blob: d9dbf8ee6ca4be3dd119567afbdc636a08465995 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
Ingo Molnar48c08d32005-06-25 14:57:22 -0700169static unsigned int task_timeslice(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
Con Kolivasb9104722005-11-08 21:38:55 -0800209 unsigned long prio_bias;
Nick Piggin78979862005-06-25 14:57:13 -0700210 unsigned long cpu_load[3];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211#endif
212 unsigned long long nr_switches;
213
214 /*
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
219 */
220 unsigned long nr_uninterruptible;
221
222 unsigned long expired_timestamp;
223 unsigned long long timestamp_last_tick;
224 task_t *curr, *idle;
225 struct mm_struct *prev_mm;
226 prio_array_t *active, *expired, arrays[2];
227 int best_expired_prio;
228 atomic_t nr_iowait;
229
230#ifdef CONFIG_SMP
231 struct sched_domain *sd;
232
233 /* For active balancing */
234 int active_balance;
235 int push_cpu;
236
237 task_t *migration_thread;
238 struct list_head migration_queue;
239#endif
240
241#ifdef CONFIG_SCHEDSTATS
242 /* latency stats */
243 struct sched_info rq_sched_info;
244
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty;
247 unsigned long yld_act_empty;
248 unsigned long yld_both_empty;
249 unsigned long yld_cnt;
250
251 /* schedule() stats */
252 unsigned long sched_switch;
253 unsigned long sched_cnt;
254 unsigned long sched_goidle;
255
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt;
258 unsigned long ttwu_local;
259#endif
260};
261
262static DEFINE_PER_CPU(struct runqueue, runqueues);
263
Nick Piggin674311d2005-06-25 14:57:27 -0700264/*
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700266 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700267 *
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
270 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700271#define for_each_domain(cpu, domain) \
Nick Piggin674311d2005-06-25 14:57:27 -0700272for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700273
274#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275#define this_rq() (&__get_cpu_var(runqueues))
276#define task_rq(p) cpu_rq(task_cpu(p))
277#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700280# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700282#ifndef finish_arch_switch
283# define finish_arch_switch(prev) do { } while (0)
284#endif
285
286#ifndef __ARCH_WANT_UNLOCKED_CTXSW
287static inline int task_running(runqueue_t *rq, task_t *p)
288{
289 return rq->curr == p;
290}
291
292static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293{
294}
295
296static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297{
Ingo Molnarda04c032005-09-13 11:17:59 +0200298#ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq->lock.owner = current;
301#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700302 spin_unlock_irq(&rq->lock);
303}
304
305#else /* __ARCH_WANT_UNLOCKED_CTXSW */
306static inline int task_running(runqueue_t *rq, task_t *p)
307{
308#ifdef CONFIG_SMP
309 return p->oncpu;
310#else
311 return rq->curr == p;
312#endif
313}
314
315static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316{
317#ifdef CONFIG_SMP
318 /*
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
321 * here.
322 */
323 next->oncpu = 1;
324#endif
325#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq->lock);
327#else
328 spin_unlock(&rq->lock);
329#endif
330}
331
332static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333{
334#ifdef CONFIG_SMP
335 /*
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
338 * finished.
339 */
340 smp_wmb();
341 prev->oncpu = 0;
342#endif
343#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344 local_irq_enable();
345#endif
346}
347#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700348
349/*
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
353 */
354static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355 __acquires(rq->lock)
356{
357 struct runqueue *rq;
358
359repeat_lock_task:
360 local_irq_save(*flags);
361 rq = task_rq(p);
362 spin_lock(&rq->lock);
363 if (unlikely(rq != task_rq(p))) {
364 spin_unlock_irqrestore(&rq->lock, *flags);
365 goto repeat_lock_task;
366 }
367 return rq;
368}
369
370static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371 __releases(rq->lock)
372{
373 spin_unlock_irqrestore(&rq->lock, *flags);
374}
375
376#ifdef CONFIG_SCHEDSTATS
377/*
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
380 */
Nick Piggin68767a02005-06-25 14:57:20 -0700381#define SCHEDSTAT_VERSION 12
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382
383static int show_schedstat(struct seq_file *seq, void *v)
384{
385 int cpu;
386
387 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388 seq_printf(seq, "timestamp %lu\n", jiffies);
389 for_each_online_cpu(cpu) {
390 runqueue_t *rq = cpu_rq(cpu);
391#ifdef CONFIG_SMP
392 struct sched_domain *sd;
393 int dcnt = 0;
394#endif
395
396 /* runqueue-specific stats */
397 seq_printf(seq,
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu, rq->yld_both_empty,
400 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402 rq->ttwu_cnt, rq->ttwu_local,
403 rq->rq_sched_info.cpu_time,
404 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406 seq_printf(seq, "\n");
407
408#ifdef CONFIG_SMP
409 /* domain-specific stats */
Nick Piggin674311d2005-06-25 14:57:27 -0700410 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 for_each_domain(cpu, sd) {
412 enum idle_type itype;
413 char mask_str[NR_CPUS];
414
415 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418 itype++) {
419 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420 sd->lb_cnt[itype],
421 sd->lb_balanced[itype],
422 sd->lb_failed[itype],
423 sd->lb_imbalance[itype],
424 sd->lb_gained[itype],
425 sd->lb_hot_gained[itype],
426 sd->lb_nobusyq[itype],
427 sd->lb_nobusyg[itype]);
428 }
Nick Piggin68767a02005-06-25 14:57:20 -0700429 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
Nick Piggin68767a02005-06-25 14:57:20 -0700431 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434 }
Nick Piggin674311d2005-06-25 14:57:27 -0700435 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436#endif
437 }
438 return 0;
439}
440
441static int schedstat_open(struct inode *inode, struct file *file)
442{
443 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444 char *buf = kmalloc(size, GFP_KERNEL);
445 struct seq_file *m;
446 int res;
447
448 if (!buf)
449 return -ENOMEM;
450 res = single_open(file, show_schedstat, NULL);
451 if (!res) {
452 m = file->private_data;
453 m->buf = buf;
454 m->size = size;
455 } else
456 kfree(buf);
457 return res;
458}
459
460struct file_operations proc_schedstat_operations = {
461 .open = schedstat_open,
462 .read = seq_read,
463 .llseek = seq_lseek,
464 .release = single_release,
465};
466
467# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469#else /* !CONFIG_SCHEDSTATS */
470# define schedstat_inc(rq, field) do { } while (0)
471# define schedstat_add(rq, field, amt) do { } while (0)
472#endif
473
474/*
475 * rq_lock - lock a given runqueue and disable interrupts.
476 */
477static inline runqueue_t *this_rq_lock(void)
478 __acquires(rq->lock)
479{
480 runqueue_t *rq;
481
482 local_irq_disable();
483 rq = this_rq();
484 spin_lock(&rq->lock);
485
486 return rq;
487}
488
Linus Torvalds1da177e2005-04-16 15:20:36 -0700489#ifdef CONFIG_SCHEDSTATS
490/*
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
498 *
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
503 * finally hit a cpu.
504 */
505static inline void sched_info_dequeued(task_t *t)
506{
507 t->sched_info.last_queued = 0;
508}
509
510/*
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
514 */
515static inline void sched_info_arrive(task_t *t)
516{
517 unsigned long now = jiffies, diff = 0;
518 struct runqueue *rq = task_rq(t);
519
520 if (t->sched_info.last_queued)
521 diff = now - t->sched_info.last_queued;
522 sched_info_dequeued(t);
523 t->sched_info.run_delay += diff;
524 t->sched_info.last_arrival = now;
525 t->sched_info.pcnt++;
526
527 if (!rq)
528 return;
529
530 rq->rq_sched_info.run_delay += diff;
531 rq->rq_sched_info.pcnt++;
532}
533
534/*
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543 * to runqueue.
544 *
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
548 */
549static inline void sched_info_queued(task_t *t)
550{
551 if (!t->sched_info.last_queued)
552 t->sched_info.last_queued = jiffies;
553}
554
555/*
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
558 */
559static inline void sched_info_depart(task_t *t)
560{
561 struct runqueue *rq = task_rq(t);
562 unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564 t->sched_info.cpu_time += diff;
565
566 if (rq)
567 rq->rq_sched_info.cpu_time += diff;
568}
569
570/*
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
574 */
575static inline void sched_info_switch(task_t *prev, task_t *next)
576{
577 struct runqueue *rq = task_rq(prev);
578
579 /*
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
582 * process, however.
583 */
584 if (prev != rq->idle)
585 sched_info_depart(prev);
586
587 if (next != rq->idle)
588 sched_info_arrive(next);
589}
590#else
591#define sched_info_queued(t) do { } while (0)
592#define sched_info_switch(t, next) do { } while (0)
593#endif /* CONFIG_SCHEDSTATS */
594
595/*
596 * Adding/removing a task to/from a priority array:
597 */
598static void dequeue_task(struct task_struct *p, prio_array_t *array)
599{
600 array->nr_active--;
601 list_del(&p->run_list);
602 if (list_empty(array->queue + p->prio))
603 __clear_bit(p->prio, array->bitmap);
604}
605
606static void enqueue_task(struct task_struct *p, prio_array_t *array)
607{
608 sched_info_queued(p);
609 list_add_tail(&p->run_list, array->queue + p->prio);
610 __set_bit(p->prio, array->bitmap);
611 array->nr_active++;
612 p->array = array;
613}
614
615/*
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
618 */
619static void requeue_task(struct task_struct *p, prio_array_t *array)
620{
621 list_move_tail(&p->run_list, array->queue + p->prio);
622}
623
624static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625{
626 list_add(&p->run_list, array->queue + p->prio);
627 __set_bit(p->prio, array->bitmap);
628 array->nr_active++;
629 p->array = array;
630}
631
632/*
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
635 *
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
638 *
639 * We use 25% of the full 0...39 priority range so that:
640 *
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643 *
644 * Both properties are important to certain workloads.
645 */
646static int effective_prio(task_t *p)
647{
648 int bonus, prio;
649
650 if (rt_task(p))
651 return p->prio;
652
653 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655 prio = p->static_prio - bonus;
656 if (prio < MAX_RT_PRIO)
657 prio = MAX_RT_PRIO;
658 if (prio > MAX_PRIO-1)
659 prio = MAX_PRIO-1;
660 return prio;
661}
662
Con Kolivasb9104722005-11-08 21:38:55 -0800663#ifdef CONFIG_SMP
Con Kolivasdad1c652005-11-08 21:38:57 -0800664static inline void inc_prio_bias(runqueue_t *rq, int prio)
Con Kolivasb9104722005-11-08 21:38:55 -0800665{
Con Kolivasdad1c652005-11-08 21:38:57 -0800666 rq->prio_bias += MAX_PRIO - prio;
Con Kolivasb9104722005-11-08 21:38:55 -0800667}
668
Con Kolivasdad1c652005-11-08 21:38:57 -0800669static inline void dec_prio_bias(runqueue_t *rq, int prio)
Con Kolivasb9104722005-11-08 21:38:55 -0800670{
Con Kolivasdad1c652005-11-08 21:38:57 -0800671 rq->prio_bias -= MAX_PRIO - prio;
Con Kolivasb9104722005-11-08 21:38:55 -0800672}
673#else
Con Kolivasdad1c652005-11-08 21:38:57 -0800674static inline void inc_prio_bias(runqueue_t *rq, int prio)
Con Kolivasb9104722005-11-08 21:38:55 -0800675{
676}
677
Con Kolivasdad1c652005-11-08 21:38:57 -0800678static inline void dec_prio_bias(runqueue_t *rq, int prio)
Con Kolivasb9104722005-11-08 21:38:55 -0800679{
680}
681#endif
682
683static inline void inc_nr_running(task_t *p, runqueue_t *rq)
684{
685 rq->nr_running++;
Con Kolivasdad1c652005-11-08 21:38:57 -0800686 if (rt_task(p))
687 inc_prio_bias(rq, p->prio);
688 else
689 inc_prio_bias(rq, p->static_prio);
Con Kolivasb9104722005-11-08 21:38:55 -0800690}
691
692static inline void dec_nr_running(task_t *p, runqueue_t *rq)
693{
694 rq->nr_running--;
Con Kolivasdad1c652005-11-08 21:38:57 -0800695 if (rt_task(p))
696 dec_prio_bias(rq, p->prio);
697 else
698 dec_prio_bias(rq, p->static_prio);
Con Kolivasb9104722005-11-08 21:38:55 -0800699}
700
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701/*
702 * __activate_task - move a task to the runqueue.
703 */
704static inline void __activate_task(task_t *p, runqueue_t *rq)
705{
706 enqueue_task(p, rq->active);
Con Kolivasb9104722005-11-08 21:38:55 -0800707 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708}
709
710/*
711 * __activate_idle_task - move idle task to the _front_ of runqueue.
712 */
713static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
714{
715 enqueue_task_head(p, rq->active);
Con Kolivasb9104722005-11-08 21:38:55 -0800716 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700717}
718
Chen Shanga3464a12005-06-25 14:57:31 -0700719static int recalc_task_prio(task_t *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700720{
721 /* Caller must always ensure 'now >= p->timestamp' */
722 unsigned long long __sleep_time = now - p->timestamp;
723 unsigned long sleep_time;
724
725 if (__sleep_time > NS_MAX_SLEEP_AVG)
726 sleep_time = NS_MAX_SLEEP_AVG;
727 else
728 sleep_time = (unsigned long)__sleep_time;
729
730 if (likely(sleep_time > 0)) {
731 /*
732 * User tasks that sleep a long time are categorised as
733 * idle and will get just interactive status to stay active &
734 * prevent them suddenly becoming cpu hogs and starving
735 * other processes.
736 */
737 if (p->mm && p->activated != -1 &&
738 sleep_time > INTERACTIVE_SLEEP(p)) {
739 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
740 DEF_TIMESLICE);
741 } else {
742 /*
743 * The lower the sleep avg a task has the more
744 * rapidly it will rise with sleep time.
745 */
746 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
747
748 /*
749 * Tasks waking from uninterruptible sleep are
750 * limited in their sleep_avg rise as they
751 * are likely to be waiting on I/O
752 */
753 if (p->activated == -1 && p->mm) {
754 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
755 sleep_time = 0;
756 else if (p->sleep_avg + sleep_time >=
757 INTERACTIVE_SLEEP(p)) {
758 p->sleep_avg = INTERACTIVE_SLEEP(p);
759 sleep_time = 0;
760 }
761 }
762
763 /*
764 * This code gives a bonus to interactive tasks.
765 *
766 * The boost works by updating the 'average sleep time'
767 * value here, based on ->timestamp. The more time a
768 * task spends sleeping, the higher the average gets -
769 * and the higher the priority boost gets as well.
770 */
771 p->sleep_avg += sleep_time;
772
773 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
774 p->sleep_avg = NS_MAX_SLEEP_AVG;
775 }
776 }
777
Chen Shanga3464a12005-06-25 14:57:31 -0700778 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700779}
780
781/*
782 * activate_task - move a task to the runqueue and do priority recalculation
783 *
784 * Update all the scheduling statistics stuff. (sleep average
785 * calculation, priority modifiers, etc.)
786 */
787static void activate_task(task_t *p, runqueue_t *rq, int local)
788{
789 unsigned long long now;
790
791 now = sched_clock();
792#ifdef CONFIG_SMP
793 if (!local) {
794 /* Compensate for drifting sched_clock */
795 runqueue_t *this_rq = this_rq();
796 now = (now - this_rq->timestamp_last_tick)
797 + rq->timestamp_last_tick;
798 }
799#endif
800
Chen Shanga3464a12005-06-25 14:57:31 -0700801 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802
803 /*
804 * This checks to make sure it's not an uninterruptible task
805 * that is now waking up.
806 */
807 if (!p->activated) {
808 /*
809 * Tasks which were woken up by interrupts (ie. hw events)
810 * are most likely of interactive nature. So we give them
811 * the credit of extending their sleep time to the period
812 * of time they spend on the runqueue, waiting for execution
813 * on a CPU, first time around:
814 */
815 if (in_interrupt())
816 p->activated = 2;
817 else {
818 /*
819 * Normal first-time wakeups get a credit too for
820 * on-runqueue time, but it will be weighted down:
821 */
822 p->activated = 1;
823 }
824 }
825 p->timestamp = now;
826
827 __activate_task(p, rq);
828}
829
830/*
831 * deactivate_task - remove a task from the runqueue.
832 */
833static void deactivate_task(struct task_struct *p, runqueue_t *rq)
834{
Con Kolivasb9104722005-11-08 21:38:55 -0800835 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700836 dequeue_task(p, p->array);
837 p->array = NULL;
838}
839
840/*
841 * resched_task - mark a task 'to be rescheduled now'.
842 *
843 * On UP this means the setting of the need_resched flag, on SMP it
844 * might also involve a cross-CPU call to trigger the scheduler on
845 * the target CPU.
846 */
847#ifdef CONFIG_SMP
848static void resched_task(task_t *p)
849{
850 int need_resched, nrpolling;
851
852 assert_spin_locked(&task_rq(p)->lock);
853
854 /* minimise the chance of sending an interrupt to poll_idle() */
855 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
856 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
857 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
858
859 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
860 smp_send_reschedule(task_cpu(p));
861}
862#else
863static inline void resched_task(task_t *p)
864{
865 set_tsk_need_resched(p);
866}
867#endif
868
869/**
870 * task_curr - is this task currently executing on a CPU?
871 * @p: the task in question.
872 */
873inline int task_curr(const task_t *p)
874{
875 return cpu_curr(task_cpu(p)) == p;
876}
877
878#ifdef CONFIG_SMP
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879typedef struct {
880 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882 task_t *task;
883 int dest_cpu;
884
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885 struct completion done;
886} migration_req_t;
887
888/*
889 * The task's runqueue lock must be held.
890 * Returns true if you have to wait for migration thread.
891 */
892static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
893{
894 runqueue_t *rq = task_rq(p);
895
896 /*
897 * If the task is not on a runqueue (and not running), then
898 * it is sufficient to simply update the task's cpu field.
899 */
900 if (!p->array && !task_running(rq, p)) {
901 set_task_cpu(p, dest_cpu);
902 return 0;
903 }
904
905 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700906 req->task = p;
907 req->dest_cpu = dest_cpu;
908 list_add(&req->list, &rq->migration_queue);
909 return 1;
910}
911
912/*
913 * wait_task_inactive - wait for a thread to unschedule.
914 *
915 * The caller must ensure that the task *will* unschedule sometime soon,
916 * else this function might spin for a *long* time. This function can't
917 * be called with interrupts off, or it may introduce deadlock with
918 * smp_call_function() if an IPI is sent by the same process we are
919 * waiting to become inactive.
920 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -0700921void wait_task_inactive(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922{
923 unsigned long flags;
924 runqueue_t *rq;
925 int preempted;
926
927repeat:
928 rq = task_rq_lock(p, &flags);
929 /* Must be off runqueue entirely, not preempted. */
930 if (unlikely(p->array || task_running(rq, p))) {
931 /* If it's preempted, we yield. It could be a while. */
932 preempted = !task_running(rq, p);
933 task_rq_unlock(rq, &flags);
934 cpu_relax();
935 if (preempted)
936 yield();
937 goto repeat;
938 }
939 task_rq_unlock(rq, &flags);
940}
941
942/***
943 * kick_process - kick a running thread to enter/exit the kernel
944 * @p: the to-be-kicked thread
945 *
946 * Cause a process which is running on another CPU to enter
947 * kernel-mode, without any delay. (to get signals handled.)
948 *
949 * NOTE: this function doesnt have to take the runqueue lock,
950 * because all it wants to ensure is that the remote task enters
951 * the kernel. If the IPI races and the task has been migrated
952 * to another CPU then no harm is done and the purpose has been
953 * achieved as well.
954 */
955void kick_process(task_t *p)
956{
957 int cpu;
958
959 preempt_disable();
960 cpu = task_cpu(p);
961 if ((cpu != smp_processor_id()) && task_curr(p))
962 smp_send_reschedule(cpu);
963 preempt_enable();
964}
965
966/*
967 * Return a low guess at the load of a migration-source cpu.
968 *
969 * We want to under-estimate the load of migration sources, to
970 * balance conservatively.
971 */
Con Kolivasb9104722005-11-08 21:38:55 -0800972static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700973{
974 runqueue_t *rq = cpu_rq(cpu);
Con Kolivasb9104722005-11-08 21:38:55 -0800975 unsigned long cpu_load = rq->cpu_load[type-1],
976 load_now = rq->nr_running * SCHED_LOAD_SCALE;
977
978 if (idle == NOT_IDLE) {
979 /*
980 * If we are balancing busy runqueues the load is biased by
981 * priority to create 'nice' support across cpus.
