blob: 52c0287730e8465b1b9e0eea32ec4387b10a51ee [file] [log] [blame]
Archit Tanejac76b78d2016-02-03 14:29:50 +05301/*
2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14#include <linux/clk.h>
15#include <linux/slab.h>
16#include <linux/bitops.h>
17#include <linux/dma-mapping.h>
18#include <linux/dmaengine.h>
19#include <linux/module.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/partitions.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
Archit Tanejac76b78d2016-02-03 14:29:50 +053024#include <linux/delay.h>
25
26/* NANDc reg offsets */
27#define NAND_FLASH_CMD 0x00
28#define NAND_ADDR0 0x04
29#define NAND_ADDR1 0x08
30#define NAND_FLASH_CHIP_SELECT 0x0c
31#define NAND_EXEC_CMD 0x10
32#define NAND_FLASH_STATUS 0x14
33#define NAND_BUFFER_STATUS 0x18
34#define NAND_DEV0_CFG0 0x20
35#define NAND_DEV0_CFG1 0x24
36#define NAND_DEV0_ECC_CFG 0x28
37#define NAND_DEV1_ECC_CFG 0x2c
38#define NAND_DEV1_CFG0 0x30
39#define NAND_DEV1_CFG1 0x34
40#define NAND_READ_ID 0x40
41#define NAND_READ_STATUS 0x44
42#define NAND_DEV_CMD0 0xa0
43#define NAND_DEV_CMD1 0xa4
44#define NAND_DEV_CMD2 0xa8
45#define NAND_DEV_CMD_VLD 0xac
46#define SFLASHC_BURST_CFG 0xe0
47#define NAND_ERASED_CW_DETECT_CFG 0xe8
48#define NAND_ERASED_CW_DETECT_STATUS 0xec
49#define NAND_EBI2_ECC_BUF_CFG 0xf0
50#define FLASH_BUF_ACC 0x100
51
52#define NAND_CTRL 0xf00
53#define NAND_VERSION 0xf08
54#define NAND_READ_LOCATION_0 0xf20
55#define NAND_READ_LOCATION_1 0xf24
56
57/* dummy register offsets, used by write_reg_dma */
58#define NAND_DEV_CMD1_RESTORE 0xdead
59#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
60
61/* NAND_FLASH_CMD bits */
62#define PAGE_ACC BIT(4)
63#define LAST_PAGE BIT(5)
64
65/* NAND_FLASH_CHIP_SELECT bits */
66#define NAND_DEV_SEL 0
67#define DM_EN BIT(2)
68
69/* NAND_FLASH_STATUS bits */
70#define FS_OP_ERR BIT(4)
71#define FS_READY_BSY_N BIT(5)
72#define FS_MPU_ERR BIT(8)
73#define FS_DEVICE_STS_ERR BIT(16)
74#define FS_DEVICE_WP BIT(23)
75
76/* NAND_BUFFER_STATUS bits */
77#define BS_UNCORRECTABLE_BIT BIT(8)
78#define BS_CORRECTABLE_ERR_MSK 0x1f
79
80/* NAND_DEVn_CFG0 bits */
81#define DISABLE_STATUS_AFTER_WRITE 4
82#define CW_PER_PAGE 6
83#define UD_SIZE_BYTES 9
84#define ECC_PARITY_SIZE_BYTES_RS 19
85#define SPARE_SIZE_BYTES 23
86#define NUM_ADDR_CYCLES 27
87#define STATUS_BFR_READ 30
88#define SET_RD_MODE_AFTER_STATUS 31
89
90/* NAND_DEVn_CFG0 bits */
91#define DEV0_CFG1_ECC_DISABLE 0
92#define WIDE_FLASH 1
93#define NAND_RECOVERY_CYCLES 2
94#define CS_ACTIVE_BSY 5
95#define BAD_BLOCK_BYTE_NUM 6
96#define BAD_BLOCK_IN_SPARE_AREA 16
97#define WR_RD_BSY_GAP 17
98#define ENABLE_BCH_ECC 27
99
100/* NAND_DEV0_ECC_CFG bits */
101#define ECC_CFG_ECC_DISABLE 0
102#define ECC_SW_RESET 1
103#define ECC_MODE 4
104#define ECC_PARITY_SIZE_BYTES_BCH 8
105#define ECC_NUM_DATA_BYTES 16
106#define ECC_FORCE_CLK_OPEN 30
107
108/* NAND_DEV_CMD1 bits */
109#define READ_ADDR 0
110
111/* NAND_DEV_CMD_VLD bits */
112#define READ_START_VLD 0
113
114/* NAND_EBI2_ECC_BUF_CFG bits */
115#define NUM_STEPS 0
116
117/* NAND_ERASED_CW_DETECT_CFG bits */
118#define ERASED_CW_ECC_MASK 1
119#define AUTO_DETECT_RES 0
120#define MASK_ECC (1 << ERASED_CW_ECC_MASK)
121#define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
122#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
123#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
124#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
125
126/* NAND_ERASED_CW_DETECT_STATUS bits */
127#define PAGE_ALL_ERASED BIT(7)
128#define CODEWORD_ALL_ERASED BIT(6)
129#define PAGE_ERASED BIT(5)
130#define CODEWORD_ERASED BIT(4)
131#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
132#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
133
134/* Version Mask */
135#define NAND_VERSION_MAJOR_MASK 0xf0000000
136#define NAND_VERSION_MAJOR_SHIFT 28
137#define NAND_VERSION_MINOR_MASK 0x0fff0000
138#define NAND_VERSION_MINOR_SHIFT 16
139
140/* NAND OP_CMDs */
141#define PAGE_READ 0x2
142#define PAGE_READ_WITH_ECC 0x3
143#define PAGE_READ_WITH_ECC_SPARE 0x4
144#define PROGRAM_PAGE 0x6
145#define PAGE_PROGRAM_WITH_ECC 0x7
146#define PROGRAM_PAGE_SPARE 0x9
147#define BLOCK_ERASE 0xa
148#define FETCH_ID 0xb
149#define RESET_DEVICE 0xd
150
151/*
152 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
153 * the driver calls the chunks 'step' or 'codeword' interchangeably
154 */
155#define NANDC_STEP_SIZE 512
156
157/*
158 * the largest page size we support is 8K, this will have 16 steps/codewords
159 * of 512 bytes each
160 */
161#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
162
163/* we read at most 3 registers per codeword scan */
164#define MAX_REG_RD (3 * MAX_NUM_STEPS)
165
166/* ECC modes supported by the controller */
167#define ECC_NONE BIT(0)
168#define ECC_RS_4BIT BIT(1)
169#define ECC_BCH_4BIT BIT(2)
170#define ECC_BCH_8BIT BIT(3)
171
172struct desc_info {
173 struct list_head node;
174
175 enum dma_data_direction dir;
176 struct scatterlist sgl;
177 struct dma_async_tx_descriptor *dma_desc;
178};
179
180/*
181 * holds the current register values that we want to write. acts as a contiguous
182 * chunk of memory which we use to write the controller registers through DMA.
