blob: 8d2b36879f060fb5940af3232d3db15a00bdced1 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Nathan Scott7b718762005-11-02 14:58:39 +11002 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_dir.h"
30#include "xfs_dir2.h"
31#include "xfs_dmapi.h"
32#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110034#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include "xfs_dir_sf.h"
37#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110038#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070041#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110042#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_rw.h"
48#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070049#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
52#include "xfs_mac.h"
53#include "xfs_acl.h"
54
55
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
58kmem_zone_t *xfs_chashlist_zone;
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
71
72#ifdef DEBUG
73/*
74 * Make sure that the extents in the given memory buffer
75 * are valid.
76 */
77STATIC void
78xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110079 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 int nrecs,
81 int disk,
82 xfs_exntfmt_t fmt)
83{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110084 xfs_bmbt_rec_t *ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -070085 xfs_bmbt_irec_t irec;
86 xfs_bmbt_rec_t rec;
87 int i;
88
89 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110090 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -070091 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
92 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
93 if (disk)
94 xfs_bmbt_disk_get_all(&rec, &irec);
95 else
96 xfs_bmbt_get_all(&rec, &irec);
97 if (fmt == XFS_EXTFMT_NOSTATE)
98 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070099 }
100}
101#else /* DEBUG */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100102#define xfs_validate_extents(ifp, nrecs, disk, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103#endif /* DEBUG */
104
105/*
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
108 */
109#if defined(DEBUG)
110void
111xfs_inobp_check(
112 xfs_mount_t *mp,
113 xfs_buf_t *bp)
114{
115 int i;
116 int j;
117 xfs_dinode_t *dip;
118
119 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120
121 for (i = 0; i < j; i++) {
122 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 i * mp->m_sb.sb_inodesize);
124 if (!dip->di_next_unlinked) {
125 xfs_fs_cmn_err(CE_ALERT, mp,
126 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 bp);
128 ASSERT(dip->di_next_unlinked);
129 }
130 }
131}
132#endif
133
134/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135 * This routine is called to map an inode number within a file
136 * system to the buffer containing the on-disk version of the
137 * inode. It returns a pointer to the buffer containing the
138 * on-disk inode in the bpp parameter, and in the dip parameter
139 * it returns a pointer to the on-disk inode within that buffer.
140 *
141 * If a non-zero error is returned, then the contents of bpp and
142 * dipp are undefined.
143 *
144 * Use xfs_imap() to determine the size and location of the
145 * buffer to read from disk.
146 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000147STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148xfs_inotobp(
149 xfs_mount_t *mp,
150 xfs_trans_t *tp,
151 xfs_ino_t ino,
152 xfs_dinode_t **dipp,
153 xfs_buf_t **bpp,
154 int *offset)
155{
156 int di_ok;
157 xfs_imap_t imap;
158 xfs_buf_t *bp;
159 int error;
160 xfs_dinode_t *dip;
161
162 /*
163 * Call the space managment code to find the location of the
164 * inode on disk.
165 */
166 imap.im_blkno = 0;
167 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
168 if (error != 0) {
169 cmn_err(CE_WARN,
170 "xfs_inotobp: xfs_imap() returned an "
171 "error %d on %s. Returning error.", error, mp->m_fsname);
172 return error;
173 }
174
175 /*
176 * If the inode number maps to a block outside the bounds of the
177 * file system then return NULL rather than calling read_buf
178 * and panicing when we get an error from the driver.
179 */
180 if ((imap.im_blkno + imap.im_len) >
181 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
182 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100183 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100185 (unsigned long long)imap.im_blkno,
186 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187 return XFS_ERROR(EINVAL);
188 }
189
190 /*
191 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
192 * default to just a read_buf() call.
193 */
194 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
195 (int)imap.im_len, XFS_BUF_LOCK, &bp);
196
197 if (error) {
198 cmn_err(CE_WARN,
199 "xfs_inotobp: xfs_trans_read_buf() returned an "
200 "error %d on %s. Returning error.", error, mp->m_fsname);
201 return error;
202 }
203 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
204 di_ok =
205 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
206 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
207 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
208 XFS_RANDOM_ITOBP_INOTOBP))) {
209 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
210 xfs_trans_brelse(tp, bp);
211 cmn_err(CE_WARN,
212 "xfs_inotobp: XFS_TEST_ERROR() returned an "
213 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
214 return XFS_ERROR(EFSCORRUPTED);
215 }
216
217 xfs_inobp_check(mp, bp);
218
219 /*
220 * Set *dipp to point to the on-disk inode in the buffer.
221 */
222 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
223 *bpp = bp;
224 *offset = imap.im_boffset;
225 return 0;
226}
227
228
229/*
230 * This routine is called to map an inode to the buffer containing
231 * the on-disk version of the inode. It returns a pointer to the
232 * buffer containing the on-disk inode in the bpp parameter, and in
233 * the dip parameter it returns a pointer to the on-disk inode within
234 * that buffer.
235 *
236 * If a non-zero error is returned, then the contents of bpp and
237 * dipp are undefined.
238 *
239 * If the inode is new and has not yet been initialized, use xfs_imap()
240 * to determine the size and location of the buffer to read from disk.
241 * If the inode has already been mapped to its buffer and read in once,
242 * then use the mapping information stored in the inode rather than
243 * calling xfs_imap(). This allows us to avoid the overhead of looking
244 * at the inode btree for small block file systems (see xfs_dilocate()).
245 * We can tell whether the inode has been mapped in before by comparing
246 * its disk block address to 0. Only uninitialized inodes will have
247 * 0 for the disk block address.
248 */
249int
250xfs_itobp(
251 xfs_mount_t *mp,
252 xfs_trans_t *tp,
253 xfs_inode_t *ip,
254 xfs_dinode_t **dipp,
255 xfs_buf_t **bpp,
Nathan Scottb12dd342006-03-17 17:26:04 +1100256 xfs_daddr_t bno,
257 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258{
259 xfs_buf_t *bp;
260 int error;
261 xfs_imap_t imap;
262#ifdef __KERNEL__
263 int i;
264 int ni;
265#endif
266
267 if (ip->i_blkno == (xfs_daddr_t)0) {
268 /*
269 * Call the space management code to find the location of the
270 * inode on disk.
271 */
272 imap.im_blkno = bno;
Nathan Scottb12dd342006-03-17 17:26:04 +1100273 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
274 XFS_IMAP_LOOKUP | imap_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276
277 /*
278 * If the inode number maps to a block outside the bounds
279 * of the file system then return NULL rather than calling
280 * read_buf and panicing when we get an error from the
281 * driver.
282 */
283 if ((imap.im_blkno + imap.im_len) >
284 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
285#ifdef DEBUG
286 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
287 "(imap.im_blkno (0x%llx) "
288 "+ imap.im_len (0x%llx)) > "
289 " XFS_FSB_TO_BB(mp, "
290 "mp->m_sb.sb_dblocks) (0x%llx)",
291 (unsigned long long) imap.im_blkno,
292 (unsigned long long) imap.im_len,
293 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
294#endif /* DEBUG */
295 return XFS_ERROR(EINVAL);
296 }
297
298 /*
299 * Fill in the fields in the inode that will be used to
300 * map the inode to its buffer from now on.
301 */
302 ip->i_blkno = imap.im_blkno;
303 ip->i_len = imap.im_len;
304 ip->i_boffset = imap.im_boffset;
305 } else {
306 /*
307 * We've already mapped the inode once, so just use the
308 * mapping that we saved the first time.
309 */
310 imap.im_blkno = ip->i_blkno;
311 imap.im_len = ip->i_len;
312 imap.im_boffset = ip->i_boffset;
313 }
314 ASSERT(bno == 0 || bno == imap.im_blkno);
315
316 /*
317 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
318 * default to just a read_buf() call.
319 */
320 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
321 (int)imap.im_len, XFS_BUF_LOCK, &bp);
322
323 if (error) {
324#ifdef DEBUG
325 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
326 "xfs_trans_read_buf() returned error %d, "
327 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
328 error, (unsigned long long) imap.im_blkno,
329 (unsigned long long) imap.im_len);
330#endif /* DEBUG */
331 return error;
332 }
333#ifdef __KERNEL__
334 /*
335 * Validate the magic number and version of every inode in the buffer
336 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
337 */
338#ifdef DEBUG
Nathan Scottb12dd342006-03-17 17:26:04 +1100339 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
340 (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341#else
Nathan Scottb12dd342006-03-17 17:26:04 +1100342 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343#endif
344 for (i = 0; i < ni; i++) {
345 int di_ok;
346 xfs_dinode_t *dip;
347
348 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
349 (i << mp->m_sb.sb_inodelog));
350 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
351 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
352 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
353 XFS_RANDOM_ITOBP_INOTOBP))) {
354#ifdef DEBUG
355 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
356 mp->m_ddev_targp,
357 (unsigned long long)imap.im_blkno, i,
358 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
359#endif
360 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
361 mp, dip);
362 xfs_trans_brelse(tp, bp);
363 return XFS_ERROR(EFSCORRUPTED);
364 }
365 }
366#endif /* __KERNEL__ */
367
368 xfs_inobp_check(mp, bp);
369
370 /*
371 * Mark the buffer as an inode buffer now that it looks good
372 */
373 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374
375 /*
376 * Set *dipp to point to the on-disk inode in the buffer.
377 */
378 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
379 *bpp = bp;
380 return 0;
381}
382
383/*
384 * Move inode type and inode format specific information from the
385 * on-disk inode to the in-core inode. For fifos, devs, and sockets
386 * this means set if_rdev to the proper value. For files, directories,
387 * and symlinks this means to bring in the in-line data or extent
388 * pointers. For a file in B-tree format, only the root is immediately
389 * brought in-core. The rest will be in-lined in if_extents when it
390 * is first referenced (see xfs_iread_extents()).
391 */
392STATIC int
393xfs_iformat(
394 xfs_inode_t *ip,
395 xfs_dinode_t *dip)
396{
397 xfs_attr_shortform_t *atp;
398 int size;
399 int error;
400 xfs_fsize_t di_size;
401 ip->i_df.if_ext_max =
402 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
403 error = 0;
404
405 if (unlikely(
406 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
407 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
408 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100409 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
410 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 (unsigned long long)ip->i_ino,
412 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
413 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
414 (unsigned long long)
415 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
416 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
417 ip->i_mount, dip);
418 return XFS_ERROR(EFSCORRUPTED);
419 }
420
421 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100422 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
423 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424 (unsigned long long)ip->i_ino,
425 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
426 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
427 ip->i_mount, dip);
428 return XFS_ERROR(EFSCORRUPTED);
429 }
430
431 switch (ip->i_d.di_mode & S_IFMT) {
432 case S_IFIFO:
433 case S_IFCHR:
434 case S_IFBLK:
435 case S_IFSOCK:
436 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
437 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
438 ip->i_mount, dip);
439 return XFS_ERROR(EFSCORRUPTED);
440 }
441 ip->i_d.di_size = 0;
442 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
443 break;
444
445 case S_IFREG:
446 case S_IFLNK:
447 case S_IFDIR:
448 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
449 case XFS_DINODE_FMT_LOCAL:
450 /*
451 * no local regular files yet
452 */
453 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100454 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
455 "corrupt inode %Lu "
456 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457 (unsigned long long) ip->i_ino);
458 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
459 XFS_ERRLEVEL_LOW,
460 ip->i_mount, dip);
461 return XFS_ERROR(EFSCORRUPTED);
462 }
463
464 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
465 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100466 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
467 "corrupt inode %Lu "
468 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469 (unsigned long long) ip->i_ino,
470 (long long) di_size);
471 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
472 XFS_ERRLEVEL_LOW,
473 ip->i_mount, dip);
474 return XFS_ERROR(EFSCORRUPTED);
475 }
476
477 size = (int)di_size;
478 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
479 break;
480 case XFS_DINODE_FMT_EXTENTS:
481 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
482 break;
483 case XFS_DINODE_FMT_BTREE:
484 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
485 break;
486 default:
487 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
488 ip->i_mount);
489 return XFS_ERROR(EFSCORRUPTED);
490 }
491 break;
492
493 default:
494 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
495 return XFS_ERROR(EFSCORRUPTED);
496 }
497 if (error) {
498 return error;
499 }
500 if (!XFS_DFORK_Q(dip))
501 return 0;
502 ASSERT(ip->i_afp == NULL);
503 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
504 ip->i_afp->if_ext_max =
505 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
506 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
507 case XFS_DINODE_FMT_LOCAL:
508 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
Nathan Scott3b244aa2006-03-17 17:29:25 +1100509 size = be16_to_cpu(atp->hdr.totsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
511 break;
512 case XFS_DINODE_FMT_EXTENTS:
513 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
514 break;
515 case XFS_DINODE_FMT_BTREE:
516 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
517 break;
518 default:
519 error = XFS_ERROR(EFSCORRUPTED);
520 break;
521 }
522 if (error) {
523 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
524 ip->i_afp = NULL;
525 xfs_idestroy_fork(ip, XFS_DATA_FORK);
526 }
527 return error;
528}
529
530/*
531 * The file is in-lined in the on-disk inode.
532 * If it fits into if_inline_data, then copy
533 * it there, otherwise allocate a buffer for it
534 * and copy the data there. Either way, set
535 * if_data to point at the data.
536 * If we allocate a buffer for the data, make
537 * sure that its size is a multiple of 4 and
538 * record the real size in i_real_bytes.
539 */
540STATIC int
541xfs_iformat_local(
542 xfs_inode_t *ip,
543 xfs_dinode_t *dip,
544 int whichfork,
545 int size)
546{
547 xfs_ifork_t *ifp;
548 int real_size;
549
550 /*
551 * If the size is unreasonable, then something
552 * is wrong and we just bail out rather than crash in
553 * kmem_alloc() or memcpy() below.
554 */
555 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100556 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
557 "corrupt inode %Lu "
558 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559 (unsigned long long) ip->i_ino, size,
560 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
561 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
562 ip->i_mount, dip);
563 return XFS_ERROR(EFSCORRUPTED);
564 }
565 ifp = XFS_IFORK_PTR(ip, whichfork);
566 real_size = 0;
567 if (size == 0)
568 ifp->if_u1.if_data = NULL;
569 else if (size <= sizeof(ifp->if_u2.if_inline_data))
570 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
571 else {
572 real_size = roundup(size, 4);
573 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
574 }
575 ifp->if_bytes = size;
576 ifp->if_real_bytes = real_size;
577 if (size)
578 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
579 ifp->if_flags &= ~XFS_IFEXTENTS;
580 ifp->if_flags |= XFS_IFINLINE;
581 return 0;
582}
583
584/*
585 * The file consists of a set of extents all
586 * of which fit into the on-disk inode.
587 * If there are few enough extents to fit into
588 * the if_inline_ext, then copy them there.
589 * Otherwise allocate a buffer for them and copy
590 * them into it. Either way, set if_extents
591 * to point at the extents.
592 */
593STATIC int
594xfs_iformat_extents(
595 xfs_inode_t *ip,
596 xfs_dinode_t *dip,
597 int whichfork)
598{
599 xfs_bmbt_rec_t *ep, *dp;
600 xfs_ifork_t *ifp;
601 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602 int size;
603 int i;
604
605 ifp = XFS_IFORK_PTR(ip, whichfork);
606 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
607 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608
609 /*
610 * If the number of extents is unreasonable, then something
611 * is wrong and we just bail out rather than crash in
612 * kmem_alloc() or memcpy() below.
613 */
614 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100615 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
616 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700617 (unsigned long long) ip->i_ino, nex);
618 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
619 ip->i_mount, dip);
620 return XFS_ERROR(EFSCORRUPTED);
621 }
622
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100623 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624 if (nex == 0)
625 ifp->if_u1.if_extents = NULL;
626 else if (nex <= XFS_INLINE_EXTS)
627 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100628 else
629 xfs_iext_add(ifp, 0, nex);
630
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 if (size) {
633 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100634 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
635 for (i = 0; i < nex; i++, dp++) {
636 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
638 ARCH_CONVERT);
639 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
640 ARCH_CONVERT);
641 }
642 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
643 whichfork);
644 if (whichfork != XFS_DATA_FORK ||
645 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
646 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100647 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
649 XFS_ERRLEVEL_LOW,
650 ip->i_mount);
651 return XFS_ERROR(EFSCORRUPTED);
652 }
653 }
654 ifp->if_flags |= XFS_IFEXTENTS;
655 return 0;
656}
657
658/*
659 * The file has too many extents to fit into
660 * the inode, so they are in B-tree format.
661 * Allocate a buffer for the root of the B-tree
662 * and copy the root into it. The i_extents
663 * field will remain NULL until all of the
664 * extents are read in (when they are needed).
665 */
666STATIC int
667xfs_iformat_btree(
668 xfs_inode_t *ip,
669 xfs_dinode_t *dip,
670 int whichfork)
671{
672 xfs_bmdr_block_t *dfp;
673 xfs_ifork_t *ifp;
674 /* REFERENCED */
675 int nrecs;
676 int size;
677
678 ifp = XFS_IFORK_PTR(ip, whichfork);
679 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
680 size = XFS_BMAP_BROOT_SPACE(dfp);
681 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
682
683 /*
684 * blow out if -- fork has less extents than can fit in
685 * fork (fork shouldn't be a btree format), root btree
686 * block has more records than can fit into the fork,
687 * or the number of extents is greater than the number of
688 * blocks.
689 */
690 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
691 || XFS_BMDR_SPACE_CALC(nrecs) >
692 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
693 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100694 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
695 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700696 (unsigned long long) ip->i_ino);
697 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
698 ip->i_mount);
699 return XFS_ERROR(EFSCORRUPTED);
700 }
701
702 ifp->if_broot_bytes = size;
703 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
704 ASSERT(ifp->if_broot != NULL);
705 /*
706 * Copy and convert from the on-disk structure
707 * to the in-memory structure.