982 */
983 cpu_load *= rq->prio_bias;
984 load_now *= rq->prio_bias;
985 }
986
Nick Piggin78979862005-06-25 14:57:13 -0700987 if (type == 0)
988 return load_now;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989
Con Kolivasb9104722005-11-08 21:38:55 -0800990 return min(cpu_load, load_now);
991}
992
993static inline unsigned long source_load(int cpu, int type)
994{
995 return __source_load(cpu, type, NOT_IDLE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996}
997
998/*
999 * Return a high guess at the load of a migration-target cpu
1000 */
Con Kolivasb9104722005-11-08 21:38:55 -08001001static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001002{
1003 runqueue_t *rq = cpu_rq(cpu);
Con Kolivasb9104722005-11-08 21:38:55 -08001004 unsigned long cpu_load = rq->cpu_load[type-1],
1005 load_now = rq->nr_running * SCHED_LOAD_SCALE;
1006
Nick Piggin78979862005-06-25 14:57:13 -07001007 if (type == 0)
1008 return load_now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001009
Con Kolivasb9104722005-11-08 21:38:55 -08001010 if (idle == NOT_IDLE) {
1011 cpu_load *= rq->prio_bias;
1012 load_now *= rq->prio_bias;
1013 }
1014 return max(cpu_load, load_now);
1015}
1016
1017static inline unsigned long target_load(int cpu, int type)
1018{
1019 return __target_load(cpu, type, NOT_IDLE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001020}
1021
Nick Piggin147cbb42005-06-25 14:57:19 -07001022/*
1023 * find_idlest_group finds and returns the least busy CPU group within the
1024 * domain.
1025 */
1026static struct sched_group *
1027find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1028{
1029 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1030 unsigned long min_load = ULONG_MAX, this_load = 0;
1031 int load_idx = sd->forkexec_idx;
1032 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1033
1034 do {
1035 unsigned long load, avg_load;
1036 int local_group;
1037 int i;
1038
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001039 /* Skip over this group if it has no CPUs allowed */
1040 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1041 goto nextgroup;
1042
Nick Piggin147cbb42005-06-25 14:57:19 -07001043 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001044
1045 /* Tally up the load of all CPUs in the group */
1046 avg_load = 0;
1047
1048 for_each_cpu_mask(i, group->cpumask) {
1049 /* Bias balancing toward cpus of our domain */
1050 if (local_group)
1051 load = source_load(i, load_idx);
1052 else
1053 load = target_load(i, load_idx);
1054
1055 avg_load += load;
1056 }
1057
1058 /* Adjust by relative CPU power of the group */
1059 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1060
1061 if (local_group) {
1062 this_load = avg_load;
1063 this = group;
1064 } else if (avg_load < min_load) {
1065 min_load = avg_load;
1066 idlest = group;
1067 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001068nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001069 group = group->next;
1070 } while (group != sd->groups);
1071
1072 if (!idlest || 100*this_load < imbalance*min_load)
1073 return NULL;
1074 return idlest;
1075}
1076
1077/*
1078 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1079 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001080static int
1081find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001082{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001083 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001084 unsigned long load, min_load = ULONG_MAX;
1085 int idlest = -1;
1086 int i;
1087
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001088 /* Traverse only the allowed CPUs */
1089 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1090
1091 for_each_cpu_mask(i, tmp) {
Nick Piggin147cbb42005-06-25 14:57:19 -07001092 load = source_load(i, 0);
1093
1094 if (load < min_load || (load == min_load && i == this_cpu)) {
1095 min_load = load;
1096 idlest = i;
1097 }
1098 }
1099
1100 return idlest;
1101}
1102
Nick Piggin476d1392005-06-25 14:57:29 -07001103/*
1104 * sched_balance_self: balance the current task (running on cpu) in domains
1105 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1106 * SD_BALANCE_EXEC.
1107 *
1108 * Balance, ie. select the least loaded group.
1109 *
1110 * Returns the target CPU number, or the same CPU if no balancing is needed.
1111 *
1112 * preempt must be disabled.
1113 */
1114static int sched_balance_self(int cpu, int flag)
1115{
1116 struct task_struct *t = current;
1117 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001118
Nick Piggin476d1392005-06-25 14:57:29 -07001119 for_each_domain(cpu, tmp)
1120 if (tmp->flags & flag)
1121 sd = tmp;
1122
1123 while (sd) {
1124 cpumask_t span;
1125 struct sched_group *group;
1126 int new_cpu;
1127 int weight;
1128
1129 span = sd->span;
1130 group = find_idlest_group(sd, t, cpu);
1131 if (!group)
1132 goto nextlevel;
1133
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001134 new_cpu = find_idlest_cpu(group, t, cpu);
Nick Piggin476d1392005-06-25 14:57:29 -07001135 if (new_cpu == -1 || new_cpu == cpu)
1136 goto nextlevel;
1137
1138 /* Now try balancing at a lower domain level */
1139 cpu = new_cpu;
1140nextlevel:
1141 sd = NULL;
1142 weight = cpus_weight(span);
1143 for_each_domain(cpu, tmp) {
1144 if (weight <= cpus_weight(tmp->span))
1145 break;
1146 if (tmp->flags & flag)
1147 sd = tmp;
1148 }
1149 /* while loop will break here if sd == NULL */
1150 }
1151
1152 return cpu;
1153}
1154
1155#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001156
1157/*
1158 * wake_idle() will wake a task on an idle cpu if task->cpu is
1159 * not idle and an idle cpu is available. The span of cpus to
1160 * search starts with cpus closest then further out as needed,
1161 * so we always favor a closer, idle cpu.
1162 *
1163 * Returns the CPU we should wake onto.
1164 */
1165#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1166static int wake_idle(int cpu, task_t *p)
1167{
1168 cpumask_t tmp;
1169 struct sched_domain *sd;
1170 int i;
1171
1172 if (idle_cpu(cpu))
1173 return cpu;
1174
1175 for_each_domain(cpu, sd) {
1176 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001177 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178 for_each_cpu_mask(i, tmp) {
1179 if (idle_cpu(i))
1180 return i;
1181 }
1182 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001183 else
1184 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001185 }
1186 return cpu;
1187}
1188#else
1189static inline int wake_idle(int cpu, task_t *p)
1190{
1191 return cpu;
1192}
1193#endif
1194
1195/***
1196 * try_to_wake_up - wake up a thread
1197 * @p: the to-be-woken-up thread
1198 * @state: the mask of task states that can be woken
1199 * @sync: do a synchronous wakeup?
1200 *
1201 * Put it on the run-queue if it's not already there. The "current"
1202 * thread is always on the run-queue (except when the actual
1203 * re-schedule is in progress), and as such you're allowed to do
1204 * the simpler "current->state = TASK_RUNNING" to mark yourself
1205 * runnable without the overhead of this.
1206 *
1207 * returns failure only if the task is already active.
1208 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001209static int try_to_wake_up(task_t *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001210{
1211 int cpu, this_cpu, success = 0;
1212 unsigned long flags;
1213 long old_state;
1214 runqueue_t *rq;
1215#ifdef CONFIG_SMP
1216 unsigned long load, this_load;
Nick Piggin78979862005-06-25 14:57:13 -07001217 struct sched_domain *sd, *this_sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001218 int new_cpu;
1219#endif
1220
1221 rq = task_rq_lock(p, &flags);
1222 old_state = p->state;
1223 if (!(old_state & state))
1224 goto out;
1225
1226 if (p->array)
1227 goto out_running;
1228
1229 cpu = task_cpu(p);
1230 this_cpu = smp_processor_id();
1231
1232#ifdef CONFIG_SMP
1233 if (unlikely(task_running(rq, p)))
1234 goto out_activate;
1235
Nick Piggin78979862005-06-25 14:57:13 -07001236 new_cpu = cpu;
1237
Linus Torvalds1da177e2005-04-16 15:20:36 -07001238 schedstat_inc(rq, ttwu_cnt);
1239 if (cpu == this_cpu) {
1240 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001241 goto out_set_cpu;
1242 }
1243
1244 for_each_domain(this_cpu, sd) {
1245 if (cpu_isset(cpu, sd->span)) {
1246 schedstat_inc(sd, ttwu_wake_remote);
1247 this_sd = sd;
1248 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001249 }
1250 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001251
Nick Piggin78979862005-06-25 14:57:13 -07001252 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001253 goto out_set_cpu;
1254
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255 /*
Nick Piggin78979862005-06-25 14:57:13 -07001256 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001257 */
Nick Piggin78979862005-06-25 14:57:13 -07001258 if (this_sd) {
1259 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001260 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001261
Nick Piggina3f21bc2005-06-25 14:57:15 -07001262 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1263
Nick Piggin78979862005-06-25 14:57:13 -07001264 load = source_load(cpu, idx);
1265 this_load = target_load(this_cpu, idx);
1266
Nick Piggin78979862005-06-25 14:57:13 -07001267 new_cpu = this_cpu; /* Wake to this CPU if we can */
1268
Nick Piggina3f21bc2005-06-25 14:57:15 -07001269 if (this_sd->flags & SD_WAKE_AFFINE) {
1270 unsigned long tl = this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001271 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001272 * If sync wakeup then subtract the (maximum possible)
1273 * effect of the currently running task from the load
1274 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001276 if (sync)
1277 tl -= SCHED_LOAD_SCALE;
1278
1279 if ((tl <= load &&
1280 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1281 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1282 /*
1283 * This domain has SD_WAKE_AFFINE and
1284 * p is cache cold in this domain, and
1285 * there is no bad imbalance.
1286 */
1287 schedstat_inc(this_sd, ttwu_move_affine);
1288 goto out_set_cpu;
1289 }
1290 }
1291
1292 /*
1293 * Start passive balancing when half the imbalance_pct
1294 * limit is reached.
1295 */
1296 if (this_sd->flags & SD_WAKE_BALANCE) {
1297 if (imbalance*this_load <= 100*load) {
1298 schedstat_inc(this_sd, ttwu_move_balance);
1299 goto out_set_cpu;
1300 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001301 }
1302 }
1303
1304 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1305out_set_cpu:
1306 new_cpu = wake_idle(new_cpu, p);
1307 if (new_cpu != cpu) {
1308 set_task_cpu(p, new_cpu);
1309 task_rq_unlock(rq, &flags);
1310 /* might preempt at this point */
1311 rq = task_rq_lock(p, &flags);
1312 old_state = p->state;
1313 if (!(old_state & state))
1314 goto out;
1315 if (p->array)
1316 goto out_running;
1317
1318 this_cpu = smp_processor_id();
1319 cpu = task_cpu(p);
1320 }
1321
1322out_activate:
1323#endif /* CONFIG_SMP */
1324 if (old_state == TASK_UNINTERRUPTIBLE) {
1325 rq->nr_uninterruptible--;
1326 /*
1327 * Tasks on involuntary sleep don't earn
1328 * sleep_avg beyond just interactive state.
1329 */
1330 p->activated = -1;
1331 }
1332
1333 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001334 * Tasks that have marked their sleep as noninteractive get
1335 * woken up without updating their sleep average. (i.e. their
1336 * sleep is handled in a priority-neutral manner, no priority
1337 * boost and no penalty.)
1338 */
1339 if (old_state & TASK_NONINTERACTIVE)
1340 __activate_task(p, rq);
1341 else
1342 activate_task(p, rq, cpu == this_cpu);
1343 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344 * Sync wakeups (i.e. those types of wakeups where the waker
1345 * has indicated that it will leave the CPU in short order)
1346 * don't trigger a preemption, if the woken up task will run on
1347 * this cpu. (in this case the 'I will reschedule' promise of
1348 * the waker guarantees that the freshly woken up task is going
1349 * to be considered on this CPU.)
1350 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351 if (!sync || cpu != this_cpu) {
1352 if (TASK_PREEMPTS_CURR(p, rq))
1353 resched_task(rq->curr);
1354 }
1355 success = 1;
1356
1357out_running:
1358 p->state = TASK_RUNNING;
1359out:
1360 task_rq_unlock(rq, &flags);
1361
1362 return success;
1363}
1364
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001365int fastcall wake_up_process(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001366{
1367 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1368 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1369}
1370
1371EXPORT_SYMBOL(wake_up_process);
1372
1373int fastcall wake_up_state(task_t *p, unsigned int state)
1374{
1375 return try_to_wake_up(p, state, 0);
1376}
1377
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378/*
1379 * Perform scheduler related setup for a newly forked process p.
1380 * p is forked by current.
1381 */
Nick Piggin476d1392005-06-25 14:57:29 -07001382void fastcall sched_fork(task_t *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383{
Nick Piggin476d1392005-06-25 14:57:29 -07001384 int cpu = get_cpu();
1385
1386#ifdef CONFIG_SMP
1387 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1388#endif
1389 set_task_cpu(p, cpu);
1390
Linus Torvalds1da177e2005-04-16 15:20:36 -07001391 /*
1392 * We mark the process as running here, but have not actually
1393 * inserted it onto the runqueue yet. This guarantees that
1394 * nobody will actually run it, and a signal or other external
1395 * event cannot wake it up and insert it on the runqueue either.
1396 */
1397 p->state = TASK_RUNNING;
1398 INIT_LIST_HEAD(&p->run_list);
1399 p->array = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001400#ifdef CONFIG_SCHEDSTATS
1401 memset(&p->sched_info, 0, sizeof(p->sched_info));
1402#endif
Nick Piggin4866cde2005-06-25 14:57:23 -07001403#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1404 p->oncpu = 0;
1405#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001407 /* Want to start with kernel preemption disabled. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001408 p->thread_info->preempt_count = 1;
1409#endif
1410 /*
1411 * Share the timeslice between parent and child, thus the
1412 * total amount of pending timeslices in the system doesn't change,
1413 * resulting in more scheduling fairness.
1414 */
1415 local_irq_disable();
1416 p->time_slice = (current->time_slice + 1) >> 1;
1417 /*
1418 * The remainder of the first timeslice might be recovered by
1419 * the parent if the child exits early enough.
1420 */
1421 p->first_time_slice = 1;
1422 current->time_slice >>= 1;
1423 p->timestamp = sched_clock();
1424 if (unlikely(!current->time_slice)) {
1425 /*
1426 * This case is rare, it happens when the parent has only
1427 * a single jiffy left from its timeslice. Taking the
1428 * runqueue lock is not a problem.
1429 */
1430 current->time_slice = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 scheduler_tick();
Nick Piggin476d1392005-06-25 14:57:29 -07001432 }
1433 local_irq_enable();
1434 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435}
1436
1437/*
1438 * wake_up_new_task - wake up a newly created task for the first time.
1439 *
1440 * This function will do some initial scheduler statistics housekeeping
1441 * that must be done for every newly created context, then puts the task
1442 * on the runqueue and wakes it.
1443 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001444void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445{
1446 unsigned long flags;
1447 int this_cpu, cpu;
1448 runqueue_t *rq, *this_rq;
1449
1450 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001452 this_cpu = smp_processor_id();
1453 cpu = task_cpu(p);
1454
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 /*
1456 * We decrease the sleep average of forking parents
1457 * and children as well, to keep max-interactive tasks
1458 * from forking tasks that are max-interactive. The parent
1459 * (current) is done further down, under its lock.
1460 */
1461 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1462 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1463
1464 p->prio = effective_prio(p);
1465
1466 if (likely(cpu == this_cpu)) {
1467 if (!(clone_flags & CLONE_VM)) {
1468 /*
1469 * The VM isn't cloned, so we're in a good position to
1470 * do child-runs-first in anticipation of an exec. This
1471 * usually avoids a lot of COW overhead.
1472 */
1473 if (unlikely(!current->array))
1474 __activate_task(p, rq);
1475 else {
1476 p->prio = current->prio;
1477 list_add_tail(&p->run_list, &current->run_list);
1478 p->array = current->array;
1479 p->array->nr_active++;
Con Kolivasb9104722005-11-08 21:38:55 -08001480 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001481 }
1482 set_need_resched();
1483 } else
1484 /* Run child last */
1485 __activate_task(p, rq);
1486 /*
1487 * We skip the following code due to cpu == this_cpu
1488 *
1489 * task_rq_unlock(rq, &flags);
1490 * this_rq = task_rq_lock(current, &flags);
1491 */
1492 this_rq = rq;
1493 } else {
1494 this_rq = cpu_rq(this_cpu);
1495
1496 /*
1497 * Not the local CPU - must adjust timestamp. This should
1498 * get optimised away in the !CONFIG_SMP case.
1499 */
1500 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1501 + rq->timestamp_last_tick;
1502 __activate_task(p, rq);
1503 if (TASK_PREEMPTS_CURR(p, rq))
1504 resched_task(rq->curr);
1505
1506 /*
1507 * Parent and child are on different CPUs, now get the
1508 * parent runqueue to update the parent's ->sleep_avg:
1509 */
1510 task_rq_unlock(rq, &flags);
1511 this_rq = task_rq_lock(current, &flags);
1512 }
1513 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1514 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1515 task_rq_unlock(this_rq, &flags);
1516}
1517
1518/*
1519 * Potentially available exiting-child timeslices are
1520 * retrieved here - this way the parent does not get
1521 * penalized for creating too many threads.
1522 *
1523 * (this cannot be used to 'generate' timeslices
1524 * artificially, because any timeslice recovered here
1525 * was given away by the parent in the first place.)
1526 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001527void fastcall sched_exit(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528{
1529 unsigned long flags;
1530 runqueue_t *rq;
1531
1532 /*
1533 * If the child was a (relative-) CPU hog then decrease
1534 * the sleep_avg of the parent as well.
1535 */
1536 rq = task_rq_lock(p->parent, &flags);
Oleg Nesterov889dfaf2005-11-04 18:54:30 +03001537 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538 p->parent->time_slice += p->time_slice;
1539 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1540 p->parent->time_slice = task_timeslice(p);
1541 }
1542 if (p->sleep_avg < p->parent->sleep_avg)
1543 p->parent->sleep_avg = p->parent->sleep_avg /
1544 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1545 (EXIT_WEIGHT + 1);
1546 task_rq_unlock(rq, &flags);
1547}
1548
1549/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001550 * prepare_task_switch - prepare to switch tasks
1551 * @rq: the runqueue preparing to switch
1552 * @next: the task we are going to switch to.
1553 *
1554 * This is called with the rq lock held and interrupts off. It must
1555 * be paired with a subsequent finish_task_switch after the context
1556 * switch.
1557 *
1558 * prepare_task_switch sets up locking and calls architecture specific
1559 * hooks.
1560 */
1561static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1562{
1563 prepare_lock_switch(rq, next);
1564 prepare_arch_switch(next);
1565}
1566
1567/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001568 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001569 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570 * @prev: the thread we just switched away from.
1571 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001572 * finish_task_switch must be called after the context switch, paired
1573 * with a prepare_task_switch call before the context switch.
1574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1575 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001576 *
1577 * Note that we may have delayed dropping an mm in context_switch(). If
1578 * so, we finish that here outside of the runqueue lock. (Doing it
1579 * with the lock held can cause deadlocks; see schedule() for
1580 * details.)
1581 */
Nick Piggin4866cde2005-06-25 14:57:23 -07001582static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583 __releases(rq->lock)
1584{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001585 struct mm_struct *mm = rq->prev_mm;
1586 unsigned long prev_task_flags;
1587
1588 rq->prev_mm = NULL;
1589
1590 /*
1591 * A task struct has one reference for the use as "current".
1592 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1593 * calls schedule one last time. The schedule call will never return,
1594 * and the scheduled task must drop that reference.
1595 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1596 * still held, otherwise prev could be scheduled on another cpu, die
1597 * there before we look at prev->state, and then the reference would
1598 * be dropped twice.
1599 * Manfred Spraul <manfred@colorfullife.com>
1600 */
1601 prev_task_flags = prev->flags;
Nick Piggin4866cde2005-06-25 14:57:23 -07001602 finish_arch_switch(prev);
1603 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001604 if (mm)
1605 mmdrop(mm);
1606 if (unlikely(prev_task_flags & PF_DEAD))
1607 put_task_struct(prev);
1608}
1609
1610/**
1611 * schedule_tail - first thing a freshly forked thread must call.
1612 * @prev: the thread we just switched away from.
