blob: 083fc0479e694181753b078f56517c65796e2e2d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Olaf Weber3e57ecf2006-06-09 14:48:12 +10002 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
Nathan Scott7b718762005-11-02 14:58:39 +11003 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_dir.h"
30#include "xfs_dir2.h"
31#include "xfs_dmapi.h"
32#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110034#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include "xfs_dir_sf.h"
37#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110038#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070041#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110042#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_rw.h"
48#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070049#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
52#include "xfs_mac.h"
53#include "xfs_acl.h"
54
55
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
58kmem_zone_t *xfs_chashlist_zone;
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
71
72#ifdef DEBUG
73/*
74 * Make sure that the extents in the given memory buffer
75 * are valid.
76 */
77STATIC void
78xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110079 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 int nrecs,
81 int disk,
82 xfs_exntfmt_t fmt)
83{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110084 xfs_bmbt_rec_t *ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -070085 xfs_bmbt_irec_t irec;
86 xfs_bmbt_rec_t rec;
87 int i;
88
89 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110090 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -070091 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
92 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
93 if (disk)
94 xfs_bmbt_disk_get_all(&rec, &irec);
95 else
96 xfs_bmbt_get_all(&rec, &irec);
97 if (fmt == XFS_EXTFMT_NOSTATE)
98 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070099 }
100}
101#else /* DEBUG */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100102#define xfs_validate_extents(ifp, nrecs, disk, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103#endif /* DEBUG */
104
105/*
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
108 */
109#if defined(DEBUG)
110void
111xfs_inobp_check(
112 xfs_mount_t *mp,
113 xfs_buf_t *bp)
114{
115 int i;
116 int j;
117 xfs_dinode_t *dip;
118
119 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120
121 for (i = 0; i < j; i++) {
122 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 i * mp->m_sb.sb_inodesize);
124 if (!dip->di_next_unlinked) {
125 xfs_fs_cmn_err(CE_ALERT, mp,
126 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 bp);
128 ASSERT(dip->di_next_unlinked);
129 }
130 }
131}
132#endif
133
134/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135 * This routine is called to map an inode number within a file
136 * system to the buffer containing the on-disk version of the
137 * inode. It returns a pointer to the buffer containing the
138 * on-disk inode in the bpp parameter, and in the dip parameter
139 * it returns a pointer to the on-disk inode within that buffer.
140 *
141 * If a non-zero error is returned, then the contents of bpp and
142 * dipp are undefined.
143 *
144 * Use xfs_imap() to determine the size and location of the
145 * buffer to read from disk.
146 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000147STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148xfs_inotobp(
149 xfs_mount_t *mp,
150 xfs_trans_t *tp,
151 xfs_ino_t ino,
152 xfs_dinode_t **dipp,
153 xfs_buf_t **bpp,
154 int *offset)
155{
156 int di_ok;
157 xfs_imap_t imap;
158 xfs_buf_t *bp;
159 int error;
160 xfs_dinode_t *dip;
161
162 /*
Nathan Scottc41564b2006-03-29 08:55:14 +1000163 * Call the space management code to find the location of the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 * inode on disk.
165 */
166 imap.im_blkno = 0;
167 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
168 if (error != 0) {
169 cmn_err(CE_WARN,
170 "xfs_inotobp: xfs_imap() returned an "
171 "error %d on %s. Returning error.", error, mp->m_fsname);
172 return error;
173 }
174
175 /*
176 * If the inode number maps to a block outside the bounds of the
177 * file system then return NULL rather than calling read_buf
178 * and panicing when we get an error from the driver.
179 */
180 if ((imap.im_blkno + imap.im_len) >
181 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
182 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100183 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100185 (unsigned long long)imap.im_blkno,
186 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187 return XFS_ERROR(EINVAL);
188 }
189
190 /*
191 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
192 * default to just a read_buf() call.
193 */
194 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
195 (int)imap.im_len, XFS_BUF_LOCK, &bp);
196
197 if (error) {
198 cmn_err(CE_WARN,
199 "xfs_inotobp: xfs_trans_read_buf() returned an "
200 "error %d on %s. Returning error.", error, mp->m_fsname);
201 return error;
202 }
203 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
204 di_ok =
205 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
206 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
207 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
208 XFS_RANDOM_ITOBP_INOTOBP))) {
209 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
210 xfs_trans_brelse(tp, bp);
211 cmn_err(CE_WARN,
212 "xfs_inotobp: XFS_TEST_ERROR() returned an "
213 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
214 return XFS_ERROR(EFSCORRUPTED);
215 }
216
217 xfs_inobp_check(mp, bp);
218
219 /*
220 * Set *dipp to point to the on-disk inode in the buffer.
221 */
222 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
223 *bpp = bp;
224 *offset = imap.im_boffset;
225 return 0;
226}
227
228
229/*
230 * This routine is called to map an inode to the buffer containing
231 * the on-disk version of the inode. It returns a pointer to the
232 * buffer containing the on-disk inode in the bpp parameter, and in
233 * the dip parameter it returns a pointer to the on-disk inode within
234 * that buffer.
235 *
236 * If a non-zero error is returned, then the contents of bpp and
237 * dipp are undefined.
238 *
239 * If the inode is new and has not yet been initialized, use xfs_imap()
240 * to determine the size and location of the buffer to read from disk.
241 * If the inode has already been mapped to its buffer and read in once,
242 * then use the mapping information stored in the inode rather than
243 * calling xfs_imap(). This allows us to avoid the overhead of looking
244 * at the inode btree for small block file systems (see xfs_dilocate()).
245 * We can tell whether the inode has been mapped in before by comparing
246 * its disk block address to 0. Only uninitialized inodes will have
247 * 0 for the disk block address.
248 */
249int
250xfs_itobp(
251 xfs_mount_t *mp,
252 xfs_trans_t *tp,
253 xfs_inode_t *ip,
254 xfs_dinode_t **dipp,
255 xfs_buf_t **bpp,
Nathan Scottb12dd342006-03-17 17:26:04 +1100256 xfs_daddr_t bno,
257 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258{
259 xfs_buf_t *bp;
260 int error;
261 xfs_imap_t imap;
262#ifdef __KERNEL__
263 int i;
264 int ni;
265#endif
266
267 if (ip->i_blkno == (xfs_daddr_t)0) {
268 /*
269 * Call the space management code to find the location of the
270 * inode on disk.
271 */
272 imap.im_blkno = bno;
Nathan Scottb12dd342006-03-17 17:26:04 +1100273 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
274 XFS_IMAP_LOOKUP | imap_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276
277 /*
278 * If the inode number maps to a block outside the bounds
279 * of the file system then return NULL rather than calling
280 * read_buf and panicing when we get an error from the
281 * driver.
282 */
283 if ((imap.im_blkno + imap.im_len) >
284 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
285#ifdef DEBUG
286 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
287 "(imap.im_blkno (0x%llx) "
288 "+ imap.im_len (0x%llx)) > "
289 " XFS_FSB_TO_BB(mp, "
290 "mp->m_sb.sb_dblocks) (0x%llx)",
291 (unsigned long long) imap.im_blkno,
292 (unsigned long long) imap.im_len,
293 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
294#endif /* DEBUG */
295 return XFS_ERROR(EINVAL);
296 }
297
298 /*
299 * Fill in the fields in the inode that will be used to
300 * map the inode to its buffer from now on.
301 */
302 ip->i_blkno = imap.im_blkno;
303 ip->i_len = imap.im_len;
304 ip->i_boffset = imap.im_boffset;
305 } else {
306 /*
307 * We've already mapped the inode once, so just use the
308 * mapping that we saved the first time.
309 */
310 imap.im_blkno = ip->i_blkno;
311 imap.im_len = ip->i_len;
312 imap.im_boffset = ip->i_boffset;
313 }
314 ASSERT(bno == 0 || bno == imap.im_blkno);
315
316 /*
317 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
318 * default to just a read_buf() call.
319 */
320 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
321 (int)imap.im_len, XFS_BUF_LOCK, &bp);
322
323 if (error) {
324#ifdef DEBUG
325 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
326 "xfs_trans_read_buf() returned error %d, "
327 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
328 error, (unsigned long long) imap.im_blkno,
329 (unsigned long long) imap.im_len);
330#endif /* DEBUG */
331 return error;
332 }
333#ifdef __KERNEL__
334 /*
335 * Validate the magic number and version of every inode in the buffer
336 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
337 */
338#ifdef DEBUG
Nathan Scottb12dd342006-03-17 17:26:04 +1100339 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
340 (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341#else
Nathan Scottb12dd342006-03-17 17:26:04 +1100342 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343#endif
344 for (i = 0; i < ni; i++) {
345 int di_ok;
346 xfs_dinode_t *dip;
347
348 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
349 (i << mp->m_sb.sb_inodelog));
350 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
351 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
352 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
353 XFS_RANDOM_ITOBP_INOTOBP))) {
354#ifdef DEBUG
355 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
356 mp->m_ddev_targp,
357 (unsigned long long)imap.im_blkno, i,
358 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
359#endif
360 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
361 mp, dip);
362 xfs_trans_brelse(tp, bp);
363 return XFS_ERROR(EFSCORRUPTED);
364 }
365 }
366#endif /* __KERNEL__ */
367
368 xfs_inobp_check(mp, bp);
369
370 /*
371 * Mark the buffer as an inode buffer now that it looks good
372 */
373 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374
375 /*
376 * Set *dipp to point to the on-disk inode in the buffer.
377 */
378 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
379 *bpp = bp;
380 return 0;
381}
382
383/*
384 * Move inode type and inode format specific information from the
385 * on-disk inode to the in-core inode. For fifos, devs, and sockets
386 * this means set if_rdev to the proper value. For files, directories,
387 * and symlinks this means to bring in the in-line data or extent
388 * pointers. For a file in B-tree format, only the root is immediately
389 * brought in-core. The rest will be in-lined in if_extents when it
390 * is first referenced (see xfs_iread_extents()).
391 */
392STATIC int
393xfs_iformat(
394 xfs_inode_t *ip,
395 xfs_dinode_t *dip)
396{
397 xfs_attr_shortform_t *atp;
398 int size;
399 int error;
400 xfs_fsize_t di_size;
401 ip->i_df.if_ext_max =
402 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
403 error = 0;
404
405 if (unlikely(
406 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
407 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
408 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100409 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
410 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 (unsigned long long)ip->i_ino,
412 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
413 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
414 (unsigned long long)
415 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
416 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
417 ip->i_mount, dip);
418 return XFS_ERROR(EFSCORRUPTED);
419 }
420
421 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100422 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
423 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424 (unsigned long long)ip->i_ino,
425 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
426 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
427 ip->i_mount, dip);
428 return XFS_ERROR(EFSCORRUPTED);
429 }
430
431 switch (ip->i_d.di_mode & S_IFMT) {
432 case S_IFIFO:
433 case S_IFCHR:
434 case S_IFBLK:
435 case S_IFSOCK:
436 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
437 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
438 ip->i_mount, dip);
439 return XFS_ERROR(EFSCORRUPTED);
440 }
441 ip->i_d.di_size = 0;
442 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
443 break;
444
445 case S_IFREG:
446 case S_IFLNK:
447 case S_IFDIR:
448 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
449 case XFS_DINODE_FMT_LOCAL:
450 /*
451 * no local regular files yet
452 */
453 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100454 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
455 "corrupt inode %Lu "
456 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457 (unsigned long long) ip->i_ino);
458 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
459 XFS_ERRLEVEL_LOW,
460 ip->i_mount, dip);
461 return XFS_ERROR(EFSCORRUPTED);
462 }
463
464 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
465 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100466 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
467 "corrupt inode %Lu "
468 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469 (unsigned long long) ip->i_ino,
470 (long long) di_size);
471 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
472 XFS_ERRLEVEL_LOW,
473 ip->i_mount, dip);
474 return XFS_ERROR(EFSCORRUPTED);
475 }
476
477 size = (int)di_size;
478 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
479 break;
480 case XFS_DINODE_FMT_EXTENTS:
481 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
482 break;
483 case XFS_DINODE_FMT_BTREE:
484 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
485 break;
486 default:
487 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
488 ip->i_mount);
489 return XFS_ERROR(EFSCORRUPTED);
490 }
491 break;
492
493 default:
494 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
495 return XFS_ERROR(EFSCORRUPTED);
496 }
497 if (error) {
498 return error;
499 }
500 if (!XFS_DFORK_Q(dip))
501 return 0;
502 ASSERT(ip->i_afp == NULL);
503 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
504 ip->i_afp->if_ext_max =
505 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
506 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
507 case XFS_DINODE_FMT_LOCAL:
508 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
Nathan Scott3b244aa2006-03-17 17:29:25 +1100509 size = be16_to_cpu(atp->hdr.totsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
511 break;
512 case XFS_DINODE_FMT_EXTENTS:
513 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
514 break;
515 case XFS_DINODE_FMT_BTREE:
516 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
517 break;
518 default:
519 error = XFS_ERROR(EFSCORRUPTED);
520 break;
521 }
522 if (error) {
523 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
524 ip->i_afp = NULL;
525 xfs_idestroy_fork(ip, XFS_DATA_FORK);
526 }
527 return error;
528}
529
530/*
531 * The file is in-lined in the on-disk inode.
532 * If it fits into if_inline_data, then copy
533 * it there, otherwise allocate a buffer for it
534 * and copy the data there. Either way, set
535 * if_data to point at the data.
536 * If we allocate a buffer for the data, make
537 * sure that its size is a multiple of 4 and
538 * record the real size in i_real_bytes.
539 */
540STATIC int
541xfs_iformat_local(
542 xfs_inode_t *ip,
543 xfs_dinode_t *dip,
544 int whichfork,
545 int size)
546{
547 xfs_ifork_t *ifp;
548 int real_size;
549
550 /*
551 * If the size is unreasonable, then something
552 * is wrong and we just bail out rather than crash in
553 * kmem_alloc() or memcpy() below.
554 */
555 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100556 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
557 "corrupt inode %Lu "
558 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559 (unsigned long long) ip->i_ino, size,
560 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
561 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
562 ip->i_mount, dip);
563 return XFS_ERROR(EFSCORRUPTED);
564 }
565 ifp = XFS_IFORK_PTR(ip, whichfork);
566 real_size = 0;
567 if (size == 0)
568 ifp->if_u1.if_data = NULL;
569 else if (size <= sizeof(ifp->if_u2.if_inline_data))
570 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
571 else {
572 real_size = roundup(size, 4);
573 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
574 }
575 ifp->if_bytes = size;
576 ifp->if_real_bytes = real_size;
577 if (size)
578 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
579 ifp->if_flags &= ~XFS_IFEXTENTS;
580 ifp->if_flags |= XFS_IFINLINE;
581 return 0;
582}
583
584/*
585 * The file consists of a set of extents all
586 * of which fit into the on-disk inode.
587 * If there are few enough extents to fit into
588 * the if_inline_ext, then copy them there.
589 * Otherwise allocate a buffer for them and copy
590 * them into it. Either way, set if_extents
591 * to point at the extents.
592 */
593STATIC int
594xfs_iformat_extents(
595 xfs_inode_t *ip,
596 xfs_dinode_t *dip,
597 int whichfork)
598{
599 xfs_bmbt_rec_t *ep, *dp;
600 xfs_ifork_t *ifp;
601 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602 int size;
603 int i;
604
605 ifp = XFS_IFORK_PTR(ip, whichfork);
606 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
607 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608
609 /*
610 * If the number of extents is unreasonable, then something
611 * is wrong and we just bail out rather than crash in
612 * kmem_alloc() or memcpy() below.
613 */
614 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100615 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
616 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700617 (unsigned long long) ip->i_ino, nex);
618 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
619 ip->i_mount, dip);
620 return XFS_ERROR(EFSCORRUPTED);
621 }
622
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100623 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624 if (nex == 0)
625 ifp->if_u1.if_extents = NULL;
626 else if (nex <= XFS_INLINE_EXTS)
627 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100628 else
629 xfs_iext_add(ifp, 0, nex);
630
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 if (size) {
633 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100634 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
635 for (i = 0; i < nex; i++, dp++) {
636 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
638 ARCH_CONVERT);
639 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
640 ARCH_CONVERT);
641 }
642 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
643 whichfork);
644 if (whichfork != XFS_DATA_FORK ||
645 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
646 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100647 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
649 XFS_ERRLEVEL_LOW,
650 ip->i_mount);
651 return XFS_ERROR(EFSCORRUPTED);
652 }
653 }
654 ifp->if_flags |= XFS_IFEXTENTS;
655 return 0;
656}
657
658/*
659 * The file has too many extents to fit into
660 * the inode, so they are in B-tree format.
661 * Allocate a buffer for the root of the B-tree
662 * and copy the root into it. The i_extents
663 * field will remain NULL until all of the
664 * extents are read in (when they are needed).
665 */
666STATIC int
667xfs_iformat_btree(
668 xfs_inode_t *ip,
669 xfs_dinode_t *dip,
670 int whichfork)
671{
672 xfs_bmdr_block_t *dfp;
673 xfs_ifork_t *ifp;
674 /* REFERENCED */
675 int nrecs;
676 int size;
677
678 ifp = XFS_IFORK_PTR(ip, whichfork);
679 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
680 size = XFS_BMAP_BROOT_SPACE(dfp);
681 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
682
683 /*
684 * blow out if -- fork has less extents than can fit in
685 * fork (fork shouldn't be a btree format), root btree
686 * block has more records than can fit into the fork,
687 * or the number of extents is greater than the number of
688 * blocks.
689 */
690 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
691 || XFS_BMDR_SPACE_CALC(nrecs) >
692 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
693 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100694 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
695 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700696 (unsigned long long) ip->i_ino);
697 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
698 ip->i_mount);
699 return XFS_ERROR(EFSCORRUPTED);
700 }
701
702 ifp->if_broot_bytes = size;
703 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
704 ASSERT(ifp->if_broot != NULL);
705 /*
706 * Copy and convert from the on-disk structure
707 * to the in-memory structure.