183 */
184struct nandc_regs {
185 __le32 cmd;
186 __le32 addr0;
187 __le32 addr1;
188 __le32 chip_sel;
189 __le32 exec;
190
191 __le32 cfg0;
192 __le32 cfg1;
193 __le32 ecc_bch_cfg;
194
195 __le32 clrflashstatus;
196 __le32 clrreadstatus;
197
198 __le32 cmd1;
199 __le32 vld;
200
201 __le32 orig_cmd1;
202 __le32 orig_vld;
203
204 __le32 ecc_buf_cfg;
205};
206
207/*
208 * NAND controller data struct
209 *
210 * @controller: base controller structure
211 * @host_list: list containing all the chips attached to the
212 * controller
213 * @dev: parent device
214 * @base: MMIO base
215 * @base_dma: physical base address of controller registers
216 * @core_clk: controller clock
217 * @aon_clk: another controller clock
218 *
219 * @chan: dma channel
220 * @cmd_crci: ADM DMA CRCI for command flow control
221 * @data_crci: ADM DMA CRCI for data flow control
222 * @desc_list: DMA descriptor list (list of desc_infos)
223 *
224 * @data_buffer: our local DMA buffer for page read/writes,
225 * used when we can't use the buffer provided
226 * by upper layers directly
227 * @buf_size/count/start: markers for chip->read_buf/write_buf functions
228 * @reg_read_buf: local buffer for reading back registers via DMA
229 * @reg_read_pos: marker for data read in reg_read_buf
230 *
231 * @regs: a contiguous chunk of memory for DMA register
232 * writes. contains the register values to be
233 * written to controller
234 * @cmd1/vld: some fixed controller register values
235 * @ecc_modes: supported ECC modes by the current controller,
236 * initialized via DT match data
237 */
238struct qcom_nand_controller {
239 struct nand_hw_control controller;
240 struct list_head host_list;
241
242 struct device *dev;
243
244 void __iomem *base;
245 dma_addr_t base_dma;
246
247 struct clk *core_clk;
248 struct clk *aon_clk;
249
250 struct dma_chan *chan;
251 unsigned int cmd_crci;
252 unsigned int data_crci;
253 struct list_head desc_list;
254
255 u8 *data_buffer;
256 int buf_size;
257 int buf_count;
258 int buf_start;
259
260 __le32 *reg_read_buf;
261 int reg_read_pos;
262
263 struct nandc_regs *regs;
264
265 u32 cmd1, vld;
266 u32 ecc_modes;
267};
268
269/*
270 * NAND chip structure
271 *
272 * @chip: base NAND chip structure
273 * @node: list node to add itself to host_list in
274 * qcom_nand_controller
275 *
276 * @cs: chip select value for this chip
277 * @cw_size: the number of bytes in a single step/codeword
278 * of a page, consisting of all data, ecc, spare
279 * and reserved bytes
280 * @cw_data: the number of bytes within a codeword protected
281 * by ECC
282 * @use_ecc: request the controller to use ECC for the
283 * upcoming read/write
284 * @bch_enabled: flag to tell whether BCH ECC mode is used
285 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
286 * chip
287 * @status: value to be returned if NAND_CMD_STATUS command
288 * is executed
289 * @last_command: keeps track of last command on this chip. used
290 * for reading correct status
291 *
292 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
293 * ecc/non-ecc mode for the current nand flash
294 * device
295 */
296struct qcom_nand_host {
297 struct nand_chip chip;
298 struct list_head node;
299
300 int cs;
301 int cw_size;
302 int cw_data;
303 bool use_ecc;
304 bool bch_enabled;
305 int ecc_bytes_hw;
306 int spare_bytes;
307 int bbm_size;
308 u8 status;
309 int last_command;
310
311 u32 cfg0, cfg1;
312 u32 cfg0_raw, cfg1_raw;
313 u32 ecc_buf_cfg;
314 u32 ecc_bch_cfg;
315 u32 clrflashstatus;
316 u32 clrreadstatus;
317};
318
319static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
320{
321 return container_of(chip, struct qcom_nand_host, chip);
322}
323
324static inline struct qcom_nand_controller *
325get_qcom_nand_controller(struct nand_chip *chip)
326{
327 return container_of(chip->controller, struct qcom_nand_controller,
328 controller);
329}
330
331static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
332{
333 return ioread32(nandc->base + offset);
334}
335
336static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
337 u32 val)
338{
339 iowrite32(val, nandc->base + offset);
340}
341
342static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
343{
344 switch (offset) {
345 case NAND_FLASH_CMD:
346 return &regs->cmd;
347 case NAND_ADDR0:
348 return &regs->addr0;
349 case NAND_ADDR1:
350 return &regs->addr1;
351 case NAND_FLASH_CHIP_SELECT:
352 return &regs->chip_sel;
353 case NAND_EXEC_CMD:
354 return &regs->exec;
355 case NAND_FLASH_STATUS:
356 return &regs->clrflashstatus;
357 case NAND_DEV0_CFG0:
358 return &regs->cfg0;
359 case NAND_DEV0_CFG1:
360 return &regs->cfg1;
361 case NAND_DEV0_ECC_CFG:
362 return &regs->ecc_bch_cfg;
363 case NAND_READ_STATUS:
364 return &regs->clrreadstatus;
365 case NAND_DEV_CMD1:
366 return &regs->cmd1;
367 case NAND_DEV_CMD1_RESTORE:
368 return &regs->orig_cmd1;
369 case NAND_DEV_CMD_VLD:
370 return &regs->vld;
371 case NAND_DEV_CMD_VLD_RESTORE:
372 return &regs->orig_vld;
373 case NAND_EBI2_ECC_BUF_CFG:
374 return &regs->ecc_buf_cfg;
375 default:
376 return NULL;
377 }
378}
379
380static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
381 u32 val)
382{
383 struct nandc_regs *regs = nandc->regs;
384 __le32 *reg;
385
386 reg = offset_to_nandc_reg(regs, offset);
387
388 if (reg)
389 *reg = cpu_to_le32(val);
390}
391
392/* helper to configure address register values */
393static void set_address(struct qcom_nand_host *host, u16 column, int page)
394{
395 struct nand_chip *chip = &host->chip;
396 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
397
398 if (chip->options & NAND_BUSWIDTH_16)
399 column >>= 1;
400
401 nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
402 nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
403}
404
405/*
406 * update_rw_regs: set up read/write register values, these will be
407 * written to the NAND controller registers via DMA
408 *
409 * @num_cw: number of steps for the read/write operation
410 * @read: read or write operation
411 */
412static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
413{
414 struct nand_chip *chip = &host->chip;
415 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
416 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
417
418 if (read) {
419 if (host->use_ecc)
420 cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
421 else
422 cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
423 } else {
424 cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
425 }
426
427 if (host->use_ecc) {
428 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
429 (num_cw - 1) << CW_PER_PAGE;
430
431 cfg1 = host->cfg1;
432 ecc_bch_cfg = host->ecc_bch_cfg;
433 } else {
434 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
435 (num_cw - 1) << CW_PER_PAGE;
436
437 cfg1 = host->cfg1_raw;
438 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
439 }
440
441 nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
442 nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
443 nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
444 nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
445 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
446 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
447 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
448 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
449}
450
451static int prep_dma_desc(struct qcom_nand_controller *nandc, bool read,
452 int reg_off, const void *vaddr, int size,
453 bool flow_control)
454{
455 struct desc_info *desc;
456 struct dma_async_tx_descriptor *dma_desc;
457 struct scatterlist *sgl;
458 struct dma_slave_config slave_conf;
459 enum dma_transfer_direction dir_eng;
460 int ret;
461
462 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
463 if (!desc)
464 return -ENOMEM;
465
466 sgl = &desc->sgl;
467
468 sg_init_one(sgl, vaddr, size);
469
470 if (read) {
471 dir_eng = DMA_DEV_TO_MEM;
472 desc->dir = DMA_FROM_DEVICE;
473 } else {
474 dir_eng = DMA_MEM_TO_DEV;
475 desc->dir = DMA_TO_DEVICE;
476 }
477
478 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
479 if (ret == 0) {
480 ret = -ENOMEM;
481 goto err;
482 }
483
484 memset(&slave_conf, 0x00, sizeof(slave_conf));
485
486 slave_conf.device_fc = flow_control;
487 if (read) {
488 slave_conf.src_maxburst = 16;
489 slave_conf.src_addr = nandc->base_dma + reg_off;
490 slave_conf.slave_id = nandc->data_crci;
491 } else {
492 slave_conf.dst_maxburst = 16;
493 slave_conf.dst_addr = nandc->base_dma + reg_off;
494 slave_conf.slave_id = nandc->cmd_crci;
495 }
496
497 ret = dmaengine_slave_config(nandc->chan, &slave_conf);
498 if (ret) {
499 dev_err(nandc->dev, "failed to configure dma channel\n");
500 goto err;
501 }
502
503 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
504 if (!dma_desc) {
505 dev_err(nandc->dev, "failed to prepare desc\n");
506 ret = -EINVAL;
507 goto err;
508 }
509
510 desc->dma_desc = dma_desc;
511
512 list_add_tail(&desc->node, &nandc->desc_list);
513
514 return 0;
515err:
516 kfree(desc);
517
518 return ret;
519}
520
521/*
522 * read_reg_dma: prepares a descriptor to read a given number of
523 * contiguous registers to the reg_read_buf pointer
524 *
525 * @first: offset of the first register in the contiguous block
526 * @num_regs: number of registers to read
527 */
528static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
529 int num_regs)
530{
531 bool flow_control = false;
532 void *vaddr;
533 int size;
534
535 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
536 flow_control = true;
537
538 size = num_regs * sizeof(u32);
539 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
540 nandc->reg_read_pos += num_regs;
541
542 return prep_dma_desc(nandc, true, first, vaddr, size, flow_control);
543}
544
545/*
546 * write_reg_dma: prepares a descriptor to write a given number of
547 * contiguous registers
548 *
549 * @first: offset of the first register in the contiguous block
550 * @num_regs: number of registers to write
551 */
552static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
553 int num_regs)
554{
555 bool flow_control = false;
556 struct nandc_regs *regs = nandc->regs;
557 void *vaddr;
558 int size;
559
560 vaddr = offset_to_nandc_reg(regs, first);
561
562 if (first == NAND_FLASH_CMD)
563 flow_control = true;
564
565 if (first == NAND_DEV_CMD1_RESTORE)
566 first = NAND_DEV_CMD1;
567
568 if (first == NAND_DEV_CMD_VLD_RESTORE)
569 first = NAND_DEV_CMD_VLD;
570
571 size = num_regs * sizeof(u32);
572
573 return prep_dma_desc(nandc, false, first, vaddr, size, flow_control);
574}
575
576/*
577 * read_data_dma: prepares a DMA descriptor to transfer data from the
578 * controller's internal buffer to the buffer 'vaddr'
579 *
580 * @reg_off: offset within the controller's data buffer
581 * @vaddr: virtual address of the buffer we want to write to
582 * @size: DMA transaction size in bytes
583 */
584static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
585 const u8 *vaddr, int size)
586{
587 return prep_dma_desc(nandc, true, reg_off, vaddr, size, false);
588}
589
590/*
591 * write_data_dma: prepares a DMA descriptor to transfer data from
592 * 'vaddr' to the controller's internal buffer
593 *
594 * @reg_off: offset within the controller's data buffer
595 * @vaddr: virtual address of the buffer we want to read from
596 * @size: DMA transaction size in bytes
597 */
598static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
599 const u8 *vaddr, int size)
600{
601 return prep_dma_desc(nandc, false, reg_off, vaddr, size, false);
602}
603
604/*
Abhishek Sahubde43302017-07-19 17:17:55 +0530605 * Helper to prepare DMA descriptors for configuring registers
606 * before reading a NAND page.