1613 */
1614asmlinkage void schedule_tail(task_t *prev)
1615 __releases(rq->lock)
1616{
Nick Piggin4866cde2005-06-25 14:57:23 -07001617 runqueue_t *rq = this_rq();
1618 finish_task_switch(rq, prev);
1619#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1620 /* In this case, finish_task_switch does not reenable preemption */
1621 preempt_enable();
1622#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001623 if (current->set_child_tid)
1624 put_user(current->pid, current->set_child_tid);
1625}
1626
1627/*
1628 * context_switch - switch to the new MM and the new
1629 * thread's register state.
1630 */
1631static inline
1632task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1633{
1634 struct mm_struct *mm = next->mm;
1635 struct mm_struct *oldmm = prev->active_mm;
1636
1637 if (unlikely(!mm)) {
1638 next->active_mm = oldmm;
1639 atomic_inc(&oldmm->mm_count);
1640 enter_lazy_tlb(oldmm, next);
1641 } else
1642 switch_mm(oldmm, mm, next);
1643
1644 if (unlikely(!prev->mm)) {
1645 prev->active_mm = NULL;
1646 WARN_ON(rq->prev_mm);
1647 rq->prev_mm = oldmm;
1648 }
1649
1650 /* Here we just switch the register state and the stack. */
1651 switch_to(prev, next, prev);
1652
1653 return prev;
1654}
1655
1656/*
1657 * nr_running, nr_uninterruptible and nr_context_switches:
1658 *
1659 * externally visible scheduler statistics: current number of runnable
1660 * threads, current number of uninterruptible-sleeping threads, total
1661 * number of context switches performed since bootup.
1662 */
1663unsigned long nr_running(void)
1664{
1665 unsigned long i, sum = 0;
1666
1667 for_each_online_cpu(i)
1668 sum += cpu_rq(i)->nr_running;
1669
1670 return sum;
1671}
1672
1673unsigned long nr_uninterruptible(void)
1674{
1675 unsigned long i, sum = 0;
1676
1677 for_each_cpu(i)
1678 sum += cpu_rq(i)->nr_uninterruptible;
1679
1680 /*
1681 * Since we read the counters lockless, it might be slightly
1682 * inaccurate. Do not allow it to go below zero though:
1683 */
1684 if (unlikely((long)sum < 0))
1685 sum = 0;
1686
1687 return sum;
1688}
1689
1690unsigned long long nr_context_switches(void)
1691{
1692 unsigned long long i, sum = 0;
1693
1694 for_each_cpu(i)
1695 sum += cpu_rq(i)->nr_switches;
1696
1697 return sum;
1698}
1699
1700unsigned long nr_iowait(void)
1701{
1702 unsigned long i, sum = 0;
1703
1704 for_each_cpu(i)
1705 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1706
1707 return sum;
1708}
1709
1710#ifdef CONFIG_SMP
1711
1712/*
1713 * double_rq_lock - safely lock two runqueues
1714 *
1715 * Note this does not disable interrupts like task_rq_lock,
1716 * you need to do so manually before calling.
1717 */
1718static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1719 __acquires(rq1->lock)
1720 __acquires(rq2->lock)
1721{
1722 if (rq1 == rq2) {
1723 spin_lock(&rq1->lock);
1724 __acquire(rq2->lock); /* Fake it out ;) */
1725 } else {
1726 if (rq1 < rq2) {
1727 spin_lock(&rq1->lock);
1728 spin_lock(&rq2->lock);
1729 } else {
1730 spin_lock(&rq2->lock);
1731 spin_lock(&rq1->lock);
1732 }
1733 }
1734}
1735
1736/*
1737 * double_rq_unlock - safely unlock two runqueues
1738 *
1739 * Note this does not restore interrupts like task_rq_unlock,
1740 * you need to do so manually after calling.
1741 */
1742static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1743 __releases(rq1->lock)
1744 __releases(rq2->lock)
1745{
1746 spin_unlock(&rq1->lock);
1747 if (rq1 != rq2)
1748 spin_unlock(&rq2->lock);
1749 else
1750 __release(rq2->lock);
1751}
1752
1753/*
1754 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1755 */
1756static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1757 __releases(this_rq->lock)
1758 __acquires(busiest->lock)
1759 __acquires(this_rq->lock)
1760{
1761 if (unlikely(!spin_trylock(&busiest->lock))) {
1762 if (busiest < this_rq) {
1763 spin_unlock(&this_rq->lock);
1764 spin_lock(&busiest->lock);
1765 spin_lock(&this_rq->lock);
1766 } else
1767 spin_lock(&busiest->lock);
1768 }
1769}
1770
1771/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001772 * If dest_cpu is allowed for this process, migrate the task to it.
1773 * This is accomplished by forcing the cpu_allowed mask to only
1774 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1775 * the cpu_allowed mask is restored.
1776 */
1777static void sched_migrate_task(task_t *p, int dest_cpu)
1778{
1779 migration_req_t req;
1780 runqueue_t *rq;
1781 unsigned long flags;
1782
1783 rq = task_rq_lock(p, &flags);
1784 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1785 || unlikely(cpu_is_offline(dest_cpu)))
1786 goto out;
1787
1788 /* force the process onto the specified CPU */
1789 if (migrate_task(p, dest_cpu, &req)) {
1790 /* Need to wait for migration thread (might exit: take ref). */
1791 struct task_struct *mt = rq->migration_thread;
1792 get_task_struct(mt);
1793 task_rq_unlock(rq, &flags);
1794 wake_up_process(mt);
1795 put_task_struct(mt);
1796 wait_for_completion(&req.done);
1797 return;
1798 }
1799out:
1800 task_rq_unlock(rq, &flags);
1801}
1802
1803/*
Nick Piggin476d1392005-06-25 14:57:29 -07001804 * sched_exec - execve() is a valuable balancing opportunity, because at
1805 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001806 */
1807void sched_exec(void)
1808{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001809 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07001810 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07001812 if (new_cpu != this_cpu)
1813 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814}
1815
1816/*
1817 * pull_task - move a task from a remote runqueue to the local runqueue.
1818 * Both runqueues must be locked.
1819 */
1820static inline
1821void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1822 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1823{
1824 dequeue_task(p, src_array);
Con Kolivasb9104722005-11-08 21:38:55 -08001825 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001826 set_task_cpu(p, this_cpu);
Con Kolivasb9104722005-11-08 21:38:55 -08001827 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001828 enqueue_task(p, this_array);
1829 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1830 + this_rq->timestamp_last_tick;
1831 /*
1832 * Note that idle threads have a prio of MAX_PRIO, for this test
1833 * to be always true for them.
1834 */
1835 if (TASK_PREEMPTS_CURR(p, this_rq))
1836 resched_task(this_rq->curr);
1837}
1838
1839/*
1840 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1841 */
1842static inline
1843int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001844 struct sched_domain *sd, enum idle_type idle,
1845 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846{
1847 /*
1848 * We do not migrate tasks that are:
1849 * 1) running (obviously), or
1850 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1851 * 3) are cache-hot on their current CPU.
1852 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001853 if (!cpu_isset(this_cpu, p->cpus_allowed))
1854 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07001855 *all_pinned = 0;
1856
1857 if (task_running(rq, p))
1858 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001859
1860 /*
1861 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07001862 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863 * 2) too many balance attempts have failed.
1864 */
1865
Nick Piggincafb20c2005-06-25 14:57:17 -07001866 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001867 return 1;
1868
1869 if (task_hot(p, rq->timestamp_last_tick, sd))
Nick Piggin81026792005-06-25 14:57:07 -07001870 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871 return 1;
1872}
1873
1874/*
1875 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1876 * as part of a balancing operation within "domain". Returns the number of
1877 * tasks moved.
1878 *
1879 * Called with both runqueues locked.
1880 */
1881static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1882 unsigned long max_nr_move, struct sched_domain *sd,
Nick Piggin81026792005-06-25 14:57:07 -07001883 enum idle_type idle, int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884{
1885 prio_array_t *array, *dst_array;
1886 struct list_head *head, *curr;
Nick Piggin81026792005-06-25 14:57:07 -07001887 int idx, pulled = 0, pinned = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001888 task_t *tmp;
1889
Nick Piggin81026792005-06-25 14:57:07 -07001890 if (max_nr_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001891 goto out;
1892
Nick Piggin81026792005-06-25 14:57:07 -07001893 pinned = 1;
1894
Linus Torvalds1da177e2005-04-16 15:20:36 -07001895 /*
1896 * We first consider expired tasks. Those will likely not be
1897 * executed in the near future, and they are most likely to
1898 * be cache-cold, thus switching CPUs has the least effect
1899 * on them.
1900 */
1901 if (busiest->expired->nr_active) {
1902 array = busiest->expired;
1903 dst_array = this_rq->expired;
1904 } else {
1905 array = busiest->active;
1906 dst_array = this_rq->active;
1907 }
1908
1909new_array:
1910 /* Start searching at priority 0: */
1911 idx = 0;
1912skip_bitmap:
1913 if (!idx)
1914 idx = sched_find_first_bit(array->bitmap);
1915 else
1916 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1917 if (idx >= MAX_PRIO) {
1918 if (array == busiest->expired && busiest->active->nr_active) {
1919 array = busiest->active;
1920 dst_array = this_rq->active;
1921 goto new_array;
1922 }
1923 goto out;
1924 }
1925
1926 head = array->queue + idx;
1927 curr = head->prev;
1928skip_queue:
1929 tmp = list_entry(curr, task_t, run_list);
1930
1931 curr = curr->prev;
1932
Nick Piggin81026792005-06-25 14:57:07 -07001933 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934 if (curr != head)
1935 goto skip_queue;
1936 idx++;
1937 goto skip_bitmap;
1938 }
1939
1940#ifdef CONFIG_SCHEDSTATS
1941 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1942 schedstat_inc(sd, lb_hot_gained[idle]);
1943#endif
1944
1945 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1946 pulled++;
1947
1948 /* We only want to steal up to the prescribed number of tasks. */
1949 if (pulled < max_nr_move) {
1950 if (curr != head)
1951 goto skip_queue;
1952 idx++;
1953 goto skip_bitmap;
1954 }
1955out:
1956 /*
1957 * Right now, this is the only place pull_task() is called,
1958 * so we can safely collect pull_task() stats here rather than
1959 * inside pull_task().
1960 */
1961 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07001962
1963 if (all_pinned)
1964 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965 return pulled;
1966}
1967
1968/*
1969 * find_busiest_group finds and returns the busiest CPU group within the
1970 * domain. It calculates and returns the number of tasks which should be
1971 * moved to restore balance via the imbalance parameter.
1972 */
1973static struct sched_group *
1974find_busiest_group(struct sched_domain *sd, int this_cpu,
Nick Piggin5969fe02005-09-10 00:26:19 -07001975 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976{
1977 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1978 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07001979 unsigned long max_pull;
Nick Piggin78979862005-06-25 14:57:13 -07001980 int load_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981
1982 max_load = this_load = total_load = total_pwr = 0;
Nick Piggin78979862005-06-25 14:57:13 -07001983 if (idle == NOT_IDLE)
1984 load_idx = sd->busy_idx;
1985 else if (idle == NEWLY_IDLE)
1986 load_idx = sd->newidle_idx;
1987 else
1988 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989
1990 do {
1991 unsigned long load;
1992 int local_group;
1993 int i;
1994
1995 local_group = cpu_isset(this_cpu, group->cpumask);
1996
1997 /* Tally up the load of all CPUs in the group */
1998 avg_load = 0;
1999
2000 for_each_cpu_mask(i, group->cpumask) {
Nick Piggin5969fe02005-09-10 00:26:19 -07002001 if (*sd_idle && !idle_cpu(i))
2002 *sd_idle = 0;
2003
Linus Torvalds1da177e2005-04-16 15:20:36 -07002004 /* Bias balancing toward cpus of our domain */
2005 if (local_group)
Con Kolivasb9104722005-11-08 21:38:55 -08002006 load = __target_load(i, load_idx, idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002007 else
Con Kolivasb9104722005-11-08 21:38:55 -08002008 load = __source_load(i, load_idx, idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002009
2010 avg_load += load;
2011 }
2012
2013 total_load += avg_load;
2014 total_pwr += group->cpu_power;
2015
2016 /* Adjust by relative CPU power of the group */
2017 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2018
2019 if (local_group) {
2020 this_load = avg_load;
2021 this = group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022 } else if (avg_load > max_load) {
2023 max_load = avg_load;
2024 busiest = group;
2025 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002026 group = group->next;
2027 } while (group != sd->groups);
2028
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002029 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002030 goto out_balanced;
2031
2032 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2033
2034 if (this_load >= avg_load ||
2035 100*max_load <= sd->imbalance_pct*this_load)
2036 goto out_balanced;
2037
2038 /*
2039 * We're trying to get all the cpus to the average_load, so we don't
2040 * want to push ourselves above the average load, nor do we wish to
2041 * reduce the max loaded cpu below the average load, as either of these
2042 * actions would just result in more rebalancing later, and ping-pong
2043 * tasks around. Thus we look for the minimum possible imbalance.
2044 * Negative imbalances (*we* are more loaded than anyone else) will
2045 * be counted as no imbalance for these purposes -- we can't fix that
2046 * by pulling tasks to us. Be careful of negative numbers as they'll
2047 * appear as very large values with unsigned longs.
2048 */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002049
2050 /* Don't want to pull so many tasks that a group would go idle */
2051 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2052
Linus Torvalds1da177e2005-04-16 15:20:36 -07002053 /* How much load to actually move to equalise the imbalance */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002054 *imbalance = min(max_pull * busiest->cpu_power,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002055 (avg_load - this_load) * this->cpu_power)
2056 / SCHED_LOAD_SCALE;
2057
2058 if (*imbalance < SCHED_LOAD_SCALE) {
2059 unsigned long pwr_now = 0, pwr_move = 0;
2060 unsigned long tmp;
2061
2062 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2063 *imbalance = 1;
2064 return busiest;
2065 }
2066
2067 /*
2068 * OK, we don't have enough imbalance to justify moving tasks,
2069 * however we may be able to increase total CPU power used by
2070 * moving them.
2071 */
2072
2073 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2074 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2075 pwr_now /= SCHED_LOAD_SCALE;
2076
2077 /* Amount of load we'd subtract */
2078 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2079 if (max_load > tmp)
2080 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2081 max_load - tmp);
2082
2083 /* Amount of load we'd add */
2084 if (max_load*busiest->cpu_power <
2085 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2086 tmp = max_load*busiest->cpu_power/this->cpu_power;
2087 else
2088 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2089 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2090 pwr_move /= SCHED_LOAD_SCALE;
2091
2092 /* Move if we gain throughput */
2093 if (pwr_move <= pwr_now)
2094 goto out_balanced;
2095
2096 *imbalance = 1;
2097 return busiest;
2098 }
2099
2100 /* Get rid of the scaling factor, rounding down as we divide */
2101 *imbalance = *imbalance / SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102 return busiest;
2103
2104out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002105
2106 *imbalance = 0;
2107 return NULL;
2108}
2109
2110/*
2111 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2112 */
Con Kolivasb9104722005-11-08 21:38:55 -08002113static runqueue_t *find_busiest_queue(struct sched_group *group,
2114 enum idle_type idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115{
2116 unsigned long load, max_load = 0;
2117 runqueue_t *busiest = NULL;
2118 int i;
2119
2120 for_each_cpu_mask(i, group->cpumask) {
Con Kolivasb9104722005-11-08 21:38:55 -08002121 load = __source_load(i, 0, idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122
2123 if (load > max_load) {
2124 max_load = load;
2125 busiest = cpu_rq(i);
2126 }
2127 }
2128
2129 return busiest;
2130}
2131
2132/*
Nick Piggin77391d72005-06-25 14:57:30 -07002133 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2134 * so long as it is large enough.
2135 */
2136#define MAX_PINNED_INTERVAL 512
2137
2138/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2140 * tasks if there is an imbalance.
2141 *
2142 * Called with this_rq unlocked.
2143 */
2144static int load_balance(int this_cpu, runqueue_t *this_rq,
2145 struct sched_domain *sd, enum idle_type idle)
2146{
2147 struct sched_group *group;
2148 runqueue_t *busiest;
2149 unsigned long imbalance;
Nick Piggin77391d72005-06-25 14:57:30 -07002150 int nr_moved, all_pinned = 0;
Nick Piggin81026792005-06-25 14:57:07 -07002151 int active_balance = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002152 int sd_idle = 0;
2153
2154 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2155 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156
Linus Torvalds1da177e2005-04-16 15:20:36 -07002157 schedstat_inc(sd, lb_cnt[idle]);
2158
Nick Piggin5969fe02005-09-10 00:26:19 -07002159 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 if (!group) {
2161 schedstat_inc(sd, lb_nobusyg[idle]);
2162 goto out_balanced;
2163 }
2164
Con Kolivasb9104722005-11-08 21:38:55 -08002165 busiest = find_busiest_queue(group, idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002166 if (!busiest) {
2167 schedstat_inc(sd, lb_nobusyq[idle]);
2168 goto out_balanced;
2169 }
2170
Nick Piggindb935db2005-06-25 14:57:11 -07002171 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002172
2173 schedstat_add(sd, lb_imbalance[idle], imbalance);
2174
2175 nr_moved = 0;
2176 if (busiest->nr_running > 1) {
2177 /*
2178 * Attempt to move tasks. If find_busiest_group has found
2179 * an imbalance but busiest->nr_running <= 1, the group is
2180 * still unbalanced. nr_moved simply stays zero, so it is
2181 * correctly treated as an imbalance.
2182 */
Nick Piggine17224b2005-09-10 00:26:18 -07002183 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002185 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002186 double_rq_unlock(this_rq, busiest);
Nick Piggin81026792005-06-25 14:57:07 -07002187
2188 /* All tasks on this runqueue were pinned by CPU affinity */
2189 if (unlikely(all_pinned))
2190 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002191 }
Nick Piggin81026792005-06-25 14:57:07 -07002192
Linus Torvalds1da177e2005-04-16 15:20:36 -07002193 if (!nr_moved) {
2194 schedstat_inc(sd, lb_failed[idle]);
2195 sd->nr_balance_failed++;
2196
2197 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002198
2199 spin_lock(&busiest->lock);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002200
2201 /* don't kick the migration_thread, if the curr
2202 * task on busiest cpu can't be moved to this_cpu
2203 */
2204 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2205 spin_unlock(&busiest->lock);
2206 all_pinned = 1;
2207 goto out_one_pinned;
2208 }
2209
Linus Torvalds1da177e2005-04-16 15:20:36 -07002210 if (!busiest->active_balance) {
2211 busiest->active_balance = 1;
2212 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002213 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002214 }
2215 spin_unlock(&busiest->lock);
Nick Piggin81026792005-06-25 14:57:07 -07002216 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002217 wake_up_process(busiest->migration_thread);
2218
2219 /*
2220 * We've kicked active balancing, reset the failure
2221 * counter.
2222 */
Nick Piggin39507452005-06-25 14:57:09 -07002223 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002224 }
Nick Piggin81026792005-06-25 14:57:07 -07002225 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002226 sd->nr_balance_failed = 0;
2227
Nick Piggin81026792005-06-25 14:57:07 -07002228 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229 /* We were unbalanced, so reset the balancing interval */
2230 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002231 } else {
2232 /*
2233 * If we've begun active balancing, start to back off. This
2234 * case may not be covered by the all_pinned logic if there
2235 * is only 1 task on the busy runqueue (because we don't call
2236 * move_tasks).
2237 */
2238 if (sd->balance_interval < sd->max_interval)
2239 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002240 }
2241
Nick Piggin5969fe02005-09-10 00:26:19 -07002242 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2243 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002244 return nr_moved;
2245
2246out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002247 schedstat_inc(sd, lb_balanced[idle]);
2248
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002249 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002250
2251out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002253 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2254 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255 sd->balance_interval *= 2;
2256
Nick Piggin5969fe02005-09-10 00:26:19 -07002257 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2258 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259 return 0;
2260}
2261
2262/*
2263 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2264 * tasks if there is an imbalance.
2265 *
2266 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2267 * this_rq is locked.
