673 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1674 return ret;
1675 }
1676
1677 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1678 if (IS_ERR(dsi->pll_phy_clock)) {
1679 ret = PTR_ERR(dsi->pll_phy_clock);
1680 if (ret != -EPROBE_DEFER)
1681 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1682 return ret;
1683 }
1684
1685 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1686 if (IS_ERR(dsi->pixel_clock)) {
1687 ret = PTR_ERR(dsi->pixel_clock);
1688 if (ret != -EPROBE_DEFER)
1689 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1690 return ret;
1691 }
1692
1693 /* The esc clock rate is supposed to always be 100Mhz. */
1694 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1695 if (ret) {
1696 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1697 return ret;
1698 }
1699
1700 ret = vc4_dsi_init_phy_clocks(dsi);
1701 if (ret)
1702 return ret;
1703
1704 if (dsi->port == 1)
1705 vc4->dsi1 = dsi;
1706
1707 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1708 DRM_MODE_ENCODER_DSI, NULL);
1709 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1710
1711 dsi->connector = vc4_dsi_connector_init(drm, dsi);
1712 if (IS_ERR(dsi->connector)) {
1713 ret = PTR_ERR(dsi->connector);
1714 goto err_destroy_encoder;
1715 }
1716
1717 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1718 dsi->dsi_host.dev = dev;
1719
1720 mipi_dsi_host_register(&dsi->dsi_host);
1721
1722 dev_set_drvdata(dev, dsi);
1723
1724 pm_runtime_enable(dev);
1725
1726 return 0;
1727
1728err_destroy_encoder:
1729 vc4_dsi_encoder_destroy(dsi->encoder);
1730
1731 return ret;
1732}
1733
1734static void vc4_dsi_unbind(struct device *dev, struct device *master,
1735 void *data)
1736{
1737 struct drm_device *drm = dev_get_drvdata(master);
1738 struct vc4_dev *vc4 = to_vc4_dev(drm);
1739 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1740
1741 pm_runtime_disable(dev);
1742
1743 vc4_dsi_connector_destroy(dsi->connector);
1744 vc4_dsi_encoder_destroy(dsi->encoder);
1745
1746 mipi_dsi_host_unregister(&dsi->dsi_host);
1747
1748 clk_disable_unprepare(dsi->pll_phy_clock);
1749 clk_disable_unprepare(dsi->escape_clock);
1750
1751 if (dsi->port == 1)
1752 vc4->dsi1 = NULL;
1753}
1754
1755static const struct component_ops vc4_dsi_ops = {
1756 .bind = vc4_dsi_bind,
1757 .unbind = vc4_dsi_unbind,
1758};
1759
1760static int vc4_dsi_dev_probe(struct platform_device *pdev)
1761{
1762 return component_add(&pdev->dev, &vc4_dsi_ops);
1763}
1764
1765static int vc4_dsi_dev_remove(struct platform_device *pdev)
1766{
1767 component_del(&pdev->dev, &vc4_dsi_ops);
1768 return 0;
1769}
1770
1771struct platform_driver vc4_dsi_driver = {
1772 .probe = vc4_dsi_dev_probe,
1773 .remove = vc4_dsi_dev_remove,
1774 .driver = {
1775 .name = "vc4_dsi",
1776 .of_match_table = vc4_dsi_dt_match,
1777 },
1778};