Archit Tanejac76b78d2016-02-03 14:29:50 +0530607 */
Abhishek Sahubde43302017-07-19 17:17:55 +0530608static void config_nand_page_read(struct qcom_nand_controller *nandc)
Archit Tanejac76b78d2016-02-03 14:29:50 +0530609{
Abhishek Sahubde43302017-07-19 17:17:55 +0530610 write_reg_dma(nandc, NAND_ADDR0, 2);
Archit Tanejac76b78d2016-02-03 14:29:50 +0530611 write_reg_dma(nandc, NAND_DEV0_CFG0, 3);
612 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1);
Abhishek Sahubde43302017-07-19 17:17:55 +0530613}
Archit Tanejac76b78d2016-02-03 14:29:50 +0530614
Abhishek Sahubde43302017-07-19 17:17:55 +0530615/*
616 * Helper to prepare DMA descriptors for configuring registers
617 * before reading each codeword in NAND page.
618 */
619static void config_nand_cw_read(struct qcom_nand_controller *nandc)
620{
621 write_reg_dma(nandc, NAND_FLASH_CMD, 1);
Archit Tanejac76b78d2016-02-03 14:29:50 +0530622 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
623
624 read_reg_dma(nandc, NAND_FLASH_STATUS, 2);
625 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1);
626}
627
628/*
Abhishek Sahubde43302017-07-19 17:17:55 +0530629 * Helper to prepare dma descriptors to configure registers needed for reading a
630 * single codeword in page
Archit Tanejac76b78d2016-02-03 14:29:50 +0530631 */
Abhishek Sahubde43302017-07-19 17:17:55 +0530632static void config_nand_single_cw_page_read(struct qcom_nand_controller *nandc)
633{
634 config_nand_page_read(nandc);
635 config_nand_cw_read(nandc);
636}
637
Abhishek Sahu77cc5362017-07-19 17:17:56 +0530638/*
639 * Helper to prepare DMA descriptors used to configure registers needed for
640 * before writing a NAND page.
641 */
642static void config_nand_page_write(struct qcom_nand_controller *nandc)
Archit Tanejac76b78d2016-02-03 14:29:50 +0530643{
Abhishek Sahu77cc5362017-07-19 17:17:56 +0530644 write_reg_dma(nandc, NAND_ADDR0, 2);
Archit Tanejac76b78d2016-02-03 14:29:50 +0530645 write_reg_dma(nandc, NAND_DEV0_CFG0, 3);
646 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1);
647}
648
Abhishek Sahu77cc5362017-07-19 17:17:56 +0530649/*
650 * Helper to prepare DMA descriptors for configuring registers
651 * before writing each codeword in NAND page.
652 */
653static void config_nand_cw_write(struct qcom_nand_controller *nandc)
Archit Tanejac76b78d2016-02-03 14:29:50 +0530654{
Abhishek Sahu77cc5362017-07-19 17:17:56 +0530655 write_reg_dma(nandc, NAND_FLASH_CMD, 1);
Archit Tanejac76b78d2016-02-03 14:29:50 +0530656 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
657
658 read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
659
660 write_reg_dma(nandc, NAND_FLASH_STATUS, 1);
661 write_reg_dma(nandc, NAND_READ_STATUS, 1);
662}
663
664/*
665 * the following functions are used within chip->cmdfunc() to perform different
666 * NAND_CMD_* commands
667 */
668
669/* sets up descriptors for NAND_CMD_PARAM */
670static int nandc_param(struct qcom_nand_host *host)
671{
672 struct nand_chip *chip = &host->chip;
673 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
674
675 /*
676 * NAND_CMD_PARAM is called before we know much about the FLASH chip
677 * in use. we configure the controller to perform a raw read of 512
678 * bytes to read onfi params
679 */
680 nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE);
681 nandc_set_reg(nandc, NAND_ADDR0, 0);
682 nandc_set_reg(nandc, NAND_ADDR1, 0);
683 nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
684 | 512 << UD_SIZE_BYTES
685 | 5 << NUM_ADDR_CYCLES
686 | 0 << SPARE_SIZE_BYTES);
687 nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
688 | 0 << CS_ACTIVE_BSY
689 | 17 << BAD_BLOCK_BYTE_NUM
690 | 1 << BAD_BLOCK_IN_SPARE_AREA
691 | 2 << WR_RD_BSY_GAP
692 | 0 << WIDE_FLASH
693 | 1 << DEV0_CFG1_ECC_DISABLE);
694 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
695
696 /* configure CMD1 and VLD for ONFI param probing */
697 nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
698 (nandc->vld & ~(1 << READ_START_VLD))
699 | 0 << READ_START_VLD);
700 nandc_set_reg(nandc, NAND_DEV_CMD1,
701 (nandc->cmd1 & ~(0xFF << READ_ADDR))
702 | NAND_CMD_PARAM << READ_ADDR);
703
704 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
705
706 nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
707 nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
708
709 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1);
710 write_reg_dma(nandc, NAND_DEV_CMD1, 1);
711
712 nandc->buf_count = 512;
713 memset(nandc->data_buffer, 0xff, nandc->buf_count);
714
Abhishek Sahubde43302017-07-19 17:17:55 +0530715 config_nand_single_cw_page_read(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +0530716
717 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
718 nandc->buf_count);
719
720 /* restore CMD1 and VLD regs */
721 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1);
722 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1);
723
724 return 0;
725}
726
727/* sets up descriptors for NAND_CMD_ERASE1 */
728static int erase_block(struct qcom_nand_host *host, int page_addr)
729{
730 struct nand_chip *chip = &host->chip;
731 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
732
733 nandc_set_reg(nandc, NAND_FLASH_CMD,
734 BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
735 nandc_set_reg(nandc, NAND_ADDR0, page_addr);
736 nandc_set_reg(nandc, NAND_ADDR1, 0);
737 nandc_set_reg(nandc, NAND_DEV0_CFG0,
738 host->cfg0_raw & ~(7 << CW_PER_PAGE));
739 nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
740 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
741 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
742 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
743
744 write_reg_dma(nandc, NAND_FLASH_CMD, 3);
745 write_reg_dma(nandc, NAND_DEV0_CFG0, 2);
746 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
747
748 read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
749
750 write_reg_dma(nandc, NAND_FLASH_STATUS, 1);
751 write_reg_dma(nandc, NAND_READ_STATUS, 1);
752
753 return 0;
754}
755
756/* sets up descriptors for NAND_CMD_READID */
757static int read_id(struct qcom_nand_host *host, int column)
758{
759 struct nand_chip *chip = &host->chip;
760 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
761
762 if (column == -1)
763 return 0;
764
765 nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID);
766 nandc_set_reg(nandc, NAND_ADDR0, column);
767 nandc_set_reg(nandc, NAND_ADDR1, 0);
768 nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
769 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
770
771 write_reg_dma(nandc, NAND_FLASH_CMD, 4);
772 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
773
774 read_reg_dma(nandc, NAND_READ_ID, 1);
775
776 return 0;
777}
778
779/* sets up descriptors for NAND_CMD_RESET */
780static int reset(struct qcom_nand_host *host)
781{
782 struct nand_chip *chip = &host->chip;
783 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
784
785 nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE);
786 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
787
788 write_reg_dma(nandc, NAND_FLASH_CMD, 1);
789 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
790
791 read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
792
793 return 0;
794}
795
796/* helpers to submit/free our list of dma descriptors */
797static int submit_descs(struct qcom_nand_controller *nandc)
798{
799 struct desc_info *desc;
800 dma_cookie_t cookie = 0;
801
802 list_for_each_entry(desc, &nandc->desc_list, node)
803 cookie = dmaengine_submit(desc->dma_desc);
804
805 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
806 return -ETIMEDOUT;
807
808 return 0;
809}
810
811static void free_descs(struct qcom_nand_controller *nandc)
812{
813 struct desc_info *desc, *n;
814
815 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
816 list_del(&desc->node);
817 dma_unmap_sg(nandc->dev, &desc->sgl, 1, desc->dir);
818 kfree(desc);
819 }
820}
821
822/* reset the register read buffer for next NAND operation */
823static void clear_read_regs(struct qcom_nand_controller *nandc)
824{
825 nandc->reg_read_pos = 0;
826 memset(nandc->reg_read_buf, 0,
827 MAX_REG_RD * sizeof(*nandc->reg_read_buf));
828}
829
830static void pre_command(struct qcom_nand_host *host, int command)
831{
832 struct nand_chip *chip = &host->chip;
833 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
834
835 nandc->buf_count = 0;
836 nandc->buf_start = 0;
837 host->use_ecc = false;
838 host->last_command = command;
839
840 clear_read_regs(nandc);
841}
842
843/*
844 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
845 * privately maintained status byte, this status byte can be read after
846 * NAND_CMD_STATUS is called
847 */
848static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
849{
850 struct nand_chip *chip = &host->chip;
851 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
852 struct nand_ecc_ctrl *ecc = &chip->ecc;
853 int num_cw;
854 int i;
855
856 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
857
858 for (i = 0; i < num_cw; i++) {
859 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
860
861 if (flash_status & FS_MPU_ERR)
862 host->status &= ~NAND_STATUS_WP;
863
864 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
865 (flash_status &
866 FS_DEVICE_STS_ERR)))
867 host->status |= NAND_STATUS_FAIL;
868 }
869}
870
871static void post_command(struct qcom_nand_host *host, int command)
872{
873 struct nand_chip *chip = &host->chip;
874 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
875
876 switch (command) {
877 case NAND_CMD_READID:
878 memcpy(nandc->data_buffer, nandc->reg_read_buf,
879 nandc->buf_count);
880 break;
881 case NAND_CMD_PAGEPROG:
882 case NAND_CMD_ERASE1:
883 parse_erase_write_errors(host, command);
884 break;
885 default:
886 break;
887 }
888}
889
890/*
891 * Implements chip->cmdfunc. It's only used for a limited set of commands.