2268 */
2269static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2270 struct sched_domain *sd)
2271{
2272 struct sched_group *group;
2273 runqueue_t *busiest = NULL;
2274 unsigned long imbalance;
2275 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002276 int sd_idle = 0;
2277
2278 if (sd->flags & SD_SHARE_CPUPOWER)
2279 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280
2281 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002282 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002283 if (!group) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002284 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002285 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002286 }
2287
Con Kolivasb9104722005-11-08 21:38:55 -08002288 busiest = find_busiest_queue(group, NEWLY_IDLE);
Nick Piggindb935db2005-06-25 14:57:11 -07002289 if (!busiest) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002290 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002291 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002292 }
2293
Nick Piggindb935db2005-06-25 14:57:11 -07002294 BUG_ON(busiest == this_rq);
2295
Linus Torvalds1da177e2005-04-16 15:20:36 -07002296 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002297
2298 nr_moved = 0;
2299 if (busiest->nr_running > 1) {
2300 /* Attempt to move tasks */
2301 double_lock_balance(this_rq, busiest);
2302 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Nick Piggin81026792005-06-25 14:57:07 -07002303 imbalance, sd, NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002304 spin_unlock(&busiest->lock);
2305 }
2306
Nick Piggin5969fe02005-09-10 00:26:19 -07002307 if (!nr_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002308 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002309 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2310 return -1;
2311 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002312 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313
Linus Torvalds1da177e2005-04-16 15:20:36 -07002314 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002315
2316out_balanced:
2317 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002318 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2319 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002320 sd->nr_balance_failed = 0;
2321 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322}
2323
2324/*
2325 * idle_balance is called by schedule() if this_cpu is about to become
2326 * idle. Attempts to pull tasks from other CPUs.
2327 */
2328static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2329{
2330 struct sched_domain *sd;
2331
2332 for_each_domain(this_cpu, sd) {
2333 if (sd->flags & SD_BALANCE_NEWIDLE) {
2334 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2335 /* We've pulled tasks over so stop searching */
2336 break;
2337 }
2338 }
2339 }
2340}
2341
2342/*
2343 * active_load_balance is run by migration threads. It pushes running tasks
2344 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2345 * running on each physical CPU where possible, and avoids physical /
2346 * logical imbalances.
2347 *
2348 * Called with busiest_rq locked.
2349 */
2350static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2351{
2352 struct sched_domain *sd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002353 runqueue_t *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002354 int target_cpu = busiest_rq->push_cpu;
2355
2356 if (busiest_rq->nr_running <= 1)
2357 /* no task to move */
2358 return;
2359
2360 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002361
2362 /*
Nick Piggin39507452005-06-25 14:57:09 -07002363 * This condition is "impossible", if it occurs
2364 * we need to fix it. Originally reported by
2365 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002366 */
Nick Piggin39507452005-06-25 14:57:09 -07002367 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002368
Nick Piggin39507452005-06-25 14:57:09 -07002369 /* move a task from busiest_rq to target_rq */
2370 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002371
Nick Piggin39507452005-06-25 14:57:09 -07002372 /* Search for an sd spanning us and the target CPU. */
2373 for_each_domain(target_cpu, sd)
2374 if ((sd->flags & SD_LOAD_BALANCE) &&
2375 cpu_isset(busiest_cpu, sd->span))
2376 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377
Nick Piggin39507452005-06-25 14:57:09 -07002378 if (unlikely(sd == NULL))
2379 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002380
Nick Piggin39507452005-06-25 14:57:09 -07002381 schedstat_inc(sd, alb_cnt);
2382
2383 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2384 schedstat_inc(sd, alb_pushed);
2385 else
2386 schedstat_inc(sd, alb_failed);
2387out:
2388 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389}
2390
2391/*
2392 * rebalance_tick will get called every timer tick, on every CPU.
2393 *
2394 * It checks each scheduling domain to see if it is due to be balanced,
2395 * and initiates a balancing operation if so.
2396 *
2397 * Balancing parameters are set up in arch_init_sched_domains.
2398 */
2399
2400/* Don't have all balancing operations going off at once */
2401#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2402
2403static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2404 enum idle_type idle)
2405{
2406 unsigned long old_load, this_load;
2407 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2408 struct sched_domain *sd;
Nick Piggin78979862005-06-25 14:57:13 -07002409 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410
Linus Torvalds1da177e2005-04-16 15:20:36 -07002411 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
Nick Piggin78979862005-06-25 14:57:13 -07002412 /* Update our load */
2413 for (i = 0; i < 3; i++) {
2414 unsigned long new_load = this_load;
2415 int scale = 1 << i;
2416 old_load = this_rq->cpu_load[i];
2417 /*
2418 * Round up the averaging division if load is increasing. This
2419 * prevents us from getting stuck on 9 if the load is 10, for
2420 * example.
2421 */
2422 if (new_load > old_load)
2423 new_load += scale-1;
2424 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2425 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426
2427 for_each_domain(this_cpu, sd) {
2428 unsigned long interval;
2429
2430 if (!(sd->flags & SD_LOAD_BALANCE))
2431 continue;
2432
2433 interval = sd->balance_interval;
2434 if (idle != SCHED_IDLE)
2435 interval *= sd->busy_factor;
2436
2437 /* scale ms to jiffies */
2438 interval = msecs_to_jiffies(interval);
2439 if (unlikely(!interval))
2440 interval = 1;
2441
2442 if (j - sd->last_balance >= interval) {
2443 if (load_balance(this_cpu, this_rq, sd, idle)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002444 /*
2445 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07002446 * longer idle, or one of our SMT siblings is
2447 * not idle.
2448 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002449 idle = NOT_IDLE;
2450 }
2451 sd->last_balance += interval;
2452 }
2453 }
2454}
2455#else
2456/*
2457 * on UP we do not need to balance between CPUs:
2458 */
2459static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2460{
2461}
2462static inline void idle_balance(int cpu, runqueue_t *rq)
2463{
2464}
2465#endif
2466
2467static inline int wake_priority_sleeper(runqueue_t *rq)
2468{
2469 int ret = 0;
2470#ifdef CONFIG_SCHED_SMT
2471 spin_lock(&rq->lock);
2472 /*
2473 * If an SMT sibling task has been put to sleep for priority
2474 * reasons reschedule the idle task to see if it can now run.
2475 */
2476 if (rq->nr_running) {
2477 resched_task(rq->idle);
2478 ret = 1;
2479 }
2480 spin_unlock(&rq->lock);
2481#endif
2482 return ret;
2483}
2484
2485DEFINE_PER_CPU(struct kernel_stat, kstat);
2486
2487EXPORT_PER_CPU_SYMBOL(kstat);
2488
2489/*
2490 * This is called on clock ticks and on context switches.
2491 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2492 */
2493static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2494 unsigned long long now)
2495{
2496 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2497 p->sched_time += now - last;
2498}
2499
2500/*
2501 * Return current->sched_time plus any more ns on the sched_clock
2502 * that have not yet been banked.
2503 */
2504unsigned long long current_sched_time(const task_t *tsk)
2505{
2506 unsigned long long ns;
2507 unsigned long flags;
2508 local_irq_save(flags);
2509 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2510 ns = tsk->sched_time + (sched_clock() - ns);
2511 local_irq_restore(flags);
2512 return ns;
2513}
2514
2515/*
2516 * We place interactive tasks back into the active array, if possible.
2517 *
2518 * To guarantee that this does not starve expired tasks we ignore the
2519 * interactivity of a task if the first expired task had to wait more
2520 * than a 'reasonable' amount of time. This deadline timeout is
2521 * load-dependent, as the frequency of array switched decreases with
2522 * increasing number of running tasks. We also ignore the interactivity
2523 * if a better static_prio task has expired:
2524 */
2525#define EXPIRED_STARVING(rq) \
2526 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2527 (jiffies - (rq)->expired_timestamp >= \
2528 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2529 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2530
2531/*
2532 * Account user cpu time to a process.
2533 * @p: the process that the cpu time gets accounted to
2534 * @hardirq_offset: the offset to subtract from hardirq_count()
2535 * @cputime: the cpu time spent in user space since the last update
2536 */
2537void account_user_time(struct task_struct *p, cputime_t cputime)
2538{
2539 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2540 cputime64_t tmp;
2541
2542 p->utime = cputime_add(p->utime, cputime);
2543
2544 /* Add user time to cpustat. */
2545 tmp = cputime_to_cputime64(cputime);
2546 if (TASK_NICE(p) > 0)
2547 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2548 else
2549 cpustat->user = cputime64_add(cpustat->user, tmp);
2550}
2551
2552/*
2553 * Account system cpu time to a process.
2554 * @p: the process that the cpu time gets accounted to
2555 * @hardirq_offset: the offset to subtract from hardirq_count()
2556 * @cputime: the cpu time spent in kernel space since the last update
2557 */
2558void account_system_time(struct task_struct *p, int hardirq_offset,
2559 cputime_t cputime)
2560{
2561 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2562 runqueue_t *rq = this_rq();
2563 cputime64_t tmp;
2564
2565 p->stime = cputime_add(p->stime, cputime);
2566
2567 /* Add system time to cpustat. */
2568 tmp = cputime_to_cputime64(cputime);
2569 if (hardirq_count() - hardirq_offset)
2570 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2571 else if (softirq_count())
2572 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2573 else if (p != rq->idle)
2574 cpustat->system = cputime64_add(cpustat->system, tmp);
2575 else if (atomic_read(&rq->nr_iowait) > 0)
2576 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2577 else
2578 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2579 /* Account for system time used */
2580 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581}
2582
2583/*
2584 * Account for involuntary wait time.
2585 * @p: the process from which the cpu time has been stolen
2586 * @steal: the cpu time spent in involuntary wait
2587 */
2588void account_steal_time(struct task_struct *p, cputime_t steal)
2589{
2590 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2591 cputime64_t tmp = cputime_to_cputime64(steal);
2592 runqueue_t *rq = this_rq();
2593
2594 if (p == rq->idle) {
2595 p->stime = cputime_add(p->stime, steal);
2596 if (atomic_read(&rq->nr_iowait) > 0)
2597 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2598 else
2599 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2600 } else
2601 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2602}
2603
2604/*
2605 * This function gets called by the timer code, with HZ frequency.
2606 * We call it with interrupts disabled.
2607 *
2608 * It also gets called by the fork code, when changing the parent's
2609 * timeslices.
2610 */
2611void scheduler_tick(void)
2612{
2613 int cpu = smp_processor_id();
2614 runqueue_t *rq = this_rq();
2615 task_t *p = current;
2616 unsigned long long now = sched_clock();
2617
2618 update_cpu_clock(p, rq, now);
2619
2620 rq->timestamp_last_tick = now;
2621
2622 if (p == rq->idle) {
2623 if (wake_priority_sleeper(rq))
2624 goto out;
2625 rebalance_tick(cpu, rq, SCHED_IDLE);
2626 return;
2627 }
2628
2629 /* Task might have expired already, but not scheduled off yet */
2630 if (p->array != rq->active) {
2631 set_tsk_need_resched(p);
2632 goto out;
2633 }
2634 spin_lock(&rq->lock);
2635 /*
2636 * The task was running during this tick - update the
2637 * time slice counter. Note: we do not update a thread's
2638 * priority until it either goes to sleep or uses up its
2639 * timeslice. This makes it possible for interactive tasks
2640 * to use up their timeslices at their highest priority levels.
2641 */
2642 if (rt_task(p)) {
2643 /*
2644 * RR tasks need a special form of timeslice management.
2645 * FIFO tasks have no timeslices.
2646 */
2647 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2648 p->time_slice = task_timeslice(p);
2649 p->first_time_slice = 0;
2650 set_tsk_need_resched(p);
2651
2652 /* put it at the end of the queue: */
2653 requeue_task(p, rq->active);
2654 }
2655 goto out_unlock;
2656 }
2657 if (!--p->time_slice) {
2658 dequeue_task(p, rq->active);
2659 set_tsk_need_resched(p);
2660 p->prio = effective_prio(p);
2661 p->time_slice = task_timeslice(p);
2662 p->first_time_slice = 0;
2663
2664 if (!rq->expired_timestamp)
2665 rq->expired_timestamp = jiffies;
2666 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2667 enqueue_task(p, rq->expired);
2668 if (p->static_prio < rq->best_expired_prio)
2669 rq->best_expired_prio = p->static_prio;
2670 } else
2671 enqueue_task(p, rq->active);
2672 } else {
2673 /*
2674 * Prevent a too long timeslice allowing a task to monopolize
2675 * the CPU. We do this by splitting up the timeslice into
2676 * smaller pieces.
2677 *
2678 * Note: this does not mean the task's timeslices expire or
2679 * get lost in any way, they just might be preempted by
2680 * another task of equal priority. (one with higher
2681 * priority would have preempted this task already.) We
2682 * requeue this task to the end of the list on this priority
2683 * level, which is in essence a round-robin of tasks with
2684 * equal priority.
2685 *
2686 * This only applies to tasks in the interactive
2687 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2688 */
2689 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2690 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2691 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2692 (p->array == rq->active)) {
2693
2694 requeue_task(p, rq->active);
2695 set_tsk_need_resched(p);
2696 }
2697 }
2698out_unlock:
2699 spin_unlock(&rq->lock);
2700out:
2701 rebalance_tick(cpu, rq, NOT_IDLE);
2702}
2703
2704#ifdef CONFIG_SCHED_SMT
Con Kolivasfc38ed72005-09-10 00:26:08 -07002705static inline void wakeup_busy_runqueue(runqueue_t *rq)
2706{
2707 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2708 if (rq->curr == rq->idle && rq->nr_running)
2709 resched_task(rq->idle);
2710}
2711
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2713{
Nick Piggin41c7ce92005-06-25 14:57:24 -07002714 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002715 cpumask_t sibling_map;
2716 int i;
2717
Nick Piggin41c7ce92005-06-25 14:57:24 -07002718 for_each_domain(this_cpu, tmp)
2719 if (tmp->flags & SD_SHARE_CPUPOWER)
2720 sd = tmp;
2721
2722 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723 return;
2724
2725 /*
2726 * Unlock the current runqueue because we have to lock in
2727 * CPU order to avoid deadlocks. Caller knows that we might
2728 * unlock. We keep IRQs disabled.
2729 */
2730 spin_unlock(&this_rq->lock);
2731
2732 sibling_map = sd->span;
2733
2734 for_each_cpu_mask(i, sibling_map)
2735 spin_lock(&cpu_rq(i)->lock);
2736 /*
2737 * We clear this CPU from the mask. This both simplifies the
2738 * inner loop and keps this_rq locked when we exit:
2739 */
2740 cpu_clear(this_cpu, sibling_map);
2741
2742 for_each_cpu_mask(i, sibling_map) {
2743 runqueue_t *smt_rq = cpu_rq(i);
2744
Con Kolivasfc38ed72005-09-10 00:26:08 -07002745 wakeup_busy_runqueue(smt_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746 }
2747
2748 for_each_cpu_mask(i, sibling_map)
2749 spin_unlock(&cpu_rq(i)->lock);
2750 /*
2751 * We exit with this_cpu's rq still held and IRQs
2752 * still disabled:
2753 */
2754}
2755
Ingo Molnar67f9a612005-09-10 00:26:16 -07002756/*
2757 * number of 'lost' timeslices this task wont be able to fully
2758 * utilize, if another task runs on a sibling. This models the
2759 * slowdown effect of other tasks running on siblings:
2760 */
2761static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2762{
2763 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2764}
2765
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2767{
Nick Piggin41c7ce92005-06-25 14:57:24 -07002768 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002769 cpumask_t sibling_map;
2770 prio_array_t *array;
2771 int ret = 0, i;
2772 task_t *p;
2773
Nick Piggin41c7ce92005-06-25 14:57:24 -07002774 for_each_domain(this_cpu, tmp)
2775 if (tmp->flags & SD_SHARE_CPUPOWER)
2776 sd = tmp;
2777
2778 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779 return 0;
2780
2781 /*
2782 * The same locking rules and details apply as for
2783 * wake_sleeping_dependent():
2784 */
2785 spin_unlock(&this_rq->lock);
2786 sibling_map = sd->span;
2787 for_each_cpu_mask(i, sibling_map)
2788 spin_lock(&cpu_rq(i)->lock);
2789 cpu_clear(this_cpu, sibling_map);
2790
2791 /*
2792 * Establish next task to be run - it might have gone away because
2793 * we released the runqueue lock above:
2794 */
2795 if (!this_rq->nr_running)
2796 goto out_unlock;
2797 array = this_rq->active;
2798 if (!array->nr_active)
2799 array = this_rq->expired;
2800 BUG_ON(!array->nr_active);
2801
2802 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2803 task_t, run_list);
2804
2805 for_each_cpu_mask(i, sibling_map) {
2806 runqueue_t *smt_rq = cpu_rq(i);
2807 task_t *smt_curr = smt_rq->curr;
2808
Con Kolivasfc38ed72005-09-10 00:26:08 -07002809 /* Kernel threads do not participate in dependent sleeping */
2810 if (!p->mm || !smt_curr->mm || rt_task(p))
2811 goto check_smt_task;
2812
Linus Torvalds1da177e2005-04-16 15:20:36 -07002813 /*
2814 * If a user task with lower static priority than the
2815 * running task on the SMT sibling is trying to schedule,
2816 * delay it till there is proportionately less timeslice
2817 * left of the sibling task to prevent a lower priority
2818 * task from using an unfair proportion of the
2819 * physical cpu's resources. -ck
2820 */
Con Kolivasfc38ed72005-09-10 00:26:08 -07002821 if (rt_task(smt_curr)) {
2822 /*
2823 * With real time tasks we run non-rt tasks only
2824 * per_cpu_gain% of the time.
2825 */
2826 if ((jiffies % DEF_TIMESLICE) >
2827 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2828 ret = 1;
2829 } else
Ingo Molnar67f9a612005-09-10 00:26:16 -07002830 if (smt_curr->static_prio < p->static_prio &&
2831 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2832 smt_slice(smt_curr, sd) > task_timeslice(p))
Con Kolivasfc38ed72005-09-10 00:26:08 -07002833 ret = 1;
2834
2835check_smt_task:
2836 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2837 rt_task(smt_curr))
2838 continue;
2839 if (!p->mm) {
2840 wakeup_busy_runqueue(smt_rq);
2841 continue;
2842 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002843
2844 /*
Con Kolivasfc38ed72005-09-10 00:26:08 -07002845 * Reschedule a lower priority task on the SMT sibling for
2846 * it to be put to sleep, or wake it up if it has been put to
2847 * sleep for priority reasons to see if it should run now.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002848 */
Con Kolivasfc38ed72005-09-10 00:26:08 -07002849 if (rt_task(p)) {
2850 if ((jiffies % DEF_TIMESLICE) >
2851 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2852 resched_task(smt_curr);
2853 } else {
Ingo Molnar67f9a612005-09-10 00:26:16 -07002854 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2855 smt_slice(p, sd) > task_timeslice(smt_curr))
Con Kolivasfc38ed72005-09-10 00:26:08 -07002856 resched_task(smt_curr);
2857 else
2858 wakeup_busy_runqueue(smt_rq);
2859 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860 }
2861out_unlock:
2862 for_each_cpu_mask(i, sibling_map)
2863 spin_unlock(&cpu_rq(i)->lock);
2864 return ret;
2865}
2866#else
2867static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2868{
2869}
2870
2871static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2872{
2873 return 0;
2874}
2875#endif
2876
2877#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2878
2879void fastcall add_preempt_count(int val)
2880{
2881 /*
2882 * Underflow?
2883 */
Jesper Juhlbe5b4fb2005-06-23 00:09:09 -07002884 BUG_ON((preempt_count() < 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885 preempt_count() += val;
2886 /*
2887 * Spinlock count overflowing soon?
2888 */
2889 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2890}
2891EXPORT_SYMBOL(add_preempt_count);
2892
2893void fastcall sub_preempt_count(int val)
2894{
2895 /*
2896 * Underflow?
2897 */
2898 BUG_ON(val > preempt_count());
2899 /*
2900 * Is the spinlock portion underflowing?
2901 */
2902 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2903 preempt_count() -= val;
2904}
2905EXPORT_SYMBOL(sub_preempt_count);
2906
2907#endif
2908
2909/*
2910 * schedule() is the main scheduler function.
2911 */
2912asmlinkage void __sched schedule(void)
2913{
2914 long *switch_count;
2915 task_t *prev, *next;
2916 runqueue_t *rq;
2917 prio_array_t *array;
2918 struct list_head *queue;
2919 unsigned long long now;
2920 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07002921 int cpu, idx, new_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002922
2923 /*
2924 * Test if we are atomic. Since do_exit() needs to call into
2925 * schedule() atomically, we ignore that path for now.
2926 * Otherwise, whine if we are scheduling when we should not be.