708 */
709 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
710 ifp->if_broot, size);
711 ifp->if_flags &= ~XFS_IFEXTENTS;
712 ifp->if_flags |= XFS_IFBROOT;
713
714 return 0;
715}
716
717/*
718 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
719 * and native format
720 *
721 * buf = on-disk representation
722 * dip = native representation
723 * dir = direction - +ve -> disk to native
724 * -ve -> native to disk
725 */
726void
727xfs_xlate_dinode_core(
728 xfs_caddr_t buf,
729 xfs_dinode_core_t *dip,
730 int dir)
731{
732 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
733 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
734 xfs_arch_t arch = ARCH_CONVERT;
735
736 ASSERT(dir);
737
738 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
739 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
740 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
741 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
742 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
743 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
744 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
745 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
746 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
747
748 if (dir > 0) {
749 memcpy(mem_core->di_pad, buf_core->di_pad,
750 sizeof(buf_core->di_pad));
751 } else {
752 memcpy(buf_core->di_pad, mem_core->di_pad,
753 sizeof(buf_core->di_pad));
754 }
755
756 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
757
758 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
759 dir, arch);
760 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
761 dir, arch);
762 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
763 dir, arch);
764 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
765 dir, arch);
766 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
767 dir, arch);
768 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
769 dir, arch);
770 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
771 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
772 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
773 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
774 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
775 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
776 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
777 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
778 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
779 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
780 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
781}
782
783STATIC uint
784_xfs_dic2xflags(
785 xfs_dinode_core_t *dic,
786 __uint16_t di_flags)
787{
788 uint flags = 0;
789
790 if (di_flags & XFS_DIFLAG_ANY) {
791 if (di_flags & XFS_DIFLAG_REALTIME)
792 flags |= XFS_XFLAG_REALTIME;
793 if (di_flags & XFS_DIFLAG_PREALLOC)
794 flags |= XFS_XFLAG_PREALLOC;
795 if (di_flags & XFS_DIFLAG_IMMUTABLE)
796 flags |= XFS_XFLAG_IMMUTABLE;
797 if (di_flags & XFS_DIFLAG_APPEND)
798 flags |= XFS_XFLAG_APPEND;
799 if (di_flags & XFS_DIFLAG_SYNC)
800 flags |= XFS_XFLAG_SYNC;
801 if (di_flags & XFS_DIFLAG_NOATIME)
802 flags |= XFS_XFLAG_NOATIME;
803 if (di_flags & XFS_DIFLAG_NODUMP)
804 flags |= XFS_XFLAG_NODUMP;
805 if (di_flags & XFS_DIFLAG_RTINHERIT)
806 flags |= XFS_XFLAG_RTINHERIT;
807 if (di_flags & XFS_DIFLAG_PROJINHERIT)
808 flags |= XFS_XFLAG_PROJINHERIT;
809 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
810 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100811 if (di_flags & XFS_DIFLAG_EXTSIZE)
812 flags |= XFS_XFLAG_EXTSIZE;
813 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
814 flags |= XFS_XFLAG_EXTSZINHERIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700815 }
816
817 return flags;
818}
819
820uint
821xfs_ip2xflags(
822 xfs_inode_t *ip)
823{
824 xfs_dinode_core_t *dic = &ip->i_d;
825
826 return _xfs_dic2xflags(dic, dic->di_flags) |
827 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
828}
829
830uint
831xfs_dic2xflags(
832 xfs_dinode_core_t *dic)
833{
834 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
835 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
836}
837
838/*
839 * Given a mount structure and an inode number, return a pointer
840 * to a newly allocated in-core inode coresponding to the given
841 * inode number.
842 *
843 * Initialize the inode's attributes and extent pointers if it
844 * already has them (it will not if the inode has no links).
845 */
846int
847xfs_iread(
848 xfs_mount_t *mp,
849 xfs_trans_t *tp,
850 xfs_ino_t ino,
851 xfs_inode_t **ipp,
852 xfs_daddr_t bno)
853{
854 xfs_buf_t *bp;
855 xfs_dinode_t *dip;
856 xfs_inode_t *ip;
857 int error;
858
859 ASSERT(xfs_inode_zone != NULL);
860
861 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
862 ip->i_ino = ino;
863 ip->i_mount = mp;
864
865 /*
866 * Get pointer's to the on-disk inode and the buffer containing it.
867 * If the inode number refers to a block outside the file system
868 * then xfs_itobp() will return NULL. In this case we should
869 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
870 * know that this is a new incore inode.
871 */
Nathan Scottb12dd342006-03-17 17:26:04 +1100872 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
873 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874 kmem_zone_free(xfs_inode_zone, ip);
875 return error;
876 }
877
878 /*
879 * Initialize inode's trace buffers.
880 * Do this before xfs_iformat in case it adds entries.
881 */
882#ifdef XFS_BMAP_TRACE
883 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
884#endif
885#ifdef XFS_BMBT_TRACE
886 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
887#endif
888#ifdef XFS_RW_TRACE
889 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
890#endif
891#ifdef XFS_ILOCK_TRACE
892 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
893#endif
894#ifdef XFS_DIR2_TRACE
895 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
896#endif
897
898 /*
899 * If we got something that isn't an inode it means someone
900 * (nfs or dmi) has a stale handle.
901 */
902 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
903 kmem_zone_free(xfs_inode_zone, ip);
904 xfs_trans_brelse(tp, bp);
905#ifdef DEBUG
906 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
907 "dip->di_core.di_magic (0x%x) != "
908 "XFS_DINODE_MAGIC (0x%x)",
909 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
910 XFS_DINODE_MAGIC);
911#endif /* DEBUG */
912 return XFS_ERROR(EINVAL);
913 }
914
915 /*
916 * If the on-disk inode is already linked to a directory
917 * entry, copy all of the inode into the in-core inode.
918 * xfs_iformat() handles copying in the inode format
919 * specific information.
920 * Otherwise, just get the truly permanent information.
921 */
922 if (dip->di_core.di_mode) {
923 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
924 &(ip->i_d), 1);
925 error = xfs_iformat(ip, dip);
926 if (error) {
927 kmem_zone_free(xfs_inode_zone, ip);
928 xfs_trans_brelse(tp, bp);
929#ifdef DEBUG
930 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
931 "xfs_iformat() returned error %d",
932 error);
933#endif /* DEBUG */
934 return error;
935 }
936 } else {
937 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
938 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
939 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
940 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
941 /*
942 * Make sure to pull in the mode here as well in
943 * case the inode is released without being used.
944 * This ensures that xfs_inactive() will see that
945 * the inode is already free and not try to mess
946 * with the uninitialized part of it.
947 */
948 ip->i_d.di_mode = 0;
949 /*
950 * Initialize the per-fork minima and maxima for a new
951 * inode here. xfs_iformat will do it for old inodes.
952 */
953 ip->i_df.if_ext_max =
954 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
955 }
956
957 INIT_LIST_HEAD(&ip->i_reclaim);
958
959 /*
960 * The inode format changed when we moved the link count and
961 * made it 32 bits long. If this is an old format inode,
962 * convert it in memory to look like a new one. If it gets
963 * flushed to disk we will convert back before flushing or
964 * logging it. We zero out the new projid field and the old link
965 * count field. We'll handle clearing the pad field (the remains
966 * of the old uuid field) when we actually convert the inode to
967 * the new format. We don't change the version number so that we
968 * can distinguish this from a real new format inode.
969 */
970 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
971 ip->i_d.di_nlink = ip->i_d.di_onlink;
972 ip->i_d.di_onlink = 0;
973 ip->i_d.di_projid = 0;
974 }
975
976 ip->i_delayed_blks = 0;
977
978 /*
979 * Mark the buffer containing the inode as something to keep
980 * around for a while. This helps to keep recently accessed
981 * meta-data in-core longer.
982 */
983 XFS_BUF_SET_REF(bp, XFS_INO_REF);
984
985 /*
986 * Use xfs_trans_brelse() to release the buffer containing the
987 * on-disk inode, because it was acquired with xfs_trans_read_buf()
988 * in xfs_itobp() above. If tp is NULL, this is just a normal
989 * brelse(). If we're within a transaction, then xfs_trans_brelse()
990 * will only release the buffer if it is not dirty within the
991 * transaction. It will be OK to release the buffer in this case,
992 * because inodes on disk are never destroyed and we will be
993 * locking the new in-core inode before putting it in the hash
994 * table where other processes can find it. Thus we don't have
995 * to worry about the inode being changed just because we released
996 * the buffer.
997 */
998 xfs_trans_brelse(tp, bp);
999 *ipp = ip;
1000 return 0;
1001}
1002
1003/*
1004 * Read in extents from a btree-format inode.
1005 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1006 */
1007int
1008xfs_iread_extents(
1009 xfs_trans_t *tp,
1010 xfs_inode_t *ip,
1011 int whichfork)
1012{
1013 int error;
1014 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001015 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016 size_t size;
1017
1018 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1019 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1020 ip->i_mount);
1021 return XFS_ERROR(EFSCORRUPTED);
1022 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001023 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1024 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001026
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 /*
1028 * We know that the size is valid (it's checked in iformat_btree)
1029 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001031 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001033 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034 error = xfs_bmap_read_extents(tp, ip, whichfork);
1035 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001036 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 ifp->if_flags &= ~XFS_IFEXTENTS;
1038 return error;
1039 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001040 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041 return 0;
1042}
1043
1044/*
1045 * Allocate an inode on disk and return a copy of its in-core version.
1046 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1047 * appropriately within the inode. The uid and gid for the inode are
1048 * set according to the contents of the given cred structure.
1049 *
1050 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1051 * has a free inode available, call xfs_iget()
1052 * to obtain the in-core version of the allocated inode. Finally,
1053 * fill in the inode and log its initial contents. In this case,
1054 * ialloc_context would be set to NULL and call_again set to false.
1055 *
1056 * If xfs_dialloc() does not have an available inode,
1057 * it will replenish its supply by doing an allocation. Since we can
1058 * only do one allocation within a transaction without deadlocks, we
1059 * must commit the current transaction before returning the inode itself.
1060 * In this case, therefore, we will set call_again to true and return.
1061 * The caller should then commit the current transaction, start a new
1062 * transaction, and call xfs_ialloc() again to actually get the inode.
1063 *
1064 * To ensure that some other process does not grab the inode that
1065 * was allocated during the first call to xfs_ialloc(), this routine
1066 * also returns the [locked] bp pointing to the head of the freelist
1067 * as ialloc_context. The caller should hold this buffer across
1068 * the commit and pass it back into this routine on the second call.
1069 */
1070int
1071xfs_ialloc(
1072 xfs_trans_t *tp,
1073 xfs_inode_t *pip,
1074 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001075 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076 xfs_dev_t rdev,
1077 cred_t *cr,
1078 xfs_prid_t prid,
1079 int okalloc,
1080 xfs_buf_t **ialloc_context,
1081 boolean_t *call_again,
1082 xfs_inode_t **ipp)
1083{
1084 xfs_ino_t ino;
1085 xfs_inode_t *ip;
1086 vnode_t *vp;
1087 uint flags;
1088 int error;
1089
1090 /*
1091 * Call the space management code to pick
1092 * the on-disk inode to be allocated.
1093 */
1094 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1095 ialloc_context, call_again, &ino);
1096 if (error != 0) {
1097 return error;
1098 }
1099 if (*call_again || ino == NULLFSINO) {
1100 *ipp = NULL;
1101 return 0;
1102 }
1103 ASSERT(*ialloc_context == NULL);
1104
1105 /*
1106 * Get the in-core inode with the lock held exclusively.
1107 * This is because we're setting fields here we need
1108 * to prevent others from looking at until we're done.
1109 */
1110 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1111 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1112 if (error != 0) {
1113 return error;
1114 }
1115 ASSERT(ip != NULL);
1116
1117 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001118 ip->i_d.di_mode = (__uint16_t)mode;
1119 ip->i_d.di_onlink = 0;
1120 ip->i_d.di_nlink = nlink;
1121 ASSERT(ip->i_d.di_nlink == nlink);
1122 ip->i_d.di_uid = current_fsuid(cr);
1123 ip->i_d.di_gid = current_fsgid(cr);
1124 ip->i_d.di_projid = prid;
1125 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1126
1127 /*
1128 * If the superblock version is up to where we support new format
1129 * inodes and this is currently an old format inode, then change
1130 * the inode version number now. This way we only do the conversion
1131 * here rather than here and in the flush/logging code.
1132 */
1133 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1134 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1135 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1136 /*
1137 * We've already zeroed the old link count, the projid field,
1138 * and the pad field.
1139 */
1140 }
1141
1142 /*
1143 * Project ids won't be stored on disk if we are using a version 1 inode.
1144 */
1145 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1146 xfs_bump_ino_vers2(tp, ip);
1147
1148 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1149 ip->i_d.di_gid = pip->i_d.di_gid;
1150 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1151 ip->i_d.di_mode |= S_ISGID;
1152 }
1153 }
1154
1155 /*
1156 * If the group ID of the new file does not match the effective group
1157 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1158 * (and only if the irix_sgid_inherit compatibility variable is set).
1159 */
1160 if ((irix_sgid_inherit) &&
1161 (ip->i_d.di_mode & S_ISGID) &&
1162 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1163 ip->i_d.di_mode &= ~S_ISGID;
1164 }
1165
1166 ip->i_d.di_size = 0;
1167 ip->i_d.di_nextents = 0;
1168 ASSERT(ip->i_d.di_nblocks == 0);
1169 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1170 /*
1171 * di_gen will have been taken care of in xfs_iread.
1172 */
1173 ip->i_d.di_extsize = 0;
1174 ip->i_d.di_dmevmask = 0;
1175 ip->i_d.di_dmstate = 0;
1176 ip->i_d.di_flags = 0;
1177 flags = XFS_ILOG_CORE;
1178 switch (mode & S_IFMT) {
1179 case S_IFIFO:
1180 case S_IFCHR:
1181 case S_IFBLK:
1182 case S_IFSOCK:
1183 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1184 ip->i_df.if_u2.if_rdev = rdev;
1185 ip->i_df.if_flags = 0;
1186 flags |= XFS_ILOG_DEV;
1187 break;
1188 case S_IFREG:
1189 case S_IFDIR:
1190 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001191 uint di_flags = 0;
1192
1193 if ((mode & S_IFMT) == S_IFDIR) {
1194 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1195 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001196 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1197 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1198 ip->i_d.di_extsize = pip->i_d.di_extsize;
1199 }
1200 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001201 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1202 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001203 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1204 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001205 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1206 di_flags |= XFS_DIFLAG_EXTSIZE;
1207 ip->i_d.di_extsize = pip->i_d.di_extsize;
1208 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209 }
1210 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1211 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001212 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001213 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1214 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001215 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1217 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001218 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001219 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1220 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001221 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1222 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1223 di_flags |= XFS_DIFLAG_PROJINHERIT;
1224 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001225 }
1226 /* FALLTHROUGH */
1227 case S_IFLNK:
1228 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1229 ip->i_df.if_flags = XFS_IFEXTENTS;
1230 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1231 ip->i_df.if_u1.if_extents = NULL;
1232 break;
1233 default:
1234 ASSERT(0);
1235 }
1236 /*
1237 * Attribute fork settings for new inode.
1238 */
1239 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1240 ip->i_d.di_anextents = 0;
1241
1242 /*
1243 * Log the new values stuffed into the inode.
1244 */
1245 xfs_trans_log_inode(tp, ip, flags);
1246
Christoph Hellwig0432dab2005-09-02 16:46:51 +10001247 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001248 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1249
1250 *ipp = ip;
1251 return 0;
1252}
1253
1254/*
1255 * Check to make sure that there are no blocks allocated to the
1256 * file beyond the size of the file. We don't check this for
1257 * files with fixed size extents or real time extents, but we
1258 * at least do it for regular files.
1259 */
1260#ifdef DEBUG
1261void
1262xfs_isize_check(
1263 xfs_mount_t *mp,
1264 xfs_inode_t *ip,
1265 xfs_fsize_t isize)
1266{
1267 xfs_fileoff_t map_first;
1268 int nimaps;
1269 xfs_bmbt_irec_t imaps[2];
1270
1271 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1272 return;
1273
Nathan Scottdd9f4382006-01-11 15:28:28 +11001274 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 return;
1276
1277 nimaps = 2;
1278 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1279 /*
1280 * The filesystem could be shutting down, so bmapi may return
1281 * an error.
1282 */
1283 if (xfs_bmapi(NULL, ip, map_first,
1284 (XFS_B_TO_FSB(mp,
1285 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1286 map_first),
1287 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1288 NULL))
1289 return;
1290 ASSERT(nimaps == 1);
1291 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1292}
1293#endif /* DEBUG */
1294
1295/*
1296 * Calculate the last possible buffered byte in a file. This must
1297 * include data that was buffered beyond the EOF by the write code.
1298 * This also needs to deal with overflowing the xfs_fsize_t type
1299 * which can happen for sizes near the limit.
1300 *
1301 * We also need to take into account any blocks beyond the EOF. It
1302 * may be the case that they were buffered by a write which failed.
1303 * In that case the pages will still be in memory, but the inode size
1304 * will never have been updated.
1305 */
1306xfs_fsize_t
1307xfs_file_last_byte(
1308 xfs_inode_t *ip)
1309{
1310 xfs_mount_t *mp;
1311 xfs_fsize_t last_byte;
1312 xfs_fileoff_t last_block;
1313 xfs_fileoff_t size_last_block;
1314 int error;
1315
1316 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1317
1318 mp = ip->i_mount;
1319 /*
1320 * Only check for blocks beyond the EOF if the extents have
1321 * been read in. This eliminates the need for the inode lock,
1322 * and it also saves us from looking when it really isn't
1323 * necessary.