708 */
709 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
710 ifp->if_broot, size);
711 ifp->if_flags &= ~XFS_IFEXTENTS;
712 ifp->if_flags |= XFS_IFBROOT;
713
714 return 0;
715}
716
717/*
718 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
719 * and native format
720 *
721 * buf = on-disk representation
722 * dip = native representation
723 * dir = direction - +ve -> disk to native
724 * -ve -> native to disk
725 */
726void
727xfs_xlate_dinode_core(
728 xfs_caddr_t buf,
729 xfs_dinode_core_t *dip,
730 int dir)
731{
732 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
733 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
734 xfs_arch_t arch = ARCH_CONVERT;
735
736 ASSERT(dir);
737
738 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
739 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
740 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
741 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
742 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
743 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
744 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
745 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
746 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
747
748 if (dir > 0) {
749 memcpy(mem_core->di_pad, buf_core->di_pad,
750 sizeof(buf_core->di_pad));
751 } else {
752 memcpy(buf_core->di_pad, mem_core->di_pad,
753 sizeof(buf_core->di_pad));
754 }
755
756 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
757
758 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
759 dir, arch);
760 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
761 dir, arch);
762 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
763 dir, arch);
764 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
765 dir, arch);
766 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
767 dir, arch);
768 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
769 dir, arch);
770 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
771 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
772 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
773 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
774 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
775 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
776 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
777 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
778 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
779 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
780 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
781}
782
783STATIC uint
784_xfs_dic2xflags(
785 xfs_dinode_core_t *dic,
786 __uint16_t di_flags)
787{
788 uint flags = 0;
789
790 if (di_flags & XFS_DIFLAG_ANY) {
791 if (di_flags & XFS_DIFLAG_REALTIME)
792 flags |= XFS_XFLAG_REALTIME;
793 if (di_flags & XFS_DIFLAG_PREALLOC)
794 flags |= XFS_XFLAG_PREALLOC;
795 if (di_flags & XFS_DIFLAG_IMMUTABLE)
796 flags |= XFS_XFLAG_IMMUTABLE;
797 if (di_flags & XFS_DIFLAG_APPEND)
798 flags |= XFS_XFLAG_APPEND;
799 if (di_flags & XFS_DIFLAG_SYNC)
800 flags |= XFS_XFLAG_SYNC;
801 if (di_flags & XFS_DIFLAG_NOATIME)
802 flags |= XFS_XFLAG_NOATIME;
803 if (di_flags & XFS_DIFLAG_NODUMP)
804 flags |= XFS_XFLAG_NODUMP;
805 if (di_flags & XFS_DIFLAG_RTINHERIT)
806 flags |= XFS_XFLAG_RTINHERIT;
807 if (di_flags & XFS_DIFLAG_PROJINHERIT)
808 flags |= XFS_XFLAG_PROJINHERIT;
809 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
810 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100811 if (di_flags & XFS_DIFLAG_EXTSIZE)
812 flags |= XFS_XFLAG_EXTSIZE;
813 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
814 flags |= XFS_XFLAG_EXTSZINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +1000815 if (di_flags & XFS_DIFLAG_NODEFRAG)
816 flags |= XFS_XFLAG_NODEFRAG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817 }
818
819 return flags;
820}
821
822uint
823xfs_ip2xflags(
824 xfs_inode_t *ip)
825{
826 xfs_dinode_core_t *dic = &ip->i_d;
827
828 return _xfs_dic2xflags(dic, dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
830}
831
832uint
833xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
835{
836 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
838}
839
840/*
841 * Given a mount structure and an inode number, return a pointer
Nathan Scottc41564b2006-03-29 08:55:14 +1000842 * to a newly allocated in-core inode corresponding to the given
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843 * inode number.
844 *
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
847 */
848int
849xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
854 xfs_daddr_t bno)
855{
856 xfs_buf_t *bp;
857 xfs_dinode_t *dip;
858 xfs_inode_t *ip;
859 int error;
860
861 ASSERT(xfs_inode_zone != NULL);
862
863 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
864 ip->i_ino = ino;
865 ip->i_mount = mp;
866
867 /*
868 * Get pointer's to the on-disk inode and the buffer containing it.
869 * If the inode number refers to a block outside the file system
870 * then xfs_itobp() will return NULL. In this case we should
871 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
872 * know that this is a new incore inode.
873 */
Nathan Scottb12dd342006-03-17 17:26:04 +1100874 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
875 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876 kmem_zone_free(xfs_inode_zone, ip);
877 return error;
878 }
879
880 /*
881 * Initialize inode's trace buffers.
882 * Do this before xfs_iformat in case it adds entries.
883 */
884#ifdef XFS_BMAP_TRACE
885 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
886#endif
887#ifdef XFS_BMBT_TRACE
888 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
889#endif
890#ifdef XFS_RW_TRACE
891 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_ILOCK_TRACE
894 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_DIR2_TRACE
897 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
898#endif
899
900 /*
901 * If we got something that isn't an inode it means someone
902 * (nfs or dmi) has a stale handle.
903 */
904 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
905 kmem_zone_free(xfs_inode_zone, ip);
906 xfs_trans_brelse(tp, bp);
907#ifdef DEBUG
908 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
909 "dip->di_core.di_magic (0x%x) != "
910 "XFS_DINODE_MAGIC (0x%x)",
911 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
912 XFS_DINODE_MAGIC);
913#endif /* DEBUG */
914 return XFS_ERROR(EINVAL);
915 }
916
917 /*
918 * If the on-disk inode is already linked to a directory
919 * entry, copy all of the inode into the in-core inode.
920 * xfs_iformat() handles copying in the inode format
921 * specific information.
922 * Otherwise, just get the truly permanent information.
923 */
924 if (dip->di_core.di_mode) {
925 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
926 &(ip->i_d), 1);
927 error = xfs_iformat(ip, dip);
928 if (error) {
929 kmem_zone_free(xfs_inode_zone, ip);
930 xfs_trans_brelse(tp, bp);
931#ifdef DEBUG
932 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
933 "xfs_iformat() returned error %d",
934 error);
935#endif /* DEBUG */
936 return error;
937 }
938 } else {
939 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
940 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
941 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
942 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
943 /*
944 * Make sure to pull in the mode here as well in
945 * case the inode is released without being used.
946 * This ensures that xfs_inactive() will see that
947 * the inode is already free and not try to mess
948 * with the uninitialized part of it.
949 */
950 ip->i_d.di_mode = 0;
951 /*
952 * Initialize the per-fork minima and maxima for a new
953 * inode here. xfs_iformat will do it for old inodes.
954 */
955 ip->i_df.if_ext_max =
956 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
957 }
958
959 INIT_LIST_HEAD(&ip->i_reclaim);
960
961 /*
962 * The inode format changed when we moved the link count and
963 * made it 32 bits long. If this is an old format inode,
964 * convert it in memory to look like a new one. If it gets
965 * flushed to disk we will convert back before flushing or
966 * logging it. We zero out the new projid field and the old link
967 * count field. We'll handle clearing the pad field (the remains
968 * of the old uuid field) when we actually convert the inode to
969 * the new format. We don't change the version number so that we
970 * can distinguish this from a real new format inode.
971 */
972 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
973 ip->i_d.di_nlink = ip->i_d.di_onlink;
974 ip->i_d.di_onlink = 0;
975 ip->i_d.di_projid = 0;
976 }
977
978 ip->i_delayed_blks = 0;
979
980 /*
981 * Mark the buffer containing the inode as something to keep
982 * around for a while. This helps to keep recently accessed
983 * meta-data in-core longer.
984 */
985 XFS_BUF_SET_REF(bp, XFS_INO_REF);
986
987 /*
988 * Use xfs_trans_brelse() to release the buffer containing the
989 * on-disk inode, because it was acquired with xfs_trans_read_buf()
990 * in xfs_itobp() above. If tp is NULL, this is just a normal
991 * brelse(). If we're within a transaction, then xfs_trans_brelse()
992 * will only release the buffer if it is not dirty within the
993 * transaction. It will be OK to release the buffer in this case,
994 * because inodes on disk are never destroyed and we will be
995 * locking the new in-core inode before putting it in the hash
996 * table where other processes can find it. Thus we don't have
997 * to worry about the inode being changed just because we released
998 * the buffer.
999 */
1000 xfs_trans_brelse(tp, bp);
1001 *ipp = ip;
1002 return 0;
1003}
1004
1005/*
1006 * Read in extents from a btree-format inode.
1007 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1008 */
1009int
1010xfs_iread_extents(
1011 xfs_trans_t *tp,
1012 xfs_inode_t *ip,
1013 int whichfork)
1014{
1015 int error;
1016 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001017 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001018 size_t size;
1019
1020 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1021 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1022 ip->i_mount);
1023 return XFS_ERROR(EFSCORRUPTED);
1024 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001025 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1026 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001028
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 /*
1030 * We know that the size is valid (it's checked in iformat_btree)
1031 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001033 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001035 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001036 error = xfs_bmap_read_extents(tp, ip, whichfork);
1037 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001038 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 ifp->if_flags &= ~XFS_IFEXTENTS;
1040 return error;
1041 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001042 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001043 return 0;
1044}
1045
1046/*
1047 * Allocate an inode on disk and return a copy of its in-core version.
1048 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1049 * appropriately within the inode. The uid and gid for the inode are
1050 * set according to the contents of the given cred structure.
1051 *
1052 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1053 * has a free inode available, call xfs_iget()
1054 * to obtain the in-core version of the allocated inode. Finally,
1055 * fill in the inode and log its initial contents. In this case,
1056 * ialloc_context would be set to NULL and call_again set to false.
1057 *
1058 * If xfs_dialloc() does not have an available inode,
1059 * it will replenish its supply by doing an allocation. Since we can
1060 * only do one allocation within a transaction without deadlocks, we
1061 * must commit the current transaction before returning the inode itself.
1062 * In this case, therefore, we will set call_again to true and return.
1063 * The caller should then commit the current transaction, start a new
1064 * transaction, and call xfs_ialloc() again to actually get the inode.
1065 *
1066 * To ensure that some other process does not grab the inode that
1067 * was allocated during the first call to xfs_ialloc(), this routine
1068 * also returns the [locked] bp pointing to the head of the freelist
1069 * as ialloc_context. The caller should hold this buffer across
1070 * the commit and pass it back into this routine on the second call.
1071 */
1072int
1073xfs_ialloc(
1074 xfs_trans_t *tp,
1075 xfs_inode_t *pip,
1076 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001077 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078 xfs_dev_t rdev,
1079 cred_t *cr,
1080 xfs_prid_t prid,
1081 int okalloc,
1082 xfs_buf_t **ialloc_context,
1083 boolean_t *call_again,
1084 xfs_inode_t **ipp)
1085{
1086 xfs_ino_t ino;
1087 xfs_inode_t *ip;
1088 vnode_t *vp;
1089 uint flags;
1090 int error;
1091
1092 /*
1093 * Call the space management code to pick
1094 * the on-disk inode to be allocated.
1095 */
1096 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1097 ialloc_context, call_again, &ino);
1098 if (error != 0) {
1099 return error;
1100 }
1101 if (*call_again || ino == NULLFSINO) {
1102 *ipp = NULL;
1103 return 0;
1104 }
1105 ASSERT(*ialloc_context == NULL);
1106
1107 /*
1108 * Get the in-core inode with the lock held exclusively.
1109 * This is because we're setting fields here we need
1110 * to prevent others from looking at until we're done.
1111 */
1112 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1113 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1114 if (error != 0) {
1115 return error;
1116 }
1117 ASSERT(ip != NULL);
1118
1119 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120 ip->i_d.di_mode = (__uint16_t)mode;
1121 ip->i_d.di_onlink = 0;
1122 ip->i_d.di_nlink = nlink;
1123 ASSERT(ip->i_d.di_nlink == nlink);
1124 ip->i_d.di_uid = current_fsuid(cr);
1125 ip->i_d.di_gid = current_fsgid(cr);
1126 ip->i_d.di_projid = prid;
1127 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1128
1129 /*
1130 * If the superblock version is up to where we support new format
1131 * inodes and this is currently an old format inode, then change
1132 * the inode version number now. This way we only do the conversion
1133 * here rather than here and in the flush/logging code.
1134 */
1135 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1136 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1137 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1138 /*
1139 * We've already zeroed the old link count, the projid field,
1140 * and the pad field.
1141 */
1142 }
1143
1144 /*
1145 * Project ids won't be stored on disk if we are using a version 1 inode.
1146 */
1147 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1148 xfs_bump_ino_vers2(tp, ip);
1149
1150 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1151 ip->i_d.di_gid = pip->i_d.di_gid;
1152 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1153 ip->i_d.di_mode |= S_ISGID;
1154 }
1155 }
1156
1157 /*
1158 * If the group ID of the new file does not match the effective group
1159 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1160 * (and only if the irix_sgid_inherit compatibility variable is set).
1161 */
1162 if ((irix_sgid_inherit) &&
1163 (ip->i_d.di_mode & S_ISGID) &&
1164 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1165 ip->i_d.di_mode &= ~S_ISGID;
1166 }
1167
1168 ip->i_d.di_size = 0;
1169 ip->i_d.di_nextents = 0;
1170 ASSERT(ip->i_d.di_nblocks == 0);
1171 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1172 /*
1173 * di_gen will have been taken care of in xfs_iread.
1174 */
1175 ip->i_d.di_extsize = 0;
1176 ip->i_d.di_dmevmask = 0;
1177 ip->i_d.di_dmstate = 0;
1178 ip->i_d.di_flags = 0;
1179 flags = XFS_ILOG_CORE;
1180 switch (mode & S_IFMT) {
1181 case S_IFIFO:
1182 case S_IFCHR:
1183 case S_IFBLK:
1184 case S_IFSOCK:
1185 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1186 ip->i_df.if_u2.if_rdev = rdev;
1187 ip->i_df.if_flags = 0;
1188 flags |= XFS_ILOG_DEV;
1189 break;
1190 case S_IFREG:
1191 case S_IFDIR:
1192 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001193 uint di_flags = 0;
1194
1195 if ((mode & S_IFMT) == S_IFDIR) {
1196 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1197 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001198 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1199 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1200 ip->i_d.di_extsize = pip->i_d.di_extsize;
1201 }
1202 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001203 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1204 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001205 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1206 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001207 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1208 di_flags |= XFS_DIFLAG_EXTSIZE;
1209 ip->i_d.di_extsize = pip->i_d.di_extsize;
1210 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001211 }
1212 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1213 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001214 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001215 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1216 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001217 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001218 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1219 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001220 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001221 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1222 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001223 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1224 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1225 di_flags |= XFS_DIFLAG_PROJINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +10001226 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1227 xfs_inherit_nodefrag)
1228 di_flags |= XFS_DIFLAG_NODEFRAG;
Nathan Scott365ca832005-06-21 15:39:12 +10001229 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 }
1231 /* FALLTHROUGH */
1232 case S_IFLNK:
1233 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1234 ip->i_df.if_flags = XFS_IFEXTENTS;
1235 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1236 ip->i_df.if_u1.if_extents = NULL;
1237 break;
1238 default:
1239 ASSERT(0);
1240 }
1241 /*
1242 * Attribute fork settings for new inode.
1243 */
1244 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1245 ip->i_d.di_anextents = 0;
1246
1247 /*
1248 * Log the new values stuffed into the inode.
1249 */
1250 xfs_trans_log_inode(tp, ip, flags);
1251
Christoph Hellwig0432dab2005-09-02 16:46:51 +10001252 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001253 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1254
1255 *ipp = ip;
1256 return 0;
1257}
1258
1259/*
1260 * Check to make sure that there are no blocks allocated to the
1261 * file beyond the size of the file. We don't check this for
1262 * files with fixed size extents or real time extents, but we
1263 * at least do it for regular files.
1264 */
1265#ifdef DEBUG
1266void
1267xfs_isize_check(
1268 xfs_mount_t *mp,
1269 xfs_inode_t *ip,
1270 xfs_fsize_t isize)
1271{
1272 xfs_fileoff_t map_first;
1273 int nimaps;
1274 xfs_bmbt_irec_t imaps[2];
1275
1276 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1277 return;
1278
Nathan Scottdd9f4382006-01-11 15:28:28 +11001279 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280 return;
1281
1282 nimaps = 2;
1283 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1284 /*
1285 * The filesystem could be shutting down, so bmapi may return
1286 * an error.
1287 */
1288 if (xfs_bmapi(NULL, ip, map_first,
1289 (XFS_B_TO_FSB(mp,
1290 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1291 map_first),
1292 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001293 NULL, NULL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294 return;
1295 ASSERT(nimaps == 1);
1296 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1297}
1298#endif /* DEBUG */
1299
1300/*
1301 * Calculate the last possible buffered byte in a file. This must
1302 * include data that was buffered beyond the EOF by the write code.
1303 * This also needs to deal with overflowing the xfs_fsize_t type
1304 * which can happen for sizes near the limit.
1305 *
1306 * We also need to take into account any blocks beyond the EOF. It
1307 * may be the case that they were buffered by a write which failed.
1308 * In that case the pages will still be in memory, but the inode size
1309 * will never have been updated.
1310 */
1311xfs_fsize_t
1312xfs_file_last_byte(
1313 xfs_inode_t *ip)
1314{
1315 xfs_mount_t *mp;
1316 xfs_fsize_t last_byte;
1317 xfs_fileoff_t last_block;
1318 xfs_fileoff_t size_last_block;
1319 int error;
1320
1321 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1322
1323 mp = ip->i_mount;
1324 /*
1325 * Only check for blocks beyond the EOF if the extents have
1326 * been read in. This eliminates the need for the inode lock,
1327 * and it also saves us from looking when it really isn't
1328 * necessary.