2927 */
2928 if (likely(!current->exit_state)) {
2929 if (unlikely(in_atomic())) {
2930 printk(KERN_ERR "scheduling while atomic: "
2931 "%s/0x%08x/%d\n",
2932 current->comm, preempt_count(), current->pid);
2933 dump_stack();
2934 }
2935 }
2936 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2937
2938need_resched:
2939 preempt_disable();
2940 prev = current;
2941 release_kernel_lock(prev);
2942need_resched_nonpreemptible:
2943 rq = this_rq();
2944
2945 /*
2946 * The idle thread is not allowed to schedule!
2947 * Remove this check after it has been exercised a bit.
2948 */
2949 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2950 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2951 dump_stack();
2952 }
2953
2954 schedstat_inc(rq, sched_cnt);
2955 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07002956 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002957 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07002958 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002959 run_time = 0;
2960 } else
2961 run_time = NS_MAX_SLEEP_AVG;
2962
2963 /*
2964 * Tasks charged proportionately less run_time at high sleep_avg to
2965 * delay them losing their interactive status
2966 */
2967 run_time /= (CURRENT_BONUS(prev) ? : 1);
2968
2969 spin_lock_irq(&rq->lock);
2970
2971 if (unlikely(prev->flags & PF_DEAD))
2972 prev->state = EXIT_DEAD;
2973
2974 switch_count = &prev->nivcsw;
2975 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2976 switch_count = &prev->nvcsw;
2977 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2978 unlikely(signal_pending(prev))))
2979 prev->state = TASK_RUNNING;
2980 else {
2981 if (prev->state == TASK_UNINTERRUPTIBLE)
2982 rq->nr_uninterruptible++;
2983 deactivate_task(prev, rq);
2984 }
2985 }
2986
2987 cpu = smp_processor_id();
2988 if (unlikely(!rq->nr_running)) {
2989go_idle:
2990 idle_balance(cpu, rq);
2991 if (!rq->nr_running) {
2992 next = rq->idle;
2993 rq->expired_timestamp = 0;
2994 wake_sleeping_dependent(cpu, rq);
2995 /*
2996 * wake_sleeping_dependent() might have released
2997 * the runqueue, so break out if we got new
2998 * tasks meanwhile:
2999 */
3000 if (!rq->nr_running)
3001 goto switch_tasks;
3002 }
3003 } else {
3004 if (dependent_sleeper(cpu, rq)) {
3005 next = rq->idle;
3006 goto switch_tasks;
3007 }
3008 /*
3009 * dependent_sleeper() releases and reacquires the runqueue
3010 * lock, hence go into the idle loop if the rq went
3011 * empty meanwhile:
3012 */
3013 if (unlikely(!rq->nr_running))
3014 goto go_idle;
3015 }
3016
3017 array = rq->active;
3018 if (unlikely(!array->nr_active)) {
3019 /*
3020 * Switch the active and expired arrays.
3021 */
3022 schedstat_inc(rq, sched_switch);
3023 rq->active = rq->expired;
3024 rq->expired = array;
3025 array = rq->active;
3026 rq->expired_timestamp = 0;
3027 rq->best_expired_prio = MAX_PRIO;
3028 }
3029
3030 idx = sched_find_first_bit(array->bitmap);
3031 queue = array->queue + idx;
3032 next = list_entry(queue->next, task_t, run_list);
3033
3034 if (!rt_task(next) && next->activated > 0) {
3035 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003036 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003037 delta = 0;
3038
3039 if (next->activated == 1)
3040 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3041
3042 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003043 new_prio = recalc_task_prio(next, next->timestamp + delta);
3044
3045 if (unlikely(next->prio != new_prio)) {
3046 dequeue_task(next, array);
3047 next->prio = new_prio;
3048 enqueue_task(next, array);
3049 } else
3050 requeue_task(next, array);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003051 }
3052 next->activated = 0;
3053switch_tasks:
3054 if (next == rq->idle)
3055 schedstat_inc(rq, sched_goidle);
3056 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003057 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003058 clear_tsk_need_resched(prev);
3059 rcu_qsctr_inc(task_cpu(prev));
3060
3061 update_cpu_clock(prev, rq, now);
3062
3063 prev->sleep_avg -= run_time;
3064 if ((long)prev->sleep_avg <= 0)
3065 prev->sleep_avg = 0;
3066 prev->timestamp = prev->last_ran = now;
3067
3068 sched_info_switch(prev, next);
3069 if (likely(prev != next)) {
3070 next->timestamp = now;
3071 rq->nr_switches++;
3072 rq->curr = next;
3073 ++*switch_count;
3074
Nick Piggin4866cde2005-06-25 14:57:23 -07003075 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003076 prev = context_switch(rq, prev, next);
3077 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003078 /*
3079 * this_rq must be evaluated again because prev may have moved
3080 * CPUs since it called schedule(), thus the 'rq' on its stack
3081 * frame will be invalid.
3082 */
3083 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003084 } else
3085 spin_unlock_irq(&rq->lock);
3086
3087 prev = current;
3088 if (unlikely(reacquire_kernel_lock(prev) < 0))
3089 goto need_resched_nonpreemptible;
3090 preempt_enable_no_resched();
3091 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3092 goto need_resched;
3093}
3094
3095EXPORT_SYMBOL(schedule);
3096
3097#ifdef CONFIG_PREEMPT
3098/*
3099 * this is is the entry point to schedule() from in-kernel preemption
3100 * off of preempt_enable. Kernel preemptions off return from interrupt
3101 * occur there and call schedule directly.
3102 */
3103asmlinkage void __sched preempt_schedule(void)
3104{
3105 struct thread_info *ti = current_thread_info();
3106#ifdef CONFIG_PREEMPT_BKL
3107 struct task_struct *task = current;
3108 int saved_lock_depth;
3109#endif
3110 /*
3111 * If there is a non-zero preempt_count or interrupts are disabled,
3112 * we do not want to preempt the current task. Just return..
3113 */
3114 if (unlikely(ti->preempt_count || irqs_disabled()))
3115 return;
3116
3117need_resched:
3118 add_preempt_count(PREEMPT_ACTIVE);
3119 /*
3120 * We keep the big kernel semaphore locked, but we
3121 * clear ->lock_depth so that schedule() doesnt
3122 * auto-release the semaphore:
3123 */
3124#ifdef CONFIG_PREEMPT_BKL
3125 saved_lock_depth = task->lock_depth;
3126 task->lock_depth = -1;
3127#endif
3128 schedule();
3129#ifdef CONFIG_PREEMPT_BKL
3130 task->lock_depth = saved_lock_depth;
3131#endif
3132 sub_preempt_count(PREEMPT_ACTIVE);
3133
3134 /* we could miss a preemption opportunity between schedule and now */
3135 barrier();
3136 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3137 goto need_resched;
3138}
3139
3140EXPORT_SYMBOL(preempt_schedule);
3141
3142/*
3143 * this is is the entry point to schedule() from kernel preemption
3144 * off of irq context.
3145 * Note, that this is called and return with irqs disabled. This will
3146 * protect us against recursive calling from irq.
3147 */
3148asmlinkage void __sched preempt_schedule_irq(void)
3149{
3150 struct thread_info *ti = current_thread_info();
3151#ifdef CONFIG_PREEMPT_BKL
3152 struct task_struct *task = current;
3153 int saved_lock_depth;
3154#endif
3155 /* Catch callers which need to be fixed*/
3156 BUG_ON(ti->preempt_count || !irqs_disabled());
3157
3158need_resched:
3159 add_preempt_count(PREEMPT_ACTIVE);
3160 /*
3161 * We keep the big kernel semaphore locked, but we
3162 * clear ->lock_depth so that schedule() doesnt
3163 * auto-release the semaphore:
3164 */
3165#ifdef CONFIG_PREEMPT_BKL
3166 saved_lock_depth = task->lock_depth;
3167 task->lock_depth = -1;
3168#endif
3169 local_irq_enable();
3170 schedule();
3171 local_irq_disable();
3172#ifdef CONFIG_PREEMPT_BKL
3173 task->lock_depth = saved_lock_depth;
3174#endif
3175 sub_preempt_count(PREEMPT_ACTIVE);
3176
3177 /* we could miss a preemption opportunity between schedule and now */
3178 barrier();
3179 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3180 goto need_resched;
3181}
3182
3183#endif /* CONFIG_PREEMPT */
3184
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003185int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3186 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003187{
Benjamin LaHaisec43dc2f2005-06-23 00:10:27 -07003188 task_t *p = curr->private;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003189 return try_to_wake_up(p, mode, sync);
3190}
3191
3192EXPORT_SYMBOL(default_wake_function);
3193
3194/*
3195 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3196 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3197 * number) then we wake all the non-exclusive tasks and one exclusive task.
3198 *
3199 * There are circumstances in which we can try to wake a task which has already
3200 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3201 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3202 */
3203static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3204 int nr_exclusive, int sync, void *key)
3205{
3206 struct list_head *tmp, *next;
3207
3208 list_for_each_safe(tmp, next, &q->task_list) {
3209 wait_queue_t *curr;
3210 unsigned flags;
3211 curr = list_entry(tmp, wait_queue_t, task_list);
3212 flags = curr->flags;
3213 if (curr->func(curr, mode, sync, key) &&
3214 (flags & WQ_FLAG_EXCLUSIVE) &&
3215 !--nr_exclusive)
3216 break;
3217 }
3218}
3219
3220/**
3221 * __wake_up - wake up threads blocked on a waitqueue.
3222 * @q: the waitqueue
3223 * @mode: which threads
3224 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003225 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003226 */
3227void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003228 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003229{
3230 unsigned long flags;
3231
3232 spin_lock_irqsave(&q->lock, flags);
3233 __wake_up_common(q, mode, nr_exclusive, 0, key);
3234 spin_unlock_irqrestore(&q->lock, flags);
3235}
3236
3237EXPORT_SYMBOL(__wake_up);
3238
3239/*
3240 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3241 */
3242void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3243{
3244 __wake_up_common(q, mode, 1, 0, NULL);
3245}
3246
3247/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003248 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003249 * @q: the waitqueue
3250 * @mode: which threads
3251 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3252 *
3253 * The sync wakeup differs that the waker knows that it will schedule
3254 * away soon, so while the target thread will be woken up, it will not
3255 * be migrated to another CPU - ie. the two threads are 'synchronized'
3256 * with each other. This can prevent needless bouncing between CPUs.
3257 *
3258 * On UP it can prevent extra preemption.
3259 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003260void fastcall
3261__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003262{
3263 unsigned long flags;
3264 int sync = 1;
3265
3266 if (unlikely(!q))
3267 return;
3268
3269 if (unlikely(!nr_exclusive))
3270 sync = 0;
3271
3272 spin_lock_irqsave(&q->lock, flags);
3273 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3274 spin_unlock_irqrestore(&q->lock, flags);
3275}
3276EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3277
3278void fastcall complete(struct completion *x)
3279{
3280 unsigned long flags;
3281
3282 spin_lock_irqsave(&x->wait.lock, flags);
3283 x->done++;
3284 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3285 1, 0, NULL);
3286 spin_unlock_irqrestore(&x->wait.lock, flags);
3287}
3288EXPORT_SYMBOL(complete);
3289
3290void fastcall complete_all(struct completion *x)
3291{
3292 unsigned long flags;
3293
3294 spin_lock_irqsave(&x->wait.lock, flags);
3295 x->done += UINT_MAX/2;
3296 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3297 0, 0, NULL);
3298 spin_unlock_irqrestore(&x->wait.lock, flags);
3299}
3300EXPORT_SYMBOL(complete_all);
3301
3302void fastcall __sched wait_for_completion(struct completion *x)
3303{
3304 might_sleep();
3305 spin_lock_irq(&x->wait.lock);
3306 if (!x->done) {
3307 DECLARE_WAITQUEUE(wait, current);
3308
3309 wait.flags |= WQ_FLAG_EXCLUSIVE;
3310 __add_wait_queue_tail(&x->wait, &wait);
3311 do {
3312 __set_current_state(TASK_UNINTERRUPTIBLE);
3313 spin_unlock_irq(&x->wait.lock);
3314 schedule();
3315 spin_lock_irq(&x->wait.lock);
3316 } while (!x->done);
3317 __remove_wait_queue(&x->wait, &wait);
3318 }
3319 x->done--;
3320 spin_unlock_irq(&x->wait.lock);
3321}
3322EXPORT_SYMBOL(wait_for_completion);
3323
3324unsigned long fastcall __sched
3325wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3326{
3327 might_sleep();
3328
3329 spin_lock_irq(&x->wait.lock);
3330 if (!x->done) {
3331 DECLARE_WAITQUEUE(wait, current);
3332
3333 wait.flags |= WQ_FLAG_EXCLUSIVE;
3334 __add_wait_queue_tail(&x->wait, &wait);
3335 do {
3336 __set_current_state(TASK_UNINTERRUPTIBLE);
3337 spin_unlock_irq(&x->wait.lock);
3338 timeout = schedule_timeout(timeout);
3339 spin_lock_irq(&x->wait.lock);
3340 if (!timeout) {
3341 __remove_wait_queue(&x->wait, &wait);
3342 goto out;
3343 }
3344 } while (!x->done);
3345 __remove_wait_queue(&x->wait, &wait);
3346 }
3347 x->done--;
3348out:
3349 spin_unlock_irq(&x->wait.lock);
3350 return timeout;
3351}
3352EXPORT_SYMBOL(wait_for_completion_timeout);
3353
3354int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3355{
3356 int ret = 0;
3357
3358 might_sleep();
3359
3360 spin_lock_irq(&x->wait.lock);
3361 if (!x->done) {
3362 DECLARE_WAITQUEUE(wait, current);
3363
3364 wait.flags |= WQ_FLAG_EXCLUSIVE;
3365 __add_wait_queue_tail(&x->wait, &wait);
3366 do {
3367 if (signal_pending(current)) {
3368 ret = -ERESTARTSYS;
3369 __remove_wait_queue(&x->wait, &wait);
3370 goto out;
3371 }
3372 __set_current_state(TASK_INTERRUPTIBLE);
3373 spin_unlock_irq(&x->wait.lock);
3374 schedule();
3375 spin_lock_irq(&x->wait.lock);
3376 } while (!x->done);
3377 __remove_wait_queue(&x->wait, &wait);
3378 }
3379 x->done--;
3380out:
3381 spin_unlock_irq(&x->wait.lock);
3382
3383 return ret;
3384}
3385EXPORT_SYMBOL(wait_for_completion_interruptible);
3386
3387unsigned long fastcall __sched
3388wait_for_completion_interruptible_timeout(struct completion *x,
3389 unsigned long timeout)
3390{
3391 might_sleep();
3392
3393 spin_lock_irq(&x->wait.lock);
3394 if (!x->done) {
3395 DECLARE_WAITQUEUE(wait, current);
3396
3397 wait.flags |= WQ_FLAG_EXCLUSIVE;
3398 __add_wait_queue_tail(&x->wait, &wait);
3399 do {
3400 if (signal_pending(current)) {
3401 timeout = -ERESTARTSYS;
3402 __remove_wait_queue(&x->wait, &wait);
3403 goto out;
3404 }
3405 __set_current_state(TASK_INTERRUPTIBLE);
3406 spin_unlock_irq(&x->wait.lock);
3407 timeout = schedule_timeout(timeout);
3408 spin_lock_irq(&x->wait.lock);
3409 if (!timeout) {
3410 __remove_wait_queue(&x->wait, &wait);
3411 goto out;
3412 }
3413 } while (!x->done);
3414 __remove_wait_queue(&x->wait, &wait);
3415 }
3416 x->done--;
3417out:
3418 spin_unlock_irq(&x->wait.lock);
3419 return timeout;
3420}
3421EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3422
3423
3424#define SLEEP_ON_VAR \
3425 unsigned long flags; \
3426 wait_queue_t wait; \
3427 init_waitqueue_entry(&wait, current);
3428
3429#define SLEEP_ON_HEAD \
3430 spin_lock_irqsave(&q->lock,flags); \
3431 __add_wait_queue(q, &wait); \
3432 spin_unlock(&q->lock);
3433
3434#define SLEEP_ON_TAIL \
3435 spin_lock_irq(&q->lock); \
3436 __remove_wait_queue(q, &wait); \
3437 spin_unlock_irqrestore(&q->lock, flags);
3438
3439void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3440{
3441 SLEEP_ON_VAR
3442
3443 current->state = TASK_INTERRUPTIBLE;
3444
3445 SLEEP_ON_HEAD
3446 schedule();
3447 SLEEP_ON_TAIL
3448}
3449
3450EXPORT_SYMBOL(interruptible_sleep_on);
3451
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003452long fastcall __sched
3453interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003454{
3455 SLEEP_ON_VAR
3456
3457 current->state = TASK_INTERRUPTIBLE;
3458
3459 SLEEP_ON_HEAD
3460 timeout = schedule_timeout(timeout);
3461 SLEEP_ON_TAIL
3462
3463 return timeout;
3464}
3465
3466EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3467
3468void fastcall __sched sleep_on(wait_queue_head_t *q)
3469{
3470 SLEEP_ON_VAR
3471
3472 current->state = TASK_UNINTERRUPTIBLE;
3473
3474 SLEEP_ON_HEAD
3475 schedule();
3476 SLEEP_ON_TAIL
3477}
3478
3479EXPORT_SYMBOL(sleep_on);
3480
3481long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3482{
3483 SLEEP_ON_VAR
3484
3485 current->state = TASK_UNINTERRUPTIBLE;
3486
3487 SLEEP_ON_HEAD
3488 timeout = schedule_timeout(timeout);
3489 SLEEP_ON_TAIL
3490
3491 return timeout;
3492}
3493
3494EXPORT_SYMBOL(sleep_on_timeout);
3495
3496void set_user_nice(task_t *p, long nice)
3497{
3498 unsigned long flags;
3499 prio_array_t *array;
3500 runqueue_t *rq;
3501 int old_prio, new_prio, delta;
3502
3503 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3504 return;
3505 /*
3506 * We have to be careful, if called from sys_setpriority(),
3507 * the task might be in the middle of scheduling on another CPU.
3508 */
3509 rq = task_rq_lock(p, &flags);
3510 /*
3511 * The RT priorities are set via sched_setscheduler(), but we still
3512 * allow the 'normal' nice value to be set - but as expected
3513 * it wont have any effect on scheduling until the task is
3514 * not SCHED_NORMAL:
3515 */
3516 if (rt_task(p)) {
3517 p->static_prio = NICE_TO_PRIO(nice);
3518 goto out_unlock;
3519 }
3520 array = p->array;
Con Kolivas738a2cc2005-11-08 21:38:56 -08003521 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003522 dequeue_task(p, array);
Con Kolivas738a2cc2005-11-08 21:38:56 -08003523 dec_prio_bias(rq, p->static_prio);
3524 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525
3526 old_prio = p->prio;
3527 new_prio = NICE_TO_PRIO(nice);
3528 delta = new_prio - old_prio;
3529 p->static_prio = NICE_TO_PRIO(nice);
3530 p->prio += delta;
3531
3532 if (array) {
3533 enqueue_task(p, array);
Con Kolivas738a2cc2005-11-08 21:38:56 -08003534 inc_prio_bias(rq, p->static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 /*
3536 * If the task increased its priority or is running and
3537 * lowered its priority, then reschedule its CPU:
3538 */
3539 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3540 resched_task(rq->curr);
3541 }
3542out_unlock:
3543 task_rq_unlock(rq, &flags);
3544}
3545
3546EXPORT_SYMBOL(set_user_nice);
3547
Matt Mackalle43379f2005-05-01 08:59:00 -07003548/*
3549 * can_nice - check if a task can reduce its nice value
3550 * @p: task
3551 * @nice: nice value
3552 */
3553int can_nice(const task_t *p, const int nice)
3554{
Matt Mackall024f4742005-08-18 11:24:19 -07003555 /* convert nice value [19,-20] to rlimit style value [1,40] */
3556 int nice_rlim = 20 - nice;
Matt Mackalle43379f2005-05-01 08:59:00 -07003557 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3558 capable(CAP_SYS_NICE));
3559}
3560
Linus Torvalds1da177e2005-04-16 15:20:36 -07003561#ifdef __ARCH_WANT_SYS_NICE
3562
3563/*
3564 * sys_nice - change the priority of the current process.
3565 * @increment: priority increment
3566 *
3567 * sys_setpriority is a more generic, but much slower function that
3568 * does similar things.