1324 */
1325 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1326 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1327 XFS_DATA_FORK);
1328 if (error) {
1329 last_block = 0;
1330 }
1331 } else {
1332 last_block = 0;
1333 }
1334 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1335 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1336
1337 last_byte = XFS_FSB_TO_B(mp, last_block);
1338 if (last_byte < 0) {
1339 return XFS_MAXIOFFSET(mp);
1340 }
1341 last_byte += (1 << mp->m_writeio_log);
1342 if (last_byte < 0) {
1343 return XFS_MAXIOFFSET(mp);
1344 }
1345 return last_byte;
1346}
1347
1348#if defined(XFS_RW_TRACE)
1349STATIC void
1350xfs_itrunc_trace(
1351 int tag,
1352 xfs_inode_t *ip,
1353 int flag,
1354 xfs_fsize_t new_size,
1355 xfs_off_t toss_start,
1356 xfs_off_t toss_finish)
1357{
1358 if (ip->i_rwtrace == NULL) {
1359 return;
1360 }
1361
1362 ktrace_enter(ip->i_rwtrace,
1363 (void*)((long)tag),
1364 (void*)ip,
1365 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1366 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1367 (void*)((long)flag),
1368 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1369 (void*)(unsigned long)(new_size & 0xffffffff),
1370 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1371 (void*)(unsigned long)(toss_start & 0xffffffff),
1372 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1373 (void*)(unsigned long)(toss_finish & 0xffffffff),
1374 (void*)(unsigned long)current_cpu(),
Yingping Luf1fdc842006-03-22 12:44:15 +11001375 (void*)(unsigned long)current_pid(),
1376 (void*)NULL,
1377 (void*)NULL,
1378 (void*)NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379}
1380#else
1381#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1382#endif
1383
1384/*
1385 * Start the truncation of the file to new_size. The new size
1386 * must be smaller than the current size. This routine will
1387 * clear the buffer and page caches of file data in the removed
1388 * range, and xfs_itruncate_finish() will remove the underlying
1389 * disk blocks.
1390 *
1391 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1392 * must NOT have the inode lock held at all. This is because we're
1393 * calling into the buffer/page cache code and we can't hold the
1394 * inode lock when we do so.
1395 *
1396 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1397 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1398 * in the case that the caller is locking things out of order and
1399 * may not be able to call xfs_itruncate_finish() with the inode lock
1400 * held without dropping the I/O lock. If the caller must drop the
1401 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1402 * must be called again with all the same restrictions as the initial
1403 * call.
1404 */
1405void
1406xfs_itruncate_start(
1407 xfs_inode_t *ip,
1408 uint flags,
1409 xfs_fsize_t new_size)
1410{
1411 xfs_fsize_t last_byte;
1412 xfs_off_t toss_start;
1413 xfs_mount_t *mp;
1414 vnode_t *vp;
1415
1416 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1417 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1418 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1419 (flags == XFS_ITRUNC_MAYBE));
1420
1421 mp = ip->i_mount;
1422 vp = XFS_ITOV(ip);
Yingping Lu9fa80462006-03-22 12:44:35 +11001423
1424 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1425
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 /*
1427 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1428 * overlapping the region being removed. We have to use
1429 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1430 * caller may not be able to finish the truncate without
1431 * dropping the inode's I/O lock. Make sure
1432 * to catch any pages brought in by buffers overlapping
1433 * the EOF by searching out beyond the isize by our
1434 * block size. We round new_size up to a block boundary
1435 * so that we don't toss things on the same block as
1436 * new_size but before it.
1437 *
1438 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1439 * call remapf() over the same region if the file is mapped.
1440 * This frees up mapped file references to the pages in the
1441 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1442 * that we get the latest mapped changes flushed out.
1443 */
1444 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1445 toss_start = XFS_FSB_TO_B(mp, toss_start);
1446 if (toss_start < 0) {
1447 /*
1448 * The place to start tossing is beyond our maximum
1449 * file size, so there is no way that the data extended
1450 * out there.
1451 */
1452 return;
1453 }
1454 last_byte = xfs_file_last_byte(ip);
1455 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1456 last_byte);
1457 if (last_byte > toss_start) {
1458 if (flags & XFS_ITRUNC_DEFINITE) {
1459 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1460 } else {
1461 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1462 }
1463 }
1464
1465#ifdef DEBUG
1466 if (new_size == 0) {
1467 ASSERT(VN_CACHED(vp) == 0);
1468 }
1469#endif
1470}
1471
1472/*
1473 * Shrink the file to the given new_size. The new
1474 * size must be smaller than the current size.
1475 * This will free up the underlying blocks
1476 * in the removed range after a call to xfs_itruncate_start()
1477 * or xfs_atruncate_start().
1478 *
1479 * The transaction passed to this routine must have made
1480 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1481 * This routine may commit the given transaction and
1482 * start new ones, so make sure everything involved in
1483 * the transaction is tidy before calling here.
1484 * Some transaction will be returned to the caller to be
1485 * committed. The incoming transaction must already include
1486 * the inode, and both inode locks must be held exclusively.
1487 * The inode must also be "held" within the transaction. On
1488 * return the inode will be "held" within the returned transaction.
1489 * This routine does NOT require any disk space to be reserved
1490 * for it within the transaction.
1491 *
1492 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1493 * and it indicates the fork which is to be truncated. For the
1494 * attribute fork we only support truncation to size 0.
1495 *
1496 * We use the sync parameter to indicate whether or not the first
1497 * transaction we perform might have to be synchronous. For the attr fork,
1498 * it needs to be so if the unlink of the inode is not yet known to be
1499 * permanent in the log. This keeps us from freeing and reusing the
1500 * blocks of the attribute fork before the unlink of the inode becomes
1501 * permanent.
1502 *
1503 * For the data fork, we normally have to run synchronously if we're
1504 * being called out of the inactive path or we're being called
1505 * out of the create path where we're truncating an existing file.
1506 * Either way, the truncate needs to be sync so blocks don't reappear
1507 * in the file with altered data in case of a crash. wsync filesystems
1508 * can run the first case async because anything that shrinks the inode
1509 * has to run sync so by the time we're called here from inactive, the
1510 * inode size is permanently set to 0.
1511 *
1512 * Calls from the truncate path always need to be sync unless we're
1513 * in a wsync filesystem and the file has already been unlinked.
1514 *
1515 * The caller is responsible for correctly setting the sync parameter.
1516 * It gets too hard for us to guess here which path we're being called
1517 * out of just based on inode state.
1518 */
1519int
1520xfs_itruncate_finish(
1521 xfs_trans_t **tp,
1522 xfs_inode_t *ip,
1523 xfs_fsize_t new_size,
1524 int fork,
1525 int sync)
1526{
1527 xfs_fsblock_t first_block;
1528 xfs_fileoff_t first_unmap_block;
1529 xfs_fileoff_t last_block;
1530 xfs_filblks_t unmap_len=0;
1531 xfs_mount_t *mp;
1532 xfs_trans_t *ntp;
1533 int done;
1534 int committed;
1535 xfs_bmap_free_t free_list;
1536 int error;
1537
1538 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1539 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1540 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1541 ASSERT(*tp != NULL);
1542 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1543 ASSERT(ip->i_transp == *tp);
1544 ASSERT(ip->i_itemp != NULL);
1545 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1546
1547
1548 ntp = *tp;
1549 mp = (ntp)->t_mountp;
1550 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1551
1552 /*
1553 * We only support truncating the entire attribute fork.
1554 */
1555 if (fork == XFS_ATTR_FORK) {
1556 new_size = 0LL;
1557 }
1558 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1559 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1560 /*
1561 * The first thing we do is set the size to new_size permanently
1562 * on disk. This way we don't have to worry about anyone ever
1563 * being able to look at the data being freed even in the face
1564 * of a crash. What we're getting around here is the case where
1565 * we free a block, it is allocated to another file, it is written
1566 * to, and then we crash. If the new data gets written to the
1567 * file but the log buffers containing the free and reallocation
1568 * don't, then we'd end up with garbage in the blocks being freed.
1569 * As long as we make the new_size permanent before actually
1570 * freeing any blocks it doesn't matter if they get writtten to.
1571 *
1572 * The callers must signal into us whether or not the size
1573 * setting here must be synchronous. There are a few cases
1574 * where it doesn't have to be synchronous. Those cases
1575 * occur if the file is unlinked and we know the unlink is
1576 * permanent or if the blocks being truncated are guaranteed
1577 * to be beyond the inode eof (regardless of the link count)
1578 * and the eof value is permanent. Both of these cases occur
1579 * only on wsync-mounted filesystems. In those cases, we're
1580 * guaranteed that no user will ever see the data in the blocks
1581 * that are being truncated so the truncate can run async.
1582 * In the free beyond eof case, the file may wind up with
1583 * more blocks allocated to it than it needs if we crash
1584 * and that won't get fixed until the next time the file
1585 * is re-opened and closed but that's ok as that shouldn't
1586 * be too many blocks.
1587 *
1588 * However, we can't just make all wsync xactions run async
1589 * because there's one call out of the create path that needs
1590 * to run sync where it's truncating an existing file to size
1591 * 0 whose size is > 0.
1592 *
1593 * It's probably possible to come up with a test in this
1594 * routine that would correctly distinguish all the above
1595 * cases from the values of the function parameters and the
1596 * inode state but for sanity's sake, I've decided to let the
1597 * layers above just tell us. It's simpler to correctly figure
1598 * out in the layer above exactly under what conditions we
1599 * can run async and I think it's easier for others read and
1600 * follow the logic in case something has to be changed.
1601 * cscope is your friend -- rcc.
1602 *
1603 * The attribute fork is much simpler.
1604 *
1605 * For the attribute fork we allow the caller to tell us whether
1606 * the unlink of the inode that led to this call is yet permanent
1607 * in the on disk log. If it is not and we will be freeing extents
1608 * in this inode then we make the first transaction synchronous
1609 * to make sure that the unlink is permanent by the time we free
1610 * the blocks.
1611 */
1612 if (fork == XFS_DATA_FORK) {
1613 if (ip->i_d.di_nextents > 0) {
1614 ip->i_d.di_size = new_size;
1615 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1616 }
1617 } else if (sync) {
1618 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1619 if (ip->i_d.di_anextents > 0)
1620 xfs_trans_set_sync(ntp);
1621 }
1622 ASSERT(fork == XFS_DATA_FORK ||
1623 (fork == XFS_ATTR_FORK &&
1624 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1625 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1626
1627 /*
1628 * Since it is possible for space to become allocated beyond
1629 * the end of the file (in a crash where the space is allocated
1630 * but the inode size is not yet updated), simply remove any
1631 * blocks which show up between the new EOF and the maximum
1632 * possible file size. If the first block to be removed is
1633 * beyond the maximum file size (ie it is the same as last_block),
1634 * then there is nothing to do.
1635 */
1636 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1637 ASSERT(first_unmap_block <= last_block);
1638 done = 0;
1639 if (last_block == first_unmap_block) {
1640 done = 1;
1641 } else {
1642 unmap_len = last_block - first_unmap_block + 1;
1643 }
1644 while (!done) {
1645 /*
1646 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1647 * will tell us whether it freed the entire range or
1648 * not. If this is a synchronous mount (wsync),
1649 * then we can tell bunmapi to keep all the
1650 * transactions asynchronous since the unlink
1651 * transaction that made this inode inactive has
1652 * already hit the disk. There's no danger of
1653 * the freed blocks being reused, there being a
1654 * crash, and the reused blocks suddenly reappearing
1655 * in this file with garbage in them once recovery
1656 * runs.
1657 */
1658 XFS_BMAP_INIT(&free_list, &first_block);
1659 error = xfs_bunmapi(ntp, ip, first_unmap_block,
1660 unmap_len,
1661 XFS_BMAPI_AFLAG(fork) |
1662 (sync ? 0 : XFS_BMAPI_ASYNC),
1663 XFS_ITRUNC_MAX_EXTENTS,
1664 &first_block, &free_list, &done);
1665 if (error) {
1666 /*
1667 * If the bunmapi call encounters an error,
1668 * return to the caller where the transaction
1669 * can be properly aborted. We just need to
1670 * make sure we're not holding any resources
1671 * that we were not when we came in.
1672 */
1673 xfs_bmap_cancel(&free_list);
1674 return error;
1675 }
1676
1677 /*
1678 * Duplicate the transaction that has the permanent
1679 * reservation and commit the old transaction.
1680 */
1681 error = xfs_bmap_finish(tp, &free_list, first_block,
1682 &committed);
1683 ntp = *tp;
1684 if (error) {
1685 /*
1686 * If the bmap finish call encounters an error,
1687 * return to the caller where the transaction
1688 * can be properly aborted. We just need to
1689 * make sure we're not holding any resources
1690 * that we were not when we came in.
1691 *
1692 * Aborting from this point might lose some
1693 * blocks in the file system, but oh well.
1694 */
1695 xfs_bmap_cancel(&free_list);
1696 if (committed) {
1697 /*
1698 * If the passed in transaction committed
1699 * in xfs_bmap_finish(), then we want to
1700 * add the inode to this one before returning.
1701 * This keeps things simple for the higher
1702 * level code, because it always knows that
1703 * the inode is locked and held in the
1704 * transaction that returns to it whether
1705 * errors occur or not. We don't mark the
1706 * inode dirty so that this transaction can
1707 * be easily aborted if possible.
1708 */
1709 xfs_trans_ijoin(ntp, ip,
1710 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1711 xfs_trans_ihold(ntp, ip);
1712 }
1713 return error;
1714 }
1715
1716 if (committed) {
1717 /*
1718 * The first xact was committed,
1719 * so add the inode to the new one.
1720 * Mark it dirty so it will be logged
1721 * and moved forward in the log as
1722 * part of every commit.
1723 */
1724 xfs_trans_ijoin(ntp, ip,
1725 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1726 xfs_trans_ihold(ntp, ip);
1727 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1728 }
1729 ntp = xfs_trans_dup(ntp);
1730 (void) xfs_trans_commit(*tp, 0, NULL);
1731 *tp = ntp;
1732 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1733 XFS_TRANS_PERM_LOG_RES,
1734 XFS_ITRUNCATE_LOG_COUNT);
1735 /*
1736 * Add the inode being truncated to the next chained
1737 * transaction.
1738 */
1739 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1740 xfs_trans_ihold(ntp, ip);
1741 if (error)
1742 return (error);
1743 }
1744 /*
1745 * Only update the size in the case of the data fork, but
1746 * always re-log the inode so that our permanent transaction
1747 * can keep on rolling it forward in the log.
1748 */
1749 if (fork == XFS_DATA_FORK) {
1750 xfs_isize_check(mp, ip, new_size);
1751 ip->i_d.di_size = new_size;
1752 }
1753 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1754 ASSERT((new_size != 0) ||
1755 (fork == XFS_ATTR_FORK) ||
1756 (ip->i_delayed_blks == 0));
1757 ASSERT((new_size != 0) ||
1758 (fork == XFS_ATTR_FORK) ||
1759 (ip->i_d.di_nextents == 0));
1760 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1761 return 0;
1762}
1763
1764
1765/*
1766 * xfs_igrow_start
1767 *
1768 * Do the first part of growing a file: zero any data in the last
1769 * block that is beyond the old EOF. We need to do this before
1770 * the inode is joined to the transaction to modify the i_size.
1771 * That way we can drop the inode lock and call into the buffer
1772 * cache to get the buffer mapping the EOF.
1773 */
1774int
1775xfs_igrow_start(
1776 xfs_inode_t *ip,
1777 xfs_fsize_t new_size,
1778 cred_t *credp)
1779{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780 int error;
1781
1782 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1783 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1784 ASSERT(new_size > ip->i_d.di_size);
1785
Linus Torvalds1da177e2005-04-16 15:20:36 -07001786 /*
1787 * Zero any pages that may have been created by
1788 * xfs_write_file() beyond the end of the file
1789 * and any blocks between the old and new file sizes.
1790 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001791 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1792 ip->i_d.di_size, new_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793 return error;
1794}
1795
1796/*
1797 * xfs_igrow_finish
1798 *
1799 * This routine is called to extend the size of a file.
1800 * The inode must have both the iolock and the ilock locked
1801 * for update and it must be a part of the current transaction.
1802 * The xfs_igrow_start() function must have been called previously.
1803 * If the change_flag is not zero, the inode change timestamp will
1804 * be updated.
1805 */
1806void
1807xfs_igrow_finish(
1808 xfs_trans_t *tp,
1809 xfs_inode_t *ip,
1810 xfs_fsize_t new_size,
1811 int change_flag)
1812{
1813 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1814 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1815 ASSERT(ip->i_transp == tp);
1816 ASSERT(new_size > ip->i_d.di_size);
1817
1818 /*
1819 * Update the file size. Update the inode change timestamp
1820 * if change_flag set.
1821 */
1822 ip->i_d.di_size = new_size;
1823 if (change_flag)
1824 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1825 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1826
1827}
1828
1829
1830/*
1831 * This is called when the inode's link count goes to 0.
1832 * We place the on-disk inode on a list in the AGI. It
1833 * will be pulled from this list when the inode is freed.