1329 */
1330 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1331 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1332 XFS_DATA_FORK);
1333 if (error) {
1334 last_block = 0;
1335 }
1336 } else {
1337 last_block = 0;
1338 }
1339 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1340 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1341
1342 last_byte = XFS_FSB_TO_B(mp, last_block);
1343 if (last_byte < 0) {
1344 return XFS_MAXIOFFSET(mp);
1345 }
1346 last_byte += (1 << mp->m_writeio_log);
1347 if (last_byte < 0) {
1348 return XFS_MAXIOFFSET(mp);
1349 }
1350 return last_byte;
1351}
1352
1353#if defined(XFS_RW_TRACE)
1354STATIC void
1355xfs_itrunc_trace(
1356 int tag,
1357 xfs_inode_t *ip,
1358 int flag,
1359 xfs_fsize_t new_size,
1360 xfs_off_t toss_start,
1361 xfs_off_t toss_finish)
1362{
1363 if (ip->i_rwtrace == NULL) {
1364 return;
1365 }
1366
1367 ktrace_enter(ip->i_rwtrace,
1368 (void*)((long)tag),
1369 (void*)ip,
1370 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1371 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1372 (void*)((long)flag),
1373 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1374 (void*)(unsigned long)(new_size & 0xffffffff),
1375 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1376 (void*)(unsigned long)(toss_start & 0xffffffff),
1377 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1378 (void*)(unsigned long)(toss_finish & 0xffffffff),
1379 (void*)(unsigned long)current_cpu(),
Yingping Luf1fdc842006-03-22 12:44:15 +11001380 (void*)(unsigned long)current_pid(),
1381 (void*)NULL,
1382 (void*)NULL,
1383 (void*)NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001384}
1385#else
1386#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1387#endif
1388
1389/*
1390 * Start the truncation of the file to new_size. The new size
1391 * must be smaller than the current size. This routine will
1392 * clear the buffer and page caches of file data in the removed
1393 * range, and xfs_itruncate_finish() will remove the underlying
1394 * disk blocks.
1395 *
1396 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1397 * must NOT have the inode lock held at all. This is because we're
1398 * calling into the buffer/page cache code and we can't hold the
1399 * inode lock when we do so.
1400 *
David Chinner38e22992006-03-22 12:47:15 +11001401 * We need to wait for any direct I/Os in flight to complete before we
1402 * proceed with the truncate. This is needed to prevent the extents
1403 * being read or written by the direct I/Os from being removed while the
1404 * I/O is in flight as there is no other method of synchronising
1405 * direct I/O with the truncate operation. Also, because we hold
1406 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1407 * started until the truncate completes and drops the lock. Essentially,
1408 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1409 * between direct I/Os and the truncate operation.
1410 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1412 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1413 * in the case that the caller is locking things out of order and
1414 * may not be able to call xfs_itruncate_finish() with the inode lock
1415 * held without dropping the I/O lock. If the caller must drop the
1416 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1417 * must be called again with all the same restrictions as the initial
1418 * call.
1419 */
1420void
1421xfs_itruncate_start(
1422 xfs_inode_t *ip,
1423 uint flags,
1424 xfs_fsize_t new_size)
1425{
1426 xfs_fsize_t last_byte;
1427 xfs_off_t toss_start;
1428 xfs_mount_t *mp;
1429 vnode_t *vp;
1430
1431 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1432 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1433 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1434 (flags == XFS_ITRUNC_MAYBE));
1435
1436 mp = ip->i_mount;
1437 vp = XFS_ITOV(ip);
Yingping Lu9fa80462006-03-22 12:44:35 +11001438
1439 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1440
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 /*
1442 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1443 * overlapping the region being removed. We have to use
1444 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1445 * caller may not be able to finish the truncate without
1446 * dropping the inode's I/O lock. Make sure
1447 * to catch any pages brought in by buffers overlapping
1448 * the EOF by searching out beyond the isize by our
1449 * block size. We round new_size up to a block boundary
1450 * so that we don't toss things on the same block as
1451 * new_size but before it.
1452 *
1453 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1454 * call remapf() over the same region if the file is mapped.
1455 * This frees up mapped file references to the pages in the
1456 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1457 * that we get the latest mapped changes flushed out.
1458 */
1459 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1460 toss_start = XFS_FSB_TO_B(mp, toss_start);
1461 if (toss_start < 0) {
1462 /*
1463 * The place to start tossing is beyond our maximum
1464 * file size, so there is no way that the data extended
1465 * out there.
1466 */
1467 return;
1468 }
1469 last_byte = xfs_file_last_byte(ip);
1470 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1471 last_byte);
1472 if (last_byte > toss_start) {
1473 if (flags & XFS_ITRUNC_DEFINITE) {
1474 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1475 } else {
1476 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1477 }
1478 }
1479
1480#ifdef DEBUG
1481 if (new_size == 0) {
1482 ASSERT(VN_CACHED(vp) == 0);
1483 }
1484#endif
1485}
1486
1487/*
1488 * Shrink the file to the given new_size. The new
1489 * size must be smaller than the current size.
1490 * This will free up the underlying blocks
1491 * in the removed range after a call to xfs_itruncate_start()
1492 * or xfs_atruncate_start().
1493 *
1494 * The transaction passed to this routine must have made
1495 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1496 * This routine may commit the given transaction and
1497 * start new ones, so make sure everything involved in
1498 * the transaction is tidy before calling here.
1499 * Some transaction will be returned to the caller to be
1500 * committed. The incoming transaction must already include
1501 * the inode, and both inode locks must be held exclusively.
1502 * The inode must also be "held" within the transaction. On
1503 * return the inode will be "held" within the returned transaction.
1504 * This routine does NOT require any disk space to be reserved
1505 * for it within the transaction.
1506 *
1507 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1508 * and it indicates the fork which is to be truncated. For the
1509 * attribute fork we only support truncation to size 0.
1510 *
1511 * We use the sync parameter to indicate whether or not the first
1512 * transaction we perform might have to be synchronous. For the attr fork,
1513 * it needs to be so if the unlink of the inode is not yet known to be
1514 * permanent in the log. This keeps us from freeing and reusing the
1515 * blocks of the attribute fork before the unlink of the inode becomes
1516 * permanent.
1517 *
1518 * For the data fork, we normally have to run synchronously if we're
1519 * being called out of the inactive path or we're being called
1520 * out of the create path where we're truncating an existing file.
1521 * Either way, the truncate needs to be sync so blocks don't reappear
1522 * in the file with altered data in case of a crash. wsync filesystems
1523 * can run the first case async because anything that shrinks the inode
1524 * has to run sync so by the time we're called here from inactive, the
1525 * inode size is permanently set to 0.
1526 *
1527 * Calls from the truncate path always need to be sync unless we're
1528 * in a wsync filesystem and the file has already been unlinked.
1529 *
1530 * The caller is responsible for correctly setting the sync parameter.
1531 * It gets too hard for us to guess here which path we're being called
1532 * out of just based on inode state.
1533 */
1534int
1535xfs_itruncate_finish(
1536 xfs_trans_t **tp,
1537 xfs_inode_t *ip,
1538 xfs_fsize_t new_size,
1539 int fork,
1540 int sync)
1541{
1542 xfs_fsblock_t first_block;
1543 xfs_fileoff_t first_unmap_block;
1544 xfs_fileoff_t last_block;
1545 xfs_filblks_t unmap_len=0;
1546 xfs_mount_t *mp;
1547 xfs_trans_t *ntp;
1548 int done;
1549 int committed;
1550 xfs_bmap_free_t free_list;
1551 int error;
1552
1553 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1554 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1555 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1556 ASSERT(*tp != NULL);
1557 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1558 ASSERT(ip->i_transp == *tp);
1559 ASSERT(ip->i_itemp != NULL);
1560 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1561
1562
1563 ntp = *tp;
1564 mp = (ntp)->t_mountp;
1565 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1566
1567 /*
1568 * We only support truncating the entire attribute fork.
1569 */
1570 if (fork == XFS_ATTR_FORK) {
1571 new_size = 0LL;
1572 }
1573 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1574 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1575 /*
1576 * The first thing we do is set the size to new_size permanently
1577 * on disk. This way we don't have to worry about anyone ever
1578 * being able to look at the data being freed even in the face
1579 * of a crash. What we're getting around here is the case where
1580 * we free a block, it is allocated to another file, it is written
1581 * to, and then we crash. If the new data gets written to the
1582 * file but the log buffers containing the free and reallocation
1583 * don't, then we'd end up with garbage in the blocks being freed.
1584 * As long as we make the new_size permanent before actually
1585 * freeing any blocks it doesn't matter if they get writtten to.
1586 *
1587 * The callers must signal into us whether or not the size
1588 * setting here must be synchronous. There are a few cases
1589 * where it doesn't have to be synchronous. Those cases
1590 * occur if the file is unlinked and we know the unlink is
1591 * permanent or if the blocks being truncated are guaranteed
1592 * to be beyond the inode eof (regardless of the link count)
1593 * and the eof value is permanent. Both of these cases occur
1594 * only on wsync-mounted filesystems. In those cases, we're
1595 * guaranteed that no user will ever see the data in the blocks
1596 * that are being truncated so the truncate can run async.
1597 * In the free beyond eof case, the file may wind up with
1598 * more blocks allocated to it than it needs if we crash
1599 * and that won't get fixed until the next time the file
1600 * is re-opened and closed but that's ok as that shouldn't
1601 * be too many blocks.
1602 *
1603 * However, we can't just make all wsync xactions run async
1604 * because there's one call out of the create path that needs
1605 * to run sync where it's truncating an existing file to size
1606 * 0 whose size is > 0.
1607 *
1608 * It's probably possible to come up with a test in this
1609 * routine that would correctly distinguish all the above
1610 * cases from the values of the function parameters and the
1611 * inode state but for sanity's sake, I've decided to let the
1612 * layers above just tell us. It's simpler to correctly figure
1613 * out in the layer above exactly under what conditions we
1614 * can run async and I think it's easier for others read and
1615 * follow the logic in case something has to be changed.
1616 * cscope is your friend -- rcc.
1617 *
1618 * The attribute fork is much simpler.
1619 *
1620 * For the attribute fork we allow the caller to tell us whether
1621 * the unlink of the inode that led to this call is yet permanent
1622 * in the on disk log. If it is not and we will be freeing extents
1623 * in this inode then we make the first transaction synchronous
1624 * to make sure that the unlink is permanent by the time we free
1625 * the blocks.
1626 */
1627 if (fork == XFS_DATA_FORK) {
1628 if (ip->i_d.di_nextents > 0) {
1629 ip->i_d.di_size = new_size;
1630 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1631 }
1632 } else if (sync) {
1633 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1634 if (ip->i_d.di_anextents > 0)
1635 xfs_trans_set_sync(ntp);
1636 }
1637 ASSERT(fork == XFS_DATA_FORK ||
1638 (fork == XFS_ATTR_FORK &&
1639 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1640 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1641
1642 /*
1643 * Since it is possible for space to become allocated beyond
1644 * the end of the file (in a crash where the space is allocated
1645 * but the inode size is not yet updated), simply remove any
1646 * blocks which show up between the new EOF and the maximum
1647 * possible file size. If the first block to be removed is
1648 * beyond the maximum file size (ie it is the same as last_block),
1649 * then there is nothing to do.
1650 */
1651 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1652 ASSERT(first_unmap_block <= last_block);
1653 done = 0;
1654 if (last_block == first_unmap_block) {
1655 done = 1;
1656 } else {
1657 unmap_len = last_block - first_unmap_block + 1;
1658 }
1659 while (!done) {
1660 /*
1661 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1662 * will tell us whether it freed the entire range or
1663 * not. If this is a synchronous mount (wsync),
1664 * then we can tell bunmapi to keep all the
1665 * transactions asynchronous since the unlink
1666 * transaction that made this inode inactive has
1667 * already hit the disk. There's no danger of
1668 * the freed blocks being reused, there being a
1669 * crash, and the reused blocks suddenly reappearing
1670 * in this file with garbage in them once recovery
1671 * runs.
1672 */
1673 XFS_BMAP_INIT(&free_list, &first_block);
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001674 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1675 first_unmap_block, unmap_len,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676 XFS_BMAPI_AFLAG(fork) |
1677 (sync ? 0 : XFS_BMAPI_ASYNC),
1678 XFS_ITRUNC_MAX_EXTENTS,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001679 &first_block, &free_list,
1680 NULL, &done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681 if (error) {
1682 /*
1683 * If the bunmapi call encounters an error,
1684 * return to the caller where the transaction
1685 * can be properly aborted. We just need to
1686 * make sure we're not holding any resources
1687 * that we were not when we came in.
1688 */
1689 xfs_bmap_cancel(&free_list);
1690 return error;
1691 }
1692
1693 /*
1694 * Duplicate the transaction that has the permanent
1695 * reservation and commit the old transaction.
1696 */
1697 error = xfs_bmap_finish(tp, &free_list, first_block,
1698 &committed);
1699 ntp = *tp;
1700 if (error) {
1701 /*
1702 * If the bmap finish call encounters an error,
1703 * return to the caller where the transaction
1704 * can be properly aborted. We just need to
1705 * make sure we're not holding any resources
1706 * that we were not when we came in.
1707 *
1708 * Aborting from this point might lose some
1709 * blocks in the file system, but oh well.
1710 */
1711 xfs_bmap_cancel(&free_list);
1712 if (committed) {
1713 /*
1714 * If the passed in transaction committed
1715 * in xfs_bmap_finish(), then we want to
1716 * add the inode to this one before returning.
1717 * This keeps things simple for the higher
1718 * level code, because it always knows that
1719 * the inode is locked and held in the
1720 * transaction that returns to it whether
1721 * errors occur or not. We don't mark the
1722 * inode dirty so that this transaction can
1723 * be easily aborted if possible.
1724 */
1725 xfs_trans_ijoin(ntp, ip,
1726 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1727 xfs_trans_ihold(ntp, ip);
1728 }
1729 return error;
1730 }
1731
1732 if (committed) {
1733 /*
1734 * The first xact was committed,
1735 * so add the inode to the new one.
1736 * Mark it dirty so it will be logged
1737 * and moved forward in the log as
1738 * part of every commit.
1739 */
1740 xfs_trans_ijoin(ntp, ip,
1741 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1742 xfs_trans_ihold(ntp, ip);
1743 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1744 }
1745 ntp = xfs_trans_dup(ntp);
1746 (void) xfs_trans_commit(*tp, 0, NULL);
1747 *tp = ntp;
1748 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1749 XFS_TRANS_PERM_LOG_RES,
1750 XFS_ITRUNCATE_LOG_COUNT);
1751 /*
1752 * Add the inode being truncated to the next chained
1753 * transaction.
1754 */
1755 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1756 xfs_trans_ihold(ntp, ip);
1757 if (error)
1758 return (error);
1759 }
1760 /*
1761 * Only update the size in the case of the data fork, but
1762 * always re-log the inode so that our permanent transaction
1763 * can keep on rolling it forward in the log.
1764 */
1765 if (fork == XFS_DATA_FORK) {
1766 xfs_isize_check(mp, ip, new_size);
1767 ip->i_d.di_size = new_size;
1768 }
1769 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1770 ASSERT((new_size != 0) ||
1771 (fork == XFS_ATTR_FORK) ||
1772 (ip->i_delayed_blks == 0));
1773 ASSERT((new_size != 0) ||
1774 (fork == XFS_ATTR_FORK) ||
1775 (ip->i_d.di_nextents == 0));
1776 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1777 return 0;
1778}
1779
1780
1781/*
1782 * xfs_igrow_start
1783 *
1784 * Do the first part of growing a file: zero any data in the last
1785 * block that is beyond the old EOF. We need to do this before
1786 * the inode is joined to the transaction to modify the i_size.
1787 * That way we can drop the inode lock and call into the buffer
1788 * cache to get the buffer mapping the EOF.
1789 */
1790int
1791xfs_igrow_start(
1792 xfs_inode_t *ip,
1793 xfs_fsize_t new_size,
1794 cred_t *credp)
1795{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 int error;
1797
1798 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1799 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1800 ASSERT(new_size > ip->i_d.di_size);
1801
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 /*
1803 * Zero any pages that may have been created by
1804 * xfs_write_file() beyond the end of the file
1805 * and any blocks between the old and new file sizes.
1806 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001807 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1808 ip->i_d.di_size, new_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001809 return error;
1810}
1811
1812/*
1813 * xfs_igrow_finish
1814 *
1815 * This routine is called to extend the size of a file.
1816 * The inode must have both the iolock and the ilock locked
1817 * for update and it must be a part of the current transaction.
1818 * The xfs_igrow_start() function must have been called previously.
1819 * If the change_flag is not zero, the inode change timestamp will
1820 * be updated.
1821 */
1822void
1823xfs_igrow_finish(
1824 xfs_trans_t *tp,
1825 xfs_inode_t *ip,
1826 xfs_fsize_t new_size,
1827 int change_flag)
1828{
1829 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1830 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1831 ASSERT(ip->i_transp == tp);
1832 ASSERT(new_size > ip->i_d.di_size);
1833
1834 /*
1835 * Update the file size. Update the inode change timestamp
1836 * if change_flag set.
1837 */
1838 ip->i_d.di_size = new_size;
1839 if (change_flag)
1840 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1841 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1842
1843}
1844
1845
1846/*
1847 * This is called when the inode's link count goes to 0.
1848 * We place the on-disk inode on a list in the AGI. It
1849 * will be pulled from this list when the inode is freed.