892 * The rest of the commands wouldn't be called by upper layers. For example,
893 * NAND_CMD_READOOB would never be called because we have our own versions
894 * of read_oob ops for nand_ecc_ctrl.
895 */
896static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
897 int column, int page_addr)
898{
899 struct nand_chip *chip = mtd_to_nand(mtd);
900 struct qcom_nand_host *host = to_qcom_nand_host(chip);
901 struct nand_ecc_ctrl *ecc = &chip->ecc;
902 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
903 bool wait = false;
904 int ret = 0;
905
906 pre_command(host, command);
907
908 switch (command) {
909 case NAND_CMD_RESET:
910 ret = reset(host);
911 wait = true;
912 break;
913
914 case NAND_CMD_READID:
915 nandc->buf_count = 4;
916 ret = read_id(host, column);
917 wait = true;
918 break;
919
920 case NAND_CMD_PARAM:
921 ret = nandc_param(host);
922 wait = true;
923 break;
924
925 case NAND_CMD_ERASE1:
926 ret = erase_block(host, page_addr);
927 wait = true;
928 break;
929
930 case NAND_CMD_READ0:
931 /* we read the entire page for now */
932 WARN_ON(column != 0);
933
934 host->use_ecc = true;
935 set_address(host, 0, page_addr);
936 update_rw_regs(host, ecc->steps, true);
937 break;
938
939 case NAND_CMD_SEQIN:
940 WARN_ON(column != 0);
941 set_address(host, 0, page_addr);
942 break;
943
944 case NAND_CMD_PAGEPROG:
945 case NAND_CMD_STATUS:
946 case NAND_CMD_NONE:
947 default:
948 break;
949 }
950
951 if (ret) {
952 dev_err(nandc->dev, "failure executing command %d\n",
953 command);
954 free_descs(nandc);
955 return;
956 }
957
958 if (wait) {
959 ret = submit_descs(nandc);
960 if (ret)
961 dev_err(nandc->dev,
962 "failure submitting descs for command %d\n",
963 command);
964 }
965
966 free_descs(nandc);
967
968 post_command(host, command);
969}
970
971/*
972 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
973 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
974 *
975 * when using RS ECC, the HW reports the same erros when reading an erased CW,
976 * but it notifies that it is an erased CW by placing special characters at
977 * certain offsets in the buffer.
978 *
979 * verify if the page is erased or not, and fix up the page for RS ECC by
980 * replacing the special characters with 0xff.
981 */
982static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
983{
984 u8 empty1, empty2;
985
986 /*
987 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
988 * is erased by looking for 0x54s at offsets 3 and 175 from the
989 * beginning of each codeword
990 */
991
992 empty1 = data_buf[3];
993 empty2 = data_buf[175];
994
995 /*
996 * if the erased codework markers, if they exist override them with
997 * 0xffs
998 */
999 if ((empty1 == 0x54 && empty2 == 0xff) ||
1000 (empty1 == 0xff && empty2 == 0x54)) {
1001 data_buf[3] = 0xff;
1002 data_buf[175] = 0xff;
1003 }
1004
1005 /*
1006 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1007 * restore the original values at the special offsets
1008 */
1009 if (memchr_inv(data_buf, 0xff, data_len)) {
1010 data_buf[3] = empty1;
1011 data_buf[175] = empty2;
1012
1013 return false;
1014 }
1015
1016 return true;
1017}
1018
1019struct read_stats {
1020 __le32 flash;
1021 __le32 buffer;
1022 __le32 erased_cw;
1023};
1024
1025/*
1026 * reads back status registers set by the controller to notify page read
1027 * errors. this is equivalent to what 'ecc->correct()' would do.
1028 */
1029static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1030 u8 *oob_buf)
1031{
1032 struct nand_chip *chip = &host->chip;
1033 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1034 struct mtd_info *mtd = nand_to_mtd(chip);
1035 struct nand_ecc_ctrl *ecc = &chip->ecc;
1036 unsigned int max_bitflips = 0;
1037 struct read_stats *buf;
1038 int i;
1039
1040 buf = (struct read_stats *)nandc->reg_read_buf;
1041
1042 for (i = 0; i < ecc->steps; i++, buf++) {
1043 u32 flash, buffer, erased_cw;
1044 int data_len, oob_len;
1045
1046 if (i == (ecc->steps - 1)) {
1047 data_len = ecc->size - ((ecc->steps - 1) << 2);
1048 oob_len = ecc->steps << 2;
1049 } else {
1050 data_len = host->cw_data;
1051 oob_len = 0;
1052 }
1053
1054 flash = le32_to_cpu(buf->flash);
1055 buffer = le32_to_cpu(buf->buffer);
1056 erased_cw = le32_to_cpu(buf->erased_cw);
1057
1058 if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1059 bool erased;
1060
1061 /* ignore erased codeword errors */
1062 if (host->bch_enabled) {
1063 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1064 true : false;
1065 } else {
1066 erased = erased_chunk_check_and_fixup(data_buf,
1067 data_len);
1068 }
1069
1070 if (erased) {
1071 data_buf += data_len;
1072 if (oob_buf)
1073 oob_buf += oob_len + ecc->bytes;
1074 continue;
1075 }
1076
1077 if (buffer & BS_UNCORRECTABLE_BIT) {
1078 int ret, ecclen, extraooblen;
1079 void *eccbuf;
1080
1081 eccbuf = oob_buf ? oob_buf + oob_len : NULL;
1082 ecclen = oob_buf ? host->ecc_bytes_hw : 0;
1083 extraooblen = oob_buf ? oob_len : 0;
1084
1085 /*
1086 * make sure it isn't an erased page reported
1087 * as not-erased by HW because of a few bitflips
1088 */
1089 ret = nand_check_erased_ecc_chunk(data_buf,
1090 data_len, eccbuf, ecclen, oob_buf,
1091 extraooblen, ecc->strength);
1092 if (ret < 0) {
1093 mtd->ecc_stats.failed++;
1094 } else {
1095 mtd->ecc_stats.corrected += ret;
1096 max_bitflips =
1097 max_t(unsigned int, max_bitflips, ret);
1098 }
1099 }
1100 } else {
1101 unsigned int stat;
1102
1103 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1104 mtd->ecc_stats.corrected += stat;
1105 max_bitflips = max(max_bitflips, stat);
1106 }
1107
1108 data_buf += data_len;
1109 if (oob_buf)
1110 oob_buf += oob_len + ecc->bytes;
1111 }
1112
1113 return max_bitflips;
1114}
1115
1116/*
1117 * helper to perform the actual page read operation, used by ecc->read_page(),
1118 * ecc->read_oob()
1119 */
1120static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1121 u8 *oob_buf)
1122{
1123 struct nand_chip *chip = &host->chip;
1124 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1125 struct nand_ecc_ctrl *ecc = &chip->ecc;
1126 int i, ret;
1127
Abhishek Sahubde43302017-07-19 17:17:55 +05301128 config_nand_page_read(nandc);
1129
Archit Tanejac76b78d2016-02-03 14:29:50 +05301130 /* queue cmd descs for each codeword */
1131 for (i = 0; i < ecc->steps; i++) {
1132 int data_size, oob_size;
1133
1134 if (i == (ecc->steps - 1)) {
1135 data_size = ecc->size - ((ecc->steps - 1) << 2);
1136 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1137 host->spare_bytes;
1138 } else {
1139 data_size = host->cw_data;
1140 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1141 }
1142
Abhishek Sahubde43302017-07-19 17:17:55 +05301143 config_nand_cw_read(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301144
1145 if (data_buf)
1146 read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1147 data_size);
1148
1149 /*
1150 * when ecc is enabled, the controller doesn't read the real
1151 * or dummy bad block markers in each chunk. To maintain a
1152 * consistent layout across RAW and ECC reads, we just
1153 * leave the real/dummy BBM offsets empty (i.e, filled with
1154 * 0xffs)
1155 */
1156 if (oob_buf) {
1157 int j;
1158
1159 for (j = 0; j < host->bbm_size; j++)
1160 *oob_buf++ = 0xff;
1161
1162 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1163 oob_buf, oob_size);
1164 }
1165
1166 if (data_buf)
1167 data_buf += data_size;
1168 if (oob_buf)
1169 oob_buf += oob_size;
1170 }
1171
1172 ret = submit_descs(nandc);
1173 if (ret)
1174 dev_err(nandc->dev, "failure to read page/oob\n");
1175
1176 free_descs(nandc);
1177
1178 return ret;
1179}
1180
1181/*
1182 * a helper that copies the last step/codeword of a page (containing free oob)
1183 * into our local buffer
1184 */
1185static int copy_last_cw(struct qcom_nand_host *host, int page)
1186{
1187 struct nand_chip *chip = &host->chip;
1188 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1189 struct nand_ecc_ctrl *ecc = &chip->ecc;
1190 int size;
1191 int ret;
1192
1193 clear_read_regs(nandc);
1194
1195 size = host->use_ecc ? host->cw_data : host->cw_size;
1196
1197 /* prepare a clean read buffer */