1834 */
1835int
1836xfs_iunlink(
1837 xfs_trans_t *tp,
1838 xfs_inode_t *ip)
1839{
1840 xfs_mount_t *mp;
1841 xfs_agi_t *agi;
1842 xfs_dinode_t *dip;
1843 xfs_buf_t *agibp;
1844 xfs_buf_t *ibp;
1845 xfs_agnumber_t agno;
1846 xfs_daddr_t agdaddr;
1847 xfs_agino_t agino;
1848 short bucket_index;
1849 int offset;
1850 int error;
1851 int agi_ok;
1852
1853 ASSERT(ip->i_d.di_nlink == 0);
1854 ASSERT(ip->i_d.di_mode != 0);
1855 ASSERT(ip->i_transp == tp);
1856
1857 mp = tp->t_mountp;
1858
1859 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1860 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1861
1862 /*
1863 * Get the agi buffer first. It ensures lock ordering
1864 * on the list.
1865 */
1866 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1867 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1868 if (error) {
1869 return error;
1870 }
1871 /*
1872 * Validate the magic number of the agi block.
1873 */
1874 agi = XFS_BUF_TO_AGI(agibp);
1875 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001876 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1877 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001878 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1879 XFS_RANDOM_IUNLINK))) {
1880 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1881 xfs_trans_brelse(tp, agibp);
1882 return XFS_ERROR(EFSCORRUPTED);
1883 }
1884 /*
1885 * Get the index into the agi hash table for the
1886 * list this inode will go on.
1887 */
1888 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1889 ASSERT(agino != 0);
1890 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1891 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001892 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001893
Christoph Hellwig16259e72005-11-02 15:11:25 +11001894 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001895 /*
1896 * There is already another inode in the bucket we need
1897 * to add ourselves to. Add us at the front of the list.
1898 * Here we put the head pointer into our next pointer,
1899 * and then we fall through to point the head at us.
1900 */
Nathan Scottb12dd342006-03-17 17:26:04 +11001901 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001902 if (error) {
1903 return error;
1904 }
1905 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1906 ASSERT(dip->di_next_unlinked);
1907 /* both on-disk, don't endian flip twice */
1908 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1909 offset = ip->i_boffset +
1910 offsetof(xfs_dinode_t, di_next_unlinked);
1911 xfs_trans_inode_buf(tp, ibp);
1912 xfs_trans_log_buf(tp, ibp, offset,
1913 (offset + sizeof(xfs_agino_t) - 1));
1914 xfs_inobp_check(mp, ibp);
1915 }
1916
1917 /*
1918 * Point the bucket head pointer at the inode being inserted.
1919 */
1920 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001921 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922 offset = offsetof(xfs_agi_t, agi_unlinked) +
1923 (sizeof(xfs_agino_t) * bucket_index);
1924 xfs_trans_log_buf(tp, agibp, offset,
1925 (offset + sizeof(xfs_agino_t) - 1));
1926 return 0;
1927}
1928
1929/*
1930 * Pull the on-disk inode from the AGI unlinked list.
1931 */
1932STATIC int
1933xfs_iunlink_remove(
1934 xfs_trans_t *tp,
1935 xfs_inode_t *ip)
1936{
1937 xfs_ino_t next_ino;
1938 xfs_mount_t *mp;
1939 xfs_agi_t *agi;
1940 xfs_dinode_t *dip;
1941 xfs_buf_t *agibp;
1942 xfs_buf_t *ibp;
1943 xfs_agnumber_t agno;
1944 xfs_daddr_t agdaddr;
1945 xfs_agino_t agino;
1946 xfs_agino_t next_agino;
1947 xfs_buf_t *last_ibp;
1948 xfs_dinode_t *last_dip;
1949 short bucket_index;
1950 int offset, last_offset;
1951 int error;
1952 int agi_ok;
1953
1954 /*
1955 * First pull the on-disk inode from the AGI unlinked list.
1956 */
1957 mp = tp->t_mountp;
1958
1959 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1960 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1961
1962 /*
1963 * Get the agi buffer first. It ensures lock ordering
1964 * on the list.
1965 */
1966 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1967 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1968 if (error) {
1969 cmn_err(CE_WARN,
1970 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1971 error, mp->m_fsname);
1972 return error;
1973 }
1974 /*
1975 * Validate the magic number of the agi block.
1976 */
1977 agi = XFS_BUF_TO_AGI(agibp);
1978 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001979 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1980 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1982 XFS_RANDOM_IUNLINK_REMOVE))) {
1983 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1984 mp, agi);
1985 xfs_trans_brelse(tp, agibp);
1986 cmn_err(CE_WARN,
1987 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1988 mp->m_fsname);
1989 return XFS_ERROR(EFSCORRUPTED);
1990 }
1991 /*
1992 * Get the index into the agi hash table for the
1993 * list this inode will go on.
1994 */
1995 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1996 ASSERT(agino != 0);
1997 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11001998 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999 ASSERT(agi->agi_unlinked[bucket_index]);
2000
Christoph Hellwig16259e72005-11-02 15:11:25 +11002001 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002002 /*
2003 * We're at the head of the list. Get the inode's
2004 * on-disk buffer to see if there is anyone after us
2005 * on the list. Only modify our next pointer if it
2006 * is not already NULLAGINO. This saves us the overhead
2007 * of dealing with the buffer when there is no need to
2008 * change it.
2009 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002010 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002011 if (error) {
2012 cmn_err(CE_WARN,
2013 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2014 error, mp->m_fsname);
2015 return error;
2016 }
2017 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2018 ASSERT(next_agino != 0);
2019 if (next_agino != NULLAGINO) {
2020 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2021 offset = ip->i_boffset +
2022 offsetof(xfs_dinode_t, di_next_unlinked);
2023 xfs_trans_inode_buf(tp, ibp);
2024 xfs_trans_log_buf(tp, ibp, offset,
2025 (offset + sizeof(xfs_agino_t) - 1));
2026 xfs_inobp_check(mp, ibp);
2027 } else {
2028 xfs_trans_brelse(tp, ibp);
2029 }
2030 /*
2031 * Point the bucket head pointer at the next inode.
2032 */
2033 ASSERT(next_agino != 0);
2034 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002035 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002036 offset = offsetof(xfs_agi_t, agi_unlinked) +
2037 (sizeof(xfs_agino_t) * bucket_index);
2038 xfs_trans_log_buf(tp, agibp, offset,
2039 (offset + sizeof(xfs_agino_t) - 1));
2040 } else {
2041 /*
2042 * We need to search the list for the inode being freed.
2043 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002044 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002045 last_ibp = NULL;
2046 while (next_agino != agino) {
2047 /*
2048 * If the last inode wasn't the one pointing to
2049 * us, then release its buffer since we're not
2050 * going to do anything with it.
2051 */
2052 if (last_ibp != NULL) {
2053 xfs_trans_brelse(tp, last_ibp);
2054 }
2055 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2056 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2057 &last_ibp, &last_offset);
2058 if (error) {
2059 cmn_err(CE_WARN,
2060 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2061 error, mp->m_fsname);
2062 return error;
2063 }
2064 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2065 ASSERT(next_agino != NULLAGINO);
2066 ASSERT(next_agino != 0);
2067 }
2068 /*
2069 * Now last_ibp points to the buffer previous to us on
2070 * the unlinked list. Pull us from the list.
2071 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002072 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002073 if (error) {
2074 cmn_err(CE_WARN,
2075 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2076 error, mp->m_fsname);
2077 return error;
2078 }
2079 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2080 ASSERT(next_agino != 0);
2081 ASSERT(next_agino != agino);
2082 if (next_agino != NULLAGINO) {
2083 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2084 offset = ip->i_boffset +
2085 offsetof(xfs_dinode_t, di_next_unlinked);
2086 xfs_trans_inode_buf(tp, ibp);
2087 xfs_trans_log_buf(tp, ibp, offset,
2088 (offset + sizeof(xfs_agino_t) - 1));
2089 xfs_inobp_check(mp, ibp);
2090 } else {
2091 xfs_trans_brelse(tp, ibp);
2092 }
2093 /*
2094 * Point the previous inode on the list to the next inode.
2095 */
2096 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2097 ASSERT(next_agino != 0);
2098 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2099 xfs_trans_inode_buf(tp, last_ibp);
2100 xfs_trans_log_buf(tp, last_ibp, offset,
2101 (offset + sizeof(xfs_agino_t) - 1));
2102 xfs_inobp_check(mp, last_ibp);
2103 }
2104 return 0;
2105}
2106
2107static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2108{
2109 return (((ip->i_itemp == NULL) ||
2110 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2111 (ip->i_update_core == 0));
2112}
2113
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002114STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115xfs_ifree_cluster(
2116 xfs_inode_t *free_ip,
2117 xfs_trans_t *tp,
2118 xfs_ino_t inum)
2119{
2120 xfs_mount_t *mp = free_ip->i_mount;
2121 int blks_per_cluster;
2122 int nbufs;
2123 int ninodes;
2124 int i, j, found, pre_flushed;
2125 xfs_daddr_t blkno;
2126 xfs_buf_t *bp;
2127 xfs_ihash_t *ih;
2128 xfs_inode_t *ip, **ip_found;
2129 xfs_inode_log_item_t *iip;
2130 xfs_log_item_t *lip;
2131 SPLDECL(s);
2132
2133 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2134 blks_per_cluster = 1;
2135 ninodes = mp->m_sb.sb_inopblock;
2136 nbufs = XFS_IALLOC_BLOCKS(mp);
2137 } else {
2138 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2139 mp->m_sb.sb_blocksize;
2140 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2141 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2142 }
2143
2144 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2145
2146 for (j = 0; j < nbufs; j++, inum += ninodes) {
2147 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2148 XFS_INO_TO_AGBNO(mp, inum));
2149
2150
2151 /*
2152 * Look for each inode in memory and attempt to lock it,
2153 * we can be racing with flush and tail pushing here.
2154 * any inode we get the locks on, add to an array of
2155 * inode items to process later.
2156 *
2157 * The get the buffer lock, we could beat a flush
2158 * or tail pushing thread to the lock here, in which
2159 * case they will go looking for the inode buffer
2160 * and fail, we need some other form of interlock
2161 * here.
2162 */
2163 found = 0;
2164 for (i = 0; i < ninodes; i++) {
2165 ih = XFS_IHASH(mp, inum + i);
2166 read_lock(&ih->ih_lock);
2167 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2168 if (ip->i_ino == inum + i)
2169 break;
2170 }
2171
2172 /* Inode not in memory or we found it already,
2173 * nothing to do
2174 */
2175 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2176 read_unlock(&ih->ih_lock);
2177 continue;
2178 }
2179
2180 if (xfs_inode_clean(ip)) {
2181 read_unlock(&ih->ih_lock);
2182 continue;
2183 }
2184
2185 /* If we can get the locks then add it to the
2186 * list, otherwise by the time we get the bp lock
2187 * below it will already be attached to the
2188 * inode buffer.
2189 */
2190
2191 /* This inode will already be locked - by us, lets
2192 * keep it that way.
2193 */
2194
2195 if (ip == free_ip) {
2196 if (xfs_iflock_nowait(ip)) {
2197 ip->i_flags |= XFS_ISTALE;
2198
2199 if (xfs_inode_clean(ip)) {
2200 xfs_ifunlock(ip);
2201 } else {
2202 ip_found[found++] = ip;
2203 }
2204 }
2205 read_unlock(&ih->ih_lock);
2206 continue;
2207 }
2208
2209 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2210 if (xfs_iflock_nowait(ip)) {
2211 ip->i_flags |= XFS_ISTALE;
2212
2213 if (xfs_inode_clean(ip)) {
2214 xfs_ifunlock(ip);
2215 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2216 } else {
2217 ip_found[found++] = ip;
2218 }
2219 } else {
2220 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2221 }
2222 }
2223
2224 read_unlock(&ih->ih_lock);
2225 }
2226
2227 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2228 mp->m_bsize * blks_per_cluster,
2229 XFS_BUF_LOCK);
2230
2231 pre_flushed = 0;
2232 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2233 while (lip) {
2234 if (lip->li_type == XFS_LI_INODE) {
2235 iip = (xfs_inode_log_item_t *)lip;
2236 ASSERT(iip->ili_logged == 1);
2237 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2238 AIL_LOCK(mp,s);
2239 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2240 AIL_UNLOCK(mp, s);
2241 iip->ili_inode->i_flags |= XFS_ISTALE;
2242 pre_flushed++;
2243 }
2244 lip = lip->li_bio_list;
2245 }
2246
2247 for (i = 0; i < found; i++) {
2248 ip = ip_found[i];
2249 iip = ip->i_itemp;
2250
2251 if (!iip) {
2252 ip->i_update_core = 0;
2253 xfs_ifunlock(ip);
2254 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2255 continue;
2256 }
2257
2258 iip->ili_last_fields = iip->ili_format.ilf_fields;
2259 iip->ili_format.ilf_fields = 0;
2260 iip->ili_logged = 1;
2261 AIL_LOCK(mp,s);
2262 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2263 AIL_UNLOCK(mp, s);
2264
2265 xfs_buf_attach_iodone(bp,
2266 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2267 xfs_istale_done, (xfs_log_item_t *)iip);
2268 if (ip != free_ip) {
2269 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2270 }
2271 }
2272
2273 if (found || pre_flushed)
2274 xfs_trans_stale_inode_buf(tp, bp);
2275 xfs_trans_binval(tp, bp);
2276 }
2277
2278 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2279}
2280
2281/*
2282 * This is called to return an inode to the inode free list.
2283 * The inode should already be truncated to 0 length and have
2284 * no pages associated with it. This routine also assumes that
2285 * the inode is already a part of the transaction.
2286 *
2287 * The on-disk copy of the inode will have been added to the list
2288 * of unlinked inodes in the AGI. We need to remove the inode from
2289 * that list atomically with respect to freeing it here.
2290 */
2291int
2292xfs_ifree(
2293 xfs_trans_t *tp,
2294 xfs_inode_t *ip,
2295 xfs_bmap_free_t *flist)
2296{
2297 int error;
2298 int delete;
2299 xfs_ino_t first_ino;
2300
2301 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2302 ASSERT(ip->i_transp == tp);
2303 ASSERT(ip->i_d.di_nlink == 0);
2304 ASSERT(ip->i_d.di_nextents == 0);
2305 ASSERT(ip->i_d.di_anextents == 0);
2306 ASSERT((ip->i_d.di_size == 0) ||
2307 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2308 ASSERT(ip->i_d.di_nblocks == 0);
2309
2310 /*
2311 * Pull the on-disk inode from the AGI unlinked list.
2312 */
2313 error = xfs_iunlink_remove(tp, ip);
2314 if (error != 0) {
2315 return error;
2316 }
2317
2318 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2319 if (error != 0) {
2320 return error;
2321 }
2322 ip->i_d.di_mode = 0; /* mark incore inode as free */
2323 ip->i_d.di_flags = 0;
2324 ip->i_d.di_dmevmask = 0;
2325 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2326 ip->i_df.if_ext_max =
2327 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2328 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2329 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2330 /*
2331 * Bump the generation count so no one will be confused
2332 * by reincarnations of this inode.
2333 */
2334 ip->i_d.di_gen++;
2335 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2336
2337 if (delete) {
2338 xfs_ifree_cluster(ip, tp, first_ino);
2339 }
2340
2341 return 0;
2342}
2343
2344/*
2345 * Reallocate the space for if_broot based on the number of records
2346 * being added or deleted as indicated in rec_diff. Move the records
2347 * and pointers in if_broot to fit the new size. When shrinking this
2348 * will eliminate holes between the records and pointers created by
2349 * the caller. When growing this will create holes to be filled in
2350 * by the caller.
2351 *
2352 * The caller must not request to add more records than would fit in
2353 * the on-disk inode root. If the if_broot is currently NULL, then
2354 * if we adding records one will be allocated. The caller must also
2355 * not request that the number of records go below zero, although
2356 * it can go to zero.
2357 *
2358 * ip -- the inode whose if_broot area is changing
2359 * ext_diff -- the change in the number of records, positive or negative,
2360 * requested for the if_broot array.
2361 */
2362void
2363xfs_iroot_realloc(
2364 xfs_inode_t *ip,
2365 int rec_diff,
2366 int whichfork)
2367{
2368 int cur_max;
2369 xfs_ifork_t *ifp;
2370 xfs_bmbt_block_t *new_broot;
2371 int new_max;
2372 size_t new_size;
2373 char *np;
2374 char *op;
2375
2376 /*
2377 * Handle the degenerate case quietly.
2378 */
2379 if (rec_diff == 0) {
2380 return;
2381 }
2382
2383 ifp = XFS_IFORK_PTR(ip, whichfork);
2384 if (rec_diff > 0) {
2385 /*
2386 * If there wasn't any memory allocated before, just
2387 * allocate it now and get out.
2388 */
2389 if (ifp->if_broot_bytes == 0) {
2390 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2391 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2392 KM_SLEEP);
2393 ifp->if_broot_bytes = (int)new_size;
2394 return;
2395 }
2396
2397 /*
2398 * If there is already an existing if_broot, then we need
2399 * to realloc() it and shift the pointers to their new
2400 * location. The records don't change location because
2401 * they are kept butted up against the btree block header.
2402 */
2403 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2404 new_max = cur_max + rec_diff;
2405 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2406 ifp->if_broot = (xfs_bmbt_block_t *)
2407 kmem_realloc(ifp->if_broot,
2408 new_size,
2409 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2410 KM_SLEEP);
2411 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2412 ifp->if_broot_bytes);
2413 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2414 (int)new_size);
2415 ifp->if_broot_bytes = (int)new_size;
2416 ASSERT(ifp->if_broot_bytes <=
2417 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2418 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2419 return;
2420 }
2421
2422 /*
2423 * rec_diff is less than 0. In this case, we are shrinking the
2424 * if_broot buffer. It must already exist. If we go to zero
2425 * records, just get rid of the root and clear the status bit.