1850 */
1851int
1852xfs_iunlink(
1853 xfs_trans_t *tp,
1854 xfs_inode_t *ip)
1855{
1856 xfs_mount_t *mp;
1857 xfs_agi_t *agi;
1858 xfs_dinode_t *dip;
1859 xfs_buf_t *agibp;
1860 xfs_buf_t *ibp;
1861 xfs_agnumber_t agno;
1862 xfs_daddr_t agdaddr;
1863 xfs_agino_t agino;
1864 short bucket_index;
1865 int offset;
1866 int error;
1867 int agi_ok;
1868
1869 ASSERT(ip->i_d.di_nlink == 0);
1870 ASSERT(ip->i_d.di_mode != 0);
1871 ASSERT(ip->i_transp == tp);
1872
1873 mp = tp->t_mountp;
1874
1875 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1876 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1877
1878 /*
1879 * Get the agi buffer first. It ensures lock ordering
1880 * on the list.
1881 */
1882 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1883 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1884 if (error) {
1885 return error;
1886 }
1887 /*
1888 * Validate the magic number of the agi block.
1889 */
1890 agi = XFS_BUF_TO_AGI(agibp);
1891 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001892 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1893 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1895 XFS_RANDOM_IUNLINK))) {
1896 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1897 xfs_trans_brelse(tp, agibp);
1898 return XFS_ERROR(EFSCORRUPTED);
1899 }
1900 /*
1901 * Get the index into the agi hash table for the
1902 * list this inode will go on.
1903 */
1904 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1905 ASSERT(agino != 0);
1906 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1907 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001908 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909
Christoph Hellwig16259e72005-11-02 15:11:25 +11001910 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001911 /*
1912 * There is already another inode in the bucket we need
1913 * to add ourselves to. Add us at the front of the list.
1914 * Here we put the head pointer into our next pointer,
1915 * and then we fall through to point the head at us.
1916 */
Nathan Scottb12dd342006-03-17 17:26:04 +11001917 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 if (error) {
1919 return error;
1920 }
1921 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1922 ASSERT(dip->di_next_unlinked);
1923 /* both on-disk, don't endian flip twice */
1924 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1925 offset = ip->i_boffset +
1926 offsetof(xfs_dinode_t, di_next_unlinked);
1927 xfs_trans_inode_buf(tp, ibp);
1928 xfs_trans_log_buf(tp, ibp, offset,
1929 (offset + sizeof(xfs_agino_t) - 1));
1930 xfs_inobp_check(mp, ibp);
1931 }
1932
1933 /*
1934 * Point the bucket head pointer at the inode being inserted.
1935 */
1936 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001937 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001938 offset = offsetof(xfs_agi_t, agi_unlinked) +
1939 (sizeof(xfs_agino_t) * bucket_index);
1940 xfs_trans_log_buf(tp, agibp, offset,
1941 (offset + sizeof(xfs_agino_t) - 1));
1942 return 0;
1943}
1944
1945/*
1946 * Pull the on-disk inode from the AGI unlinked list.
1947 */
1948STATIC int
1949xfs_iunlink_remove(
1950 xfs_trans_t *tp,
1951 xfs_inode_t *ip)
1952{
1953 xfs_ino_t next_ino;
1954 xfs_mount_t *mp;
1955 xfs_agi_t *agi;
1956 xfs_dinode_t *dip;
1957 xfs_buf_t *agibp;
1958 xfs_buf_t *ibp;
1959 xfs_agnumber_t agno;
1960 xfs_daddr_t agdaddr;
1961 xfs_agino_t agino;
1962 xfs_agino_t next_agino;
1963 xfs_buf_t *last_ibp;
1964 xfs_dinode_t *last_dip;
1965 short bucket_index;
1966 int offset, last_offset;
1967 int error;
1968 int agi_ok;
1969
1970 /*
1971 * First pull the on-disk inode from the AGI unlinked list.
1972 */
1973 mp = tp->t_mountp;
1974
1975 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1976 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1977
1978 /*
1979 * Get the agi buffer first. It ensures lock ordering
1980 * on the list.
1981 */
1982 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1983 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1984 if (error) {
1985 cmn_err(CE_WARN,
1986 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1987 error, mp->m_fsname);
1988 return error;
1989 }
1990 /*
1991 * Validate the magic number of the agi block.
1992 */
1993 agi = XFS_BUF_TO_AGI(agibp);
1994 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001995 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1996 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001997 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1998 XFS_RANDOM_IUNLINK_REMOVE))) {
1999 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2000 mp, agi);
2001 xfs_trans_brelse(tp, agibp);
2002 cmn_err(CE_WARN,
2003 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2004 mp->m_fsname);
2005 return XFS_ERROR(EFSCORRUPTED);
2006 }
2007 /*
2008 * Get the index into the agi hash table for the
2009 * list this inode will go on.
2010 */
2011 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2012 ASSERT(agino != 0);
2013 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11002014 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015 ASSERT(agi->agi_unlinked[bucket_index]);
2016
Christoph Hellwig16259e72005-11-02 15:11:25 +11002017 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 /*
2019 * We're at the head of the list. Get the inode's
2020 * on-disk buffer to see if there is anyone after us
2021 * on the list. Only modify our next pointer if it
2022 * is not already NULLAGINO. This saves us the overhead
2023 * of dealing with the buffer when there is no need to
2024 * change it.
2025 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002026 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027 if (error) {
2028 cmn_err(CE_WARN,
2029 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2030 error, mp->m_fsname);
2031 return error;
2032 }
2033 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2034 ASSERT(next_agino != 0);
2035 if (next_agino != NULLAGINO) {
2036 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2037 offset = ip->i_boffset +
2038 offsetof(xfs_dinode_t, di_next_unlinked);
2039 xfs_trans_inode_buf(tp, ibp);
2040 xfs_trans_log_buf(tp, ibp, offset,
2041 (offset + sizeof(xfs_agino_t) - 1));
2042 xfs_inobp_check(mp, ibp);
2043 } else {
2044 xfs_trans_brelse(tp, ibp);
2045 }
2046 /*
2047 * Point the bucket head pointer at the next inode.
2048 */
2049 ASSERT(next_agino != 0);
2050 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002051 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 offset = offsetof(xfs_agi_t, agi_unlinked) +
2053 (sizeof(xfs_agino_t) * bucket_index);
2054 xfs_trans_log_buf(tp, agibp, offset,
2055 (offset + sizeof(xfs_agino_t) - 1));
2056 } else {
2057 /*
2058 * We need to search the list for the inode being freed.
2059 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002060 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061 last_ibp = NULL;
2062 while (next_agino != agino) {
2063 /*
2064 * If the last inode wasn't the one pointing to
2065 * us, then release its buffer since we're not
2066 * going to do anything with it.
2067 */
2068 if (last_ibp != NULL) {
2069 xfs_trans_brelse(tp, last_ibp);
2070 }
2071 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2072 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2073 &last_ibp, &last_offset);
2074 if (error) {
2075 cmn_err(CE_WARN,
2076 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2077 error, mp->m_fsname);
2078 return error;
2079 }
2080 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2081 ASSERT(next_agino != NULLAGINO);
2082 ASSERT(next_agino != 0);
2083 }
2084 /*
2085 * Now last_ibp points to the buffer previous to us on
2086 * the unlinked list. Pull us from the list.
2087 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002088 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002089 if (error) {
2090 cmn_err(CE_WARN,
2091 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2092 error, mp->m_fsname);
2093 return error;
2094 }
2095 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2096 ASSERT(next_agino != 0);
2097 ASSERT(next_agino != agino);
2098 if (next_agino != NULLAGINO) {
2099 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2100 offset = ip->i_boffset +
2101 offsetof(xfs_dinode_t, di_next_unlinked);
2102 xfs_trans_inode_buf(tp, ibp);
2103 xfs_trans_log_buf(tp, ibp, offset,
2104 (offset + sizeof(xfs_agino_t) - 1));
2105 xfs_inobp_check(mp, ibp);
2106 } else {
2107 xfs_trans_brelse(tp, ibp);
2108 }
2109 /*
2110 * Point the previous inode on the list to the next inode.
2111 */
2112 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2113 ASSERT(next_agino != 0);
2114 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2115 xfs_trans_inode_buf(tp, last_ibp);
2116 xfs_trans_log_buf(tp, last_ibp, offset,
2117 (offset + sizeof(xfs_agino_t) - 1));
2118 xfs_inobp_check(mp, last_ibp);
2119 }
2120 return 0;
2121}
2122
2123static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2124{
2125 return (((ip->i_itemp == NULL) ||
2126 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2127 (ip->i_update_core == 0));
2128}
2129
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002130STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131xfs_ifree_cluster(
2132 xfs_inode_t *free_ip,
2133 xfs_trans_t *tp,
2134 xfs_ino_t inum)
2135{
2136 xfs_mount_t *mp = free_ip->i_mount;
2137 int blks_per_cluster;
2138 int nbufs;
2139 int ninodes;
2140 int i, j, found, pre_flushed;
2141 xfs_daddr_t blkno;
2142 xfs_buf_t *bp;
2143 xfs_ihash_t *ih;
2144 xfs_inode_t *ip, **ip_found;
2145 xfs_inode_log_item_t *iip;
2146 xfs_log_item_t *lip;
2147 SPLDECL(s);
2148
2149 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2150 blks_per_cluster = 1;
2151 ninodes = mp->m_sb.sb_inopblock;
2152 nbufs = XFS_IALLOC_BLOCKS(mp);
2153 } else {
2154 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2155 mp->m_sb.sb_blocksize;
2156 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2157 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2158 }
2159
2160 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2161
2162 for (j = 0; j < nbufs; j++, inum += ninodes) {
2163 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2164 XFS_INO_TO_AGBNO(mp, inum));
2165
2166
2167 /*
2168 * Look for each inode in memory and attempt to lock it,
2169 * we can be racing with flush and tail pushing here.
2170 * any inode we get the locks on, add to an array of
2171 * inode items to process later.
2172 *
2173 * The get the buffer lock, we could beat a flush
2174 * or tail pushing thread to the lock here, in which
2175 * case they will go looking for the inode buffer
2176 * and fail, we need some other form of interlock
2177 * here.
2178 */
2179 found = 0;
2180 for (i = 0; i < ninodes; i++) {
2181 ih = XFS_IHASH(mp, inum + i);
2182 read_lock(&ih->ih_lock);
2183 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2184 if (ip->i_ino == inum + i)
2185 break;
2186 }
2187
2188 /* Inode not in memory or we found it already,
2189 * nothing to do
2190 */
2191 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2192 read_unlock(&ih->ih_lock);
2193 continue;
2194 }
2195
2196 if (xfs_inode_clean(ip)) {
2197 read_unlock(&ih->ih_lock);
2198 continue;
2199 }
2200
2201 /* If we can get the locks then add it to the
2202 * list, otherwise by the time we get the bp lock
2203 * below it will already be attached to the
2204 * inode buffer.
2205 */
2206
2207 /* This inode will already be locked - by us, lets
2208 * keep it that way.
2209 */
2210
2211 if (ip == free_ip) {
2212 if (xfs_iflock_nowait(ip)) {
2213 ip->i_flags |= XFS_ISTALE;
2214
2215 if (xfs_inode_clean(ip)) {
2216 xfs_ifunlock(ip);
2217 } else {
2218 ip_found[found++] = ip;
2219 }
2220 }
2221 read_unlock(&ih->ih_lock);
2222 continue;
2223 }
2224
2225 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2226 if (xfs_iflock_nowait(ip)) {
2227 ip->i_flags |= XFS_ISTALE;
2228
2229 if (xfs_inode_clean(ip)) {
2230 xfs_ifunlock(ip);
2231 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2232 } else {
2233 ip_found[found++] = ip;
2234 }
2235 } else {
2236 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2237 }
2238 }
2239
2240 read_unlock(&ih->ih_lock);
2241 }
2242
2243 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2244 mp->m_bsize * blks_per_cluster,
2245 XFS_BUF_LOCK);
2246
2247 pre_flushed = 0;
2248 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2249 while (lip) {
2250 if (lip->li_type == XFS_LI_INODE) {
2251 iip = (xfs_inode_log_item_t *)lip;
2252 ASSERT(iip->ili_logged == 1);
2253 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2254 AIL_LOCK(mp,s);
2255 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2256 AIL_UNLOCK(mp, s);
2257 iip->ili_inode->i_flags |= XFS_ISTALE;
2258 pre_flushed++;
2259 }
2260 lip = lip->li_bio_list;
2261 }
2262
2263 for (i = 0; i < found; i++) {
2264 ip = ip_found[i];
2265 iip = ip->i_itemp;
2266
2267 if (!iip) {
2268 ip->i_update_core = 0;
2269 xfs_ifunlock(ip);
2270 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2271 continue;
2272 }
2273
2274 iip->ili_last_fields = iip->ili_format.ilf_fields;
2275 iip->ili_format.ilf_fields = 0;
2276 iip->ili_logged = 1;
2277 AIL_LOCK(mp,s);
2278 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2279 AIL_UNLOCK(mp, s);
2280
2281 xfs_buf_attach_iodone(bp,
2282 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2283 xfs_istale_done, (xfs_log_item_t *)iip);
2284 if (ip != free_ip) {
2285 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2286 }
2287 }
2288
2289 if (found || pre_flushed)
2290 xfs_trans_stale_inode_buf(tp, bp);
2291 xfs_trans_binval(tp, bp);
2292 }
2293
2294 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2295}
2296
2297/*
2298 * This is called to return an inode to the inode free list.
2299 * The inode should already be truncated to 0 length and have
2300 * no pages associated with it. This routine also assumes that
2301 * the inode is already a part of the transaction.
2302 *
2303 * The on-disk copy of the inode will have been added to the list
2304 * of unlinked inodes in the AGI. We need to remove the inode from
2305 * that list atomically with respect to freeing it here.
2306 */
2307int
2308xfs_ifree(
2309 xfs_trans_t *tp,
2310 xfs_inode_t *ip,
2311 xfs_bmap_free_t *flist)
2312{
2313 int error;
2314 int delete;
2315 xfs_ino_t first_ino;
2316
2317 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2318 ASSERT(ip->i_transp == tp);
2319 ASSERT(ip->i_d.di_nlink == 0);
2320 ASSERT(ip->i_d.di_nextents == 0);
2321 ASSERT(ip->i_d.di_anextents == 0);
2322 ASSERT((ip->i_d.di_size == 0) ||
2323 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2324 ASSERT(ip->i_d.di_nblocks == 0);
2325
2326 /*
2327 * Pull the on-disk inode from the AGI unlinked list.
2328 */
2329 error = xfs_iunlink_remove(tp, ip);
2330 if (error != 0) {
2331 return error;
2332 }
2333
2334 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2335 if (error != 0) {
2336 return error;
2337 }
2338 ip->i_d.di_mode = 0; /* mark incore inode as free */
2339 ip->i_d.di_flags = 0;
2340 ip->i_d.di_dmevmask = 0;
2341 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2342 ip->i_df.if_ext_max =
2343 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2344 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2345 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2346 /*
2347 * Bump the generation count so no one will be confused
2348 * by reincarnations of this inode.
2349 */
2350 ip->i_d.di_gen++;
2351 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2352
2353 if (delete) {
2354 xfs_ifree_cluster(ip, tp, first_ino);
2355 }
2356
2357 return 0;
2358}
2359
2360/*
2361 * Reallocate the space for if_broot based on the number of records
2362 * being added or deleted as indicated in rec_diff. Move the records
2363 * and pointers in if_broot to fit the new size. When shrinking this
2364 * will eliminate holes between the records and pointers created by
2365 * the caller. When growing this will create holes to be filled in
2366 * by the caller.
2367 *
2368 * The caller must not request to add more records than would fit in
2369 * the on-disk inode root. If the if_broot is currently NULL, then
2370 * if we adding records one will be allocated. The caller must also
2371 * not request that the number of records go below zero, although
2372 * it can go to zero.
2373 *
2374 * ip -- the inode whose if_broot area is changing
2375 * ext_diff -- the change in the number of records, positive or negative,
2376 * requested for the if_broot array.
2377 */
2378void
2379xfs_iroot_realloc(
2380 xfs_inode_t *ip,
2381 int rec_diff,
2382 int whichfork)
2383{
2384 int cur_max;
2385 xfs_ifork_t *ifp;
2386 xfs_bmbt_block_t *new_broot;
2387 int new_max;
2388 size_t new_size;
2389 char *np;
2390 char *op;
2391
2392 /*
2393 * Handle the degenerate case quietly.
2394 */
2395 if (rec_diff == 0) {
2396 return;
2397 }
2398
2399 ifp = XFS_IFORK_PTR(ip, whichfork);
2400 if (rec_diff > 0) {
2401 /*
2402 * If there wasn't any memory allocated before, just
2403 * allocate it now and get out.
2404 */
2405 if (ifp->if_broot_bytes == 0) {
2406 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2407 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2408 KM_SLEEP);
2409 ifp->if_broot_bytes = (int)new_size;
2410 return;
2411 }
2412
2413 /*
2414 * If there is already an existing if_broot, then we need
2415 * to realloc() it and shift the pointers to their new
2416 * location. The records don't change location because
2417 * they are kept butted up against the btree block header.
2418 */
2419 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2420 new_max = cur_max + rec_diff;
2421 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2422 ifp->if_broot = (xfs_bmbt_block_t *)
2423 kmem_realloc(ifp->if_broot,
2424 new_size,
2425 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2426 KM_SLEEP);
2427 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2428 ifp->if_broot_bytes);
2429 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2430 (int)new_size);
2431 ifp->if_broot_bytes = (int)new_size;
2432 ASSERT(ifp->if_broot_bytes <=
2433 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2434 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2435 return;
2436 }
2437
2438 /*
2439 * rec_diff is less than 0. In this case, we are shrinking the
2440 * if_broot buffer. It must already exist. If we go to zero
2441 * records, just get rid of the root and clear the status bit.
2442 */
2443 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2444 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2445 new_max = cur_max + rec_diff;
2446 ASSERT(new_max >= 0);
2447 if (new_max > 0)
2448 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2449 else
2450 new_size = 0;
2451 if (new_size > 0) {
2452 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2453 /*
2454 * First copy over the btree block header.