1198 memset(nandc->data_buffer, 0xff, size);
1199
1200 set_address(host, host->cw_size * (ecc->steps - 1), page);
1201 update_rw_regs(host, 1, true);
1202
Abhishek Sahubde43302017-07-19 17:17:55 +05301203 config_nand_single_cw_page_read(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301204
1205 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size);
1206
1207 ret = submit_descs(nandc);
1208 if (ret)
1209 dev_err(nandc->dev, "failed to copy last codeword\n");
1210
1211 free_descs(nandc);
1212
1213 return ret;
1214}
1215
1216/* implements ecc->read_page() */
1217static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1218 uint8_t *buf, int oob_required, int page)
1219{
1220 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1221 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1222 u8 *data_buf, *oob_buf = NULL;
1223 int ret;
1224
1225 data_buf = buf;
1226 oob_buf = oob_required ? chip->oob_poi : NULL;
1227
1228 ret = read_page_ecc(host, data_buf, oob_buf);
1229 if (ret) {
1230 dev_err(nandc->dev, "failure to read page\n");
1231 return ret;
1232 }
1233
1234 return parse_read_errors(host, data_buf, oob_buf);
1235}
1236
1237/* implements ecc->read_page_raw() */
1238static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1239 struct nand_chip *chip, uint8_t *buf,
1240 int oob_required, int page)
1241{
1242 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1243 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1244 u8 *data_buf, *oob_buf;
1245 struct nand_ecc_ctrl *ecc = &chip->ecc;
1246 int i, ret;
1247
1248 data_buf = buf;
1249 oob_buf = chip->oob_poi;
1250
1251 host->use_ecc = false;
1252 update_rw_regs(host, ecc->steps, true);
Abhishek Sahubde43302017-07-19 17:17:55 +05301253 config_nand_page_read(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301254
1255 for (i = 0; i < ecc->steps; i++) {
1256 int data_size1, data_size2, oob_size1, oob_size2;
1257 int reg_off = FLASH_BUF_ACC;
1258
1259 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1260 oob_size1 = host->bbm_size;
1261
1262 if (i == (ecc->steps - 1)) {
1263 data_size2 = ecc->size - data_size1 -
1264 ((ecc->steps - 1) << 2);
1265 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1266 host->spare_bytes;
1267 } else {
1268 data_size2 = host->cw_data - data_size1;
1269 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1270 }
1271
Abhishek Sahubde43302017-07-19 17:17:55 +05301272 config_nand_cw_read(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301273
1274 read_data_dma(nandc, reg_off, data_buf, data_size1);
1275 reg_off += data_size1;
1276 data_buf += data_size1;
1277
1278 read_data_dma(nandc, reg_off, oob_buf, oob_size1);
1279 reg_off += oob_size1;
1280 oob_buf += oob_size1;
1281
1282 read_data_dma(nandc, reg_off, data_buf, data_size2);
1283 reg_off += data_size2;
1284 data_buf += data_size2;
1285
1286 read_data_dma(nandc, reg_off, oob_buf, oob_size2);
1287 oob_buf += oob_size2;
1288 }
1289
1290 ret = submit_descs(nandc);
1291 if (ret)
1292 dev_err(nandc->dev, "failure to read raw page\n");
1293
1294 free_descs(nandc);
1295
1296 return 0;
1297}
1298
1299/* implements ecc->read_oob() */
1300static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1301 int page)
1302{
1303 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1304 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1305 struct nand_ecc_ctrl *ecc = &chip->ecc;
1306 int ret;
1307
1308 clear_read_regs(nandc);
1309
1310 host->use_ecc = true;
1311 set_address(host, 0, page);
1312 update_rw_regs(host, ecc->steps, true);
1313
1314 ret = read_page_ecc(host, NULL, chip->oob_poi);
1315 if (ret)
1316 dev_err(nandc->dev, "failure to read oob\n");
1317
1318 return ret;
1319}
1320
1321/* implements ecc->write_page() */
1322static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1323 const uint8_t *buf, int oob_required, int page)
1324{
1325 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1326 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1327 struct nand_ecc_ctrl *ecc = &chip->ecc;
1328 u8 *data_buf, *oob_buf;
1329 int i, ret;
1330
1331 clear_read_regs(nandc);
1332
1333 data_buf = (u8 *)buf;
1334 oob_buf = chip->oob_poi;
1335
1336 host->use_ecc = true;
1337 update_rw_regs(host, ecc->steps, false);
Abhishek Sahu77cc5362017-07-19 17:17:56 +05301338 config_nand_page_write(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301339
1340 for (i = 0; i < ecc->steps; i++) {
1341 int data_size, oob_size;
1342
1343 if (i == (ecc->steps - 1)) {
1344 data_size = ecc->size - ((ecc->steps - 1) << 2);
1345 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1346 host->spare_bytes;
1347 } else {
1348 data_size = host->cw_data;
1349 oob_size = ecc->bytes;
1350 }
1351
Archit Tanejac76b78d2016-02-03 14:29:50 +05301352
1353 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size);
1354
1355 /*
1356 * when ECC is enabled, we don't really need to write anything
1357 * to oob for the first n - 1 codewords since these oob regions
1358 * just contain ECC bytes that's written by the controller
1359 * itself. For the last codeword, we skip the bbm positions and
1360 * write to the free oob area.
1361 */
1362 if (i == (ecc->steps - 1)) {
1363 oob_buf += host->bbm_size;
1364
1365 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
1366 oob_buf, oob_size);
1367 }
1368
Abhishek Sahu77cc5362017-07-19 17:17:56 +05301369 config_nand_cw_write(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301370
1371 data_buf += data_size;
1372 oob_buf += oob_size;
1373 }
1374
1375 ret = submit_descs(nandc);
1376 if (ret)
1377 dev_err(nandc->dev, "failure to write page\n");
1378
1379 free_descs(nandc);
1380
1381 return ret;
1382}
1383
1384/* implements ecc->write_page_raw() */
1385static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
1386 struct nand_chip *chip, const uint8_t *buf,
1387 int oob_required, int page)
1388{
1389 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1390 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1391 struct nand_ecc_ctrl *ecc = &chip->ecc;
1392 u8 *data_buf, *oob_buf;
1393 int i, ret;
1394
1395 clear_read_regs(nandc);
1396
1397 data_buf = (u8 *)buf;
1398 oob_buf = chip->oob_poi;
1399
1400 host->use_ecc = false;
1401 update_rw_regs(host, ecc->steps, false);
Abhishek Sahu77cc5362017-07-19 17:17:56 +05301402 config_nand_page_write(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301403
1404 for (i = 0; i < ecc->steps; i++) {
1405 int data_size1, data_size2, oob_size1, oob_size2;
1406 int reg_off = FLASH_BUF_ACC;
1407
1408 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1409 oob_size1 = host->bbm_size;
1410
1411 if (i == (ecc->steps - 1)) {
1412 data_size2 = ecc->size - data_size1 -
1413 ((ecc->steps - 1) << 2);
1414 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1415 host->spare_bytes;
1416 } else {
1417 data_size2 = host->cw_data - data_size1;
1418 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1419 }
1420
Archit Tanejac76b78d2016-02-03 14:29:50 +05301421 write_data_dma(nandc, reg_off, data_buf, data_size1);
1422 reg_off += data_size1;
1423 data_buf += data_size1;
1424
1425 write_data_dma(nandc, reg_off, oob_buf, oob_size1);
1426 reg_off += oob_size1;
1427 oob_buf += oob_size1;
1428
1429 write_data_dma(nandc, reg_off, data_buf, data_size2);
1430 reg_off += data_size2;
1431 data_buf += data_size2;
1432
1433 write_data_dma(nandc, reg_off, oob_buf, oob_size2);
1434 oob_buf += oob_size2;
1435
Abhishek Sahu77cc5362017-07-19 17:17:56 +05301436 config_nand_cw_write(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301437 }
1438
1439 ret = submit_descs(nandc);
1440 if (ret)
1441 dev_err(nandc->dev, "failure to write raw page\n");
1442
1443 free_descs(nandc);
1444
1445 return ret;
1446}
1447
1448/*
1449 * implements ecc->write_oob()
1450 *
1451 * the NAND controller cannot write only data or only oob within a codeword,
1452 * since ecc is calculated for the combined codeword. we first copy the
1453 * entire contents for the last codeword(data + oob), replace the old oob
1454 * with the new one in chip->oob_poi, and then write the entire codeword.