2426 */
2427 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2428 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2429 new_max = cur_max + rec_diff;
2430 ASSERT(new_max >= 0);
2431 if (new_max > 0)
2432 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2433 else
2434 new_size = 0;
2435 if (new_size > 0) {
2436 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2437 /*
2438 * First copy over the btree block header.
2439 */
2440 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2441 } else {
2442 new_broot = NULL;
2443 ifp->if_flags &= ~XFS_IFBROOT;
2444 }
2445
2446 /*
2447 * Only copy the records and pointers if there are any.
2448 */
2449 if (new_max > 0) {
2450 /*
2451 * First copy the records.
2452 */
2453 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2454 ifp->if_broot_bytes);
2455 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2456 (int)new_size);
2457 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2458
2459 /*
2460 * Then copy the pointers.
2461 */
2462 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2463 ifp->if_broot_bytes);
2464 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2465 (int)new_size);
2466 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2467 }
2468 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2469 ifp->if_broot = new_broot;
2470 ifp->if_broot_bytes = (int)new_size;
2471 ASSERT(ifp->if_broot_bytes <=
2472 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2473 return;
2474}
2475
2476
2477/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002478 * This is called when the amount of space needed for if_data
2479 * is increased or decreased. The change in size is indicated by
2480 * the number of bytes that need to be added or deleted in the
2481 * byte_diff parameter.
2482 *
2483 * If the amount of space needed has decreased below the size of the
2484 * inline buffer, then switch to using the inline buffer. Otherwise,
2485 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2486 * to what is needed.
2487 *
2488 * ip -- the inode whose if_data area is changing
2489 * byte_diff -- the change in the number of bytes, positive or negative,
2490 * requested for the if_data array.
2491 */
2492void
2493xfs_idata_realloc(
2494 xfs_inode_t *ip,
2495 int byte_diff,
2496 int whichfork)
2497{
2498 xfs_ifork_t *ifp;
2499 int new_size;
2500 int real_size;
2501
2502 if (byte_diff == 0) {
2503 return;
2504 }
2505
2506 ifp = XFS_IFORK_PTR(ip, whichfork);
2507 new_size = (int)ifp->if_bytes + byte_diff;
2508 ASSERT(new_size >= 0);
2509
2510 if (new_size == 0) {
2511 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2512 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2513 }
2514 ifp->if_u1.if_data = NULL;
2515 real_size = 0;
2516 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2517 /*
2518 * If the valid extents/data can fit in if_inline_ext/data,
2519 * copy them from the malloc'd vector and free it.
2520 */
2521 if (ifp->if_u1.if_data == NULL) {
2522 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2523 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2524 ASSERT(ifp->if_real_bytes != 0);
2525 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2526 new_size);
2527 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2528 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2529 }
2530 real_size = 0;
2531 } else {
2532 /*
2533 * Stuck with malloc/realloc.
2534 * For inline data, the underlying buffer must be
2535 * a multiple of 4 bytes in size so that it can be
2536 * logged and stay on word boundaries. We enforce
2537 * that here.
2538 */
2539 real_size = roundup(new_size, 4);
2540 if (ifp->if_u1.if_data == NULL) {
2541 ASSERT(ifp->if_real_bytes == 0);
2542 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2543 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2544 /*
2545 * Only do the realloc if the underlying size
2546 * is really changing.
2547 */
2548 if (ifp->if_real_bytes != real_size) {
2549 ifp->if_u1.if_data =
2550 kmem_realloc(ifp->if_u1.if_data,
2551 real_size,
2552 ifp->if_real_bytes,
2553 KM_SLEEP);
2554 }
2555 } else {
2556 ASSERT(ifp->if_real_bytes == 0);
2557 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2558 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2559 ifp->if_bytes);
2560 }
2561 }
2562 ifp->if_real_bytes = real_size;
2563 ifp->if_bytes = new_size;
2564 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2565}
2566
2567
2568
2569
2570/*
2571 * Map inode to disk block and offset.
2572 *
2573 * mp -- the mount point structure for the current file system
2574 * tp -- the current transaction
2575 * ino -- the inode number of the inode to be located
2576 * imap -- this structure is filled in with the information necessary
2577 * to retrieve the given inode from disk
2578 * flags -- flags to pass to xfs_dilocate indicating whether or not
2579 * lookups in the inode btree were OK or not
2580 */
2581int
2582xfs_imap(
2583 xfs_mount_t *mp,
2584 xfs_trans_t *tp,
2585 xfs_ino_t ino,
2586 xfs_imap_t *imap,
2587 uint flags)
2588{
2589 xfs_fsblock_t fsbno;
2590 int len;
2591 int off;
2592 int error;
2593
2594 fsbno = imap->im_blkno ?
2595 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2596 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2597 if (error != 0) {
2598 return error;
2599 }
2600 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2601 imap->im_len = XFS_FSB_TO_BB(mp, len);
2602 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2603 imap->im_ioffset = (ushort)off;
2604 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2605 return 0;
2606}
2607
2608void
2609xfs_idestroy_fork(
2610 xfs_inode_t *ip,
2611 int whichfork)
2612{
2613 xfs_ifork_t *ifp;
2614
2615 ifp = XFS_IFORK_PTR(ip, whichfork);
2616 if (ifp->if_broot != NULL) {
2617 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2618 ifp->if_broot = NULL;
2619 }
2620
2621 /*
2622 * If the format is local, then we can't have an extents
2623 * array so just look for an inline data array. If we're
2624 * not local then we may or may not have an extents list,
2625 * so check and free it up if we do.
2626 */
2627 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2628 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2629 (ifp->if_u1.if_data != NULL)) {
2630 ASSERT(ifp->if_real_bytes != 0);
2631 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2632 ifp->if_u1.if_data = NULL;
2633 ifp->if_real_bytes = 0;
2634 }
2635 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11002636 ((ifp->if_flags & XFS_IFEXTIREC) ||
2637 ((ifp->if_u1.if_extents != NULL) &&
2638 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002639 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002640 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002641 }
2642 ASSERT(ifp->if_u1.if_extents == NULL ||
2643 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2644 ASSERT(ifp->if_real_bytes == 0);
2645 if (whichfork == XFS_ATTR_FORK) {
2646 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2647 ip->i_afp = NULL;
2648 }
2649}
2650
2651/*
2652 * This is called free all the memory associated with an inode.
2653 * It must free the inode itself and any buffers allocated for
2654 * if_extents/if_data and if_broot. It must also free the lock
2655 * associated with the inode.
2656 */
2657void
2658xfs_idestroy(
2659 xfs_inode_t *ip)
2660{
2661
2662 switch (ip->i_d.di_mode & S_IFMT) {
2663 case S_IFREG:
2664 case S_IFDIR:
2665 case S_IFLNK:
2666 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2667 break;
2668 }
2669 if (ip->i_afp)
2670 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2671 mrfree(&ip->i_lock);
2672 mrfree(&ip->i_iolock);
2673 freesema(&ip->i_flock);
2674#ifdef XFS_BMAP_TRACE
2675 ktrace_free(ip->i_xtrace);
2676#endif
2677#ifdef XFS_BMBT_TRACE
2678 ktrace_free(ip->i_btrace);
2679#endif
2680#ifdef XFS_RW_TRACE
2681 ktrace_free(ip->i_rwtrace);
2682#endif
2683#ifdef XFS_ILOCK_TRACE
2684 ktrace_free(ip->i_lock_trace);
2685#endif
2686#ifdef XFS_DIR2_TRACE
2687 ktrace_free(ip->i_dir_trace);
2688#endif
2689 if (ip->i_itemp) {
2690 /* XXXdpd should be able to assert this but shutdown
2691 * is leaving the AIL behind. */
2692 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2693 XFS_FORCED_SHUTDOWN(ip->i_mount));
2694 xfs_inode_item_destroy(ip);
2695 }
2696 kmem_zone_free(xfs_inode_zone, ip);
2697}
2698
2699
2700/*
2701 * Increment the pin count of the given buffer.
2702 * This value is protected by ipinlock spinlock in the mount structure.
2703 */
2704void
2705xfs_ipin(
2706 xfs_inode_t *ip)
2707{
2708 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2709
2710 atomic_inc(&ip->i_pincount);
2711}
2712
2713/*
2714 * Decrement the pin count of the given inode, and wake up
2715 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2716 * inode must have been previoulsy pinned with a call to xfs_ipin().
2717 */
2718void
2719xfs_iunpin(
2720 xfs_inode_t *ip)
2721{
2722 ASSERT(atomic_read(&ip->i_pincount) > 0);
2723
2724 if (atomic_dec_and_test(&ip->i_pincount)) {
2725 vnode_t *vp = XFS_ITOV_NULL(ip);
2726
2727 /* make sync come back and flush this inode */
2728 if (vp) {
Nathan Scottec86dc02006-03-17 17:25:36 +11002729 struct inode *inode = vn_to_inode(vp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002730
2731 if (!(inode->i_state & I_NEW))
2732 mark_inode_dirty_sync(inode);
2733 }
2734
2735 wake_up(&ip->i_ipin_wait);
2736 }
2737}
2738
2739/*
2740 * This is called to wait for the given inode to be unpinned.
2741 * It will sleep until this happens. The caller must have the
2742 * inode locked in at least shared mode so that the buffer cannot
2743 * be subsequently pinned once someone is waiting for it to be
2744 * unpinned.
2745 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002746STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002747xfs_iunpin_wait(
2748 xfs_inode_t *ip)
2749{
2750 xfs_inode_log_item_t *iip;
2751 xfs_lsn_t lsn;
2752
2753 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2754
2755 if (atomic_read(&ip->i_pincount) == 0) {
2756 return;
2757 }
2758
2759 iip = ip->i_itemp;
2760 if (iip && iip->ili_last_lsn) {
2761 lsn = iip->ili_last_lsn;
2762 } else {
2763 lsn = (xfs_lsn_t)0;
2764 }
2765
2766 /*
2767 * Give the log a push so we don't wait here too long.
2768 */
2769 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2770
2771 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2772}
2773
2774
2775/*
2776 * xfs_iextents_copy()
2777 *
2778 * This is called to copy the REAL extents (as opposed to the delayed
2779 * allocation extents) from the inode into the given buffer. It
2780 * returns the number of bytes copied into the buffer.
2781 *
2782 * If there are no delayed allocation extents, then we can just
2783 * memcpy() the extents into the buffer. Otherwise, we need to
2784 * examine each extent in turn and skip those which are delayed.
2785 */
2786int
2787xfs_iextents_copy(
2788 xfs_inode_t *ip,
2789 xfs_bmbt_rec_t *buffer,
2790 int whichfork)
2791{
2792 int copied;
2793 xfs_bmbt_rec_t *dest_ep;
2794 xfs_bmbt_rec_t *ep;
2795#ifdef XFS_BMAP_TRACE
2796 static char fname[] = "xfs_iextents_copy";
2797#endif
2798 int i;
2799 xfs_ifork_t *ifp;
2800 int nrecs;
2801 xfs_fsblock_t start_block;
2802
2803 ifp = XFS_IFORK_PTR(ip, whichfork);
2804 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2805 ASSERT(ifp->if_bytes > 0);
2806
2807 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2808 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2809 ASSERT(nrecs > 0);
2810
2811 /*
2812 * There are some delayed allocation extents in the
2813 * inode, so copy the extents one at a time and skip
2814 * the delayed ones. There must be at least one
2815 * non-delayed extent.
2816 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002817 dest_ep = buffer;
2818 copied = 0;
2819 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002820 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002821 start_block = xfs_bmbt_get_startblock(ep);
2822 if (ISNULLSTARTBLOCK(start_block)) {
2823 /*
2824 * It's a delayed allocation extent, so skip it.
2825 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826 continue;
2827 }
2828
2829 /* Translate to on disk format */
2830 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2831 (__uint64_t*)&dest_ep->l0);
2832 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2833 (__uint64_t*)&dest_ep->l1);
2834 dest_ep++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002835 copied++;
2836 }
2837 ASSERT(copied != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002838 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839
2840 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2841}
2842
2843/*
2844 * Each of the following cases stores data into the same region
2845 * of the on-disk inode, so only one of them can be valid at
2846 * any given time. While it is possible to have conflicting formats
2847 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2848 * in EXTENTS format, this can only happen when the fork has
2849 * changed formats after being modified but before being flushed.
2850 * In these cases, the format always takes precedence, because the
2851 * format indicates the current state of the fork.
2852 */
2853/*ARGSUSED*/
2854STATIC int
2855xfs_iflush_fork(
2856 xfs_inode_t *ip,
2857 xfs_dinode_t *dip,
2858 xfs_inode_log_item_t *iip,
2859 int whichfork,
2860 xfs_buf_t *bp)
2861{
2862 char *cp;
2863 xfs_ifork_t *ifp;
2864 xfs_mount_t *mp;
2865#ifdef XFS_TRANS_DEBUG
2866 int first;
2867#endif
2868 static const short brootflag[2] =
2869 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2870 static const short dataflag[2] =
2871 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2872 static const short extflag[2] =
2873 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2874
2875 if (iip == NULL)
2876 return 0;
2877 ifp = XFS_IFORK_PTR(ip, whichfork);
2878 /*
2879 * This can happen if we gave up in iformat in an error path,
2880 * for the attribute fork.
2881 */
2882 if (ifp == NULL) {
2883 ASSERT(whichfork == XFS_ATTR_FORK);
2884 return 0;
2885 }
2886 cp = XFS_DFORK_PTR(dip, whichfork);
2887 mp = ip->i_mount;
2888 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2889 case XFS_DINODE_FMT_LOCAL:
2890 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2891 (ifp->if_bytes > 0)) {
2892 ASSERT(ifp->if_u1.if_data != NULL);
2893 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2894 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2895 }
2896 if (whichfork == XFS_DATA_FORK) {
2897 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2898 XFS_ERROR_REPORT("xfs_iflush_fork",
2899 XFS_ERRLEVEL_LOW, mp);
2900 return XFS_ERROR(EFSCORRUPTED);
2901 }
2902 }
2903 break;
2904
2905 case XFS_DINODE_FMT_EXTENTS:
2906 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2907 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002908 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2909 (ifp->if_bytes == 0));
2910 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2911 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002912 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2913 (ifp->if_bytes > 0)) {
2914 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2915 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2916 whichfork);
2917 }
2918 break;
2919
2920 case XFS_DINODE_FMT_BTREE:
2921 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2922 (ifp->if_broot_bytes > 0)) {
2923 ASSERT(ifp->if_broot != NULL);
2924 ASSERT(ifp->if_broot_bytes <=
2925 (XFS_IFORK_SIZE(ip, whichfork) +
2926 XFS_BROOT_SIZE_ADJ));
2927 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2928 (xfs_bmdr_block_t *)cp,
2929 XFS_DFORK_SIZE(dip, mp, whichfork));
2930 }
2931 break;
2932
2933 case XFS_DINODE_FMT_DEV:
2934 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2935 ASSERT(whichfork == XFS_DATA_FORK);
2936 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2937 }
2938 break;
2939
2940 case XFS_DINODE_FMT_UUID:
2941 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2942 ASSERT(whichfork == XFS_DATA_FORK);
2943 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2944 sizeof(uuid_t));
2945 }
2946 break;
2947
2948 default:
2949 ASSERT(0);
2950 break;
2951 }
2952
2953 return 0;
2954}
2955
2956/*
2957 * xfs_iflush() will write a modified inode's changes out to the
2958 * inode's on disk home. The caller must have the inode lock held
2959 * in at least shared mode and the inode flush semaphore must be
2960 * held as well. The inode lock will still be held upon return from
2961 * the call and the caller is free to unlock it.
2962 * The inode flush lock will be unlocked when the inode reaches the disk.
2963 * The flags indicate how the inode's buffer should be written out.
2964 */
2965int
2966xfs_iflush(
2967 xfs_inode_t *ip,
2968 uint flags)
2969{
2970 xfs_inode_log_item_t *iip;
2971 xfs_buf_t *bp;
2972 xfs_dinode_t *dip;
2973 xfs_mount_t *mp;
2974 int error;
2975 /* REFERENCED */
2976 xfs_chash_t *ch;
2977 xfs_inode_t *iq;
2978 int clcount; /* count of inodes clustered */
2979 int bufwasdelwri;
2980 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2981 SPLDECL(s);
2982
2983 XFS_STATS_INC(xs_iflush_count);
2984
2985 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2986 ASSERT(valusema(&ip->i_flock) <= 0);
2987 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2988 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2989
2990 iip = ip->i_itemp;
2991 mp = ip->i_mount;
2992
2993 /*
2994 * If the inode isn't dirty, then just release the inode
2995 * flush lock and do nothing.
2996 */
2997 if ((ip->i_update_core == 0) &&
2998 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
2999 ASSERT((iip != NULL) ?
3000 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3001 xfs_ifunlock(ip);
3002 return 0;
3003 }
3004
3005 /*
3006 * We can't flush the inode until it is unpinned, so
3007 * wait for it. We know noone new can pin it, because
3008 * we are holding the inode lock shared and you need
3009 * to hold it exclusively to pin the inode.
3010 */
3011 xfs_iunpin_wait(ip);
3012
3013 /*
3014 * This may have been unpinned because the filesystem is shutting
3015 * down forcibly. If that's the case we must not write this inode
3016 * to disk, because the log record didn't make it to disk!
3017 */
3018 if (XFS_FORCED_SHUTDOWN(mp)) {
3019 ip->i_update_core = 0;
3020 if (iip)
3021 iip->ili_format.ilf_fields = 0;
3022 xfs_ifunlock(ip);
3023 return XFS_ERROR(EIO);
3024 }
3025
3026 /*
3027 * Get the buffer containing the on-disk inode.