2455 */
2456 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2457 } else {
2458 new_broot = NULL;
2459 ifp->if_flags &= ~XFS_IFBROOT;
2460 }
2461
2462 /*
2463 * Only copy the records and pointers if there are any.
2464 */
2465 if (new_max > 0) {
2466 /*
2467 * First copy the records.
2468 */
2469 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2470 ifp->if_broot_bytes);
2471 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2472 (int)new_size);
2473 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2474
2475 /*
2476 * Then copy the pointers.
2477 */
2478 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2479 ifp->if_broot_bytes);
2480 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2481 (int)new_size);
2482 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2483 }
2484 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2485 ifp->if_broot = new_broot;
2486 ifp->if_broot_bytes = (int)new_size;
2487 ASSERT(ifp->if_broot_bytes <=
2488 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2489 return;
2490}
2491
2492
2493/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494 * This is called when the amount of space needed for if_data
2495 * is increased or decreased. The change in size is indicated by
2496 * the number of bytes that need to be added or deleted in the
2497 * byte_diff parameter.
2498 *
2499 * If the amount of space needed has decreased below the size of the
2500 * inline buffer, then switch to using the inline buffer. Otherwise,
2501 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2502 * to what is needed.
2503 *
2504 * ip -- the inode whose if_data area is changing
2505 * byte_diff -- the change in the number of bytes, positive or negative,
2506 * requested for the if_data array.
2507 */
2508void
2509xfs_idata_realloc(
2510 xfs_inode_t *ip,
2511 int byte_diff,
2512 int whichfork)
2513{
2514 xfs_ifork_t *ifp;
2515 int new_size;
2516 int real_size;
2517
2518 if (byte_diff == 0) {
2519 return;
2520 }
2521
2522 ifp = XFS_IFORK_PTR(ip, whichfork);
2523 new_size = (int)ifp->if_bytes + byte_diff;
2524 ASSERT(new_size >= 0);
2525
2526 if (new_size == 0) {
2527 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2528 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2529 }
2530 ifp->if_u1.if_data = NULL;
2531 real_size = 0;
2532 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2533 /*
2534 * If the valid extents/data can fit in if_inline_ext/data,
2535 * copy them from the malloc'd vector and free it.
2536 */
2537 if (ifp->if_u1.if_data == NULL) {
2538 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2539 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2540 ASSERT(ifp->if_real_bytes != 0);
2541 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2542 new_size);
2543 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2544 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2545 }
2546 real_size = 0;
2547 } else {
2548 /*
2549 * Stuck with malloc/realloc.
2550 * For inline data, the underlying buffer must be
2551 * a multiple of 4 bytes in size so that it can be
2552 * logged and stay on word boundaries. We enforce
2553 * that here.
2554 */
2555 real_size = roundup(new_size, 4);
2556 if (ifp->if_u1.if_data == NULL) {
2557 ASSERT(ifp->if_real_bytes == 0);
2558 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2559 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2560 /*
2561 * Only do the realloc if the underlying size
2562 * is really changing.
2563 */
2564 if (ifp->if_real_bytes != real_size) {
2565 ifp->if_u1.if_data =
2566 kmem_realloc(ifp->if_u1.if_data,
2567 real_size,
2568 ifp->if_real_bytes,
2569 KM_SLEEP);
2570 }
2571 } else {
2572 ASSERT(ifp->if_real_bytes == 0);
2573 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2574 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2575 ifp->if_bytes);
2576 }
2577 }
2578 ifp->if_real_bytes = real_size;
2579 ifp->if_bytes = new_size;
2580 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2581}
2582
2583
2584
2585
2586/*
2587 * Map inode to disk block and offset.
2588 *
2589 * mp -- the mount point structure for the current file system
2590 * tp -- the current transaction
2591 * ino -- the inode number of the inode to be located
2592 * imap -- this structure is filled in with the information necessary
2593 * to retrieve the given inode from disk
2594 * flags -- flags to pass to xfs_dilocate indicating whether or not
2595 * lookups in the inode btree were OK or not
2596 */
2597int
2598xfs_imap(
2599 xfs_mount_t *mp,
2600 xfs_trans_t *tp,
2601 xfs_ino_t ino,
2602 xfs_imap_t *imap,
2603 uint flags)
2604{
2605 xfs_fsblock_t fsbno;
2606 int len;
2607 int off;
2608 int error;
2609
2610 fsbno = imap->im_blkno ?
2611 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2612 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2613 if (error != 0) {
2614 return error;
2615 }
2616 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2617 imap->im_len = XFS_FSB_TO_BB(mp, len);
2618 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2619 imap->im_ioffset = (ushort)off;
2620 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2621 return 0;
2622}
2623
2624void
2625xfs_idestroy_fork(
2626 xfs_inode_t *ip,
2627 int whichfork)
2628{
2629 xfs_ifork_t *ifp;
2630
2631 ifp = XFS_IFORK_PTR(ip, whichfork);
2632 if (ifp->if_broot != NULL) {
2633 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2634 ifp->if_broot = NULL;
2635 }
2636
2637 /*
2638 * If the format is local, then we can't have an extents
2639 * array so just look for an inline data array. If we're
2640 * not local then we may or may not have an extents list,
2641 * so check and free it up if we do.
2642 */
2643 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2644 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2645 (ifp->if_u1.if_data != NULL)) {
2646 ASSERT(ifp->if_real_bytes != 0);
2647 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2648 ifp->if_u1.if_data = NULL;
2649 ifp->if_real_bytes = 0;
2650 }
2651 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11002652 ((ifp->if_flags & XFS_IFEXTIREC) ||
2653 ((ifp->if_u1.if_extents != NULL) &&
2654 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002656 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002657 }
2658 ASSERT(ifp->if_u1.if_extents == NULL ||
2659 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2660 ASSERT(ifp->if_real_bytes == 0);
2661 if (whichfork == XFS_ATTR_FORK) {
2662 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2663 ip->i_afp = NULL;
2664 }
2665}
2666
2667/*
2668 * This is called free all the memory associated with an inode.
2669 * It must free the inode itself and any buffers allocated for
2670 * if_extents/if_data and if_broot. It must also free the lock
2671 * associated with the inode.
2672 */
2673void
2674xfs_idestroy(
2675 xfs_inode_t *ip)
2676{
2677
2678 switch (ip->i_d.di_mode & S_IFMT) {
2679 case S_IFREG:
2680 case S_IFDIR:
2681 case S_IFLNK:
2682 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2683 break;
2684 }
2685 if (ip->i_afp)
2686 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2687 mrfree(&ip->i_lock);
2688 mrfree(&ip->i_iolock);
2689 freesema(&ip->i_flock);
2690#ifdef XFS_BMAP_TRACE
2691 ktrace_free(ip->i_xtrace);
2692#endif
2693#ifdef XFS_BMBT_TRACE
2694 ktrace_free(ip->i_btrace);
2695#endif
2696#ifdef XFS_RW_TRACE
2697 ktrace_free(ip->i_rwtrace);
2698#endif
2699#ifdef XFS_ILOCK_TRACE
2700 ktrace_free(ip->i_lock_trace);
2701#endif
2702#ifdef XFS_DIR2_TRACE
2703 ktrace_free(ip->i_dir_trace);
2704#endif
2705 if (ip->i_itemp) {
2706 /* XXXdpd should be able to assert this but shutdown
2707 * is leaving the AIL behind. */
2708 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2709 XFS_FORCED_SHUTDOWN(ip->i_mount));
2710 xfs_inode_item_destroy(ip);
2711 }
2712 kmem_zone_free(xfs_inode_zone, ip);
2713}
2714
2715
2716/*
2717 * Increment the pin count of the given buffer.
2718 * This value is protected by ipinlock spinlock in the mount structure.
2719 */
2720void
2721xfs_ipin(
2722 xfs_inode_t *ip)
2723{
2724 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2725
2726 atomic_inc(&ip->i_pincount);
2727}
2728
2729/*
2730 * Decrement the pin count of the given inode, and wake up
2731 * anyone in xfs_iwait_unpin() if the count goes to 0. The
Nathan Scottc41564b2006-03-29 08:55:14 +10002732 * inode must have been previously pinned with a call to xfs_ipin().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 */
2734void
2735xfs_iunpin(
2736 xfs_inode_t *ip)
2737{
2738 ASSERT(atomic_read(&ip->i_pincount) > 0);
2739
2740 if (atomic_dec_and_test(&ip->i_pincount)) {
David Chinner58829e42006-04-11 15:11:20 +10002741 /*
2742 * If the inode is currently being reclaimed, the
2743 * linux inode _and_ the xfs vnode may have been
2744 * freed so we cannot reference either of them safely.
2745 * Hence we should not try to do anything to them
2746 * if the xfs inode is currently in the reclaim
2747 * path.
2748 *
2749 * However, we still need to issue the unpin wakeup
2750 * call as the inode reclaim may be blocked waiting for
2751 * the inode to become unpinned.
2752 */
2753 if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
2754 vnode_t *vp = XFS_ITOV_NULL(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755
David Chinner58829e42006-04-11 15:11:20 +10002756 /* make sync come back and flush this inode */
2757 if (vp) {
2758 struct inode *inode = vn_to_inode(vp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759
David Chinner58829e42006-04-11 15:11:20 +10002760 if (!(inode->i_state & I_NEW))
2761 mark_inode_dirty_sync(inode);
2762 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764 wake_up(&ip->i_ipin_wait);
2765 }
2766}
2767
2768/*
2769 * This is called to wait for the given inode to be unpinned.
2770 * It will sleep until this happens. The caller must have the
2771 * inode locked in at least shared mode so that the buffer cannot
2772 * be subsequently pinned once someone is waiting for it to be
2773 * unpinned.
2774 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002775STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002776xfs_iunpin_wait(
2777 xfs_inode_t *ip)
2778{
2779 xfs_inode_log_item_t *iip;
2780 xfs_lsn_t lsn;
2781
2782 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2783
2784 if (atomic_read(&ip->i_pincount) == 0) {
2785 return;
2786 }
2787
2788 iip = ip->i_itemp;
2789 if (iip && iip->ili_last_lsn) {
2790 lsn = iip->ili_last_lsn;
2791 } else {
2792 lsn = (xfs_lsn_t)0;
2793 }
2794
2795 /*
2796 * Give the log a push so we don't wait here too long.
2797 */
2798 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2799
2800 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2801}
2802
2803
2804/*
2805 * xfs_iextents_copy()
2806 *
2807 * This is called to copy the REAL extents (as opposed to the delayed
2808 * allocation extents) from the inode into the given buffer. It
2809 * returns the number of bytes copied into the buffer.
2810 *
2811 * If there are no delayed allocation extents, then we can just
2812 * memcpy() the extents into the buffer. Otherwise, we need to
2813 * examine each extent in turn and skip those which are delayed.
2814 */
2815int
2816xfs_iextents_copy(
2817 xfs_inode_t *ip,
2818 xfs_bmbt_rec_t *buffer,
2819 int whichfork)
2820{
2821 int copied;
2822 xfs_bmbt_rec_t *dest_ep;
2823 xfs_bmbt_rec_t *ep;
2824#ifdef XFS_BMAP_TRACE
2825 static char fname[] = "xfs_iextents_copy";
2826#endif
2827 int i;
2828 xfs_ifork_t *ifp;
2829 int nrecs;
2830 xfs_fsblock_t start_block;
2831
2832 ifp = XFS_IFORK_PTR(ip, whichfork);
2833 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2834 ASSERT(ifp->if_bytes > 0);
2835
2836 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2837 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2838 ASSERT(nrecs > 0);
2839
2840 /*
2841 * There are some delayed allocation extents in the
2842 * inode, so copy the extents one at a time and skip
2843 * the delayed ones. There must be at least one
2844 * non-delayed extent.
2845 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002846 dest_ep = buffer;
2847 copied = 0;
2848 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002849 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002850 start_block = xfs_bmbt_get_startblock(ep);
2851 if (ISNULLSTARTBLOCK(start_block)) {
2852 /*
2853 * It's a delayed allocation extent, so skip it.
2854 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002855 continue;
2856 }
2857
2858 /* Translate to on disk format */
2859 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2860 (__uint64_t*)&dest_ep->l0);
2861 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2862 (__uint64_t*)&dest_ep->l1);
2863 dest_ep++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002864 copied++;
2865 }
2866 ASSERT(copied != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002867 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868
2869 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2870}
2871
2872/*
2873 * Each of the following cases stores data into the same region
2874 * of the on-disk inode, so only one of them can be valid at
2875 * any given time. While it is possible to have conflicting formats
2876 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2877 * in EXTENTS format, this can only happen when the fork has
2878 * changed formats after being modified but before being flushed.
2879 * In these cases, the format always takes precedence, because the
2880 * format indicates the current state of the fork.
2881 */
2882/*ARGSUSED*/
2883STATIC int
2884xfs_iflush_fork(
2885 xfs_inode_t *ip,
2886 xfs_dinode_t *dip,
2887 xfs_inode_log_item_t *iip,
2888 int whichfork,
2889 xfs_buf_t *bp)
2890{
2891 char *cp;
2892 xfs_ifork_t *ifp;
2893 xfs_mount_t *mp;
2894#ifdef XFS_TRANS_DEBUG
2895 int first;
2896#endif
2897 static const short brootflag[2] =
2898 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2899 static const short dataflag[2] =
2900 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2901 static const short extflag[2] =
2902 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2903
2904 if (iip == NULL)
2905 return 0;
2906 ifp = XFS_IFORK_PTR(ip, whichfork);
2907 /*
2908 * This can happen if we gave up in iformat in an error path,
2909 * for the attribute fork.
2910 */
2911 if (ifp == NULL) {
2912 ASSERT(whichfork == XFS_ATTR_FORK);
2913 return 0;
2914 }
2915 cp = XFS_DFORK_PTR(dip, whichfork);
2916 mp = ip->i_mount;
2917 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2918 case XFS_DINODE_FMT_LOCAL:
2919 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2920 (ifp->if_bytes > 0)) {
2921 ASSERT(ifp->if_u1.if_data != NULL);
2922 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2923 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2924 }
2925 if (whichfork == XFS_DATA_FORK) {
2926 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2927 XFS_ERROR_REPORT("xfs_iflush_fork",
2928 XFS_ERRLEVEL_LOW, mp);
2929 return XFS_ERROR(EFSCORRUPTED);
2930 }
2931 }
2932 break;
2933
2934 case XFS_DINODE_FMT_EXTENTS:
2935 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2936 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002937 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2938 (ifp->if_bytes == 0));
2939 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2940 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002941 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2942 (ifp->if_bytes > 0)) {
2943 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2944 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2945 whichfork);
2946 }
2947 break;
2948
2949 case XFS_DINODE_FMT_BTREE:
2950 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2951 (ifp->if_broot_bytes > 0)) {
2952 ASSERT(ifp->if_broot != NULL);
2953 ASSERT(ifp->if_broot_bytes <=
2954 (XFS_IFORK_SIZE(ip, whichfork) +
2955 XFS_BROOT_SIZE_ADJ));
2956 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2957 (xfs_bmdr_block_t *)cp,
2958 XFS_DFORK_SIZE(dip, mp, whichfork));
2959 }
2960 break;
2961
2962 case XFS_DINODE_FMT_DEV:
2963 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2964 ASSERT(whichfork == XFS_DATA_FORK);
2965 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2966 }
2967 break;
2968
2969 case XFS_DINODE_FMT_UUID:
2970 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2971 ASSERT(whichfork == XFS_DATA_FORK);
2972 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2973 sizeof(uuid_t));
2974 }
2975 break;
2976
2977 default:
2978 ASSERT(0);
2979 break;
2980 }
2981
2982 return 0;
2983}
2984
2985/*
2986 * xfs_iflush() will write a modified inode's changes out to the
2987 * inode's on disk home. The caller must have the inode lock held
2988 * in at least shared mode and the inode flush semaphore must be
2989 * held as well. The inode lock will still be held upon return from
2990 * the call and the caller is free to unlock it.
2991 * The inode flush lock will be unlocked when the inode reaches the disk.
2992 * The flags indicate how the inode's buffer should be written out.
2993 */
2994int
2995xfs_iflush(
2996 xfs_inode_t *ip,
2997 uint flags)
2998{
2999 xfs_inode_log_item_t *iip;
3000 xfs_buf_t *bp;
3001 xfs_dinode_t *dip;
3002 xfs_mount_t *mp;
3003 int error;
3004 /* REFERENCED */
3005 xfs_chash_t *ch;
3006 xfs_inode_t *iq;
3007 int clcount; /* count of inodes clustered */
3008 int bufwasdelwri;
3009 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3010 SPLDECL(s);
3011
3012 XFS_STATS_INC(xs_iflush_count);
3013
3014 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3015 ASSERT(valusema(&ip->i_flock) <= 0);
3016 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3017 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3018
3019 iip = ip->i_itemp;
3020 mp = ip->i_mount;
3021
3022 /*
3023 * If the inode isn't dirty, then just release the inode
3024 * flush lock and do nothing.
3025 */
3026 if ((ip->i_update_core == 0) &&
3027 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3028 ASSERT((iip != NULL) ?
3029 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3030 xfs_ifunlock(ip);
3031 return 0;
3032 }
3033
3034 /*
3035 * We can't flush the inode until it is unpinned, so
3036 * wait for it. We know noone new can pin it, because
3037 * we are holding the inode lock shared and you need
3038 * to hold it exclusively to pin the inode.
3039 */
3040 xfs_iunpin_wait(ip);
3041
3042 /*
3043 * This may have been unpinned because the filesystem is shutting
3044 * down forcibly. If that's the case we must not write this inode
3045 * to disk, because the log record didn't make it to disk!