1455 * this read-copy-write operation results in a slight performance loss.
1456 */
1457static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1458 int page)
1459{
1460 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1461 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1462 struct nand_ecc_ctrl *ecc = &chip->ecc;
1463 u8 *oob = chip->oob_poi;
Archit Tanejac76b78d2016-02-03 14:29:50 +05301464 int data_size, oob_size;
1465 int ret, status = 0;
1466
1467 host->use_ecc = true;
1468
1469 ret = copy_last_cw(host, page);
1470 if (ret)
1471 return ret;
1472
1473 clear_read_regs(nandc);
1474
1475 /* calculate the data and oob size for the last codeword/step */
1476 data_size = ecc->size - ((ecc->steps - 1) << 2);
Boris Brezillonaa02fcf2016-03-18 17:53:31 +01001477 oob_size = mtd->oobavail;
Archit Tanejac76b78d2016-02-03 14:29:50 +05301478
1479 /* override new oob content to last codeword */
Boris Brezillonaa02fcf2016-03-18 17:53:31 +01001480 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
1481 0, mtd->oobavail);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301482
1483 set_address(host, host->cw_size * (ecc->steps - 1), page);
1484 update_rw_regs(host, 1, false);
1485
Abhishek Sahu77cc5362017-07-19 17:17:56 +05301486 config_nand_page_write(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301487 write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1488 data_size + oob_size);
Abhishek Sahu77cc5362017-07-19 17:17:56 +05301489 config_nand_cw_write(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301490
1491 ret = submit_descs(nandc);
1492
1493 free_descs(nandc);
1494
1495 if (ret) {
1496 dev_err(nandc->dev, "failure to write oob\n");
1497 return -EIO;
1498 }
1499
1500 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1501
1502 status = chip->waitfunc(mtd, chip);
1503
1504 return status & NAND_STATUS_FAIL ? -EIO : 0;
1505}
1506
1507static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
1508{
1509 struct nand_chip *chip = mtd_to_nand(mtd);
1510 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1511 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1512 struct nand_ecc_ctrl *ecc = &chip->ecc;
1513 int page, ret, bbpos, bad = 0;
1514 u32 flash_status;
1515
1516 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1517
1518 /*
1519 * configure registers for a raw sub page read, the address is set to
1520 * the beginning of the last codeword, we don't care about reading ecc
1521 * portion of oob. we just want the first few bytes from this codeword
1522 * that contains the BBM
1523 */
1524 host->use_ecc = false;
1525
1526 ret = copy_last_cw(host, page);
1527 if (ret)
1528 goto err;
1529
1530 flash_status = le32_to_cpu(nandc->reg_read_buf[0]);
1531
1532 if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) {
1533 dev_warn(nandc->dev, "error when trying to read BBM\n");
1534 goto err;
1535 }
1536
1537 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
1538
1539 bad = nandc->data_buffer[bbpos] != 0xff;
1540
1541 if (chip->options & NAND_BUSWIDTH_16)
1542 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
1543err:
1544 return bad;
1545}
1546
1547static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
1548{
1549 struct nand_chip *chip = mtd_to_nand(mtd);
1550 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1551 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1552 struct nand_ecc_ctrl *ecc = &chip->ecc;
1553 int page, ret, status = 0;
1554
1555 clear_read_regs(nandc);
1556
1557 /*
1558 * to mark the BBM as bad, we flash the entire last codeword with 0s.
1559 * we don't care about the rest of the content in the codeword since
1560 * we aren't going to use this block again
1561 */
1562 memset(nandc->data_buffer, 0x00, host->cw_size);
1563
1564 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1565
1566 /* prepare write */
1567 host->use_ecc = false;
1568 set_address(host, host->cw_size * (ecc->steps - 1), page);
1569 update_rw_regs(host, 1, false);
1570
Abhishek Sahu77cc5362017-07-19 17:17:56 +05301571 config_nand_page_write(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301572 write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, host->cw_size);
Abhishek Sahu77cc5362017-07-19 17:17:56 +05301573 config_nand_cw_write(nandc);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301574
1575 ret = submit_descs(nandc);
1576
1577 free_descs(nandc);
1578
1579 if (ret) {
1580 dev_err(nandc->dev, "failure to update BBM\n");
1581 return -EIO;
1582 }
1583
1584 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1585
1586 status = chip->waitfunc(mtd, chip);
1587
1588 return status & NAND_STATUS_FAIL ? -EIO : 0;
1589}
1590
1591/*
1592 * the three functions below implement chip->read_byte(), chip->read_buf()
1593 * and chip->write_buf() respectively. these aren't used for
1594 * reading/writing page data, they are used for smaller data like reading
1595 * id, status etc
1596 */
1597static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
1598{
1599 struct nand_chip *chip = mtd_to_nand(mtd);
1600 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1601 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1602 u8 *buf = nandc->data_buffer;
1603 u8 ret = 0x0;
1604
1605 if (host->last_command == NAND_CMD_STATUS) {
1606 ret = host->status;
1607
1608 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
1609
1610 return ret;
1611 }
1612
1613 if (nandc->buf_start < nandc->buf_count)
1614 ret = buf[nandc->buf_start++];
1615
1616 return ret;
1617}
1618
1619static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1620{
1621 struct nand_chip *chip = mtd_to_nand(mtd);
1622 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1623 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
1624
1625 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
1626 nandc->buf_start += real_len;
1627}
1628
1629static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1630 int len)
1631{
1632 struct nand_chip *chip = mtd_to_nand(mtd);
1633 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1634 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
1635
1636 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
1637
1638 nandc->buf_start += real_len;
1639}
1640
1641/* we support only one external chip for now */
1642static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
1643{
1644 struct nand_chip *chip = mtd_to_nand(mtd);
1645 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1646
1647 if (chipnr <= 0)
1648 return;
1649
1650 dev_warn(nandc->dev, "invalid chip select\n");
1651}
1652
1653/*
1654 * NAND controller page layout info
1655 *
1656 * Layout with ECC enabled:
1657 *
1658 * |----------------------| |---------------------------------|
1659 * | xx.......yy| | *********xx.......yy|
1660 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
1661 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
1662 * | xx.......yy| | *********xx.......yy|
1663 * |----------------------| |---------------------------------|
1664 * codeword 1,2..n-1 codeword n
1665 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
1666 *
1667 * n = Number of codewords in the page
1668 * . = ECC bytes
1669 * * = Spare/free bytes
1670 * x = Unused byte(s)
1671 * y = Reserved byte(s)
1672 *
1673 * 2K page: n = 4, spare = 16 bytes
1674 * 4K page: n = 8, spare = 32 bytes
1675 * 8K page: n = 16, spare = 64 bytes
1676 *
1677 * the qcom nand controller operates at a sub page/codeword level. each
1678 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
1679 * the number of ECC bytes vary based on the ECC strength and the bus width.
1680 *
1681 * the first n - 1 codewords contains 516 bytes of user data, the remaining
1682 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
1683 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
1684 *
1685 * When we access a page with ECC enabled, the reserved bytes(s) are not
1686 * accessible at all. When reading, we fill up these unreadable positions
1687 * with 0xffs. When writing, the controller skips writing the inaccessible
1688 * bytes.
1689 *
1690 * Layout with ECC disabled:
1691 *
1692 * |------------------------------| |---------------------------------------|
1693 * | yy xx.......| | bb *********xx.......|
1694 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
1695 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
1696 * | yy xx.......| | bb *********xx.......|
1697 * |------------------------------| |---------------------------------------|
1698 * codeword 1,2..n-1 codeword n
1699 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
1700 *
1701 * n = Number of codewords in the page
1702 * . = ECC bytes
1703 * * = Spare/free bytes
1704 * x = Unused byte(s)
1705 * y = Dummy Bad Bock byte(s)
1706 * b = Real Bad Block byte(s)
1707 * size1/size2 = function of codeword size and 'n'
1708 *
1709 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
1710 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
1711 * Block Markers. In the last codeword, this position contains the real BBM
1712 *
1713 * In order to have a consistent layout between RAW and ECC modes, we assume
1714 * the following OOB layout arrangement:
1715 *
1716 * |-----------| |--------------------|
1717 * |yyxx.......| |bb*********xx.......|
1718 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
1719 * |yyxx.......| |bb*********xx.......|
1720 * |yyxx.......| |bb*********xx.......|
1721 * |-----------| |--------------------|
1722 * first n - 1 nth OOB region
1723 * OOB regions
1724 *
1725 * n = Number of codewords in the page
1726 * . = ECC bytes
1727 * * = FREE OOB bytes
1728 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
1729 * x = Unused byte(s)
1730 * b = Real bad block byte(s) (inaccessible when ECC enabled)
1731 *
1732 * This layout is read as is when ECC is disabled. When ECC is enabled, the
1733 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
1734 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
Boris Brezillon421e81c2016-03-18 17:54:27 +01001735 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
1736 * the sum of the three).