3569 */
3570asmlinkage long sys_nice(int increment)
3571{
3572 int retval;
3573 long nice;
3574
3575 /*
3576 * Setpriority might change our priority at the same moment.
3577 * We don't have to worry. Conceptually one call occurs first
3578 * and we have a single winner.
3579 */
Matt Mackalle43379f2005-05-01 08:59:00 -07003580 if (increment < -40)
3581 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003582 if (increment > 40)
3583 increment = 40;
3584
3585 nice = PRIO_TO_NICE(current->static_prio) + increment;
3586 if (nice < -20)
3587 nice = -20;
3588 if (nice > 19)
3589 nice = 19;
3590
Matt Mackalle43379f2005-05-01 08:59:00 -07003591 if (increment < 0 && !can_nice(current, nice))
3592 return -EPERM;
3593
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594 retval = security_task_setnice(current, nice);
3595 if (retval)
3596 return retval;
3597
3598 set_user_nice(current, nice);
3599 return 0;
3600}
3601
3602#endif
3603
3604/**
3605 * task_prio - return the priority value of a given task.
3606 * @p: the task in question.
3607 *
3608 * This is the priority value as seen by users in /proc.
3609 * RT tasks are offset by -200. Normal tasks are centered
3610 * around 0, value goes from -16 to +15.
3611 */
3612int task_prio(const task_t *p)
3613{
3614 return p->prio - MAX_RT_PRIO;
3615}
3616
3617/**
3618 * task_nice - return the nice value of a given task.
3619 * @p: the task in question.
3620 */
3621int task_nice(const task_t *p)
3622{
3623 return TASK_NICE(p);
3624}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003625EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003626
3627/**
3628 * idle_cpu - is a given cpu idle currently?
3629 * @cpu: the processor in question.
3630 */
3631int idle_cpu(int cpu)
3632{
3633 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3634}
3635
Linus Torvalds1da177e2005-04-16 15:20:36 -07003636/**
3637 * idle_task - return the idle task for a given cpu.
3638 * @cpu: the processor in question.
3639 */
3640task_t *idle_task(int cpu)
3641{
3642 return cpu_rq(cpu)->idle;
3643}
3644
3645/**
3646 * find_process_by_pid - find a process with a matching PID value.
3647 * @pid: the pid in question.
3648 */
3649static inline task_t *find_process_by_pid(pid_t pid)
3650{
3651 return pid ? find_task_by_pid(pid) : current;
3652}
3653
3654/* Actually do priority change: must hold rq lock. */
3655static void __setscheduler(struct task_struct *p, int policy, int prio)
3656{
3657 BUG_ON(p->array);
3658 p->policy = policy;
3659 p->rt_priority = prio;
3660 if (policy != SCHED_NORMAL)
Steven Rostedtd46523e2005-07-25 16:28:39 -04003661 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003662 else
3663 p->prio = p->static_prio;
3664}
3665
3666/**
3667 * sched_setscheduler - change the scheduling policy and/or RT priority of
3668 * a thread.
3669 * @p: the task in question.
3670 * @policy: new policy.
3671 * @param: structure containing the new RT priority.
3672 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003673int sched_setscheduler(struct task_struct *p, int policy,
3674 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675{
3676 int retval;
3677 int oldprio, oldpolicy = -1;
3678 prio_array_t *array;
3679 unsigned long flags;
3680 runqueue_t *rq;
3681
3682recheck:
3683 /* double check policy once rq lock held */
3684 if (policy < 0)
3685 policy = oldpolicy = p->policy;
3686 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3687 policy != SCHED_NORMAL)
3688 return -EINVAL;
3689 /*
3690 * Valid priorities for SCHED_FIFO and SCHED_RR are
3691 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3692 */
3693 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003694 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04003695 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003696 return -EINVAL;
3697 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3698 return -EINVAL;
3699
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003700 /*
3701 * Allow unprivileged RT tasks to decrease priority:
3702 */
3703 if (!capable(CAP_SYS_NICE)) {
3704 /* can't change policy */
Andreas Steinmetz18586e72005-07-23 13:42:04 +02003705 if (policy != p->policy &&
3706 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003707 return -EPERM;
3708 /* can't increase priority */
3709 if (policy != SCHED_NORMAL &&
3710 param->sched_priority > p->rt_priority &&
3711 param->sched_priority >
3712 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3713 return -EPERM;
3714 /* can't change other user's priorities */
3715 if ((current->euid != p->euid) &&
3716 (current->euid != p->uid))
3717 return -EPERM;
3718 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003719
3720 retval = security_task_setscheduler(p, policy, param);
3721 if (retval)
3722 return retval;
3723 /*
3724 * To be able to change p->policy safely, the apropriate
3725 * runqueue lock must be held.
3726 */
3727 rq = task_rq_lock(p, &flags);
3728 /* recheck policy now with rq lock held */
3729 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3730 policy = oldpolicy = -1;
3731 task_rq_unlock(rq, &flags);
3732 goto recheck;
3733 }
3734 array = p->array;
3735 if (array)
3736 deactivate_task(p, rq);
3737 oldprio = p->prio;
3738 __setscheduler(p, policy, param->sched_priority);
3739 if (array) {
3740 __activate_task(p, rq);
3741 /*
3742 * Reschedule if we are currently running on this runqueue and
3743 * our priority decreased, or if we are not currently running on
3744 * this runqueue and our priority is higher than the current's
3745 */
3746 if (task_running(rq, p)) {
3747 if (p->prio > oldprio)
3748 resched_task(rq->curr);
3749 } else if (TASK_PREEMPTS_CURR(p, rq))
3750 resched_task(rq->curr);
3751 }
3752 task_rq_unlock(rq, &flags);
3753 return 0;
3754}
3755EXPORT_SYMBOL_GPL(sched_setscheduler);
3756
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003757static int
3758do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003759{
3760 int retval;
3761 struct sched_param lparam;
3762 struct task_struct *p;
3763
3764 if (!param || pid < 0)
3765 return -EINVAL;
3766 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3767 return -EFAULT;
3768 read_lock_irq(&tasklist_lock);
3769 p = find_process_by_pid(pid);
3770 if (!p) {
3771 read_unlock_irq(&tasklist_lock);
3772 return -ESRCH;
3773 }
3774 retval = sched_setscheduler(p, policy, &lparam);
3775 read_unlock_irq(&tasklist_lock);
3776 return retval;
3777}
3778
3779/**
3780 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3781 * @pid: the pid in question.
3782 * @policy: new policy.
3783 * @param: structure containing the new RT priority.
3784 */
3785asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3786 struct sched_param __user *param)
3787{
3788 return do_sched_setscheduler(pid, policy, param);
3789}
3790
3791/**
3792 * sys_sched_setparam - set/change the RT priority of a thread
3793 * @pid: the pid in question.
3794 * @param: structure containing the new RT priority.
3795 */
3796asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3797{
3798 return do_sched_setscheduler(pid, -1, param);
3799}
3800
3801/**
3802 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3803 * @pid: the pid in question.
3804 */
3805asmlinkage long sys_sched_getscheduler(pid_t pid)
3806{
3807 int retval = -EINVAL;
3808 task_t *p;
3809
3810 if (pid < 0)
3811 goto out_nounlock;
3812
3813 retval = -ESRCH;
3814 read_lock(&tasklist_lock);
3815 p = find_process_by_pid(pid);
3816 if (p) {
3817 retval = security_task_getscheduler(p);
3818 if (!retval)
3819 retval = p->policy;
3820 }
3821 read_unlock(&tasklist_lock);
3822
3823out_nounlock:
3824 return retval;
3825}
3826
3827/**
3828 * sys_sched_getscheduler - get the RT priority of a thread
3829 * @pid: the pid in question.
3830 * @param: structure containing the RT priority.
3831 */
3832asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3833{
3834 struct sched_param lp;
3835 int retval = -EINVAL;
3836 task_t *p;
3837
3838 if (!param || pid < 0)
3839 goto out_nounlock;
3840
3841 read_lock(&tasklist_lock);
3842 p = find_process_by_pid(pid);
3843 retval = -ESRCH;
3844 if (!p)
3845 goto out_unlock;
3846
3847 retval = security_task_getscheduler(p);
3848 if (retval)
3849 goto out_unlock;
3850
3851 lp.sched_priority = p->rt_priority;
3852 read_unlock(&tasklist_lock);
3853
3854 /*
3855 * This one might sleep, we cannot do it with a spinlock held ...
3856 */
3857 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3858
3859out_nounlock:
3860 return retval;
3861
3862out_unlock:
3863 read_unlock(&tasklist_lock);
3864 return retval;
3865}
3866
3867long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3868{
3869 task_t *p;
3870 int retval;
3871 cpumask_t cpus_allowed;
3872
3873 lock_cpu_hotplug();
3874 read_lock(&tasklist_lock);
3875
3876 p = find_process_by_pid(pid);
3877 if (!p) {
3878 read_unlock(&tasklist_lock);
3879 unlock_cpu_hotplug();
3880 return -ESRCH;
3881 }
3882
3883 /*
3884 * It is not safe to call set_cpus_allowed with the
3885 * tasklist_lock held. We will bump the task_struct's
3886 * usage count and then drop tasklist_lock.
3887 */
3888 get_task_struct(p);
3889 read_unlock(&tasklist_lock);
3890
3891 retval = -EPERM;
3892 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3893 !capable(CAP_SYS_NICE))
3894 goto out_unlock;
3895
3896 cpus_allowed = cpuset_cpus_allowed(p);
3897 cpus_and(new_mask, new_mask, cpus_allowed);
3898 retval = set_cpus_allowed(p, new_mask);
3899
3900out_unlock:
3901 put_task_struct(p);
3902 unlock_cpu_hotplug();
3903 return retval;
3904}
3905
3906static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3907 cpumask_t *new_mask)
3908{
3909 if (len < sizeof(cpumask_t)) {
3910 memset(new_mask, 0, sizeof(cpumask_t));
3911 } else if (len > sizeof(cpumask_t)) {
3912 len = sizeof(cpumask_t);
3913 }
3914 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3915}
3916
3917/**
3918 * sys_sched_setaffinity - set the cpu affinity of a process
3919 * @pid: pid of the process
3920 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3921 * @user_mask_ptr: user-space pointer to the new cpu mask
3922 */
3923asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3924 unsigned long __user *user_mask_ptr)
3925{
3926 cpumask_t new_mask;
3927 int retval;
3928
3929 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3930 if (retval)
3931 return retval;
3932
3933 return sched_setaffinity(pid, new_mask);
3934}
3935
3936/*
3937 * Represents all cpu's present in the system
3938 * In systems capable of hotplug, this map could dynamically grow
3939 * as new cpu's are detected in the system via any platform specific
3940 * method, such as ACPI for e.g.
3941 */
3942
3943cpumask_t cpu_present_map;
3944EXPORT_SYMBOL(cpu_present_map);
3945
3946#ifndef CONFIG_SMP
3947cpumask_t cpu_online_map = CPU_MASK_ALL;
3948cpumask_t cpu_possible_map = CPU_MASK_ALL;
3949#endif
3950
3951long sched_getaffinity(pid_t pid, cpumask_t *mask)
3952{
3953 int retval;
3954 task_t *p;
3955
3956 lock_cpu_hotplug();
3957 read_lock(&tasklist_lock);
3958
3959 retval = -ESRCH;
3960 p = find_process_by_pid(pid);
3961 if (!p)
3962 goto out_unlock;
3963
3964 retval = 0;
3965 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3966
3967out_unlock:
3968 read_unlock(&tasklist_lock);
3969 unlock_cpu_hotplug();
3970 if (retval)
3971 return retval;
3972
3973 return 0;
3974}
3975
3976/**
3977 * sys_sched_getaffinity - get the cpu affinity of a process
3978 * @pid: pid of the process
3979 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3980 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3981 */
3982asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3983 unsigned long __user *user_mask_ptr)
3984{
3985 int ret;
3986 cpumask_t mask;
3987
3988 if (len < sizeof(cpumask_t))
3989 return -EINVAL;
3990
3991 ret = sched_getaffinity(pid, &mask);
3992 if (ret < 0)
3993 return ret;
3994
3995 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3996 return -EFAULT;
3997
3998 return sizeof(cpumask_t);
3999}
4000
4001/**
4002 * sys_sched_yield - yield the current processor to other threads.
4003 *
4004 * this function yields the current CPU by moving the calling thread
4005 * to the expired array. If there are no other threads running on this
4006 * CPU then this function will return.
4007 */
4008asmlinkage long sys_sched_yield(void)
4009{
4010 runqueue_t *rq = this_rq_lock();
4011 prio_array_t *array = current->array;
4012 prio_array_t *target = rq->expired;
4013
4014 schedstat_inc(rq, yld_cnt);
4015 /*
4016 * We implement yielding by moving the task into the expired
4017 * queue.
4018 *
4019 * (special rule: RT tasks will just roundrobin in the active
4020 * array.)
4021 */
4022 if (rt_task(current))
4023 target = rq->active;
4024
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004025 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004026 schedstat_inc(rq, yld_act_empty);
4027 if (!rq->expired->nr_active)
4028 schedstat_inc(rq, yld_both_empty);
4029 } else if (!rq->expired->nr_active)
4030 schedstat_inc(rq, yld_exp_empty);
4031
4032 if (array != target) {
4033 dequeue_task(current, array);
4034 enqueue_task(current, target);
4035 } else
4036 /*
4037 * requeue_task is cheaper so perform that if possible.
4038 */
4039 requeue_task(current, array);
4040
4041 /*
4042 * Since we are going to call schedule() anyway, there's
4043 * no need to preempt or enable interrupts:
4044 */
4045 __release(rq->lock);
4046 _raw_spin_unlock(&rq->lock);
4047 preempt_enable_no_resched();
4048
4049 schedule();
4050
4051 return 0;
4052}
4053
4054static inline void __cond_resched(void)
4055{
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004056 /*
4057 * The BKS might be reacquired before we have dropped
4058 * PREEMPT_ACTIVE, which could trigger a second
4059 * cond_resched() call.
4060 */
4061 if (unlikely(preempt_count()))
4062 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004063 do {
4064 add_preempt_count(PREEMPT_ACTIVE);
4065 schedule();
4066 sub_preempt_count(PREEMPT_ACTIVE);
4067 } while (need_resched());
4068}
4069
4070int __sched cond_resched(void)
4071{
4072 if (need_resched()) {
4073 __cond_resched();
4074 return 1;
4075 }
4076 return 0;
4077}
4078
4079EXPORT_SYMBOL(cond_resched);
4080
4081/*
4082 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4083 * call schedule, and on return reacquire the lock.
4084 *
4085 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4086 * operations here to prevent schedule() from being called twice (once via
4087 * spin_unlock(), once by hand).
4088 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004089int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004090{
Jan Kara6df3cec2005-06-13 15:52:32 -07004091 int ret = 0;
4092
Linus Torvalds1da177e2005-04-16 15:20:36 -07004093 if (need_lockbreak(lock)) {
4094 spin_unlock(lock);
4095 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004096 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004097 spin_lock(lock);
4098 }
4099 if (need_resched()) {
4100 _raw_spin_unlock(lock);
4101 preempt_enable_no_resched();
4102 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004103 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004104 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004105 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004106 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004107}
4108
4109EXPORT_SYMBOL(cond_resched_lock);
4110
4111int __sched cond_resched_softirq(void)
4112{
4113 BUG_ON(!in_softirq());
4114
4115 if (need_resched()) {
4116 __local_bh_enable();
4117 __cond_resched();
4118 local_bh_disable();
4119 return 1;
4120 }
4121 return 0;
4122}
4123
4124EXPORT_SYMBOL(cond_resched_softirq);
4125
4126
4127/**
4128 * yield - yield the current processor to other threads.
4129 *
4130 * this is a shortcut for kernel-space yielding - it marks the
4131 * thread runnable and calls sys_sched_yield().
4132 */
4133void __sched yield(void)
4134{
4135 set_current_state(TASK_RUNNING);
4136 sys_sched_yield();
4137}
4138
4139EXPORT_SYMBOL(yield);
4140
4141/*
4142 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4143 * that process accounting knows that this is a task in IO wait state.
4144 *
4145 * But don't do that if it is a deliberate, throttling IO wait (this task
4146 * has set its backing_dev_info: the queue against which it should throttle)
4147 */
4148void __sched io_schedule(void)
4149{
Ingo Molnar39c715b2005-06-21 17:14:34 -07004150 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004151
4152 atomic_inc(&rq->nr_iowait);
4153 schedule();
4154 atomic_dec(&rq->nr_iowait);
4155}
4156
4157EXPORT_SYMBOL(io_schedule);
4158
4159long __sched io_schedule_timeout(long timeout)
4160{
Ingo Molnar39c715b2005-06-21 17:14:34 -07004161 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004162 long ret;
4163
4164 atomic_inc(&rq->nr_iowait);
4165 ret = schedule_timeout(timeout);
4166 atomic_dec(&rq->nr_iowait);
4167 return ret;
4168}
4169
4170/**
4171 * sys_sched_get_priority_max - return maximum RT priority.
4172 * @policy: scheduling class.
4173 *
4174 * this syscall returns the maximum rt_priority that can be used
4175 * by a given scheduling class.
4176 */
4177asmlinkage long sys_sched_get_priority_max(int policy)
4178{
4179 int ret = -EINVAL;
4180
4181 switch (policy) {
4182 case SCHED_FIFO:
4183 case SCHED_RR:
4184 ret = MAX_USER_RT_PRIO-1;
4185 break;
4186 case SCHED_NORMAL:
4187 ret = 0;
4188 break;
4189 }
4190 return ret;
4191}
4192
4193/**
4194 * sys_sched_get_priority_min - return minimum RT priority.
4195 * @policy: scheduling class.
4196 *
4197 * this syscall returns the minimum rt_priority that can be used
4198 * by a given scheduling class.
4199 */
4200asmlinkage long sys_sched_get_priority_min(int policy)
4201{
4202 int ret = -EINVAL;
4203
4204 switch (policy) {
4205 case SCHED_FIFO:
4206 case SCHED_RR:
4207 ret = 1;
4208 break;
4209 case SCHED_NORMAL:
4210 ret = 0;
4211 }
4212 return ret;
4213}
4214
4215/**
4216 * sys_sched_rr_get_interval - return the default timeslice of a process.
4217 * @pid: pid of the process.
4218 * @interval: userspace pointer to the timeslice value.
4219 *
4220 * this syscall writes the default timeslice value of a given process
4221 * into the user-space timespec buffer. A value of '0' means infinity.