3046 */
3047 if (XFS_FORCED_SHUTDOWN(mp)) {
3048 ip->i_update_core = 0;
3049 if (iip)
3050 iip->ili_format.ilf_fields = 0;
3051 xfs_ifunlock(ip);
3052 return XFS_ERROR(EIO);
3053 }
3054
3055 /*
3056 * Get the buffer containing the on-disk inode.
3057 */
Nathan Scottb12dd342006-03-17 17:26:04 +11003058 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3059 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060 xfs_ifunlock(ip);
3061 return error;
3062 }
3063
3064 /*
3065 * Decide how buffer will be flushed out. This is done before
3066 * the call to xfs_iflush_int because this field is zeroed by it.
3067 */
3068 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3069 /*
3070 * Flush out the inode buffer according to the directions
3071 * of the caller. In the cases where the caller has given
3072 * us a choice choose the non-delwri case. This is because
3073 * the inode is in the AIL and we need to get it out soon.
3074 */
3075 switch (flags) {
3076 case XFS_IFLUSH_SYNC:
3077 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3078 flags = 0;
3079 break;
3080 case XFS_IFLUSH_ASYNC:
3081 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3082 flags = INT_ASYNC;
3083 break;
3084 case XFS_IFLUSH_DELWRI:
3085 flags = INT_DELWRI;
3086 break;
3087 default:
3088 ASSERT(0);
3089 flags = 0;
3090 break;
3091 }
3092 } else {
3093 switch (flags) {
3094 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3095 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3096 case XFS_IFLUSH_DELWRI:
3097 flags = INT_DELWRI;
3098 break;
3099 case XFS_IFLUSH_ASYNC:
3100 flags = INT_ASYNC;
3101 break;
3102 case XFS_IFLUSH_SYNC:
3103 flags = 0;
3104 break;
3105 default:
3106 ASSERT(0);
3107 flags = 0;
3108 break;
3109 }
3110 }
3111
3112 /*
3113 * First flush out the inode that xfs_iflush was called with.
3114 */
3115 error = xfs_iflush_int(ip, bp);
3116 if (error) {
3117 goto corrupt_out;
3118 }
3119
3120 /*
3121 * inode clustering:
3122 * see if other inodes can be gathered into this write
3123 */
3124
3125 ip->i_chash->chl_buf = bp;
3126
3127 ch = XFS_CHASH(mp, ip->i_blkno);
3128 s = mutex_spinlock(&ch->ch_lock);
3129
3130 clcount = 0;
3131 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3132 /*
3133 * Do an un-protected check to see if the inode is dirty and
3134 * is a candidate for flushing. These checks will be repeated
3135 * later after the appropriate locks are acquired.
3136 */
3137 iip = iq->i_itemp;
3138 if ((iq->i_update_core == 0) &&
3139 ((iip == NULL) ||
3140 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3141 xfs_ipincount(iq) == 0) {
3142 continue;
3143 }
3144
3145 /*
3146 * Try to get locks. If any are unavailable,
3147 * then this inode cannot be flushed and is skipped.
3148 */
3149
3150 /* get inode locks (just i_lock) */
3151 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3152 /* get inode flush lock */
3153 if (xfs_iflock_nowait(iq)) {
3154 /* check if pinned */
3155 if (xfs_ipincount(iq) == 0) {
3156 /* arriving here means that
3157 * this inode can be flushed.
3158 * first re-check that it's
3159 * dirty
3160 */
3161 iip = iq->i_itemp;
3162 if ((iq->i_update_core != 0)||
3163 ((iip != NULL) &&
3164 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3165 clcount++;
3166 error = xfs_iflush_int(iq, bp);
3167 if (error) {
3168 xfs_iunlock(iq,
3169 XFS_ILOCK_SHARED);
3170 goto cluster_corrupt_out;
3171 }
3172 } else {
3173 xfs_ifunlock(iq);
3174 }
3175 } else {
3176 xfs_ifunlock(iq);
3177 }
3178 }
3179 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3180 }
3181 }
3182 mutex_spinunlock(&ch->ch_lock, s);
3183
3184 if (clcount) {
3185 XFS_STATS_INC(xs_icluster_flushcnt);
3186 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3187 }
3188
3189 /*
3190 * If the buffer is pinned then push on the log so we won't
3191 * get stuck waiting in the write for too long.
3192 */
3193 if (XFS_BUF_ISPINNED(bp)){
3194 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3195 }
3196
3197 if (flags & INT_DELWRI) {
3198 xfs_bdwrite(mp, bp);
3199 } else if (flags & INT_ASYNC) {
3200 xfs_bawrite(mp, bp);
3201 } else {
3202 error = xfs_bwrite(mp, bp);
3203 }
3204 return error;
3205
3206corrupt_out:
3207 xfs_buf_relse(bp);
3208 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3209 xfs_iflush_abort(ip);
3210 /*
3211 * Unlocks the flush lock
3212 */
3213 return XFS_ERROR(EFSCORRUPTED);
3214
3215cluster_corrupt_out:
3216 /* Corruption detected in the clustering loop. Invalidate the
3217 * inode buffer and shut down the filesystem.
3218 */
3219 mutex_spinunlock(&ch->ch_lock, s);
3220
3221 /*
3222 * Clean up the buffer. If it was B_DELWRI, just release it --
3223 * brelse can handle it with no problems. If not, shut down the
3224 * filesystem before releasing the buffer.
3225 */
3226 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3227 xfs_buf_relse(bp);
3228 }
3229
3230 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3231
3232 if(!bufwasdelwri) {
3233 /*
3234 * Just like incore_relse: if we have b_iodone functions,
3235 * mark the buffer as an error and call them. Otherwise
3236 * mark it as stale and brelse.
3237 */
3238 if (XFS_BUF_IODONE_FUNC(bp)) {
3239 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3240 XFS_BUF_UNDONE(bp);
3241 XFS_BUF_STALE(bp);
3242 XFS_BUF_SHUT(bp);
3243 XFS_BUF_ERROR(bp,EIO);
3244 xfs_biodone(bp);
3245 } else {
3246 XFS_BUF_STALE(bp);
3247 xfs_buf_relse(bp);
3248 }
3249 }
3250
3251 xfs_iflush_abort(iq);
3252 /*
3253 * Unlocks the flush lock
3254 */
3255 return XFS_ERROR(EFSCORRUPTED);
3256}
3257
3258
3259STATIC int
3260xfs_iflush_int(
3261 xfs_inode_t *ip,
3262 xfs_buf_t *bp)
3263{
3264 xfs_inode_log_item_t *iip;
3265 xfs_dinode_t *dip;
3266 xfs_mount_t *mp;
3267#ifdef XFS_TRANS_DEBUG
3268 int first;
3269#endif
3270 SPLDECL(s);
3271
3272 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3273 ASSERT(valusema(&ip->i_flock) <= 0);
3274 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3275 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3276
3277 iip = ip->i_itemp;
3278 mp = ip->i_mount;
3279
3280
3281 /*
3282 * If the inode isn't dirty, then just release the inode
3283 * flush lock and do nothing.
3284 */
3285 if ((ip->i_update_core == 0) &&
3286 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3287 xfs_ifunlock(ip);
3288 return 0;
3289 }
3290
3291 /* set *dip = inode's place in the buffer */
3292 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3293
3294 /*
3295 * Clear i_update_core before copying out the data.
3296 * This is for coordination with our timestamp updates
3297 * that don't hold the inode lock. They will always
3298 * update the timestamps BEFORE setting i_update_core,
3299 * so if we clear i_update_core after they set it we
3300 * are guaranteed to see their updates to the timestamps.
3301 * I believe that this depends on strongly ordered memory
3302 * semantics, but we have that. We use the SYNCHRONIZE
3303 * macro to make sure that the compiler does not reorder
3304 * the i_update_core access below the data copy below.
3305 */
3306 ip->i_update_core = 0;
3307 SYNCHRONIZE();
3308
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003309 /*
3310 * Make sure to get the latest atime from the Linux inode.
3311 */
3312 xfs_synchronize_atime(ip);
3313
Linus Torvalds1da177e2005-04-16 15:20:36 -07003314 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3315 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3316 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3317 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3318 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3319 goto corrupt_out;
3320 }
3321 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3322 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3323 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3324 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3325 ip->i_ino, ip, ip->i_d.di_magic);
3326 goto corrupt_out;
3327 }
3328 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3329 if (XFS_TEST_ERROR(
3330 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3331 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3332 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3333 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3334 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3335 ip->i_ino, ip);
3336 goto corrupt_out;
3337 }
3338 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3339 if (XFS_TEST_ERROR(
3340 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3341 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3342 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3343 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3344 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3345 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3346 ip->i_ino, ip);
3347 goto corrupt_out;
3348 }
3349 }
3350 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3351 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3352 XFS_RANDOM_IFLUSH_5)) {
3353 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3354 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3355 ip->i_ino,
3356 ip->i_d.di_nextents + ip->i_d.di_anextents,
3357 ip->i_d.di_nblocks,
3358 ip);
3359 goto corrupt_out;
3360 }
3361 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3362 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3363 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3364 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3365 ip->i_ino, ip->i_d.di_forkoff, ip);
3366 goto corrupt_out;
3367 }
3368 /*
3369 * bump the flush iteration count, used to detect flushes which
3370 * postdate a log record during recovery.
3371 */
3372
3373 ip->i_d.di_flushiter++;
3374
3375 /*
3376 * Copy the dirty parts of the inode into the on-disk
3377 * inode. We always copy out the core of the inode,
3378 * because if the inode is dirty at all the core must
3379 * be.
3380 */
3381 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3382
3383 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3384 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3385 ip->i_d.di_flushiter = 0;
3386
3387 /*
3388 * If this is really an old format inode and the superblock version
3389 * has not been updated to support only new format inodes, then
3390 * convert back to the old inode format. If the superblock version
3391 * has been updated, then make the conversion permanent.
3392 */
3393 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3394 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3395 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3396 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3397 /*
3398 * Convert it back.
3399 */
3400 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3401 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3402 } else {
3403 /*
3404 * The superblock version has already been bumped,
3405 * so just make the conversion to the new inode
3406 * format permanent.
3407 */
3408 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3409 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3410 ip->i_d.di_onlink = 0;
3411 dip->di_core.di_onlink = 0;
3412 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3413 memset(&(dip->di_core.di_pad[0]), 0,
3414 sizeof(dip->di_core.di_pad));
3415 ASSERT(ip->i_d.di_projid == 0);
3416 }
3417 }
3418
3419 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3420 goto corrupt_out;
3421 }
3422
3423 if (XFS_IFORK_Q(ip)) {
3424 /*
3425 * The only error from xfs_iflush_fork is on the data fork.
3426 */
3427 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3428 }
3429 xfs_inobp_check(mp, bp);
3430
3431 /*
3432 * We've recorded everything logged in the inode, so we'd
3433 * like to clear the ilf_fields bits so we don't log and
3434 * flush things unnecessarily. However, we can't stop
3435 * logging all this information until the data we've copied
3436 * into the disk buffer is written to disk. If we did we might
3437 * overwrite the copy of the inode in the log with all the
3438 * data after re-logging only part of it, and in the face of
3439 * a crash we wouldn't have all the data we need to recover.
3440 *
3441 * What we do is move the bits to the ili_last_fields field.
3442 * When logging the inode, these bits are moved back to the
3443 * ilf_fields field. In the xfs_iflush_done() routine we
3444 * clear ili_last_fields, since we know that the information
3445 * those bits represent is permanently on disk. As long as
3446 * the flush completes before the inode is logged again, then
3447 * both ilf_fields and ili_last_fields will be cleared.
3448 *
3449 * We can play with the ilf_fields bits here, because the inode
3450 * lock must be held exclusively in order to set bits there
3451 * and the flush lock protects the ili_last_fields bits.
3452 * Set ili_logged so the flush done
3453 * routine can tell whether or not to look in the AIL.
3454 * Also, store the current LSN of the inode so that we can tell
3455 * whether the item has moved in the AIL from xfs_iflush_done().
3456 * In order to read the lsn we need the AIL lock, because
3457 * it is a 64 bit value that cannot be read atomically.
3458 */
3459 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3460 iip->ili_last_fields = iip->ili_format.ilf_fields;
3461 iip->ili_format.ilf_fields = 0;
3462 iip->ili_logged = 1;
3463
3464 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3465 AIL_LOCK(mp,s);
3466 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3467 AIL_UNLOCK(mp, s);
3468
3469 /*
3470 * Attach the function xfs_iflush_done to the inode's
3471 * buffer. This will remove the inode from the AIL
3472 * and unlock the inode's flush lock when the inode is
3473 * completely written to disk.
3474 */
3475 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3476 xfs_iflush_done, (xfs_log_item_t *)iip);
3477
3478 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3479 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3480 } else {
3481 /*
3482 * We're flushing an inode which is not in the AIL and has
3483 * not been logged but has i_update_core set. For this
3484 * case we can use a B_DELWRI flush and immediately drop
3485 * the inode flush lock because we can avoid the whole
3486 * AIL state thing. It's OK to drop the flush lock now,
3487 * because we've already locked the buffer and to do anything
3488 * you really need both.
3489 */
3490 if (iip != NULL) {
3491 ASSERT(iip->ili_logged == 0);
3492 ASSERT(iip->ili_last_fields == 0);
3493 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3494 }
3495 xfs_ifunlock(ip);
3496 }
3497
3498 return 0;
3499
3500corrupt_out:
3501 return XFS_ERROR(EFSCORRUPTED);
3502}
3503
3504
3505/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003506 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003507 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003508void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003509xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003510 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003512 xfs_inode_t *ip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513 vnode_t *vp;
3514
Christoph Hellwigefa80272005-06-21 15:37:17 +10003515 again:
3516 XFS_MOUNT_ILOCK(mp);
3517 ip = mp->m_inodes;
3518 if (ip == NULL)
3519 goto out;
3520
3521 do {
3522 /* Make sure we skip markers inserted by sync */
3523 if (ip->i_mount == NULL) {
3524 ip = ip->i_mnext;
3525 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527
Christoph Hellwigefa80272005-06-21 15:37:17 +10003528 vp = XFS_ITOV_NULL(ip);
3529 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003531 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3532 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003533 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003534
Christoph Hellwigefa80272005-06-21 15:37:17 +10003535 ASSERT(vn_count(vp) == 0);
3536
3537 ip = ip->i_mnext;
3538 } while (ip != mp->m_inodes);
3539 out:
3540 XFS_MOUNT_IUNLOCK(mp);
3541}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003542
3543/*
3544 * xfs_iaccess: check accessibility of inode for mode.
3545 */
3546int
3547xfs_iaccess(
3548 xfs_inode_t *ip,
3549 mode_t mode,
3550 cred_t *cr)
3551{
3552 int error;
3553 mode_t orgmode = mode;
Nathan Scottec86dc02006-03-17 17:25:36 +11003554 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555
3556 if (mode & S_IWUSR) {
3557 umode_t imode = inode->i_mode;
3558
3559 if (IS_RDONLY(inode) &&
3560 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3561 return XFS_ERROR(EROFS);
3562
3563 if (IS_IMMUTABLE(inode))
3564 return XFS_ERROR(EACCES);
3565 }
3566
3567 /*
3568 * If there's an Access Control List it's used instead of
3569 * the mode bits.
3570 */
3571 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3572 return error ? XFS_ERROR(error) : 0;
3573
3574 if (current_fsuid(cr) != ip->i_d.di_uid) {
3575 mode >>= 3;
3576 if (!in_group_p((gid_t)ip->i_d.di_gid))
3577 mode >>= 3;
3578 }
3579
3580 /*
3581 * If the DACs are ok we don't need any capability check.
3582 */
3583 if ((ip->i_d.di_mode & mode) == mode)
3584 return 0;
3585 /*
3586 * Read/write DACs are always overridable.
3587 * Executable DACs are overridable if at least one exec bit is set.
3588 */
3589 if (!(orgmode & S_IXUSR) ||
3590 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3591 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3592 return 0;
3593
3594 if ((orgmode == S_IRUSR) ||
3595 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3596 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3597 return 0;
3598#ifdef NOISE
3599 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3600#endif /* NOISE */
3601 return XFS_ERROR(EACCES);
3602 }
3603 return XFS_ERROR(EACCES);
3604}
3605
3606/*
3607 * xfs_iroundup: round up argument to next power of two
3608 */
3609uint
3610xfs_iroundup(
3611 uint v)
3612{
3613 int i;
3614 uint m;
3615
3616 if ((v & (v - 1)) == 0)
3617 return v;
3618 ASSERT((v & 0x80000000) == 0);
3619 if ((v & (v + 1)) == 0)
3620 return v + 1;
3621 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3622 if (v & m)
3623 continue;
3624 v |= m;
3625 if ((v & (v + 1)) == 0)
3626 return v + 1;
3627 }
3628 ASSERT(0);
3629 return( 0 );
3630}
3631
Linus Torvalds1da177e2005-04-16 15:20:36 -07003632#ifdef XFS_ILOCK_TRACE
3633ktrace_t *xfs_ilock_trace_buf;
3634
3635void
3636xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3637{
3638 ktrace_enter(ip->i_lock_trace,
3639 (void *)ip,
3640 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3641 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3642 (void *)ra, /* caller of ilock */
3643 (void *)(unsigned long)current_cpu(),
3644 (void *)(unsigned long)current_pid(),
3645 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3646}
3647#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003648
3649/*
3650 * Return a pointer to the extent record at file index idx.