Archit Tanejac76b78d2016-02-03 14:29:50 +05301737 */
Boris Brezillon421e81c2016-03-18 17:54:27 +01001738static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1739 struct mtd_oob_region *oobregion)
Archit Tanejac76b78d2016-02-03 14:29:50 +05301740{
Boris Brezillon421e81c2016-03-18 17:54:27 +01001741 struct nand_chip *chip = mtd_to_nand(mtd);
1742 struct qcom_nand_host *host = to_qcom_nand_host(chip);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301743 struct nand_ecc_ctrl *ecc = &chip->ecc;
Archit Tanejac76b78d2016-02-03 14:29:50 +05301744
Boris Brezillon421e81c2016-03-18 17:54:27 +01001745 if (section > 1)
1746 return -ERANGE;
Archit Tanejac76b78d2016-02-03 14:29:50 +05301747
Boris Brezillon421e81c2016-03-18 17:54:27 +01001748 if (!section) {
1749 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
1750 host->bbm_size;
1751 oobregion->offset = 0;
1752 } else {
1753 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
1754 oobregion->offset = mtd->oobsize - oobregion->length;
Archit Tanejac76b78d2016-02-03 14:29:50 +05301755 }
1756
Boris Brezillon421e81c2016-03-18 17:54:27 +01001757 return 0;
Archit Tanejac76b78d2016-02-03 14:29:50 +05301758}
1759
Boris Brezillon421e81c2016-03-18 17:54:27 +01001760static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
1761 struct mtd_oob_region *oobregion)
1762{
1763 struct nand_chip *chip = mtd_to_nand(mtd);
1764 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1765 struct nand_ecc_ctrl *ecc = &chip->ecc;
1766
1767 if (section)
1768 return -ERANGE;
1769
1770 oobregion->length = ecc->steps * 4;
1771 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
1772
1773 return 0;
1774}
1775
1776static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
1777 .ecc = qcom_nand_ooblayout_ecc,
1778 .free = qcom_nand_ooblayout_free,
1779};
1780
Archit Tanejac76b78d2016-02-03 14:29:50 +05301781static int qcom_nand_host_setup(struct qcom_nand_host *host)
1782{
1783 struct nand_chip *chip = &host->chip;
1784 struct mtd_info *mtd = nand_to_mtd(chip);
1785 struct nand_ecc_ctrl *ecc = &chip->ecc;
1786 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1787 int cwperpage, bad_block_byte;
1788 bool wide_bus;
1789 int ecc_mode = 1;
1790
1791 /*
1792 * the controller requires each step consists of 512 bytes of data.
1793 * bail out if DT has populated a wrong step size.
1794 */
1795 if (ecc->size != NANDC_STEP_SIZE) {
1796 dev_err(nandc->dev, "invalid ecc size\n");
1797 return -EINVAL;
1798 }
1799
1800 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
1801
1802 if (ecc->strength >= 8) {
1803 /* 8 bit ECC defaults to BCH ECC on all platforms */
1804 host->bch_enabled = true;
1805 ecc_mode = 1;
1806
1807 if (wide_bus) {
1808 host->ecc_bytes_hw = 14;
1809 host->spare_bytes = 0;
1810 host->bbm_size = 2;
1811 } else {
1812 host->ecc_bytes_hw = 13;
1813 host->spare_bytes = 2;
1814 host->bbm_size = 1;
1815 }
1816 } else {
1817 /*
1818 * if the controller supports BCH for 4 bit ECC, the controller
1819 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
1820 * always 10 bytes
1821 */
1822 if (nandc->ecc_modes & ECC_BCH_4BIT) {
1823 /* BCH */
1824 host->bch_enabled = true;
1825 ecc_mode = 0;
1826
1827 if (wide_bus) {
1828 host->ecc_bytes_hw = 8;
1829 host->spare_bytes = 2;
1830 host->bbm_size = 2;
1831 } else {
1832 host->ecc_bytes_hw = 7;
1833 host->spare_bytes = 4;
1834 host->bbm_size = 1;
1835 }
1836 } else {
1837 /* RS */
1838 host->ecc_bytes_hw = 10;
1839
1840 if (wide_bus) {
1841 host->spare_bytes = 0;
1842 host->bbm_size = 2;
1843 } else {
1844 host->spare_bytes = 1;
1845 host->bbm_size = 1;
1846 }
1847 }
1848 }
1849
1850 /*
1851 * we consider ecc->bytes as the sum of all the non-data content in a
1852 * step. It gives us a clean representation of the oob area (even if
1853 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
1854 * ECC and 12 bytes for 4 bit ECC
1855 */
1856 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
1857
1858 ecc->read_page = qcom_nandc_read_page;
1859 ecc->read_page_raw = qcom_nandc_read_page_raw;
1860 ecc->read_oob = qcom_nandc_read_oob;
1861 ecc->write_page = qcom_nandc_write_page;
1862 ecc->write_page_raw = qcom_nandc_write_page_raw;
1863 ecc->write_oob = qcom_nandc_write_oob;
1864
1865 ecc->mode = NAND_ECC_HW;
1866
Boris Brezillon421e81c2016-03-18 17:54:27 +01001867 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301868
1869 cwperpage = mtd->writesize / ecc->size;
1870
1871 /*
1872 * DATA_UD_BYTES varies based on whether the read/write command protects
1873 * spare data with ECC too. We protect spare data by default, so we set
1874 * it to main + spare data, which are 512 and 4 bytes respectively.
1875 */
1876 host->cw_data = 516;
1877
1878 /*
1879 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
1880 * for 8 bit ECC
1881 */
1882 host->cw_size = host->cw_data + ecc->bytes;
1883
1884 if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) {
1885 dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n");
1886 return -EINVAL;
1887 }
1888
1889 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
1890
1891 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
1892 | host->cw_data << UD_SIZE_BYTES
1893 | 0 << DISABLE_STATUS_AFTER_WRITE
1894 | 5 << NUM_ADDR_CYCLES
1895 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
1896 | 0 << STATUS_BFR_READ
1897 | 1 << SET_RD_MODE_AFTER_STATUS
1898 | host->spare_bytes << SPARE_SIZE_BYTES;
1899
1900 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
1901 | 0 << CS_ACTIVE_BSY
1902 | bad_block_byte << BAD_BLOCK_BYTE_NUM
1903 | 0 << BAD_BLOCK_IN_SPARE_AREA
1904 | 2 << WR_RD_BSY_GAP
1905 | wide_bus << WIDE_FLASH
1906 | host->bch_enabled << ENABLE_BCH_ECC;
1907
1908 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
1909 | host->cw_size << UD_SIZE_BYTES
1910 | 5 << NUM_ADDR_CYCLES
1911 | 0 << SPARE_SIZE_BYTES;
1912
1913 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
1914 | 0 << CS_ACTIVE_BSY
1915 | 17 << BAD_BLOCK_BYTE_NUM
1916 | 1 << BAD_BLOCK_IN_SPARE_AREA
1917 | 2 << WR_RD_BSY_GAP
1918 | wide_bus << WIDE_FLASH
1919 | 1 << DEV0_CFG1_ECC_DISABLE;
1920
Abhishek Sahu10777de2017-08-03 17:56:39 +02001921 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
Archit Tanejac76b78d2016-02-03 14:29:50 +05301922 | 0 << ECC_SW_RESET
1923 | host->cw_data << ECC_NUM_DATA_BYTES
1924 | 1 << ECC_FORCE_CLK_OPEN
1925 | ecc_mode << ECC_MODE
1926 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
1927
1928 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
1929
1930 host->clrflashstatus = FS_READY_BSY_N;
1931 host->clrreadstatus = 0xc0;
1932
1933 dev_dbg(nandc->dev,
1934 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
1935 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
1936 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
1937 cwperpage);
1938
1939 return 0;
1940}
1941
1942static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
1943{
1944 int ret;
1945
1946 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
1947 if (ret) {
1948 dev_err(nandc->dev, "failed to set DMA mask\n");
1949 return ret;
1950 }
1951
1952 /*
1953 * we use the internal buffer for reading ONFI params, reading small
1954 * data like ID and status, and preforming read-copy-write operations
1955 * when writing to a codeword partially. 532 is the maximum possible
1956 * size of a codeword for our nand controller
1957 */
1958 nandc->buf_size = 532;
1959
1960 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
1961 GFP_KERNEL);
1962 if (!nandc->data_buffer)
1963 return -ENOMEM;
1964
1965 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
1966 GFP_KERNEL);
1967 if (!nandc->regs)
1968 return -ENOMEM;
1969
1970 nandc->reg_read_buf = devm_kzalloc(nandc->dev,