4222 */
4223asmlinkage
4224long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4225{
4226 int retval = -EINVAL;
4227 struct timespec t;
4228 task_t *p;
4229
4230 if (pid < 0)
4231 goto out_nounlock;
4232
4233 retval = -ESRCH;
4234 read_lock(&tasklist_lock);
4235 p = find_process_by_pid(pid);
4236 if (!p)
4237 goto out_unlock;
4238
4239 retval = security_task_getscheduler(p);
4240 if (retval)
4241 goto out_unlock;
4242
4243 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4244 0 : task_timeslice(p), &t);
4245 read_unlock(&tasklist_lock);
4246 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4247out_nounlock:
4248 return retval;
4249out_unlock:
4250 read_unlock(&tasklist_lock);
4251 return retval;
4252}
4253
4254static inline struct task_struct *eldest_child(struct task_struct *p)
4255{
4256 if (list_empty(&p->children)) return NULL;
4257 return list_entry(p->children.next,struct task_struct,sibling);
4258}
4259
4260static inline struct task_struct *older_sibling(struct task_struct *p)
4261{
4262 if (p->sibling.prev==&p->parent->children) return NULL;
4263 return list_entry(p->sibling.prev,struct task_struct,sibling);
4264}
4265
4266static inline struct task_struct *younger_sibling(struct task_struct *p)
4267{
4268 if (p->sibling.next==&p->parent->children) return NULL;
4269 return list_entry(p->sibling.next,struct task_struct,sibling);
4270}
4271
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004272static void show_task(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004273{
4274 task_t *relative;
4275 unsigned state;
4276 unsigned long free = 0;
4277 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4278
4279 printk("%-13.13s ", p->comm);
4280 state = p->state ? __ffs(p->state) + 1 : 0;
4281 if (state < ARRAY_SIZE(stat_nam))
4282 printk(stat_nam[state]);
4283 else
4284 printk("?");
4285#if (BITS_PER_LONG == 32)
4286 if (state == TASK_RUNNING)
4287 printk(" running ");
4288 else
4289 printk(" %08lX ", thread_saved_pc(p));
4290#else
4291 if (state == TASK_RUNNING)
4292 printk(" running task ");
4293 else
4294 printk(" %016lx ", thread_saved_pc(p));
4295#endif
4296#ifdef CONFIG_DEBUG_STACK_USAGE
4297 {
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004298 unsigned long *n = (unsigned long *) (p->thread_info+1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004299 while (!*n)
4300 n++;
4301 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4302 }
4303#endif
4304 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4305 if ((relative = eldest_child(p)))
4306 printk("%5d ", relative->pid);
4307 else
4308 printk(" ");
4309 if ((relative = younger_sibling(p)))
4310 printk("%7d", relative->pid);
4311 else
4312 printk(" ");
4313 if ((relative = older_sibling(p)))
4314 printk(" %5d", relative->pid);
4315 else
4316 printk(" ");
4317 if (!p->mm)
4318 printk(" (L-TLB)\n");
4319 else
4320 printk(" (NOTLB)\n");
4321
4322 if (state != TASK_RUNNING)
4323 show_stack(p, NULL);
4324}
4325
4326void show_state(void)
4327{
4328 task_t *g, *p;
4329
4330#if (BITS_PER_LONG == 32)
4331 printk("\n"
4332 " sibling\n");
4333 printk(" task PC pid father child younger older\n");
4334#else
4335 printk("\n"
4336 " sibling\n");
4337 printk(" task PC pid father child younger older\n");
4338#endif
4339 read_lock(&tasklist_lock);
4340 do_each_thread(g, p) {
4341 /*
4342 * reset the NMI-timeout, listing all files on a slow
4343 * console might take alot of time:
4344 */
4345 touch_nmi_watchdog();
4346 show_task(p);
4347 } while_each_thread(g, p);
4348
4349 read_unlock(&tasklist_lock);
4350}
4351
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004352/**
4353 * init_idle - set up an idle thread for a given CPU
4354 * @idle: task in question
4355 * @cpu: cpu the idle task belongs to
4356 *
4357 * NOTE: this function does not set the idle thread's NEED_RESCHED
4358 * flag, to make booting more robust.
4359 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004360void __devinit init_idle(task_t *idle, int cpu)
4361{
4362 runqueue_t *rq = cpu_rq(cpu);
4363 unsigned long flags;
4364
4365 idle->sleep_avg = 0;
4366 idle->array = NULL;
4367 idle->prio = MAX_PRIO;
4368 idle->state = TASK_RUNNING;
4369 idle->cpus_allowed = cpumask_of_cpu(cpu);
4370 set_task_cpu(idle, cpu);
4371
4372 spin_lock_irqsave(&rq->lock, flags);
4373 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004374#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4375 idle->oncpu = 1;
4376#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004377 spin_unlock_irqrestore(&rq->lock, flags);
4378
4379 /* Set the preempt count _outside_ the spinlocks! */
4380#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4381 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4382#else
4383 idle->thread_info->preempt_count = 0;
4384#endif
4385}
4386
4387/*
4388 * In a system that switches off the HZ timer nohz_cpu_mask
4389 * indicates which cpus entered this state. This is used
4390 * in the rcu update to wait only for active cpus. For system
4391 * which do not switch off the HZ timer nohz_cpu_mask should
4392 * always be CPU_MASK_NONE.
4393 */
4394cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4395
4396#ifdef CONFIG_SMP
4397/*
4398 * This is how migration works:
4399 *
4400 * 1) we queue a migration_req_t structure in the source CPU's
4401 * runqueue and wake up that CPU's migration thread.
4402 * 2) we down() the locked semaphore => thread blocks.
4403 * 3) migration thread wakes up (implicitly it forces the migrated
4404 * thread off the CPU)
4405 * 4) it gets the migration request and checks whether the migrated
4406 * task is still in the wrong runqueue.
4407 * 5) if it's in the wrong runqueue then the migration thread removes
4408 * it and puts it into the right queue.
4409 * 6) migration thread up()s the semaphore.
4410 * 7) we wake up and the migration is done.
4411 */
4412
4413/*
4414 * Change a given task's CPU affinity. Migrate the thread to a
4415 * proper CPU and schedule it away if the CPU it's executing on
4416 * is removed from the allowed bitmask.
4417 *
4418 * NOTE: the caller must have a valid reference to the task, the
4419 * task must not exit() & deallocate itself prematurely. The
4420 * call is not atomic; no spinlocks may be held.
4421 */
4422int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4423{
4424 unsigned long flags;
4425 int ret = 0;
4426 migration_req_t req;
4427 runqueue_t *rq;
4428
4429 rq = task_rq_lock(p, &flags);
4430 if (!cpus_intersects(new_mask, cpu_online_map)) {
4431 ret = -EINVAL;
4432 goto out;
4433 }
4434
4435 p->cpus_allowed = new_mask;
4436 /* Can the task run on the task's current CPU? If so, we're done */
4437 if (cpu_isset(task_cpu(p), new_mask))
4438 goto out;
4439
4440 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4441 /* Need help from migration thread: drop lock and wait. */
4442 task_rq_unlock(rq, &flags);
4443 wake_up_process(rq->migration_thread);
4444 wait_for_completion(&req.done);
4445 tlb_migrate_finish(p->mm);
4446 return 0;
4447 }
4448out:
4449 task_rq_unlock(rq, &flags);
4450 return ret;
4451}
4452
4453EXPORT_SYMBOL_GPL(set_cpus_allowed);
4454
4455/*
4456 * Move (not current) task off this cpu, onto dest cpu. We're doing
4457 * this because either it can't run here any more (set_cpus_allowed()
4458 * away from this CPU, or CPU going down), or because we're
4459 * attempting to rebalance this task on exec (sched_exec).
4460 *
4461 * So we race with normal scheduler movements, but that's OK, as long
4462 * as the task is no longer on this CPU.
4463 */
4464static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4465{
4466 runqueue_t *rq_dest, *rq_src;
4467
4468 if (unlikely(cpu_is_offline(dest_cpu)))
4469 return;
4470
4471 rq_src = cpu_rq(src_cpu);
4472 rq_dest = cpu_rq(dest_cpu);
4473
4474 double_rq_lock(rq_src, rq_dest);
4475 /* Already moved. */
4476 if (task_cpu(p) != src_cpu)
4477 goto out;
4478 /* Affinity changed (again). */
4479 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4480 goto out;
4481
4482 set_task_cpu(p, dest_cpu);
4483 if (p->array) {
4484 /*
4485 * Sync timestamp with rq_dest's before activating.
4486 * The same thing could be achieved by doing this step
4487 * afterwards, and pretending it was a local activate.
4488 * This way is cleaner and logically correct.
4489 */
4490 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4491 + rq_dest->timestamp_last_tick;
4492 deactivate_task(p, rq_src);
4493 activate_task(p, rq_dest, 0);
4494 if (TASK_PREEMPTS_CURR(p, rq_dest))
4495 resched_task(rq_dest->curr);
4496 }
4497
4498out:
4499 double_rq_unlock(rq_src, rq_dest);
4500}
4501
4502/*
4503 * migration_thread - this is a highprio system thread that performs
4504 * thread migration by bumping thread off CPU then 'pushing' onto
4505 * another runqueue.
4506 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004507static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004508{
4509 runqueue_t *rq;
4510 int cpu = (long)data;
4511
4512 rq = cpu_rq(cpu);
4513 BUG_ON(rq->migration_thread != current);
4514
4515 set_current_state(TASK_INTERRUPTIBLE);
4516 while (!kthread_should_stop()) {
4517 struct list_head *head;
4518 migration_req_t *req;
4519
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07004520 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004521
4522 spin_lock_irq(&rq->lock);
4523
4524 if (cpu_is_offline(cpu)) {
4525 spin_unlock_irq(&rq->lock);
4526 goto wait_to_die;
4527 }
4528
4529 if (rq->active_balance) {
4530 active_load_balance(rq, cpu);
4531 rq->active_balance = 0;
4532 }
4533
4534 head = &rq->migration_queue;
4535
4536 if (list_empty(head)) {
4537 spin_unlock_irq(&rq->lock);
4538 schedule();
4539 set_current_state(TASK_INTERRUPTIBLE);
4540 continue;
4541 }
4542 req = list_entry(head->next, migration_req_t, list);
4543 list_del_init(head->next);
4544
Nick Piggin674311d2005-06-25 14:57:27 -07004545 spin_unlock(&rq->lock);
4546 __migrate_task(req->task, cpu, req->dest_cpu);
4547 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004548
4549 complete(&req->done);
4550 }
4551 __set_current_state(TASK_RUNNING);
4552 return 0;
4553
4554wait_to_die:
4555 /* Wait for kthread_stop */
4556 set_current_state(TASK_INTERRUPTIBLE);
4557 while (!kthread_should_stop()) {
4558 schedule();
4559 set_current_state(TASK_INTERRUPTIBLE);
4560 }
4561 __set_current_state(TASK_RUNNING);
4562 return 0;
4563}
4564
4565#ifdef CONFIG_HOTPLUG_CPU
4566/* Figure out where task on dead CPU should go, use force if neccessary. */
4567static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4568{
4569 int dest_cpu;
4570 cpumask_t mask;
4571
4572 /* On same node? */
4573 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4574 cpus_and(mask, mask, tsk->cpus_allowed);
4575 dest_cpu = any_online_cpu(mask);
4576
4577 /* On any allowed CPU? */
4578 if (dest_cpu == NR_CPUS)
4579 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4580
4581 /* No more Mr. Nice Guy. */
4582 if (dest_cpu == NR_CPUS) {
Paul Jacksonb39c4fa2005-05-20 13:59:15 -07004583 cpus_setall(tsk->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004584 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4585
4586 /*
4587 * Don't tell them about moving exiting tasks or
4588 * kernel threads (both mm NULL), since they never
4589 * leave kernel.
4590 */
4591 if (tsk->mm && printk_ratelimit())
4592 printk(KERN_INFO "process %d (%s) no "
4593 "longer affine to cpu%d\n",
4594 tsk->pid, tsk->comm, dead_cpu);
4595 }
4596 __migrate_task(tsk, dead_cpu, dest_cpu);
4597}
4598
4599/*
4600 * While a dead CPU has no uninterruptible tasks queued at this point,
4601 * it might still have a nonzero ->nr_uninterruptible counter, because
4602 * for performance reasons the counter is not stricly tracking tasks to
4603 * their home CPUs. So we just add the counter to another CPU's counter,
4604 * to keep the global sum constant after CPU-down:
4605 */
4606static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4607{
4608 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4609 unsigned long flags;
4610
4611 local_irq_save(flags);
4612 double_rq_lock(rq_src, rq_dest);
4613 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4614 rq_src->nr_uninterruptible = 0;
4615 double_rq_unlock(rq_src, rq_dest);
4616 local_irq_restore(flags);
4617}
4618
4619/* Run through task list and migrate tasks from the dead cpu. */
4620static void migrate_live_tasks(int src_cpu)
4621{
4622 struct task_struct *tsk, *t;
4623
4624 write_lock_irq(&tasklist_lock);
4625
4626 do_each_thread(t, tsk) {
4627 if (tsk == current)
4628 continue;
4629
4630 if (task_cpu(tsk) == src_cpu)
4631 move_task_off_dead_cpu(src_cpu, tsk);
4632 } while_each_thread(t, tsk);
4633
4634 write_unlock_irq(&tasklist_lock);
4635}
4636
4637/* Schedules idle task to be the next runnable task on current CPU.
4638 * It does so by boosting its priority to highest possible and adding it to
4639 * the _front_ of runqueue. Used by CPU offline code.
4640 */
4641void sched_idle_next(void)
4642{
4643 int cpu = smp_processor_id();
4644 runqueue_t *rq = this_rq();
4645 struct task_struct *p = rq->idle;
4646 unsigned long flags;
4647
4648 /* cpu has to be offline */
4649 BUG_ON(cpu_online(cpu));
4650
4651 /* Strictly not necessary since rest of the CPUs are stopped by now
4652 * and interrupts disabled on current cpu.
4653 */
4654 spin_lock_irqsave(&rq->lock, flags);
4655
4656 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4657 /* Add idle task to _front_ of it's priority queue */
4658 __activate_idle_task(p, rq);
4659
4660 spin_unlock_irqrestore(&rq->lock, flags);
4661}
4662
4663/* Ensures that the idle task is using init_mm right before its cpu goes
4664 * offline.
4665 */
4666void idle_task_exit(void)
4667{
4668 struct mm_struct *mm = current->active_mm;
4669
4670 BUG_ON(cpu_online(smp_processor_id()));
4671
4672 if (mm != &init_mm)
4673 switch_mm(mm, &init_mm, current);
4674 mmdrop(mm);
4675}
4676
4677static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4678{
4679 struct runqueue *rq = cpu_rq(dead_cpu);
4680
4681 /* Must be exiting, otherwise would be on tasklist. */
4682 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4683
4684 /* Cannot have done final schedule yet: would have vanished. */
4685 BUG_ON(tsk->flags & PF_DEAD);
4686
4687 get_task_struct(tsk);
4688
4689 /*
4690 * Drop lock around migration; if someone else moves it,
4691 * that's OK. No task can be added to this CPU, so iteration is
4692 * fine.
4693 */
4694 spin_unlock_irq(&rq->lock);
4695 move_task_off_dead_cpu(dead_cpu, tsk);
4696 spin_lock_irq(&rq->lock);
4697
4698 put_task_struct(tsk);
4699}
4700
4701/* release_task() removes task from tasklist, so we won't find dead tasks. */
4702static void migrate_dead_tasks(unsigned int dead_cpu)
4703{
4704 unsigned arr, i;
4705 struct runqueue *rq = cpu_rq(dead_cpu);
4706
4707 for (arr = 0; arr < 2; arr++) {
4708 for (i = 0; i < MAX_PRIO; i++) {
4709 struct list_head *list = &rq->arrays[arr].queue[i];
4710 while (!list_empty(list))
4711 migrate_dead(dead_cpu,
4712 list_entry(list->next, task_t,
4713 run_list));
4714 }
4715 }
4716}
4717#endif /* CONFIG_HOTPLUG_CPU */
4718
4719/*
4720 * migration_call - callback that gets triggered when a CPU is added.
4721 * Here we can start up the necessary migration thread for the new CPU.
4722 */
4723static int migration_call(struct notifier_block *nfb, unsigned long action,
4724 void *hcpu)
4725{
4726 int cpu = (long)hcpu;
4727 struct task_struct *p;
4728 struct runqueue *rq;
4729 unsigned long flags;
4730
4731 switch (action) {
4732 case CPU_UP_PREPARE:
4733 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4734 if (IS_ERR(p))
4735 return NOTIFY_BAD;
4736 p->flags |= PF_NOFREEZE;
4737 kthread_bind(p, cpu);
4738 /* Must be high prio: stop_machine expects to yield to it. */
4739 rq = task_rq_lock(p, &flags);
4740 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4741 task_rq_unlock(rq, &flags);
4742 cpu_rq(cpu)->migration_thread = p;
4743 break;
4744 case CPU_ONLINE:
4745 /* Strictly unneccessary, as first user will wake it. */
4746 wake_up_process(cpu_rq(cpu)->migration_thread);
4747 break;
4748#ifdef CONFIG_HOTPLUG_CPU
4749 case CPU_UP_CANCELED:
4750 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08004751 kthread_bind(cpu_rq(cpu)->migration_thread,
4752 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004753 kthread_stop(cpu_rq(cpu)->migration_thread);
4754 cpu_rq(cpu)->migration_thread = NULL;
4755 break;
4756 case CPU_DEAD:
4757 migrate_live_tasks(cpu);
4758 rq = cpu_rq(cpu);
4759 kthread_stop(rq->migration_thread);
4760 rq->migration_thread = NULL;
4761 /* Idle task back to normal (off runqueue, low prio) */
4762 rq = task_rq_lock(rq->idle, &flags);
4763 deactivate_task(rq->idle, rq);
4764 rq->idle->static_prio = MAX_PRIO;
4765 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4766 migrate_dead_tasks(cpu);
4767 task_rq_unlock(rq, &flags);
4768 migrate_nr_uninterruptible(rq);
4769 BUG_ON(rq->nr_running != 0);
4770
4771 /* No need to migrate the tasks: it was best-effort if
4772 * they didn't do lock_cpu_hotplug(). Just wake up
4773 * the requestors. */
4774 spin_lock_irq(&rq->lock);
4775 while (!list_empty(&rq->migration_queue)) {
4776 migration_req_t *req;
4777 req = list_entry(rq->migration_queue.next,
4778 migration_req_t, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004779 list_del_init(&req->list);
4780 complete(&req->done);
4781 }
4782 spin_unlock_irq(&rq->lock);
4783 break;
4784#endif
4785 }
4786 return NOTIFY_OK;
4787}
4788
4789/* Register at highest priority so that task migration (migrate_all_tasks)
4790 * happens before everything else.
4791 */
4792static struct notifier_block __devinitdata migration_notifier = {
4793 .notifier_call = migration_call,
4794 .priority = 10
4795};
4796
4797int __init migration_init(void)
4798{
4799 void *cpu = (void *)(long)smp_processor_id();
4800 /* Start one for boot CPU. */
4801 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4802 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4803 register_cpu_notifier(&migration_notifier);
4804 return 0;
4805}
4806#endif
4807
4808#ifdef CONFIG_SMP
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004809#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07004810#ifdef SCHED_DOMAIN_DEBUG
4811static void sched_domain_debug(struct sched_domain *sd, int cpu)
4812{
4813 int level = 0;
4814
Nick Piggin41c7ce92005-06-25 14:57:24 -07004815 if (!sd) {
4816 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4817 return;
4818 }
4819
Linus Torvalds1da177e2005-04-16 15:20:36 -07004820 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4821
4822 do {
4823 int i;
4824 char str[NR_CPUS];
4825 struct sched_group *group = sd->groups;
4826 cpumask_t groupmask;
4827
4828 cpumask_scnprintf(str, NR_CPUS, sd->span);
4829 cpus_clear(groupmask);
4830
4831 printk(KERN_DEBUG);
4832 for (i = 0; i < level + 1; i++)
4833 printk(" ");
4834 printk("domain %d: ", level);
4835
4836 if (!(sd->flags & SD_LOAD_BALANCE)) {
4837 printk("does not load-balance\n");
4838 if (sd->parent)
4839 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4840 break;
4841 }
4842
4843 printk("span %s\n", str);
4844
4845 if (!cpu_isset(cpu, sd->span))
4846 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4847 if (!cpu_isset(cpu, group->cpumask))
4848 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4849
4850 printk(KERN_DEBUG);
4851 for (i = 0; i < level + 2; i++)
4852 printk(" ");
4853 printk("groups:");
4854 do {
4855 if (!group) {
4856 printk("\n");
4857 printk(KERN_ERR "ERROR: group is NULL\n");
4858 break;
4859 }
4860
4861 if (!group->cpu_power) {
4862 printk("\n");
4863 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4864 }
4865
4866 if (!cpus_weight(group->cpumask)) {
4867 printk("\n");
4868 printk(KERN_ERR "ERROR: empty group\n");
4869 }
4870
4871 if (cpus_intersects(groupmask, group->cpumask)) {
4872 printk("\n");
4873 printk(KERN_ERR "ERROR: repeated CPUs\n");
4874 }
4875
4876 cpus_or(groupmask, groupmask, group->cpumask);
4877
4878 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4879 printk(" %s", str);
4880
4881 group = group->next;
4882 } while (group != sd->groups);
4883 printk("\n");
4884
4885 if (!cpus_equal(sd->span, groupmask))
4886 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4887
4888 level++;
4889 sd = sd->parent;
4890
4891 if (sd) {
4892 if (!cpus_subset(groupmask, sd->span))
4893 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4894 }
4895
4896 } while (sd);
4897}
4898#else
4899#define sched_domain_debug(sd, cpu) {}
4900#endif
4901
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004902static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07004903{
4904 if (cpus_weight(sd->span) == 1)
4905 return 1;
4906
4907 /* Following flags need at least 2 groups */
4908 if (sd->flags & (SD_LOAD_BALANCE |
4909 SD_BALANCE_NEWIDLE |
4910 SD_BALANCE_FORK |
4911 SD_BALANCE_EXEC)) {
4912 if (sd->groups != sd->groups->next)
4913 return 0;
4914 }
4915
4916 /* Following flags don't use groups */
4917 if (sd->flags & (SD_WAKE_IDLE |
4918 SD_WAKE_AFFINE |
4919 SD_WAKE_BALANCE))
4920 return 0;
4921
4922 return 1;
4923}
4924
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004925static int sd_parent_degenerate(struct sched_domain *sd,
Suresh Siddha245af2c2005-06-25 14:57:25 -07004926 struct sched_domain *parent)
4927{
4928 unsigned long cflags = sd->flags, pflags = parent->flags;
4929
4930 if (sd_degenerate(parent))
4931 return 1;
4932
4933 if (!cpus_equal(sd->span, parent->span))
4934 return 0;
4935
4936 /* Does parent contain flags not in child? */
4937 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4938 if (cflags & SD_WAKE_AFFINE)
4939 pflags &= ~SD_WAKE_BALANCE;
4940 /* Flags needing groups don't count if only 1 group in parent */
4941 if (parent->groups == parent->groups->next) {
4942 pflags &= ~(SD_LOAD_BALANCE |
4943 SD_BALANCE_NEWIDLE |
4944 SD_BALANCE_FORK |
4945 SD_BALANCE_EXEC);
4946 }
4947 if (~cflags & pflags)
4948 return 0;
4949
4950 return 1;
4951}
4952
Linus Torvalds1da177e2005-04-16 15:20:36 -07004953/*
4954 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4955 * hold the hotplug lock.