3651 */
3652xfs_bmbt_rec_t *
3653xfs_iext_get_ext(
3654 xfs_ifork_t *ifp, /* inode fork pointer */
3655 xfs_extnum_t idx) /* index of target extent */
3656{
3657 ASSERT(idx >= 0);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003658 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3659 return ifp->if_u1.if_ext_irec->er_extbuf;
3660 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3661 xfs_ext_irec_t *erp; /* irec pointer */
3662 int erp_idx = 0; /* irec index */
3663 xfs_extnum_t page_idx = idx; /* ext index in target list */
3664
3665 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3666 return &erp->er_extbuf[page_idx];
3667 } else if (ifp->if_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003668 return &ifp->if_u1.if_extents[idx];
3669 } else {
3670 return NULL;
3671 }
3672}
3673
3674/*
3675 * Insert new item(s) into the extent records for incore inode
3676 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3677 */
3678void
3679xfs_iext_insert(
3680 xfs_ifork_t *ifp, /* inode fork pointer */
3681 xfs_extnum_t idx, /* starting index of new items */
3682 xfs_extnum_t count, /* number of inserted items */
3683 xfs_bmbt_irec_t *new) /* items to insert */
3684{
3685 xfs_bmbt_rec_t *ep; /* extent record pointer */
3686 xfs_extnum_t i; /* extent record index */
3687
3688 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3689 xfs_iext_add(ifp, idx, count);
3690 for (i = idx; i < idx + count; i++, new++) {
3691 ep = xfs_iext_get_ext(ifp, i);
3692 xfs_bmbt_set_all(ep, new);
3693 }
3694}
3695
3696/*
3697 * This is called when the amount of space required for incore file
3698 * extents needs to be increased. The ext_diff parameter stores the
3699 * number of new extents being added and the idx parameter contains
3700 * the extent index where the new extents will be added. If the new
3701 * extents are being appended, then we just need to (re)allocate and
3702 * initialize the space. Otherwise, if the new extents are being
3703 * inserted into the middle of the existing entries, a bit more work
3704 * is required to make room for the new extents to be inserted. The
3705 * caller is responsible for filling in the new extent entries upon
3706 * return.
3707 */
3708void
3709xfs_iext_add(
3710 xfs_ifork_t *ifp, /* inode fork pointer */
3711 xfs_extnum_t idx, /* index to begin adding exts */
Nathan Scottc41564b2006-03-29 08:55:14 +10003712 int ext_diff) /* number of extents to add */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003713{
3714 int byte_diff; /* new bytes being added */
3715 int new_size; /* size of extents after adding */
3716 xfs_extnum_t nextents; /* number of extents in file */
3717
3718 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3719 ASSERT((idx >= 0) && (idx <= nextents));
3720 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3721 new_size = ifp->if_bytes + byte_diff;
3722 /*
3723 * If the new number of extents (nextents + ext_diff)
3724 * fits inside the inode, then continue to use the inline
3725 * extent buffer.
3726 */
3727 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3728 if (idx < nextents) {
3729 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3730 &ifp->if_u2.if_inline_ext[idx],
3731 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3732 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3733 }
3734 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3735 ifp->if_real_bytes = 0;
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003736 ifp->if_lastex = nextents + ext_diff;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003737 }
3738 /*
3739 * Otherwise use a linear (direct) extent list.
3740 * If the extents are currently inside the inode,
3741 * xfs_iext_realloc_direct will switch us from
3742 * inline to direct extent allocation mode.
3743 */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003744 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003745 xfs_iext_realloc_direct(ifp, new_size);
3746 if (idx < nextents) {
3747 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3748 &ifp->if_u1.if_extents[idx],
3749 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3750 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3751 }
3752 }
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003753 /* Indirection array */
3754 else {
3755 xfs_ext_irec_t *erp;
3756 int erp_idx = 0;
3757 int page_idx = idx;
3758
3759 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3760 if (ifp->if_flags & XFS_IFEXTIREC) {
3761 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3762 } else {
3763 xfs_iext_irec_init(ifp);
3764 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3765 erp = ifp->if_u1.if_ext_irec;
3766 }
3767 /* Extents fit in target extent page */
3768 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3769 if (page_idx < erp->er_extcount) {
3770 memmove(&erp->er_extbuf[page_idx + ext_diff],
3771 &erp->er_extbuf[page_idx],
3772 (erp->er_extcount - page_idx) *
3773 sizeof(xfs_bmbt_rec_t));
3774 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3775 }
3776 erp->er_extcount += ext_diff;
3777 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3778 }
3779 /* Insert a new extent page */
3780 else if (erp) {
3781 xfs_iext_add_indirect_multi(ifp,
3782 erp_idx, page_idx, ext_diff);
3783 }
3784 /*
3785 * If extent(s) are being appended to the last page in
3786 * the indirection array and the new extent(s) don't fit
3787 * in the page, then erp is NULL and erp_idx is set to
3788 * the next index needed in the indirection array.
3789 */
3790 else {
3791 int count = ext_diff;
3792
3793 while (count) {
3794 erp = xfs_iext_irec_new(ifp, erp_idx);
3795 erp->er_extcount = count;
3796 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3797 if (count) {
3798 erp_idx++;
3799 }
3800 }
3801 }
3802 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003803 ifp->if_bytes = new_size;
3804}
3805
3806/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003807 * This is called when incore extents are being added to the indirection
3808 * array and the new extents do not fit in the target extent list. The
3809 * erp_idx parameter contains the irec index for the target extent list
3810 * in the indirection array, and the idx parameter contains the extent
3811 * index within the list. The number of extents being added is stored
3812 * in the count parameter.
3813 *
3814 * |-------| |-------|
3815 * | | | | idx - number of extents before idx
3816 * | idx | | count |
3817 * | | | | count - number of extents being inserted at idx
3818 * |-------| |-------|
3819 * | count | | nex2 | nex2 - number of extents after idx + count
3820 * |-------| |-------|
3821 */
3822void
3823xfs_iext_add_indirect_multi(
3824 xfs_ifork_t *ifp, /* inode fork pointer */
3825 int erp_idx, /* target extent irec index */
3826 xfs_extnum_t idx, /* index within target list */
3827 int count) /* new extents being added */
3828{
3829 int byte_diff; /* new bytes being added */
3830 xfs_ext_irec_t *erp; /* pointer to irec entry */
3831 xfs_extnum_t ext_diff; /* number of extents to add */
3832 xfs_extnum_t ext_cnt; /* new extents still needed */
3833 xfs_extnum_t nex2; /* extents after idx + count */
3834 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3835 int nlists; /* number of irec's (lists) */
3836
3837 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3838 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3839 nex2 = erp->er_extcount - idx;
3840 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3841
3842 /*
3843 * Save second part of target extent list
3844 * (all extents past */
3845 if (nex2) {
3846 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3847 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3848 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3849 erp->er_extcount -= nex2;
3850 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3851 memset(&erp->er_extbuf[idx], 0, byte_diff);
3852 }
3853
3854 /*
3855 * Add the new extents to the end of the target
3856 * list, then allocate new irec record(s) and
3857 * extent buffer(s) as needed to store the rest
3858 * of the new extents.
3859 */
3860 ext_cnt = count;
3861 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3862 if (ext_diff) {
3863 erp->er_extcount += ext_diff;
3864 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3865 ext_cnt -= ext_diff;
3866 }
3867 while (ext_cnt) {
3868 erp_idx++;
3869 erp = xfs_iext_irec_new(ifp, erp_idx);
3870 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3871 erp->er_extcount = ext_diff;
3872 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3873 ext_cnt -= ext_diff;
3874 }
3875
3876 /* Add nex2 extents back to indirection array */
3877 if (nex2) {
3878 xfs_extnum_t ext_avail;
3879 int i;
3880
3881 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3882 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3883 i = 0;
3884 /*
3885 * If nex2 extents fit in the current page, append
3886 * nex2_ep after the new extents.
3887 */
3888 if (nex2 <= ext_avail) {
3889 i = erp->er_extcount;
3890 }
3891 /*
3892 * Otherwise, check if space is available in the
3893 * next page.
3894 */
3895 else if ((erp_idx < nlists - 1) &&
3896 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3897 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3898 erp_idx++;
3899 erp++;
3900 /* Create a hole for nex2 extents */
3901 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3902 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3903 }
3904 /*
3905 * Final choice, create a new extent page for
3906 * nex2 extents.
3907 */
3908 else {
3909 erp_idx++;
3910 erp = xfs_iext_irec_new(ifp, erp_idx);
3911 }
3912 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3913 kmem_free(nex2_ep, byte_diff);
3914 erp->er_extcount += nex2;
3915 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3916 }
3917}
3918
3919/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003920 * This is called when the amount of space required for incore file
3921 * extents needs to be decreased. The ext_diff parameter stores the
3922 * number of extents to be removed and the idx parameter contains
3923 * the extent index where the extents will be removed from.
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003924 *
3925 * If the amount of space needed has decreased below the linear
3926 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3927 * extent array. Otherwise, use kmem_realloc() to adjust the
3928 * size to what is needed.
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003929 */
3930void
3931xfs_iext_remove(
3932 xfs_ifork_t *ifp, /* inode fork pointer */
3933 xfs_extnum_t idx, /* index to begin removing exts */
3934 int ext_diff) /* number of extents to remove */
3935{
3936 xfs_extnum_t nextents; /* number of extents in file */
3937 int new_size; /* size of extents after removal */
3938
3939 ASSERT(ext_diff > 0);
3940 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3941 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3942
3943 if (new_size == 0) {
3944 xfs_iext_destroy(ifp);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003945 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3946 xfs_iext_remove_indirect(ifp, idx, ext_diff);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003947 } else if (ifp->if_real_bytes) {
3948 xfs_iext_remove_direct(ifp, idx, ext_diff);
3949 } else {
3950 xfs_iext_remove_inline(ifp, idx, ext_diff);
3951 }
3952 ifp->if_bytes = new_size;
3953}
3954
3955/*
3956 * This removes ext_diff extents from the inline buffer, beginning
3957 * at extent index idx.
3958 */
3959void
3960xfs_iext_remove_inline(
3961 xfs_ifork_t *ifp, /* inode fork pointer */
3962 xfs_extnum_t idx, /* index to begin removing exts */
3963 int ext_diff) /* number of extents to remove */
3964{
3965 int nextents; /* number of extents in file */
3966
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003967 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003968 ASSERT(idx < XFS_INLINE_EXTS);
3969 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3970 ASSERT(((nextents - ext_diff) > 0) &&
3971 (nextents - ext_diff) < XFS_INLINE_EXTS);
3972
3973 if (idx + ext_diff < nextents) {
3974 memmove(&ifp->if_u2.if_inline_ext[idx],
3975 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3976 (nextents - (idx + ext_diff)) *
3977 sizeof(xfs_bmbt_rec_t));
3978 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3979 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3980 } else {
3981 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3982 ext_diff * sizeof(xfs_bmbt_rec_t));
3983 }
3984}
3985
3986/*
3987 * This removes ext_diff extents from a linear (direct) extent list,
3988 * beginning at extent index idx. If the extents are being removed
3989 * from the end of the list (ie. truncate) then we just need to re-
3990 * allocate the list to remove the extra space. Otherwise, if the
3991 * extents are being removed from the middle of the existing extent
3992 * entries, then we first need to move the extent records beginning
3993 * at idx + ext_diff up in the list to overwrite the records being
3994 * removed, then remove the extra space via kmem_realloc.
3995 */
3996void
3997xfs_iext_remove_direct(
3998 xfs_ifork_t *ifp, /* inode fork pointer */
3999 xfs_extnum_t idx, /* index to begin removing exts */
4000 int ext_diff) /* number of extents to remove */
4001{
4002 xfs_extnum_t nextents; /* number of extents in file */
4003 int new_size; /* size of extents after removal */
4004
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004005 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004006 new_size = ifp->if_bytes -
4007 (ext_diff * sizeof(xfs_bmbt_rec_t));
4008 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4009
4010 if (new_size == 0) {
4011 xfs_iext_destroy(ifp);
4012 return;
4013 }
4014 /* Move extents up in the list (if needed) */
4015 if (idx + ext_diff < nextents) {
4016 memmove(&ifp->if_u1.if_extents[idx],
4017 &ifp->if_u1.if_extents[idx + ext_diff],
4018 (nextents - (idx + ext_diff)) *
4019 sizeof(xfs_bmbt_rec_t));
4020 }
4021 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4022 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4023 /*
4024 * Reallocate the direct extent list. If the extents
4025 * will fit inside the inode then xfs_iext_realloc_direct
4026 * will switch from direct to inline extent allocation
4027 * mode for us.
4028 */
4029 xfs_iext_realloc_direct(ifp, new_size);
4030 ifp->if_bytes = new_size;
4031}
4032
4033/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004034 * This is called when incore extents are being removed from the
4035 * indirection array and the extents being removed span multiple extent
4036 * buffers. The idx parameter contains the file extent index where we
4037 * want to begin removing extents, and the count parameter contains
4038 * how many extents need to be removed.
4039 *
4040 * |-------| |-------|
4041 * | nex1 | | | nex1 - number of extents before idx
4042 * |-------| | count |
4043 * | | | | count - number of extents being removed at idx
4044 * | count | |-------|
4045 * | | | nex2 | nex2 - number of extents after idx + count
4046 * |-------| |-------|
4047 */
4048void
4049xfs_iext_remove_indirect(
4050 xfs_ifork_t *ifp, /* inode fork pointer */
4051 xfs_extnum_t idx, /* index to begin removing extents */
4052 int count) /* number of extents to remove */
4053{
4054 xfs_ext_irec_t *erp; /* indirection array pointer */
4055 int erp_idx = 0; /* indirection array index */
4056 xfs_extnum_t ext_cnt; /* extents left to remove */
4057 xfs_extnum_t ext_diff; /* extents to remove in current list */
4058 xfs_extnum_t nex1; /* number of extents before idx */
4059 xfs_extnum_t nex2; /* extents after idx + count */
Nathan Scottc41564b2006-03-29 08:55:14 +10004060 int nlists; /* entries in indirection array */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004061 int page_idx = idx; /* index in target extent list */
4062
4063 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4064 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4065 ASSERT(erp != NULL);
4066 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4067 nex1 = page_idx;
4068 ext_cnt = count;
4069 while (ext_cnt) {
4070 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4071 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4072 /*
4073 * Check for deletion of entire list;
4074 * xfs_iext_irec_remove() updates extent offsets.
4075 */
4076 if (ext_diff == erp->er_extcount) {
4077 xfs_iext_irec_remove(ifp, erp_idx);
4078 ext_cnt -= ext_diff;
4079 nex1 = 0;
4080 if (ext_cnt) {
4081 ASSERT(erp_idx < ifp->if_real_bytes /
4082 XFS_IEXT_BUFSZ);
4083 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4084 nex1 = 0;
4085 continue;
4086 } else {
4087 break;
4088 }
4089 }
4090 /* Move extents up (if needed) */
4091 if (nex2) {
4092 memmove(&erp->er_extbuf[nex1],
4093 &erp->er_extbuf[nex1 + ext_diff],
4094 nex2 * sizeof(xfs_bmbt_rec_t));
4095 }
4096 /* Zero out rest of page */
4097 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4098 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4099 /* Update remaining counters */
4100 erp->er_extcount -= ext_diff;
4101 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4102 ext_cnt -= ext_diff;
4103 nex1 = 0;
4104 erp_idx++;
4105 erp++;
4106 }
4107 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4108 xfs_iext_irec_compact(ifp);
4109}
4110
4111/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004112 * Create, destroy, or resize a linear (direct) block of extents.
4113 */
4114void
4115xfs_iext_realloc_direct(
4116 xfs_ifork_t *ifp, /* inode fork pointer */
4117 int new_size) /* new size of extents */
4118{
4119 int rnew_size; /* real new size of extents */
4120
4121 rnew_size = new_size;
4122
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004123 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4124 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4125 (new_size != ifp->if_real_bytes)));
4126
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004127 /* Free extent records */
4128 if (new_size == 0) {
4129 xfs_iext_destroy(ifp);
4130 }
4131 /* Resize direct extent list and zero any new bytes */
4132 else if (ifp->if_real_bytes) {
4133 /* Check if extents will fit inside the inode */
4134 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4135 xfs_iext_direct_to_inline(ifp, new_size /
4136 (uint)sizeof(xfs_bmbt_rec_t));
4137 ifp->if_bytes = new_size;
4138 return;
4139 }
4140 if ((new_size & (new_size - 1)) != 0) {
4141 rnew_size = xfs_iroundup(new_size);
4142 }
4143 if (rnew_size != ifp->if_real_bytes) {
4144 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4145 kmem_realloc(ifp->if_u1.if_extents,
4146 rnew_size,
4147 ifp->if_real_bytes,
4148 KM_SLEEP);
4149 }
4150 if (rnew_size > ifp->if_real_bytes) {
4151 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4152 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4153 rnew_size - ifp->if_real_bytes);
4154 }
4155 }
4156 /*
4157 * Switch from the inline extent buffer to a direct
4158 * extent list. Be sure to include the inline extent
4159 * bytes in new_size.
4160 */
4161 else {
4162 new_size += ifp->if_bytes;
4163 if ((new_size & (new_size - 1)) != 0) {
4164 rnew_size = xfs_iroundup(new_size);
4165 }
4166 xfs_iext_inline_to_direct(ifp, rnew_size);
4167 }
4168 ifp->if_real_bytes = rnew_size;
4169 ifp->if_bytes = new_size;
4170}
4171
4172/*
4173 * Switch from linear (direct) extent records to inline buffer.
4174 */
4175void
4176xfs_iext_direct_to_inline(
4177 xfs_ifork_t *ifp, /* inode fork pointer */
4178 xfs_extnum_t nextents) /* number of extents in file */
4179{
4180 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4181 ASSERT(nextents <= XFS_INLINE_EXTS);
4182 /*
4183 * The inline buffer was zeroed when we switched
4184 * from inline to direct extent allocation mode,
4185 * so we don't need to clear it here.
4186 */
4187 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4188 nextents * sizeof(xfs_bmbt_rec_t));
Mandy Kirkconnellfe6c1e72006-06-09 14:51:25 +10004189 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004190 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4191 ifp->if_real_bytes = 0;
4192}
4193
4194/*
4195 * Switch from inline buffer to linear (direct) extent records.