3028 */
Nathan Scottb12dd342006-03-17 17:26:04 +11003029 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3030 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003031 xfs_ifunlock(ip);
3032 return error;
3033 }
3034
3035 /*
3036 * Decide how buffer will be flushed out. This is done before
3037 * the call to xfs_iflush_int because this field is zeroed by it.
3038 */
3039 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3040 /*
3041 * Flush out the inode buffer according to the directions
3042 * of the caller. In the cases where the caller has given
3043 * us a choice choose the non-delwri case. This is because
3044 * the inode is in the AIL and we need to get it out soon.
3045 */
3046 switch (flags) {
3047 case XFS_IFLUSH_SYNC:
3048 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3049 flags = 0;
3050 break;
3051 case XFS_IFLUSH_ASYNC:
3052 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3053 flags = INT_ASYNC;
3054 break;
3055 case XFS_IFLUSH_DELWRI:
3056 flags = INT_DELWRI;
3057 break;
3058 default:
3059 ASSERT(0);
3060 flags = 0;
3061 break;
3062 }
3063 } else {
3064 switch (flags) {
3065 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3066 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3067 case XFS_IFLUSH_DELWRI:
3068 flags = INT_DELWRI;
3069 break;
3070 case XFS_IFLUSH_ASYNC:
3071 flags = INT_ASYNC;
3072 break;
3073 case XFS_IFLUSH_SYNC:
3074 flags = 0;
3075 break;
3076 default:
3077 ASSERT(0);
3078 flags = 0;
3079 break;
3080 }
3081 }
3082
3083 /*
3084 * First flush out the inode that xfs_iflush was called with.
3085 */
3086 error = xfs_iflush_int(ip, bp);
3087 if (error) {
3088 goto corrupt_out;
3089 }
3090
3091 /*
3092 * inode clustering:
3093 * see if other inodes can be gathered into this write
3094 */
3095
3096 ip->i_chash->chl_buf = bp;
3097
3098 ch = XFS_CHASH(mp, ip->i_blkno);
3099 s = mutex_spinlock(&ch->ch_lock);
3100
3101 clcount = 0;
3102 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3103 /*
3104 * Do an un-protected check to see if the inode is dirty and
3105 * is a candidate for flushing. These checks will be repeated
3106 * later after the appropriate locks are acquired.
3107 */
3108 iip = iq->i_itemp;
3109 if ((iq->i_update_core == 0) &&
3110 ((iip == NULL) ||
3111 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3112 xfs_ipincount(iq) == 0) {
3113 continue;
3114 }
3115
3116 /*
3117 * Try to get locks. If any are unavailable,
3118 * then this inode cannot be flushed and is skipped.
3119 */
3120
3121 /* get inode locks (just i_lock) */
3122 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3123 /* get inode flush lock */
3124 if (xfs_iflock_nowait(iq)) {
3125 /* check if pinned */
3126 if (xfs_ipincount(iq) == 0) {
3127 /* arriving here means that
3128 * this inode can be flushed.
3129 * first re-check that it's
3130 * dirty
3131 */
3132 iip = iq->i_itemp;
3133 if ((iq->i_update_core != 0)||
3134 ((iip != NULL) &&
3135 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3136 clcount++;
3137 error = xfs_iflush_int(iq, bp);
3138 if (error) {
3139 xfs_iunlock(iq,
3140 XFS_ILOCK_SHARED);
3141 goto cluster_corrupt_out;
3142 }
3143 } else {
3144 xfs_ifunlock(iq);
3145 }
3146 } else {
3147 xfs_ifunlock(iq);
3148 }
3149 }
3150 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3151 }
3152 }
3153 mutex_spinunlock(&ch->ch_lock, s);
3154
3155 if (clcount) {
3156 XFS_STATS_INC(xs_icluster_flushcnt);
3157 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3158 }
3159
3160 /*
3161 * If the buffer is pinned then push on the log so we won't
3162 * get stuck waiting in the write for too long.
3163 */
3164 if (XFS_BUF_ISPINNED(bp)){
3165 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3166 }
3167
3168 if (flags & INT_DELWRI) {
3169 xfs_bdwrite(mp, bp);
3170 } else if (flags & INT_ASYNC) {
3171 xfs_bawrite(mp, bp);
3172 } else {
3173 error = xfs_bwrite(mp, bp);
3174 }
3175 return error;
3176
3177corrupt_out:
3178 xfs_buf_relse(bp);
3179 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3180 xfs_iflush_abort(ip);
3181 /*
3182 * Unlocks the flush lock
3183 */
3184 return XFS_ERROR(EFSCORRUPTED);
3185
3186cluster_corrupt_out:
3187 /* Corruption detected in the clustering loop. Invalidate the
3188 * inode buffer and shut down the filesystem.
3189 */
3190 mutex_spinunlock(&ch->ch_lock, s);
3191
3192 /*
3193 * Clean up the buffer. If it was B_DELWRI, just release it --
3194 * brelse can handle it with no problems. If not, shut down the
3195 * filesystem before releasing the buffer.
3196 */
3197 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3198 xfs_buf_relse(bp);
3199 }
3200
3201 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3202
3203 if(!bufwasdelwri) {
3204 /*
3205 * Just like incore_relse: if we have b_iodone functions,
3206 * mark the buffer as an error and call them. Otherwise
3207 * mark it as stale and brelse.
3208 */
3209 if (XFS_BUF_IODONE_FUNC(bp)) {
3210 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3211 XFS_BUF_UNDONE(bp);
3212 XFS_BUF_STALE(bp);
3213 XFS_BUF_SHUT(bp);
3214 XFS_BUF_ERROR(bp,EIO);
3215 xfs_biodone(bp);
3216 } else {
3217 XFS_BUF_STALE(bp);
3218 xfs_buf_relse(bp);
3219 }
3220 }
3221
3222 xfs_iflush_abort(iq);
3223 /*
3224 * Unlocks the flush lock
3225 */
3226 return XFS_ERROR(EFSCORRUPTED);
3227}
3228
3229
3230STATIC int
3231xfs_iflush_int(
3232 xfs_inode_t *ip,
3233 xfs_buf_t *bp)
3234{
3235 xfs_inode_log_item_t *iip;
3236 xfs_dinode_t *dip;
3237 xfs_mount_t *mp;
3238#ifdef XFS_TRANS_DEBUG
3239 int first;
3240#endif
3241 SPLDECL(s);
3242
3243 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3244 ASSERT(valusema(&ip->i_flock) <= 0);
3245 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3246 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3247
3248 iip = ip->i_itemp;
3249 mp = ip->i_mount;
3250
3251
3252 /*
3253 * If the inode isn't dirty, then just release the inode
3254 * flush lock and do nothing.
3255 */
3256 if ((ip->i_update_core == 0) &&
3257 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3258 xfs_ifunlock(ip);
3259 return 0;
3260 }
3261
3262 /* set *dip = inode's place in the buffer */
3263 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3264
3265 /*
3266 * Clear i_update_core before copying out the data.
3267 * This is for coordination with our timestamp updates
3268 * that don't hold the inode lock. They will always
3269 * update the timestamps BEFORE setting i_update_core,
3270 * so if we clear i_update_core after they set it we
3271 * are guaranteed to see their updates to the timestamps.
3272 * I believe that this depends on strongly ordered memory
3273 * semantics, but we have that. We use the SYNCHRONIZE
3274 * macro to make sure that the compiler does not reorder
3275 * the i_update_core access below the data copy below.
3276 */
3277 ip->i_update_core = 0;
3278 SYNCHRONIZE();
3279
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003280 /*
3281 * Make sure to get the latest atime from the Linux inode.
3282 */
3283 xfs_synchronize_atime(ip);
3284
Linus Torvalds1da177e2005-04-16 15:20:36 -07003285 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3286 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3287 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3288 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3289 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3290 goto corrupt_out;
3291 }
3292 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3293 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3294 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3295 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3296 ip->i_ino, ip, ip->i_d.di_magic);
3297 goto corrupt_out;
3298 }
3299 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3300 if (XFS_TEST_ERROR(
3301 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3302 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3303 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3304 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3305 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3306 ip->i_ino, ip);
3307 goto corrupt_out;
3308 }
3309 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3310 if (XFS_TEST_ERROR(
3311 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3312 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3313 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3314 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3315 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3316 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3317 ip->i_ino, ip);
3318 goto corrupt_out;
3319 }
3320 }
3321 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3322 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3323 XFS_RANDOM_IFLUSH_5)) {
3324 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3325 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3326 ip->i_ino,
3327 ip->i_d.di_nextents + ip->i_d.di_anextents,
3328 ip->i_d.di_nblocks,
3329 ip);
3330 goto corrupt_out;
3331 }
3332 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3333 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3334 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3335 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3336 ip->i_ino, ip->i_d.di_forkoff, ip);
3337 goto corrupt_out;
3338 }
3339 /*
3340 * bump the flush iteration count, used to detect flushes which
3341 * postdate a log record during recovery.
3342 */
3343
3344 ip->i_d.di_flushiter++;
3345
3346 /*
3347 * Copy the dirty parts of the inode into the on-disk
3348 * inode. We always copy out the core of the inode,
3349 * because if the inode is dirty at all the core must
3350 * be.
3351 */
3352 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3353
3354 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3355 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3356 ip->i_d.di_flushiter = 0;
3357
3358 /*
3359 * If this is really an old format inode and the superblock version
3360 * has not been updated to support only new format inodes, then
3361 * convert back to the old inode format. If the superblock version
3362 * has been updated, then make the conversion permanent.
3363 */
3364 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3365 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3366 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3367 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3368 /*
3369 * Convert it back.
3370 */
3371 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3372 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3373 } else {
3374 /*
3375 * The superblock version has already been bumped,
3376 * so just make the conversion to the new inode
3377 * format permanent.
3378 */
3379 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3380 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3381 ip->i_d.di_onlink = 0;
3382 dip->di_core.di_onlink = 0;
3383 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3384 memset(&(dip->di_core.di_pad[0]), 0,
3385 sizeof(dip->di_core.di_pad));
3386 ASSERT(ip->i_d.di_projid == 0);
3387 }
3388 }
3389
3390 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3391 goto corrupt_out;
3392 }
3393
3394 if (XFS_IFORK_Q(ip)) {
3395 /*
3396 * The only error from xfs_iflush_fork is on the data fork.
3397 */
3398 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3399 }
3400 xfs_inobp_check(mp, bp);
3401
3402 /*
3403 * We've recorded everything logged in the inode, so we'd
3404 * like to clear the ilf_fields bits so we don't log and
3405 * flush things unnecessarily. However, we can't stop
3406 * logging all this information until the data we've copied
3407 * into the disk buffer is written to disk. If we did we might
3408 * overwrite the copy of the inode in the log with all the
3409 * data after re-logging only part of it, and in the face of
3410 * a crash we wouldn't have all the data we need to recover.
3411 *
3412 * What we do is move the bits to the ili_last_fields field.
3413 * When logging the inode, these bits are moved back to the
3414 * ilf_fields field. In the xfs_iflush_done() routine we
3415 * clear ili_last_fields, since we know that the information
3416 * those bits represent is permanently on disk. As long as
3417 * the flush completes before the inode is logged again, then
3418 * both ilf_fields and ili_last_fields will be cleared.
3419 *
3420 * We can play with the ilf_fields bits here, because the inode
3421 * lock must be held exclusively in order to set bits there
3422 * and the flush lock protects the ili_last_fields bits.
3423 * Set ili_logged so the flush done
3424 * routine can tell whether or not to look in the AIL.
3425 * Also, store the current LSN of the inode so that we can tell
3426 * whether the item has moved in the AIL from xfs_iflush_done().
3427 * In order to read the lsn we need the AIL lock, because
3428 * it is a 64 bit value that cannot be read atomically.
3429 */
3430 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3431 iip->ili_last_fields = iip->ili_format.ilf_fields;
3432 iip->ili_format.ilf_fields = 0;
3433 iip->ili_logged = 1;
3434
3435 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3436 AIL_LOCK(mp,s);
3437 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3438 AIL_UNLOCK(mp, s);
3439
3440 /*
3441 * Attach the function xfs_iflush_done to the inode's
3442 * buffer. This will remove the inode from the AIL
3443 * and unlock the inode's flush lock when the inode is
3444 * completely written to disk.
3445 */
3446 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3447 xfs_iflush_done, (xfs_log_item_t *)iip);
3448
3449 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3450 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3451 } else {
3452 /*
3453 * We're flushing an inode which is not in the AIL and has
3454 * not been logged but has i_update_core set. For this
3455 * case we can use a B_DELWRI flush and immediately drop
3456 * the inode flush lock because we can avoid the whole
3457 * AIL state thing. It's OK to drop the flush lock now,
3458 * because we've already locked the buffer and to do anything
3459 * you really need both.
3460 */
3461 if (iip != NULL) {
3462 ASSERT(iip->ili_logged == 0);
3463 ASSERT(iip->ili_last_fields == 0);
3464 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3465 }
3466 xfs_ifunlock(ip);
3467 }
3468
3469 return 0;
3470
3471corrupt_out:
3472 return XFS_ERROR(EFSCORRUPTED);
3473}
3474
3475
3476/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003477 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003478 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003479void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003481 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003482{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003483 xfs_inode_t *ip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003484 vnode_t *vp;
3485
Christoph Hellwigefa80272005-06-21 15:37:17 +10003486 again:
3487 XFS_MOUNT_ILOCK(mp);
3488 ip = mp->m_inodes;
3489 if (ip == NULL)
3490 goto out;
3491
3492 do {
3493 /* Make sure we skip markers inserted by sync */
3494 if (ip->i_mount == NULL) {
3495 ip = ip->i_mnext;
3496 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003497 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498
Christoph Hellwigefa80272005-06-21 15:37:17 +10003499 vp = XFS_ITOV_NULL(ip);
3500 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003501 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003502 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3503 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003504 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505
Christoph Hellwigefa80272005-06-21 15:37:17 +10003506 ASSERT(vn_count(vp) == 0);
3507
3508 ip = ip->i_mnext;
3509 } while (ip != mp->m_inodes);
3510 out:
3511 XFS_MOUNT_IUNLOCK(mp);
3512}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513
3514/*
3515 * xfs_iaccess: check accessibility of inode for mode.
3516 */
3517int
3518xfs_iaccess(
3519 xfs_inode_t *ip,
3520 mode_t mode,
3521 cred_t *cr)
3522{
3523 int error;
3524 mode_t orgmode = mode;
Nathan Scottec86dc02006-03-17 17:25:36 +11003525 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526
3527 if (mode & S_IWUSR) {
3528 umode_t imode = inode->i_mode;
3529
3530 if (IS_RDONLY(inode) &&
3531 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3532 return XFS_ERROR(EROFS);
3533
3534 if (IS_IMMUTABLE(inode))
3535 return XFS_ERROR(EACCES);
3536 }
3537
3538 /*
3539 * If there's an Access Control List it's used instead of
3540 * the mode bits.
3541 */
3542 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3543 return error ? XFS_ERROR(error) : 0;
3544
3545 if (current_fsuid(cr) != ip->i_d.di_uid) {
3546 mode >>= 3;
3547 if (!in_group_p((gid_t)ip->i_d.di_gid))
3548 mode >>= 3;
3549 }
3550
3551 /*
3552 * If the DACs are ok we don't need any capability check.
3553 */
3554 if ((ip->i_d.di_mode & mode) == mode)
3555 return 0;
3556 /*
3557 * Read/write DACs are always overridable.
3558 * Executable DACs are overridable if at least one exec bit is set.
3559 */
3560 if (!(orgmode & S_IXUSR) ||
3561 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3562 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3563 return 0;
3564
3565 if ((orgmode == S_IRUSR) ||
3566 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3567 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3568 return 0;
3569#ifdef NOISE
3570 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3571#endif /* NOISE */
3572 return XFS_ERROR(EACCES);
3573 }
3574 return XFS_ERROR(EACCES);
3575}
3576
3577/*
3578 * xfs_iroundup: round up argument to next power of two
3579 */
3580uint
3581xfs_iroundup(
3582 uint v)
3583{
3584 int i;
3585 uint m;
3586
3587 if ((v & (v - 1)) == 0)
3588 return v;
3589 ASSERT((v & 0x80000000) == 0);
3590 if ((v & (v + 1)) == 0)
3591 return v + 1;
3592 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3593 if (v & m)
3594 continue;
3595 v |= m;
3596 if ((v & (v + 1)) == 0)
3597 return v + 1;
3598 }
3599 ASSERT(0);
3600 return( 0 );
3601}
3602
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603#ifdef XFS_ILOCK_TRACE
3604ktrace_t *xfs_ilock_trace_buf;
3605
3606void
3607xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3608{
3609 ktrace_enter(ip->i_lock_trace,
3610 (void *)ip,
3611 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3612 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3613 (void *)ra, /* caller of ilock */
3614 (void *)(unsigned long)current_cpu(),
3615 (void *)(unsigned long)current_pid(),
3616 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3617}
3618#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003619
3620/*
3621 * Return a pointer to the extent record at file index idx.