1971 MAX_REG_RD * sizeof(*nandc->reg_read_buf),
1972 GFP_KERNEL);
1973 if (!nandc->reg_read_buf)
1974 return -ENOMEM;
1975
1976 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
1977 if (!nandc->chan) {
1978 dev_err(nandc->dev, "failed to request slave channel\n");
1979 return -ENODEV;
1980 }
1981
1982 INIT_LIST_HEAD(&nandc->desc_list);
1983 INIT_LIST_HEAD(&nandc->host_list);
1984
Marc Gonzalezd45bc582016-07-27 11:23:52 +02001985 nand_hw_control_init(&nandc->controller);
Archit Tanejac76b78d2016-02-03 14:29:50 +05301986
1987 return 0;
1988}
1989
1990static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
1991{
1992 dma_release_channel(nandc->chan);
1993}
1994
1995/* one time setup of a few nand controller registers */
1996static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
1997{
1998 /* kill onenand */
1999 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2000
2001 /* enable ADM DMA */
2002 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2003
2004 /* save the original values of these registers */
2005 nandc->cmd1 = nandc_read(nandc, NAND_DEV_CMD1);
2006 nandc->vld = nandc_read(nandc, NAND_DEV_CMD_VLD);
2007
2008 return 0;
2009}
2010
2011static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
2012 struct qcom_nand_host *host,
2013 struct device_node *dn)
2014{
2015 struct nand_chip *chip = &host->chip;
2016 struct mtd_info *mtd = nand_to_mtd(chip);
2017 struct device *dev = nandc->dev;
2018 int ret;
2019
2020 ret = of_property_read_u32(dn, "reg", &host->cs);
2021 if (ret) {
2022 dev_err(dev, "can't get chip-select\n");
2023 return -ENXIO;
2024 }
2025
2026 nand_set_flash_node(chip, dn);
2027 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2028 mtd->owner = THIS_MODULE;
2029 mtd->dev.parent = dev;
2030
2031 chip->cmdfunc = qcom_nandc_command;
2032 chip->select_chip = qcom_nandc_select_chip;
2033 chip->read_byte = qcom_nandc_read_byte;
2034 chip->read_buf = qcom_nandc_read_buf;
2035 chip->write_buf = qcom_nandc_write_buf;
Boris Brezillon4a78cc62017-05-26 17:10:15 +02002036 chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
2037 chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
Archit Tanejac76b78d2016-02-03 14:29:50 +05302038
2039 /*
2040 * the bad block marker is readable only when we read the last codeword
2041 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2042 * helpers don't allow us to read BB from a nand chip with ECC
2043 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2044 * and block_markbad helpers until we permanently switch to using
2045 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2046 */
2047 chip->block_bad = qcom_nandc_block_bad;
2048 chip->block_markbad = qcom_nandc_block_markbad;
2049
2050 chip->controller = &nandc->controller;
2051 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2052 NAND_SKIP_BBTSCAN;
2053
2054 /* set up initial status value */
2055 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2056
2057 ret = nand_scan_ident(mtd, 1, NULL);
2058 if (ret)
2059 return ret;
2060
2061 ret = qcom_nand_host_setup(host);
2062 if (ret)
2063 return ret;
2064
2065 ret = nand_scan_tail(mtd);
2066 if (ret)
2067 return ret;
2068
2069 return mtd_device_register(mtd, NULL, 0);
2070}
2071
2072/* parse custom DT properties here */
2073static int qcom_nandc_parse_dt(struct platform_device *pdev)
2074{
2075 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2076 struct device_node *np = nandc->dev->of_node;
2077 int ret;
2078
2079 ret = of_property_read_u32(np, "qcom,cmd-crci", &nandc->cmd_crci);
2080 if (ret) {
2081 dev_err(nandc->dev, "command CRCI unspecified\n");
2082 return ret;
2083 }
2084
2085 ret = of_property_read_u32(np, "qcom,data-crci", &nandc->data_crci);
2086 if (ret) {
2087 dev_err(nandc->dev, "data CRCI unspecified\n");
2088 return ret;
2089 }
2090
2091 return 0;
2092}
2093
2094static int qcom_nandc_probe(struct platform_device *pdev)
2095{
2096 struct qcom_nand_controller *nandc;
2097 struct qcom_nand_host *host;
2098 const void *dev_data;
2099 struct device *dev = &pdev->dev;
2100 struct device_node *dn = dev->of_node, *child;
2101 struct resource *res;
2102 int ret;
2103
2104 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2105 if (!nandc)
2106 return -ENOMEM;
2107
2108 platform_set_drvdata(pdev, nandc);
2109 nandc->dev = dev;
2110
2111 dev_data = of_device_get_match_data(dev);
2112 if (!dev_data) {
2113 dev_err(&pdev->dev, "failed to get device data\n");
2114 return -ENODEV;
2115 }
2116
2117 nandc->ecc_modes = (unsigned long)dev_data;
2118
2119 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2120 nandc->base = devm_ioremap_resource(dev, res);
2121 if (IS_ERR(nandc->base))
2122 return PTR_ERR(nandc->base);
2123
2124 nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start);
2125
2126 nandc->core_clk = devm_clk_get(dev, "core");
2127 if (IS_ERR(nandc->core_clk))
2128 return PTR_ERR(nandc->core_clk);
2129
2130 nandc->aon_clk = devm_clk_get(dev, "aon");
2131 if (IS_ERR(nandc->aon_clk))
2132 return PTR_ERR(nandc->aon_clk);
2133
2134 ret = qcom_nandc_parse_dt(pdev);
2135 if (ret)
2136 return ret;
2137
2138 ret = qcom_nandc_alloc(nandc);
2139 if (ret)
2140 return ret;
2141
2142 ret = clk_prepare_enable(nandc->core_clk);
2143 if (ret)
2144 goto err_core_clk;
2145
2146 ret = clk_prepare_enable(nandc->aon_clk);
2147 if (ret)
2148 goto err_aon_clk;
2149
2150 ret = qcom_nandc_setup(nandc);
2151 if (ret)
2152 goto err_setup;
2153
2154 for_each_available_child_of_node(dn, child) {
Abhishek Sahue8064232017-07-19 17:17:53 +05302155 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2156 if (!host) {
2157 of_node_put(child);
2158 ret = -ENOMEM;
2159 goto err_cs_init;
Archit Tanejac76b78d2016-02-03 14:29:50 +05302160 }
Abhishek Sahue8064232017-07-19 17:17:53 +05302161
2162 ret = qcom_nand_host_init(nandc, host, child);
2163 if (ret) {
2164 devm_kfree(dev, host);
2165 continue;
2166 }
2167
2168 list_add_tail(&host->node, &nandc->host_list);
Archit Tanejac76b78d2016-02-03 14:29:50 +05302169 }
2170
2171 if (list_empty(&nandc->host_list)) {
2172 ret = -ENODEV;
2173 goto err_cs_init;
2174 }
2175
2176 return 0;
2177
2178err_cs_init:
2179 list_for_each_entry(host, &nandc->host_list, node)
2180 nand_release(nand_to_mtd(&host->chip));
2181err_setup:
2182 clk_disable_unprepare(nandc->aon_clk);
2183err_aon_clk:
2184 clk_disable_unprepare(nandc->core_clk);
2185err_core_clk:
2186 qcom_nandc_unalloc(nandc);
2187
2188 return ret;
2189}
2190
2191static int qcom_nandc_remove(struct platform_device *pdev)
2192{
2193 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2194 struct qcom_nand_host *host;
2195
2196 list_for_each_entry(host, &nandc->host_list, node)
2197 nand_release(nand_to_mtd(&host->chip));
2198
2199 qcom_nandc_unalloc(nandc);
2200
2201 clk_disable_unprepare(nandc->aon_clk);
2202 clk_disable_unprepare(nandc->core_clk);
2203
2204 return 0;
2205}
2206
2207#define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT)
2208
2209/*
2210 * data will hold a struct pointer containing more differences once we support
2211 * more controller variants
2212 */
2213static const struct of_device_id qcom_nandc_of_match[] = {
2214 { .compatible = "qcom,ipq806x-nand",
2215 .data = (void *)EBI2_NANDC_ECC_MODES,
2216 },
2217 {}
2218};
2219MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
2220
2221static struct platform_driver qcom_nandc_driver = {
2222 .driver = {
2223 .name = "qcom-nandc",
2224 .of_match_table = qcom_nandc_of_match,
2225 },
2226 .probe = qcom_nandc_probe,
2227 .remove = qcom_nandc_remove,
2228};
2229module_platform_driver(qcom_nandc_driver);
2230
2231MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2232MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2233MODULE_LICENSE("GPL v2");