4196 * new_size should already be rounded up to the next power of 2
4197 * by the caller (when appropriate), so use new_size as it is.
4198 * However, since new_size may be rounded up, we can't update
4199 * if_bytes here. It is the caller's responsibility to update
4200 * if_bytes upon return.
4201 */
4202void
4203xfs_iext_inline_to_direct(
4204 xfs_ifork_t *ifp, /* inode fork pointer */
4205 int new_size) /* number of extents in file */
4206{
4207 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4208 kmem_alloc(new_size, KM_SLEEP);
4209 memset(ifp->if_u1.if_extents, 0, new_size);
4210 if (ifp->if_bytes) {
4211 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4212 ifp->if_bytes);
4213 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4214 sizeof(xfs_bmbt_rec_t));
4215 }
4216 ifp->if_real_bytes = new_size;
4217}
4218
4219/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004220 * Resize an extent indirection array to new_size bytes.
4221 */
4222void
4223xfs_iext_realloc_indirect(
4224 xfs_ifork_t *ifp, /* inode fork pointer */
4225 int new_size) /* new indirection array size */
4226{
4227 int nlists; /* number of irec's (ex lists) */
4228 int size; /* current indirection array size */
4229
4230 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4231 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4232 size = nlists * sizeof(xfs_ext_irec_t);
4233 ASSERT(ifp->if_real_bytes);
4234 ASSERT((new_size >= 0) && (new_size != size));
4235 if (new_size == 0) {
4236 xfs_iext_destroy(ifp);
4237 } else {
4238 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4239 kmem_realloc(ifp->if_u1.if_ext_irec,
4240 new_size, size, KM_SLEEP);
4241 }
4242}
4243
4244/*
4245 * Switch from indirection array to linear (direct) extent allocations.
4246 */
4247void
4248xfs_iext_indirect_to_direct(
4249 xfs_ifork_t *ifp) /* inode fork pointer */
4250{
4251 xfs_bmbt_rec_t *ep; /* extent record pointer */
4252 xfs_extnum_t nextents; /* number of extents in file */
4253 int size; /* size of file extents */
4254
4255 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4256 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4257 ASSERT(nextents <= XFS_LINEAR_EXTS);
4258 size = nextents * sizeof(xfs_bmbt_rec_t);
4259
4260 xfs_iext_irec_compact_full(ifp);
4261 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4262
4263 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4264 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4265 ifp->if_flags &= ~XFS_IFEXTIREC;
4266 ifp->if_u1.if_extents = ep;
4267 ifp->if_bytes = size;
4268 if (nextents < XFS_LINEAR_EXTS) {
4269 xfs_iext_realloc_direct(ifp, size);
4270 }
4271}
4272
4273/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004274 * Free incore file extents.
4275 */
4276void
4277xfs_iext_destroy(
4278 xfs_ifork_t *ifp) /* inode fork pointer */
4279{
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004280 if (ifp->if_flags & XFS_IFEXTIREC) {
4281 int erp_idx;
4282 int nlists;
4283
4284 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4285 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4286 xfs_iext_irec_remove(ifp, erp_idx);
4287 }
4288 ifp->if_flags &= ~XFS_IFEXTIREC;
4289 } else if (ifp->if_real_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004290 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4291 } else if (ifp->if_bytes) {
4292 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4293 sizeof(xfs_bmbt_rec_t));
4294 }
4295 ifp->if_u1.if_extents = NULL;
4296 ifp->if_real_bytes = 0;
4297 ifp->if_bytes = 0;
4298}
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004299
4300/*
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004301 * Return a pointer to the extent record for file system block bno.
4302 */
4303xfs_bmbt_rec_t * /* pointer to found extent record */
4304xfs_iext_bno_to_ext(
4305 xfs_ifork_t *ifp, /* inode fork pointer */
4306 xfs_fileoff_t bno, /* block number to search for */
4307 xfs_extnum_t *idxp) /* index of target extent */
4308{
4309 xfs_bmbt_rec_t *base; /* pointer to first extent */
4310 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4311 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4312 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
Nathan Scottc41564b2006-03-29 08:55:14 +10004313 int high; /* upper boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004314 xfs_extnum_t idx = 0; /* index of target extent */
Nathan Scottc41564b2006-03-29 08:55:14 +10004315 int low; /* lower boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004316 xfs_extnum_t nextents; /* number of file extents */
4317 xfs_fileoff_t startoff = 0; /* start offset of extent */
4318
4319 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4320 if (nextents == 0) {
4321 *idxp = 0;
4322 return NULL;
4323 }
4324 low = 0;
4325 if (ifp->if_flags & XFS_IFEXTIREC) {
4326 /* Find target extent list */
4327 int erp_idx = 0;
4328 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4329 base = erp->er_extbuf;
4330 high = erp->er_extcount - 1;
4331 } else {
4332 base = ifp->if_u1.if_extents;
4333 high = nextents - 1;
4334 }
4335 /* Binary search extent records */
4336 while (low <= high) {
4337 idx = (low + high) >> 1;
4338 ep = base + idx;
4339 startoff = xfs_bmbt_get_startoff(ep);
4340 blockcount = xfs_bmbt_get_blockcount(ep);
4341 if (bno < startoff) {
4342 high = idx - 1;
4343 } else if (bno >= startoff + blockcount) {
4344 low = idx + 1;
4345 } else {
4346 /* Convert back to file-based extent index */
4347 if (ifp->if_flags & XFS_IFEXTIREC) {
4348 idx += erp->er_extoff;
4349 }
4350 *idxp = idx;
4351 return ep;
4352 }
4353 }
4354 /* Convert back to file-based extent index */
4355 if (ifp->if_flags & XFS_IFEXTIREC) {
4356 idx += erp->er_extoff;
4357 }
4358 if (bno >= startoff + blockcount) {
4359 if (++idx == nextents) {
4360 ep = NULL;
4361 } else {
4362 ep = xfs_iext_get_ext(ifp, idx);
4363 }
4364 }
4365 *idxp = idx;
4366 return ep;
4367}
4368
4369/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004370 * Return a pointer to the indirection array entry containing the
4371 * extent record for filesystem block bno. Store the index of the
4372 * target irec in *erp_idxp.
4373 */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004374xfs_ext_irec_t * /* pointer to found extent record */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004375xfs_iext_bno_to_irec(
4376 xfs_ifork_t *ifp, /* inode fork pointer */
4377 xfs_fileoff_t bno, /* block number to search for */
4378 int *erp_idxp) /* irec index of target ext list */
4379{
4380 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4381 xfs_ext_irec_t *erp_next; /* next indirection array entry */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004382 int erp_idx; /* indirection array index */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004383 int nlists; /* number of extent irec's (lists) */
4384 int high; /* binary search upper limit */
4385 int low; /* binary search lower limit */
4386
4387 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4388 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4389 erp_idx = 0;
4390 low = 0;
4391 high = nlists - 1;
4392 while (low <= high) {
4393 erp_idx = (low + high) >> 1;
4394 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4395 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4396 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4397 high = erp_idx - 1;
4398 } else if (erp_next && bno >=
4399 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4400 low = erp_idx + 1;
4401 } else {
4402 break;
4403 }
4404 }
4405 *erp_idxp = erp_idx;
4406 return erp;
4407}
4408
4409/*
4410 * Return a pointer to the indirection array entry containing the
4411 * extent record at file extent index *idxp. Store the index of the
4412 * target irec in *erp_idxp and store the page index of the target
4413 * extent record in *idxp.
4414 */
4415xfs_ext_irec_t *
4416xfs_iext_idx_to_irec(
4417 xfs_ifork_t *ifp, /* inode fork pointer */
4418 xfs_extnum_t *idxp, /* extent index (file -> page) */
4419 int *erp_idxp, /* pointer to target irec */
4420 int realloc) /* new bytes were just added */
4421{
4422 xfs_ext_irec_t *prev; /* pointer to previous irec */
4423 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4424 int erp_idx; /* indirection array index */
4425 int nlists; /* number of irec's (ex lists) */
4426 int high; /* binary search upper limit */
4427 int low; /* binary search lower limit */
4428 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4429
4430 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4431 ASSERT(page_idx >= 0 && page_idx <=
4432 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4433 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4434 erp_idx = 0;
4435 low = 0;
4436 high = nlists - 1;
4437
4438 /* Binary search extent irec's */
4439 while (low <= high) {
4440 erp_idx = (low + high) >> 1;
4441 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4442 prev = erp_idx > 0 ? erp - 1 : NULL;
4443 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4444 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4445 high = erp_idx - 1;
4446 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4447 (page_idx == erp->er_extoff + erp->er_extcount &&
4448 !realloc)) {
4449 low = erp_idx + 1;
4450 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4451 erp->er_extcount == XFS_LINEAR_EXTS) {
4452 ASSERT(realloc);
4453 page_idx = 0;
4454 erp_idx++;
4455 erp = erp_idx < nlists ? erp + 1 : NULL;
4456 break;
4457 } else {
4458 page_idx -= erp->er_extoff;
4459 break;
4460 }
4461 }
4462 *idxp = page_idx;
4463 *erp_idxp = erp_idx;
4464 return(erp);
4465}
4466
4467/*
4468 * Allocate and initialize an indirection array once the space needed
4469 * for incore extents increases above XFS_IEXT_BUFSZ.
4470 */
4471void
4472xfs_iext_irec_init(
4473 xfs_ifork_t *ifp) /* inode fork pointer */
4474{
4475 xfs_ext_irec_t *erp; /* indirection array pointer */
4476 xfs_extnum_t nextents; /* number of extents in file */
4477
4478 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4479 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4480 ASSERT(nextents <= XFS_LINEAR_EXTS);
4481
4482 erp = (xfs_ext_irec_t *)
4483 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4484
4485 if (nextents == 0) {
4486 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4487 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4488 } else if (!ifp->if_real_bytes) {
4489 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4490 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4491 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4492 }
4493 erp->er_extbuf = ifp->if_u1.if_extents;
4494 erp->er_extcount = nextents;
4495 erp->er_extoff = 0;
4496
4497 ifp->if_flags |= XFS_IFEXTIREC;
4498 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4499 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4500 ifp->if_u1.if_ext_irec = erp;
4501
4502 return;
4503}
4504
4505/*
4506 * Allocate and initialize a new entry in the indirection array.
4507 */
4508xfs_ext_irec_t *
4509xfs_iext_irec_new(
4510 xfs_ifork_t *ifp, /* inode fork pointer */
4511 int erp_idx) /* index for new irec */
4512{
4513 xfs_ext_irec_t *erp; /* indirection array pointer */
4514 int i; /* loop counter */
4515 int nlists; /* number of irec's (ex lists) */
4516
4517 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4518 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4519
4520 /* Resize indirection array */
4521 xfs_iext_realloc_indirect(ifp, ++nlists *
4522 sizeof(xfs_ext_irec_t));
4523 /*
4524 * Move records down in the array so the
4525 * new page can use erp_idx.
4526 */
4527 erp = ifp->if_u1.if_ext_irec;
4528 for (i = nlists - 1; i > erp_idx; i--) {
4529 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4530 }
4531 ASSERT(i == erp_idx);
4532
4533 /* Initialize new extent record */
4534 erp = ifp->if_u1.if_ext_irec;
4535 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4536 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4537 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4538 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4539 erp[erp_idx].er_extcount = 0;
4540 erp[erp_idx].er_extoff = erp_idx > 0 ?
4541 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4542 return (&erp[erp_idx]);
4543}
4544
4545/*
4546 * Remove a record from the indirection array.
4547 */
4548void
4549xfs_iext_irec_remove(
4550 xfs_ifork_t *ifp, /* inode fork pointer */
4551 int erp_idx) /* irec index to remove */
4552{
4553 xfs_ext_irec_t *erp; /* indirection array pointer */
4554 int i; /* loop counter */
4555 int nlists; /* number of irec's (ex lists) */
4556
4557 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4558 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4559 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4560 if (erp->er_extbuf) {
4561 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4562 -erp->er_extcount);
4563 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4564 }
4565 /* Compact extent records */
4566 erp = ifp->if_u1.if_ext_irec;
4567 for (i = erp_idx; i < nlists - 1; i++) {
4568 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4569 }
4570 /*
4571 * Manually free the last extent record from the indirection
4572 * array. A call to xfs_iext_realloc_indirect() with a size
4573 * of zero would result in a call to xfs_iext_destroy() which
4574 * would in turn call this function again, creating a nasty
4575 * infinite loop.
4576 */
4577 if (--nlists) {
4578 xfs_iext_realloc_indirect(ifp,
4579 nlists * sizeof(xfs_ext_irec_t));
4580 } else {
4581 kmem_free(ifp->if_u1.if_ext_irec,
4582 sizeof(xfs_ext_irec_t));
4583 }
4584 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4585}
4586
4587/*
4588 * This is called to clean up large amounts of unused memory allocated
4589 * by the indirection array. Before compacting anything though, verify
4590 * that the indirection array is still needed and switch back to the
4591 * linear extent list (or even the inline buffer) if possible. The
4592 * compaction policy is as follows:
4593 *
4594 * Full Compaction: Extents fit into a single page (or inline buffer)
4595 * Full Compaction: Extents occupy less than 10% of allocated space
4596 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4597 * No Compaction: Extents occupy at least 50% of allocated space
4598 */
4599void
4600xfs_iext_irec_compact(
4601 xfs_ifork_t *ifp) /* inode fork pointer */
4602{
4603 xfs_extnum_t nextents; /* number of extents in file */
4604 int nlists; /* number of irec's (ex lists) */
4605
4606 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4607 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4608 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4609
4610 if (nextents == 0) {
4611 xfs_iext_destroy(ifp);
4612 } else if (nextents <= XFS_INLINE_EXTS) {
4613 xfs_iext_indirect_to_direct(ifp);
4614 xfs_iext_direct_to_inline(ifp, nextents);
4615 } else if (nextents <= XFS_LINEAR_EXTS) {
4616 xfs_iext_indirect_to_direct(ifp);
4617 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4618 xfs_iext_irec_compact_full(ifp);
4619 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4620 xfs_iext_irec_compact_pages(ifp);
4621 }
4622}
4623
4624/*
4625 * Combine extents from neighboring extent pages.
4626 */
4627void
4628xfs_iext_irec_compact_pages(
4629 xfs_ifork_t *ifp) /* inode fork pointer */
4630{
4631 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4632 int erp_idx = 0; /* indirection array index */
4633 int nlists; /* number of irec's (ex lists) */
4634
4635 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4636 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4637 while (erp_idx < nlists - 1) {
4638 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4639 erp_next = erp + 1;
4640 if (erp_next->er_extcount <=
4641 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4642 memmove(&erp->er_extbuf[erp->er_extcount],
4643 erp_next->er_extbuf, erp_next->er_extcount *
4644 sizeof(xfs_bmbt_rec_t));
4645 erp->er_extcount += erp_next->er_extcount;
4646 /*
4647 * Free page before removing extent record
4648 * so er_extoffs don't get modified in
4649 * xfs_iext_irec_remove.
4650 */
4651 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4652 erp_next->er_extbuf = NULL;
4653 xfs_iext_irec_remove(ifp, erp_idx + 1);
4654 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4655 } else {
4656 erp_idx++;
4657 }
4658 }
4659}
4660
4661/*
4662 * Fully compact the extent records managed by the indirection array.
4663 */
4664void
4665xfs_iext_irec_compact_full(
4666 xfs_ifork_t *ifp) /* inode fork pointer */
4667{
4668 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4669 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4670 int erp_idx = 0; /* extent irec index */
4671 int ext_avail; /* empty entries in ex list */
4672 int ext_diff; /* number of exts to add */
4673 int nlists; /* number of irec's (ex lists) */
4674
4675 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4676 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4677 erp = ifp->if_u1.if_ext_irec;
4678 ep = &erp->er_extbuf[erp->er_extcount];
4679 erp_next = erp + 1;
4680 ep_next = erp_next->er_extbuf;
4681 while (erp_idx < nlists - 1) {
4682 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4683 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4684 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4685 erp->er_extcount += ext_diff;
4686 erp_next->er_extcount -= ext_diff;
4687 /* Remove next page */
4688 if (erp_next->er_extcount == 0) {
4689 /*
4690 * Free page before removing extent record
4691 * so er_extoffs don't get modified in
4692 * xfs_iext_irec_remove.
4693 */
4694 kmem_free(erp_next->er_extbuf,
4695 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4696 erp_next->er_extbuf = NULL;
4697 xfs_iext_irec_remove(ifp, erp_idx + 1);
4698 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4699 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4700 /* Update next page */
4701 } else {
4702 /* Move rest of page up to become next new page */
4703 memmove(erp_next->er_extbuf, ep_next,
4704 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4705 ep_next = erp_next->er_extbuf;
4706 memset(&ep_next[erp_next->er_extcount], 0,
4707 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4708 sizeof(xfs_bmbt_rec_t));
4709 }
4710 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4711 erp_idx++;
4712 if (erp_idx < nlists)
4713 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4714 else
4715 break;
4716 }
4717 ep = &erp->er_extbuf[erp->er_extcount];
4718 erp_next = erp + 1;
4719 ep_next = erp_next->er_extbuf;
4720 }
4721}
4722
4723/*
4724 * This is called to update the er_extoff field in the indirection
4725 * array when extents have been added or removed from one of the
4726 * extent lists. erp_idx contains the irec index to begin updating
4727 * at and ext_diff contains the number of extents that were added
4728 * or removed.
4729 */
4730void
4731xfs_iext_irec_update_extoffs(
4732 xfs_ifork_t *ifp, /* inode fork pointer */
4733 int erp_idx, /* irec index to update */
4734 int ext_diff) /* number of new extents */
4735{
4736 int i; /* loop counter */
4737 int nlists; /* number of irec's (ex lists */
4738
4739 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4740 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4741 for (i = erp_idx; i < nlists; i++) {
4742 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4743 }
4744}