3622 */
3623xfs_bmbt_rec_t *
3624xfs_iext_get_ext(
3625 xfs_ifork_t *ifp, /* inode fork pointer */
3626 xfs_extnum_t idx) /* index of target extent */
3627{
3628 ASSERT(idx >= 0);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003629 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3630 return ifp->if_u1.if_ext_irec->er_extbuf;
3631 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3632 xfs_ext_irec_t *erp; /* irec pointer */
3633 int erp_idx = 0; /* irec index */
3634 xfs_extnum_t page_idx = idx; /* ext index in target list */
3635
3636 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3637 return &erp->er_extbuf[page_idx];
3638 } else if (ifp->if_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003639 return &ifp->if_u1.if_extents[idx];
3640 } else {
3641 return NULL;
3642 }
3643}
3644
3645/*
3646 * Insert new item(s) into the extent records for incore inode
3647 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3648 */
3649void
3650xfs_iext_insert(
3651 xfs_ifork_t *ifp, /* inode fork pointer */
3652 xfs_extnum_t idx, /* starting index of new items */
3653 xfs_extnum_t count, /* number of inserted items */
3654 xfs_bmbt_irec_t *new) /* items to insert */
3655{
3656 xfs_bmbt_rec_t *ep; /* extent record pointer */
3657 xfs_extnum_t i; /* extent record index */
3658
3659 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3660 xfs_iext_add(ifp, idx, count);
3661 for (i = idx; i < idx + count; i++, new++) {
3662 ep = xfs_iext_get_ext(ifp, i);
3663 xfs_bmbt_set_all(ep, new);
3664 }
3665}
3666
3667/*
3668 * This is called when the amount of space required for incore file
3669 * extents needs to be increased. The ext_diff parameter stores the
3670 * number of new extents being added and the idx parameter contains
3671 * the extent index where the new extents will be added. If the new
3672 * extents are being appended, then we just need to (re)allocate and
3673 * initialize the space. Otherwise, if the new extents are being
3674 * inserted into the middle of the existing entries, a bit more work
3675 * is required to make room for the new extents to be inserted. The
3676 * caller is responsible for filling in the new extent entries upon
3677 * return.
3678 */
3679void
3680xfs_iext_add(
3681 xfs_ifork_t *ifp, /* inode fork pointer */
3682 xfs_extnum_t idx, /* index to begin adding exts */
3683 int ext_diff) /* nubmer of extents to add */
3684{
3685 int byte_diff; /* new bytes being added */
3686 int new_size; /* size of extents after adding */
3687 xfs_extnum_t nextents; /* number of extents in file */
3688
3689 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3690 ASSERT((idx >= 0) && (idx <= nextents));
3691 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3692 new_size = ifp->if_bytes + byte_diff;
3693 /*
3694 * If the new number of extents (nextents + ext_diff)
3695 * fits inside the inode, then continue to use the inline
3696 * extent buffer.
3697 */
3698 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3699 if (idx < nextents) {
3700 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3701 &ifp->if_u2.if_inline_ext[idx],
3702 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3703 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3704 }
3705 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3706 ifp->if_real_bytes = 0;
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003707 ifp->if_lastex = nextents + ext_diff;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003708 }
3709 /*
3710 * Otherwise use a linear (direct) extent list.
3711 * If the extents are currently inside the inode,
3712 * xfs_iext_realloc_direct will switch us from
3713 * inline to direct extent allocation mode.
3714 */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003715 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003716 xfs_iext_realloc_direct(ifp, new_size);
3717 if (idx < nextents) {
3718 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3719 &ifp->if_u1.if_extents[idx],
3720 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3721 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3722 }
3723 }
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003724 /* Indirection array */
3725 else {
3726 xfs_ext_irec_t *erp;
3727 int erp_idx = 0;
3728 int page_idx = idx;
3729
3730 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3731 if (ifp->if_flags & XFS_IFEXTIREC) {
3732 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3733 } else {
3734 xfs_iext_irec_init(ifp);
3735 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3736 erp = ifp->if_u1.if_ext_irec;
3737 }
3738 /* Extents fit in target extent page */
3739 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3740 if (page_idx < erp->er_extcount) {
3741 memmove(&erp->er_extbuf[page_idx + ext_diff],
3742 &erp->er_extbuf[page_idx],
3743 (erp->er_extcount - page_idx) *
3744 sizeof(xfs_bmbt_rec_t));
3745 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3746 }
3747 erp->er_extcount += ext_diff;
3748 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3749 }
3750 /* Insert a new extent page */
3751 else if (erp) {
3752 xfs_iext_add_indirect_multi(ifp,
3753 erp_idx, page_idx, ext_diff);
3754 }
3755 /*
3756 * If extent(s) are being appended to the last page in
3757 * the indirection array and the new extent(s) don't fit
3758 * in the page, then erp is NULL and erp_idx is set to
3759 * the next index needed in the indirection array.
3760 */
3761 else {
3762 int count = ext_diff;
3763
3764 while (count) {
3765 erp = xfs_iext_irec_new(ifp, erp_idx);
3766 erp->er_extcount = count;
3767 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3768 if (count) {
3769 erp_idx++;
3770 }
3771 }
3772 }
3773 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003774 ifp->if_bytes = new_size;
3775}
3776
3777/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003778 * This is called when incore extents are being added to the indirection
3779 * array and the new extents do not fit in the target extent list. The
3780 * erp_idx parameter contains the irec index for the target extent list
3781 * in the indirection array, and the idx parameter contains the extent
3782 * index within the list. The number of extents being added is stored
3783 * in the count parameter.
3784 *
3785 * |-------| |-------|
3786 * | | | | idx - number of extents before idx
3787 * | idx | | count |
3788 * | | | | count - number of extents being inserted at idx
3789 * |-------| |-------|
3790 * | count | | nex2 | nex2 - number of extents after idx + count
3791 * |-------| |-------|
3792 */
3793void
3794xfs_iext_add_indirect_multi(
3795 xfs_ifork_t *ifp, /* inode fork pointer */
3796 int erp_idx, /* target extent irec index */
3797 xfs_extnum_t idx, /* index within target list */
3798 int count) /* new extents being added */
3799{
3800 int byte_diff; /* new bytes being added */
3801 xfs_ext_irec_t *erp; /* pointer to irec entry */
3802 xfs_extnum_t ext_diff; /* number of extents to add */
3803 xfs_extnum_t ext_cnt; /* new extents still needed */
3804 xfs_extnum_t nex2; /* extents after idx + count */
3805 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3806 int nlists; /* number of irec's (lists) */
3807
3808 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3809 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3810 nex2 = erp->er_extcount - idx;
3811 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3812
3813 /*
3814 * Save second part of target extent list
3815 * (all extents past */
3816 if (nex2) {
3817 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3818 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3819 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3820 erp->er_extcount -= nex2;
3821 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3822 memset(&erp->er_extbuf[idx], 0, byte_diff);
3823 }
3824
3825 /*
3826 * Add the new extents to the end of the target
3827 * list, then allocate new irec record(s) and
3828 * extent buffer(s) as needed to store the rest
3829 * of the new extents.
3830 */
3831 ext_cnt = count;
3832 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3833 if (ext_diff) {
3834 erp->er_extcount += ext_diff;
3835 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3836 ext_cnt -= ext_diff;
3837 }
3838 while (ext_cnt) {
3839 erp_idx++;
3840 erp = xfs_iext_irec_new(ifp, erp_idx);
3841 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3842 erp->er_extcount = ext_diff;
3843 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3844 ext_cnt -= ext_diff;
3845 }
3846
3847 /* Add nex2 extents back to indirection array */
3848 if (nex2) {
3849 xfs_extnum_t ext_avail;
3850 int i;
3851
3852 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3853 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3854 i = 0;
3855 /*
3856 * If nex2 extents fit in the current page, append
3857 * nex2_ep after the new extents.
3858 */
3859 if (nex2 <= ext_avail) {
3860 i = erp->er_extcount;
3861 }
3862 /*
3863 * Otherwise, check if space is available in the
3864 * next page.
3865 */
3866 else if ((erp_idx < nlists - 1) &&
3867 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3868 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3869 erp_idx++;
3870 erp++;
3871 /* Create a hole for nex2 extents */
3872 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3873 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3874 }
3875 /*
3876 * Final choice, create a new extent page for
3877 * nex2 extents.
3878 */
3879 else {
3880 erp_idx++;
3881 erp = xfs_iext_irec_new(ifp, erp_idx);
3882 }
3883 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3884 kmem_free(nex2_ep, byte_diff);
3885 erp->er_extcount += nex2;
3886 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3887 }
3888}
3889
3890/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003891 * This is called when the amount of space required for incore file
3892 * extents needs to be decreased. The ext_diff parameter stores the
3893 * number of extents to be removed and the idx parameter contains
3894 * the extent index where the extents will be removed from.
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003895 *
3896 * If the amount of space needed has decreased below the linear
3897 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3898 * extent array. Otherwise, use kmem_realloc() to adjust the
3899 * size to what is needed.
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003900 */
3901void
3902xfs_iext_remove(
3903 xfs_ifork_t *ifp, /* inode fork pointer */
3904 xfs_extnum_t idx, /* index to begin removing exts */
3905 int ext_diff) /* number of extents to remove */
3906{
3907 xfs_extnum_t nextents; /* number of extents in file */
3908 int new_size; /* size of extents after removal */
3909
3910 ASSERT(ext_diff > 0);
3911 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3912 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3913
3914 if (new_size == 0) {
3915 xfs_iext_destroy(ifp);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003916 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3917 xfs_iext_remove_indirect(ifp, idx, ext_diff);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003918 } else if (ifp->if_real_bytes) {
3919 xfs_iext_remove_direct(ifp, idx, ext_diff);
3920 } else {
3921 xfs_iext_remove_inline(ifp, idx, ext_diff);
3922 }
3923 ifp->if_bytes = new_size;
3924}
3925
3926/*
3927 * This removes ext_diff extents from the inline buffer, beginning
3928 * at extent index idx.
3929 */
3930void
3931xfs_iext_remove_inline(
3932 xfs_ifork_t *ifp, /* inode fork pointer */
3933 xfs_extnum_t idx, /* index to begin removing exts */
3934 int ext_diff) /* number of extents to remove */
3935{
3936 int nextents; /* number of extents in file */
3937
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003938 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003939 ASSERT(idx < XFS_INLINE_EXTS);
3940 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3941 ASSERT(((nextents - ext_diff) > 0) &&
3942 (nextents - ext_diff) < XFS_INLINE_EXTS);
3943
3944 if (idx + ext_diff < nextents) {
3945 memmove(&ifp->if_u2.if_inline_ext[idx],
3946 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3947 (nextents - (idx + ext_diff)) *
3948 sizeof(xfs_bmbt_rec_t));
3949 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3950 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3951 } else {
3952 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3953 ext_diff * sizeof(xfs_bmbt_rec_t));
3954 }
3955}
3956
3957/*
3958 * This removes ext_diff extents from a linear (direct) extent list,
3959 * beginning at extent index idx. If the extents are being removed
3960 * from the end of the list (ie. truncate) then we just need to re-
3961 * allocate the list to remove the extra space. Otherwise, if the
3962 * extents are being removed from the middle of the existing extent
3963 * entries, then we first need to move the extent records beginning
3964 * at idx + ext_diff up in the list to overwrite the records being
3965 * removed, then remove the extra space via kmem_realloc.
3966 */
3967void
3968xfs_iext_remove_direct(
3969 xfs_ifork_t *ifp, /* inode fork pointer */
3970 xfs_extnum_t idx, /* index to begin removing exts */
3971 int ext_diff) /* number of extents to remove */
3972{
3973 xfs_extnum_t nextents; /* number of extents in file */
3974 int new_size; /* size of extents after removal */
3975
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003976 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003977 new_size = ifp->if_bytes -
3978 (ext_diff * sizeof(xfs_bmbt_rec_t));
3979 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3980
3981 if (new_size == 0) {
3982 xfs_iext_destroy(ifp);
3983 return;
3984 }
3985 /* Move extents up in the list (if needed) */
3986 if (idx + ext_diff < nextents) {
3987 memmove(&ifp->if_u1.if_extents[idx],
3988 &ifp->if_u1.if_extents[idx + ext_diff],
3989 (nextents - (idx + ext_diff)) *
3990 sizeof(xfs_bmbt_rec_t));
3991 }
3992 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3993 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3994 /*
3995 * Reallocate the direct extent list. If the extents
3996 * will fit inside the inode then xfs_iext_realloc_direct
3997 * will switch from direct to inline extent allocation
3998 * mode for us.
3999 */
4000 xfs_iext_realloc_direct(ifp, new_size);
4001 ifp->if_bytes = new_size;
4002}
4003
4004/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004005 * This is called when incore extents are being removed from the
4006 * indirection array and the extents being removed span multiple extent
4007 * buffers. The idx parameter contains the file extent index where we
4008 * want to begin removing extents, and the count parameter contains
4009 * how many extents need to be removed.
4010 *
4011 * |-------| |-------|
4012 * | nex1 | | | nex1 - number of extents before idx
4013 * |-------| | count |
4014 * | | | | count - number of extents being removed at idx
4015 * | count | |-------|
4016 * | | | nex2 | nex2 - number of extents after idx + count
4017 * |-------| |-------|
4018 */
4019void
4020xfs_iext_remove_indirect(
4021 xfs_ifork_t *ifp, /* inode fork pointer */
4022 xfs_extnum_t idx, /* index to begin removing extents */
4023 int count) /* number of extents to remove */
4024{
4025 xfs_ext_irec_t *erp; /* indirection array pointer */
4026 int erp_idx = 0; /* indirection array index */
4027 xfs_extnum_t ext_cnt; /* extents left to remove */
4028 xfs_extnum_t ext_diff; /* extents to remove in current list */
4029 xfs_extnum_t nex1; /* number of extents before idx */
4030 xfs_extnum_t nex2; /* extents after idx + count */
4031 int nlists; /* entries in indirecton array */
4032 int page_idx = idx; /* index in target extent list */
4033
4034 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4035 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4036 ASSERT(erp != NULL);
4037 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4038 nex1 = page_idx;
4039 ext_cnt = count;
4040 while (ext_cnt) {
4041 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4042 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4043 /*
4044 * Check for deletion of entire list;
4045 * xfs_iext_irec_remove() updates extent offsets.
4046 */
4047 if (ext_diff == erp->er_extcount) {
4048 xfs_iext_irec_remove(ifp, erp_idx);
4049 ext_cnt -= ext_diff;
4050 nex1 = 0;
4051 if (ext_cnt) {
4052 ASSERT(erp_idx < ifp->if_real_bytes /
4053 XFS_IEXT_BUFSZ);
4054 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4055 nex1 = 0;
4056 continue;
4057 } else {
4058 break;
4059 }
4060 }
4061 /* Move extents up (if needed) */
4062 if (nex2) {
4063 memmove(&erp->er_extbuf[nex1],
4064 &erp->er_extbuf[nex1 + ext_diff],
4065 nex2 * sizeof(xfs_bmbt_rec_t));
4066 }
4067 /* Zero out rest of page */
4068 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4069 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4070 /* Update remaining counters */
4071 erp->er_extcount -= ext_diff;
4072 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4073 ext_cnt -= ext_diff;
4074 nex1 = 0;
4075 erp_idx++;
4076 erp++;
4077 }
4078 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4079 xfs_iext_irec_compact(ifp);
4080}
4081
4082/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004083 * Create, destroy, or resize a linear (direct) block of extents.
4084 */
4085void
4086xfs_iext_realloc_direct(
4087 xfs_ifork_t *ifp, /* inode fork pointer */
4088 int new_size) /* new size of extents */
4089{
4090 int rnew_size; /* real new size of extents */
4091
4092 rnew_size = new_size;
4093
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004094 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4095 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4096 (new_size != ifp->if_real_bytes)));
4097
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004098 /* Free extent records */
4099 if (new_size == 0) {
4100 xfs_iext_destroy(ifp);
4101 }
4102 /* Resize direct extent list and zero any new bytes */
4103 else if (ifp->if_real_bytes) {
4104 /* Check if extents will fit inside the inode */
4105 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4106 xfs_iext_direct_to_inline(ifp, new_size /
4107 (uint)sizeof(xfs_bmbt_rec_t));
4108 ifp->if_bytes = new_size;
4109 return;
4110 }
4111 if ((new_size & (new_size - 1)) != 0) {
4112 rnew_size = xfs_iroundup(new_size);
4113 }
4114 if (rnew_size != ifp->if_real_bytes) {
4115 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4116 kmem_realloc(ifp->if_u1.if_extents,
4117 rnew_size,
4118 ifp->if_real_bytes,
4119 KM_SLEEP);
4120 }
4121 if (rnew_size > ifp->if_real_bytes) {
4122 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4123 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4124 rnew_size - ifp->if_real_bytes);
4125 }
4126 }
4127 /*
4128 * Switch from the inline extent buffer to a direct
4129 * extent list. Be sure to include the inline extent
4130 * bytes in new_size.
4131 */
4132 else {
4133 new_size += ifp->if_bytes;
4134 if ((new_size & (new_size - 1)) != 0) {
4135 rnew_size = xfs_iroundup(new_size);
4136 }
4137 xfs_iext_inline_to_direct(ifp, rnew_size);
4138 }
4139 ifp->if_real_bytes = rnew_size;
4140 ifp->if_bytes = new_size;
4141}
4142
4143/*
4144 * Switch from linear (direct) extent records to inline buffer.
4145 */
4146void
4147xfs_iext_direct_to_inline(
4148 xfs_ifork_t *ifp, /* inode fork pointer */
4149 xfs_extnum_t nextents) /* number of extents in file */
4150{
4151 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4152 ASSERT(nextents <= XFS_INLINE_EXTS);
4153 /*
4154 * The inline buffer was zeroed when we switched
4155 * from inline to direct extent allocation mode,
4156 * so we don't need to clear it here.
4157 */
4158 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4159 nextents * sizeof(xfs_bmbt_rec_t));
4160 kmem_free(ifp->if_u1.if_extents, KM_SLEEP);
4161 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4162 ifp->if_real_bytes = 0;
4163}
4164
4165/*
4166 * Switch from inline buffer to linear (direct) extent records.
4167 * new_size should already be rounded up to the next power of 2
4168 * by the caller (when appropriate), so use new_size as it is.
4169 * However, since new_size may be rounded up, we can't update
4170 * if_bytes here. It is the caller's responsibility to update
4171 * if_bytes upon return.
4172 */
4173void
4174xfs_iext_inline_to_direct(
4175 xfs_ifork_t *ifp, /* inode fork pointer */
4176 int new_size) /* number of extents in file */
4177{
4178 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4179 kmem_alloc(new_size, KM_SLEEP);
4180 memset(ifp->if_u1.if_extents, 0, new_size);
4181 if (ifp->if_bytes) {
4182 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4183 ifp->if_bytes);
4184 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4185 sizeof(xfs_bmbt_rec_t));
4186 }
4187 ifp->if_real_bytes = new_size;
4188}
4189
4190/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004191 * Resize an extent indirection array to new_size bytes.
4192 */
4193void
4194xfs_iext_realloc_indirect(
4195 xfs_ifork_t *ifp, /* inode fork pointer */
4196 int new_size) /* new indirection array size */
4197{
4198 int nlists; /* number of irec's (ex lists) */
4199 int size; /* current indirection array size */
4200
4201 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4202 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4203 size = nlists * sizeof(xfs_ext_irec_t);
4204 ASSERT(ifp->if_real_bytes);
4205 ASSERT((new_size >= 0) && (new_size != size));
4206 if (new_size == 0) {
4207 xfs_iext_destroy(ifp);
4208 } else {
4209 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4210 kmem_realloc(ifp->if_u1.if_ext_irec,
4211 new_size, size, KM_SLEEP);
4212 }
4213}
4214
4215/*
4216 * Switch from indirection array to linear (direct) extent allocations.
4217 */
4218void
4219xfs_iext_indirect_to_direct(
4220 xfs_ifork_t *ifp) /* inode fork pointer */
4221{
4222 xfs_bmbt_rec_t *ep; /* extent record pointer */
4223 xfs_extnum_t nextents; /* number of extents in file */
4224 int size; /* size of file extents */
4225
4226 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4227 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4228 ASSERT(nextents <= XFS_LINEAR_EXTS);
4229 size = nextents * sizeof(xfs_bmbt_rec_t);
4230
4231 xfs_iext_irec_compact_full(ifp);
4232 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4233
4234 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4235 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4236 ifp->if_flags &= ~XFS_IFEXTIREC;
4237 ifp->if_u1.if_extents = ep;
4238 ifp->if_bytes = size;
4239 if (nextents < XFS_LINEAR_EXTS) {
4240 xfs_iext_realloc_direct(ifp, size);
4241 }
4242}
4243
4244/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004245 * Free incore file extents.
4246 */
4247void
4248xfs_iext_destroy(
4249 xfs_ifork_t *ifp) /* inode fork pointer */
4250{
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004251 if (ifp->if_flags & XFS_IFEXTIREC) {
4252 int erp_idx;
4253 int nlists;
4254
4255 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4256 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4257 xfs_iext_irec_remove(ifp, erp_idx);
4258 }
4259 ifp->if_flags &= ~XFS_IFEXTIREC;
4260 } else if (ifp->if_real_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004261 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4262 } else if (ifp->if_bytes) {
4263 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4264 sizeof(xfs_bmbt_rec_t));
4265 }
4266 ifp->if_u1.if_extents = NULL;
4267 ifp->if_real_bytes = 0;
4268 ifp->if_bytes = 0;
4269}
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004270
4271/*
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004272 * Return a pointer to the extent record for file system block bno.
4273 */
4274xfs_bmbt_rec_t * /* pointer to found extent record */
4275xfs_iext_bno_to_ext(
4276 xfs_ifork_t *ifp, /* inode fork pointer */
4277 xfs_fileoff_t bno, /* block number to search for */
4278 xfs_extnum_t *idxp) /* index of target extent */
4279{
4280 xfs_bmbt_rec_t *base; /* pointer to first extent */
4281 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4282 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4283 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4284 int high; /* upper boundry in search */
4285 xfs_extnum_t idx = 0; /* index of target extent */
4286 int low; /* lower boundry in search */
4287 xfs_extnum_t nextents; /* number of file extents */
4288 xfs_fileoff_t startoff = 0; /* start offset of extent */
4289
4290 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4291 if (nextents == 0) {
4292 *idxp = 0;
4293 return NULL;
4294 }
4295 low = 0;
4296 if (ifp->if_flags & XFS_IFEXTIREC) {
4297 /* Find target extent list */
4298 int erp_idx = 0;
4299 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4300 base = erp->er_extbuf;
4301 high = erp->er_extcount - 1;
4302 } else {
4303 base = ifp->if_u1.if_extents;
4304 high = nextents - 1;
4305 }
4306 /* Binary search extent records */
4307 while (low <= high) {
4308 idx = (low + high) >> 1;
4309 ep = base + idx;
4310 startoff = xfs_bmbt_get_startoff(ep);
4311 blockcount = xfs_bmbt_get_blockcount(ep);
4312 if (bno < startoff) {
4313 high = idx - 1;
4314 } else if (bno >= startoff + blockcount) {
4315 low = idx + 1;
4316 } else {
4317 /* Convert back to file-based extent index */
4318 if (ifp->if_flags & XFS_IFEXTIREC) {
4319 idx += erp->er_extoff;
4320 }
4321 *idxp = idx;
4322 return ep;
4323 }
4324 }
4325 /* Convert back to file-based extent index */
4326 if (ifp->if_flags & XFS_IFEXTIREC) {
4327 idx += erp->er_extoff;
4328 }
4329 if (bno >= startoff + blockcount) {
4330 if (++idx == nextents) {
4331 ep = NULL;
4332 } else {
4333 ep = xfs_iext_get_ext(ifp, idx);
4334 }
4335 }
4336 *idxp = idx;
4337 return ep;
4338}
4339
4340/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004341 * Return a pointer to the indirection array entry containing the
4342 * extent record for filesystem block bno. Store the index of the
4343 * target irec in *erp_idxp.
4344 */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004345xfs_ext_irec_t * /* pointer to found extent record */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004346xfs_iext_bno_to_irec(
4347 xfs_ifork_t *ifp, /* inode fork pointer */
4348 xfs_fileoff_t bno, /* block number to search for */
4349 int *erp_idxp) /* irec index of target ext list */
4350{
4351 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4352 xfs_ext_irec_t *erp_next; /* next indirection array entry */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004353 int erp_idx; /* indirection array index */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004354 int nlists; /* number of extent irec's (lists) */
4355 int high; /* binary search upper limit */
4356 int low; /* binary search lower limit */
4357
4358 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4359 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4360 erp_idx = 0;
4361 low = 0;
4362 high = nlists - 1;
4363 while (low <= high) {
4364 erp_idx = (low + high) >> 1;
4365 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4366 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4367 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4368 high = erp_idx - 1;
4369 } else if (erp_next && bno >=
4370 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4371 low = erp_idx + 1;
4372 } else {
4373 break;
4374 }
4375 }
4376 *erp_idxp = erp_idx;
4377 return erp;
4378}
4379
4380/*
4381 * Return a pointer to the indirection array entry containing the
4382 * extent record at file extent index *idxp. Store the index of the
4383 * target irec in *erp_idxp and store the page index of the target
4384 * extent record in *idxp.
4385 */
4386xfs_ext_irec_t *
4387xfs_iext_idx_to_irec(
4388 xfs_ifork_t *ifp, /* inode fork pointer */
4389 xfs_extnum_t *idxp, /* extent index (file -> page) */
4390 int *erp_idxp, /* pointer to target irec */
4391 int realloc) /* new bytes were just added */
4392{
4393 xfs_ext_irec_t *prev; /* pointer to previous irec */
4394 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4395 int erp_idx; /* indirection array index */
4396 int nlists; /* number of irec's (ex lists) */
4397 int high; /* binary search upper limit */
4398 int low; /* binary search lower limit */
4399 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4400
4401 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4402 ASSERT(page_idx >= 0 && page_idx <=
4403 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4404 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4405 erp_idx = 0;
4406 low = 0;
4407 high = nlists - 1;
4408
4409 /* Binary search extent irec's */
4410 while (low <= high) {
4411 erp_idx = (low + high) >> 1;
4412 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4413 prev = erp_idx > 0 ? erp - 1 : NULL;
4414 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4415 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4416 high = erp_idx - 1;
4417 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4418 (page_idx == erp->er_extoff + erp->er_extcount &&
4419 !realloc)) {
4420 low = erp_idx + 1;
4421 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4422 erp->er_extcount == XFS_LINEAR_EXTS) {
4423 ASSERT(realloc);
4424 page_idx = 0;
4425 erp_idx++;
4426 erp = erp_idx < nlists ? erp + 1 : NULL;
4427 break;
4428 } else {
4429 page_idx -= erp->er_extoff;
4430 break;
4431 }
4432 }
4433 *idxp = page_idx;
4434 *erp_idxp = erp_idx;
4435 return(erp);
4436}
4437
4438/*
4439 * Allocate and initialize an indirection array once the space needed
4440 * for incore extents increases above XFS_IEXT_BUFSZ.
4441 */
4442void
4443xfs_iext_irec_init(
4444 xfs_ifork_t *ifp) /* inode fork pointer */
4445{
4446 xfs_ext_irec_t *erp; /* indirection array pointer */
4447 xfs_extnum_t nextents; /* number of extents in file */
4448
4449 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4450 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4451 ASSERT(nextents <= XFS_LINEAR_EXTS);
4452
4453 erp = (xfs_ext_irec_t *)
4454 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4455
4456 if (nextents == 0) {
4457 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4458 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4459 } else if (!ifp->if_real_bytes) {
4460 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4461 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4462 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4463 }
4464 erp->er_extbuf = ifp->if_u1.if_extents;
4465 erp->er_extcount = nextents;
4466 erp->er_extoff = 0;
4467
4468 ifp->if_flags |= XFS_IFEXTIREC;
4469 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4470 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4471 ifp->if_u1.if_ext_irec = erp;
4472
4473 return;
4474}
4475
4476/*
4477 * Allocate and initialize a new entry in the indirection array.
4478 */
4479xfs_ext_irec_t *
4480xfs_iext_irec_new(
4481 xfs_ifork_t *ifp, /* inode fork pointer */
4482 int erp_idx) /* index for new irec */
4483{
4484 xfs_ext_irec_t *erp; /* indirection array pointer */
4485 int i; /* loop counter */
4486 int nlists; /* number of irec's (ex lists) */
4487
4488 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4489 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4490
4491 /* Resize indirection array */
4492 xfs_iext_realloc_indirect(ifp, ++nlists *
4493 sizeof(xfs_ext_irec_t));
4494 /*
4495 * Move records down in the array so the
4496 * new page can use erp_idx.
4497 */
4498 erp = ifp->if_u1.if_ext_irec;
4499 for (i = nlists - 1; i > erp_idx; i--) {
4500 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4501 }
4502 ASSERT(i == erp_idx);
4503
4504 /* Initialize new extent record */
4505 erp = ifp->if_u1.if_ext_irec;
4506 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4507 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4508 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4509 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4510 erp[erp_idx].er_extcount = 0;
4511 erp[erp_idx].er_extoff = erp_idx > 0 ?
4512 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4513 return (&erp[erp_idx]);
4514}
4515
4516/*
4517 * Remove a record from the indirection array.
4518 */
4519void
4520xfs_iext_irec_remove(
4521 xfs_ifork_t *ifp, /* inode fork pointer */
4522 int erp_idx) /* irec index to remove */
4523{
4524 xfs_ext_irec_t *erp; /* indirection array pointer */
4525 int i; /* loop counter */
4526 int nlists; /* number of irec's (ex lists) */
4527
4528 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4529 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4530 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4531 if (erp->er_extbuf) {
4532 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4533 -erp->er_extcount);
4534 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4535 }
4536 /* Compact extent records */
4537 erp = ifp->if_u1.if_ext_irec;
4538 for (i = erp_idx; i < nlists - 1; i++) {
4539 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4540 }
4541 /*
4542 * Manually free the last extent record from the indirection
4543 * array. A call to xfs_iext_realloc_indirect() with a size
4544 * of zero would result in a call to xfs_iext_destroy() which
4545 * would in turn call this function again, creating a nasty
4546 * infinite loop.
4547 */
4548 if (--nlists) {
4549 xfs_iext_realloc_indirect(ifp,
4550 nlists * sizeof(xfs_ext_irec_t));
4551 } else {
4552 kmem_free(ifp->if_u1.if_ext_irec,
4553 sizeof(xfs_ext_irec_t));
4554 }
4555 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4556}
4557
4558/*
4559 * This is called to clean up large amounts of unused memory allocated
4560 * by the indirection array. Before compacting anything though, verify
4561 * that the indirection array is still needed and switch back to the
4562 * linear extent list (or even the inline buffer) if possible. The
4563 * compaction policy is as follows:
4564 *
4565 * Full Compaction: Extents fit into a single page (or inline buffer)
4566 * Full Compaction: Extents occupy less than 10% of allocated space
4567 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4568 * No Compaction: Extents occupy at least 50% of allocated space
4569 */
4570void
4571xfs_iext_irec_compact(
4572 xfs_ifork_t *ifp) /* inode fork pointer */
4573{
4574 xfs_extnum_t nextents; /* number of extents in file */
4575 int nlists; /* number of irec's (ex lists) */
4576
4577 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4578 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4579 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4580
4581 if (nextents == 0) {
4582 xfs_iext_destroy(ifp);
4583 } else if (nextents <= XFS_INLINE_EXTS) {
4584 xfs_iext_indirect_to_direct(ifp);
4585 xfs_iext_direct_to_inline(ifp, nextents);
4586 } else if (nextents <= XFS_LINEAR_EXTS) {
4587 xfs_iext_indirect_to_direct(ifp);
4588 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4589 xfs_iext_irec_compact_full(ifp);
4590 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4591 xfs_iext_irec_compact_pages(ifp);
4592 }
4593}
4594
4595/*
4596 * Combine extents from neighboring extent pages.
4597 */
4598void
4599xfs_iext_irec_compact_pages(
4600 xfs_ifork_t *ifp) /* inode fork pointer */
4601{
4602 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4603 int erp_idx = 0; /* indirection array index */
4604 int nlists; /* number of irec's (ex lists) */
4605
4606 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4607 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4608 while (erp_idx < nlists - 1) {
4609 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4610 erp_next = erp + 1;
4611 if (erp_next->er_extcount <=
4612 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4613 memmove(&erp->er_extbuf[erp->er_extcount],
4614 erp_next->er_extbuf, erp_next->er_extcount *
4615 sizeof(xfs_bmbt_rec_t));
4616 erp->er_extcount += erp_next->er_extcount;
4617 /*
4618 * Free page before removing extent record
4619 * so er_extoffs don't get modified in
4620 * xfs_iext_irec_remove.
4621 */
4622 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4623 erp_next->er_extbuf = NULL;
4624 xfs_iext_irec_remove(ifp, erp_idx + 1);
4625 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4626 } else {
4627 erp_idx++;
4628 }
4629 }
4630}
4631
4632/*
4633 * Fully compact the extent records managed by the indirection array.
4634 */
4635void
4636xfs_iext_irec_compact_full(
4637 xfs_ifork_t *ifp) /* inode fork pointer */
4638{
4639 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4640 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4641 int erp_idx = 0; /* extent irec index */
4642 int ext_avail; /* empty entries in ex list */
4643 int ext_diff; /* number of exts to add */
4644 int nlists; /* number of irec's (ex lists) */
4645
4646 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4647 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4648 erp = ifp->if_u1.if_ext_irec;
4649 ep = &erp->er_extbuf[erp->er_extcount];
4650 erp_next = erp + 1;
4651 ep_next = erp_next->er_extbuf;
4652 while (erp_idx < nlists - 1) {
4653 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4654 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4655 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4656 erp->er_extcount += ext_diff;
4657 erp_next->er_extcount -= ext_diff;
4658 /* Remove next page */
4659 if (erp_next->er_extcount == 0) {
4660 /*
4661 * Free page before removing extent record
4662 * so er_extoffs don't get modified in
4663 * xfs_iext_irec_remove.
4664 */
4665 kmem_free(erp_next->er_extbuf,
4666 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4667 erp_next->er_extbuf = NULL;
4668 xfs_iext_irec_remove(ifp, erp_idx + 1);
4669 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4670 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4671 /* Update next page */
4672 } else {
4673 /* Move rest of page up to become next new page */
4674 memmove(erp_next->er_extbuf, ep_next,
4675 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4676 ep_next = erp_next->er_extbuf;
4677 memset(&ep_next[erp_next->er_extcount], 0,
4678 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4679 sizeof(xfs_bmbt_rec_t));
4680 }
4681 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4682 erp_idx++;
4683 if (erp_idx < nlists)
4684 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4685 else
4686 break;
4687 }
4688 ep = &erp->er_extbuf[erp->er_extcount];
4689 erp_next = erp + 1;
4690 ep_next = erp_next->er_extbuf;
4691 }
4692}
4693
4694/*
4695 * This is called to update the er_extoff field in the indirection
4696 * array when extents have been added or removed from one of the
4697 * extent lists. erp_idx contains the irec index to begin updating
4698 * at and ext_diff contains the number of extents that were added
4699 * or removed.
4700 */
4701void
4702xfs_iext_irec_update_extoffs(
4703 xfs_ifork_t *ifp, /* inode fork pointer */
4704 int erp_idx, /* irec index to update */
4705 int ext_diff) /* number of new extents */
4706{
4707 int i; /* loop counter */
4708 int nlists; /* number of irec's (ex lists */
4709
4710 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4711 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4712 for (i = erp_idx; i < nlists; i++) {
4713 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4714 }
4715}