4956 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07004957static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004958{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004959 runqueue_t *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07004960 struct sched_domain *tmp;
4961
4962 /* Remove the sched domains which do not contribute to scheduling. */
4963 for (tmp = sd; tmp; tmp = tmp->parent) {
4964 struct sched_domain *parent = tmp->parent;
4965 if (!parent)
4966 break;
4967 if (sd_parent_degenerate(tmp, parent))
4968 tmp->parent = parent->parent;
4969 }
4970
4971 if (sd && sd_degenerate(sd))
4972 sd = sd->parent;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004973
4974 sched_domain_debug(sd, cpu);
4975
Nick Piggin674311d2005-06-25 14:57:27 -07004976 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004977}
4978
4979/* cpus with isolated domains */
John Hawkes9c1cfda2005-09-06 15:18:14 -07004980static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004981
4982/* Setup the mask of cpus configured for isolated domains */
4983static int __init isolated_cpu_setup(char *str)
4984{
4985 int ints[NR_CPUS], i;
4986
4987 str = get_options(str, ARRAY_SIZE(ints), ints);
4988 cpus_clear(cpu_isolated_map);
4989 for (i = 1; i <= ints[0]; i++)
4990 if (ints[i] < NR_CPUS)
4991 cpu_set(ints[i], cpu_isolated_map);
4992 return 1;
4993}
4994
4995__setup ("isolcpus=", isolated_cpu_setup);
4996
4997/*
4998 * init_sched_build_groups takes an array of groups, the cpumask we wish
4999 * to span, and a pointer to a function which identifies what group a CPU
5000 * belongs to. The return value of group_fn must be a valid index into the
5001 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5002 * keep track of groups covered with a cpumask_t).
5003 *
5004 * init_sched_build_groups will build a circular linked list of the groups
5005 * covered by the given span, and will set each group's ->cpumask correctly,
5006 * and ->cpu_power to 0.
5007 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005008static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5009 int (*group_fn)(int cpu))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005010{
5011 struct sched_group *first = NULL, *last = NULL;
5012 cpumask_t covered = CPU_MASK_NONE;
5013 int i;
5014
5015 for_each_cpu_mask(i, span) {
5016 int group = group_fn(i);
5017 struct sched_group *sg = &groups[group];
5018 int j;
5019
5020 if (cpu_isset(i, covered))
5021 continue;
5022
5023 sg->cpumask = CPU_MASK_NONE;
5024 sg->cpu_power = 0;
5025
5026 for_each_cpu_mask(j, span) {
5027 if (group_fn(j) != group)
5028 continue;
5029
5030 cpu_set(j, covered);
5031 cpu_set(j, sg->cpumask);
5032 }
5033 if (!first)
5034 first = sg;
5035 if (last)
5036 last->next = sg;
5037 last = sg;
5038 }
5039 last->next = first;
5040}
5041
John Hawkes9c1cfda2005-09-06 15:18:14 -07005042#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005043
John Hawkes9c1cfda2005-09-06 15:18:14 -07005044#ifdef CONFIG_NUMA
5045/**
5046 * find_next_best_node - find the next node to include in a sched_domain
5047 * @node: node whose sched_domain we're building
5048 * @used_nodes: nodes already in the sched_domain
5049 *
5050 * Find the next node to include in a given scheduling domain. Simply
5051 * finds the closest node not already in the @used_nodes map.
5052 *
5053 * Should use nodemask_t.
5054 */
5055static int find_next_best_node(int node, unsigned long *used_nodes)
5056{
5057 int i, n, val, min_val, best_node = 0;
5058
5059 min_val = INT_MAX;
5060
5061 for (i = 0; i < MAX_NUMNODES; i++) {
5062 /* Start at @node */
5063 n = (node + i) % MAX_NUMNODES;
5064
5065 if (!nr_cpus_node(n))
5066 continue;
5067
5068 /* Skip already used nodes */
5069 if (test_bit(n, used_nodes))
5070 continue;
5071
5072 /* Simple min distance search */
5073 val = node_distance(node, n);
5074
5075 if (val < min_val) {
5076 min_val = val;
5077 best_node = n;
5078 }
5079 }
5080
5081 set_bit(best_node, used_nodes);
5082 return best_node;
5083}
5084
5085/**
5086 * sched_domain_node_span - get a cpumask for a node's sched_domain
5087 * @node: node whose cpumask we're constructing
5088 * @size: number of nodes to include in this span
5089 *
5090 * Given a node, construct a good cpumask for its sched_domain to span. It
5091 * should be one that prevents unnecessary balancing, but also spreads tasks
5092 * out optimally.
5093 */
5094static cpumask_t sched_domain_node_span(int node)
5095{
5096 int i;
5097 cpumask_t span, nodemask;
5098 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5099
5100 cpus_clear(span);
5101 bitmap_zero(used_nodes, MAX_NUMNODES);
5102
5103 nodemask = node_to_cpumask(node);
5104 cpus_or(span, span, nodemask);
5105 set_bit(node, used_nodes);
5106
5107 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5108 int next_node = find_next_best_node(node, used_nodes);
5109 nodemask = node_to_cpumask(next_node);
5110 cpus_or(span, span, nodemask);
5111 }
5112
5113 return span;
5114}
5115#endif
5116
5117/*
5118 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5119 * can switch it on easily if needed.
5120 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005121#ifdef CONFIG_SCHED_SMT
5122static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5123static struct sched_group sched_group_cpus[NR_CPUS];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005124static int cpu_to_cpu_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005125{
5126 return cpu;
5127}
5128#endif
5129
5130static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5131static struct sched_group sched_group_phys[NR_CPUS];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005132static int cpu_to_phys_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005133{
5134#ifdef CONFIG_SCHED_SMT
5135 return first_cpu(cpu_sibling_map[cpu]);
5136#else
5137 return cpu;
5138#endif
5139}
5140
5141#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005142/*
5143 * The init_sched_build_groups can't handle what we want to do with node
5144 * groups, so roll our own. Now each node has its own list of groups which
5145 * gets dynamically allocated.
5146 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005147static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005148static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005149
5150static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005151static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005152
5153static int cpu_to_allnodes_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005154{
5155 return cpu_to_node(cpu);
5156}
5157#endif
5158
Linus Torvalds1da177e2005-04-16 15:20:36 -07005159/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005160 * Build sched domains for a given set of cpus and attach the sched domains
5161 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005162 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005163void build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005164{
5165 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005166#ifdef CONFIG_NUMA
5167 struct sched_group **sched_group_nodes = NULL;
5168 struct sched_group *sched_group_allnodes = NULL;
5169
5170 /*
5171 * Allocate the per-node list of sched groups
5172 */
5173 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5174 GFP_ATOMIC);
5175 if (!sched_group_nodes) {
5176 printk(KERN_WARNING "Can not alloc sched group node list\n");
5177 return;
5178 }
5179 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5180#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005181
5182 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005183 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005184 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005185 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005186 int group;
5187 struct sched_domain *sd = NULL, *p;
5188 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5189
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005190 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005191
5192#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07005193 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005194 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkesd1b55132005-09-06 15:18:14 -07005195 if (!sched_group_allnodes) {
5196 sched_group_allnodes
5197 = kmalloc(sizeof(struct sched_group)
5198 * MAX_NUMNODES,
5199 GFP_KERNEL);
5200 if (!sched_group_allnodes) {
5201 printk(KERN_WARNING
5202 "Can not alloc allnodes sched group\n");
5203 break;
5204 }
5205 sched_group_allnodes_bycpu[i]
5206 = sched_group_allnodes;
5207 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005208 sd = &per_cpu(allnodes_domains, i);
5209 *sd = SD_ALLNODES_INIT;
5210 sd->span = *cpu_map;
5211 group = cpu_to_allnodes_group(i);
5212 sd->groups = &sched_group_allnodes[group];
5213 p = sd;
5214 } else
5215 p = NULL;
5216
Linus Torvalds1da177e2005-04-16 15:20:36 -07005217 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005218 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005219 sd->span = sched_domain_node_span(cpu_to_node(i));
5220 sd->parent = p;
5221 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005222#endif
5223
5224 p = sd;
5225 sd = &per_cpu(phys_domains, i);
5226 group = cpu_to_phys_group(i);
5227 *sd = SD_CPU_INIT;
5228 sd->span = nodemask;
5229 sd->parent = p;
5230 sd->groups = &sched_group_phys[group];
5231
5232#ifdef CONFIG_SCHED_SMT
5233 p = sd;
5234 sd = &per_cpu(cpu_domains, i);
5235 group = cpu_to_cpu_group(i);
5236 *sd = SD_SIBLING_INIT;
5237 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005238 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005239 sd->parent = p;
5240 sd->groups = &sched_group_cpus[group];
5241#endif
5242 }
5243
5244#ifdef CONFIG_SCHED_SMT
5245 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005246 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005247 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005248 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005249 if (i != first_cpu(this_sibling_map))
5250 continue;
5251
5252 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5253 &cpu_to_cpu_group);
5254 }
5255#endif
5256
5257 /* Set up physical groups */
5258 for (i = 0; i < MAX_NUMNODES; i++) {
5259 cpumask_t nodemask = node_to_cpumask(i);
5260
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005261 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005262 if (cpus_empty(nodemask))
5263 continue;
5264
5265 init_sched_build_groups(sched_group_phys, nodemask,
5266 &cpu_to_phys_group);
5267 }
5268
5269#ifdef CONFIG_NUMA
5270 /* Set up node groups */
John Hawkesd1b55132005-09-06 15:18:14 -07005271 if (sched_group_allnodes)
5272 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5273 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005274
5275 for (i = 0; i < MAX_NUMNODES; i++) {
5276 /* Set up node groups */
5277 struct sched_group *sg, *prev;
5278 cpumask_t nodemask = node_to_cpumask(i);
5279 cpumask_t domainspan;
5280 cpumask_t covered = CPU_MASK_NONE;
5281 int j;
5282
5283 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07005284 if (cpus_empty(nodemask)) {
5285 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005286 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07005287 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005288
5289 domainspan = sched_domain_node_span(i);
5290 cpus_and(domainspan, domainspan, *cpu_map);
5291
5292 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5293 sched_group_nodes[i] = sg;
5294 for_each_cpu_mask(j, nodemask) {
5295 struct sched_domain *sd;
5296 sd = &per_cpu(node_domains, j);
5297 sd->groups = sg;
5298 if (sd->groups == NULL) {
5299 /* Turn off balancing if we have no groups */
5300 sd->flags = 0;
5301 }
5302 }
5303 if (!sg) {
5304 printk(KERN_WARNING
5305 "Can not alloc domain group for node %d\n", i);
5306 continue;
5307 }
5308 sg->cpu_power = 0;
5309 sg->cpumask = nodemask;
5310 cpus_or(covered, covered, nodemask);
5311 prev = sg;
5312
5313 for (j = 0; j < MAX_NUMNODES; j++) {
5314 cpumask_t tmp, notcovered;
5315 int n = (i + j) % MAX_NUMNODES;
5316
5317 cpus_complement(notcovered, covered);
5318 cpus_and(tmp, notcovered, *cpu_map);
5319 cpus_and(tmp, tmp, domainspan);
5320 if (cpus_empty(tmp))
5321 break;
5322
5323 nodemask = node_to_cpumask(n);
5324 cpus_and(tmp, tmp, nodemask);
5325 if (cpus_empty(tmp))
5326 continue;
5327
5328 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5329 if (!sg) {
5330 printk(KERN_WARNING
5331 "Can not alloc domain group for node %d\n", j);
5332 break;
5333 }
5334 sg->cpu_power = 0;
5335 sg->cpumask = tmp;
5336 cpus_or(covered, covered, tmp);
5337 prev->next = sg;
5338 prev = sg;
5339 }
5340 prev->next = sched_group_nodes[i];
5341 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005342#endif
5343
5344 /* Calculate CPU power for physical packages and nodes */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005345 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005346 int power;
5347 struct sched_domain *sd;
5348#ifdef CONFIG_SCHED_SMT
5349 sd = &per_cpu(cpu_domains, i);
5350 power = SCHED_LOAD_SCALE;
5351 sd->groups->cpu_power = power;
5352#endif
5353
5354 sd = &per_cpu(phys_domains, i);
5355 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5356 (cpus_weight(sd->groups->cpumask)-1) / 10;
5357 sd->groups->cpu_power = power;
5358
5359#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005360 sd = &per_cpu(allnodes_domains, i);
5361 if (sd->groups) {
5362 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5363 (cpus_weight(sd->groups->cpumask)-1) / 10;
5364 sd->groups->cpu_power = power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005365 }
5366#endif
5367 }
5368
John Hawkes9c1cfda2005-09-06 15:18:14 -07005369#ifdef CONFIG_NUMA
5370 for (i = 0; i < MAX_NUMNODES; i++) {
5371 struct sched_group *sg = sched_group_nodes[i];
5372 int j;
5373
5374 if (sg == NULL)
5375 continue;
5376next_sg:
5377 for_each_cpu_mask(j, sg->cpumask) {
5378 struct sched_domain *sd;
5379 int power;
5380
5381 sd = &per_cpu(phys_domains, j);
5382 if (j != first_cpu(sd->groups->cpumask)) {
5383 /*
5384 * Only add "power" once for each
5385 * physical package.
5386 */
5387 continue;
5388 }
5389 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5390 (cpus_weight(sd->groups->cpumask)-1) / 10;
5391
5392 sg->cpu_power += power;
5393 }
5394 sg = sg->next;
5395 if (sg != sched_group_nodes[i])
5396 goto next_sg;
5397 }
5398#endif
5399
Linus Torvalds1da177e2005-04-16 15:20:36 -07005400 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005401 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005402 struct sched_domain *sd;
5403#ifdef CONFIG_SCHED_SMT
5404 sd = &per_cpu(cpu_domains, i);
5405#else
5406 sd = &per_cpu(phys_domains, i);
5407#endif
5408 cpu_attach_domain(sd, i);
5409 }
5410}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005411/*
5412 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5413 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005414static void arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005415{
5416 cpumask_t cpu_default_map;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005417
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005418 /*
5419 * Setup mask for cpus without special case scheduling requirements.
5420 * For now this just excludes isolated cpus, but could be used to
5421 * exclude other special cases in the future.
5422 */
5423 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5424
5425 build_sched_domains(&cpu_default_map);
5426}
5427
5428static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005429{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005430#ifdef CONFIG_NUMA
5431 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005432 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005433
John Hawkesd1b55132005-09-06 15:18:14 -07005434 for_each_cpu_mask(cpu, *cpu_map) {
5435 struct sched_group *sched_group_allnodes
5436 = sched_group_allnodes_bycpu[cpu];
5437 struct sched_group **sched_group_nodes
5438 = sched_group_nodes_bycpu[cpu];
5439
5440 if (sched_group_allnodes) {
5441 kfree(sched_group_allnodes);
5442 sched_group_allnodes_bycpu[cpu] = NULL;
5443 }
5444
5445 if (!sched_group_nodes)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005446 continue;
5447
John Hawkesd1b55132005-09-06 15:18:14 -07005448 for (i = 0; i < MAX_NUMNODES; i++) {
5449 cpumask_t nodemask = node_to_cpumask(i);
5450 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5451
5452 cpus_and(nodemask, nodemask, *cpu_map);
5453 if (cpus_empty(nodemask))
5454 continue;
5455
5456 if (sg == NULL)
5457 continue;
5458 sg = sg->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005459next_sg:
John Hawkesd1b55132005-09-06 15:18:14 -07005460 oldsg = sg;
5461 sg = sg->next;
5462 kfree(oldsg);
5463 if (oldsg != sched_group_nodes[i])
5464 goto next_sg;
5465 }
5466 kfree(sched_group_nodes);
5467 sched_group_nodes_bycpu[cpu] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005468 }
5469#endif
5470}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005471
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005472/*
5473 * Detach sched domains from a group of cpus specified in cpu_map
5474 * These cpus will now be attached to the NULL domain
5475 */
5476static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5477{
5478 int i;
5479
5480 for_each_cpu_mask(i, *cpu_map)
5481 cpu_attach_domain(NULL, i);
5482 synchronize_sched();
5483 arch_destroy_sched_domains(cpu_map);
5484}
5485
5486/*
5487 * Partition sched domains as specified by the cpumasks below.
5488 * This attaches all cpus from the cpumasks to the NULL domain,
5489 * waits for a RCU quiescent period, recalculates sched
5490 * domain information and then attaches them back to the
5491 * correct sched domains
5492 * Call with hotplug lock held
5493 */
5494void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5495{
5496 cpumask_t change_map;
5497
5498 cpus_and(*partition1, *partition1, cpu_online_map);
5499 cpus_and(*partition2, *partition2, cpu_online_map);
5500 cpus_or(change_map, *partition1, *partition2);
5501
5502 /* Detach sched domains from all of the affected cpus */
5503 detach_destroy_domains(&change_map);
5504 if (!cpus_empty(*partition1))
5505 build_sched_domains(partition1);
5506 if (!cpus_empty(*partition2))
5507 build_sched_domains(partition2);
5508}
5509
Linus Torvalds1da177e2005-04-16 15:20:36 -07005510#ifdef CONFIG_HOTPLUG_CPU
5511/*
5512 * Force a reinitialization of the sched domains hierarchy. The domains
5513 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07005514 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07005515 * which will prevent rebalancing while the sched domains are recalculated.
5516 */
5517static int update_sched_domains(struct notifier_block *nfb,
5518 unsigned long action, void *hcpu)
5519{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005520 switch (action) {
5521 case CPU_UP_PREPARE:
5522 case CPU_DOWN_PREPARE:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005523 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005524 return NOTIFY_OK;
5525
5526 case CPU_UP_CANCELED:
5527 case CPU_DOWN_FAILED:
5528 case CPU_ONLINE:
5529 case CPU_DEAD:
5530 /*
5531 * Fall through and re-initialise the domains.
5532 */
5533 break;
5534 default:
5535 return NOTIFY_DONE;
5536 }
5537
5538 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005539 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005540
5541 return NOTIFY_OK;
5542}
5543#endif
5544
5545void __init sched_init_smp(void)
5546{
5547 lock_cpu_hotplug();
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005548 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005549 unlock_cpu_hotplug();
5550 /* XXX: Theoretical race here - CPU may be hotplugged now */
5551 hotcpu_notifier(update_sched_domains, 0);
5552}
5553#else
5554void __init sched_init_smp(void)
5555{
5556}
5557#endif /* CONFIG_SMP */
5558
5559int in_sched_functions(unsigned long addr)
5560{
5561 /* Linker adds these: start and end of __sched functions */
5562 extern char __sched_text_start[], __sched_text_end[];
5563 return in_lock_functions(addr) ||
5564 (addr >= (unsigned long)__sched_text_start
5565 && addr < (unsigned long)__sched_text_end);
5566}
5567
5568void __init sched_init(void)
5569{
5570 runqueue_t *rq;
5571 int i, j, k;
5572
5573 for (i = 0; i < NR_CPUS; i++) {
5574 prio_array_t *array;
5575
5576 rq = cpu_rq(i);
5577 spin_lock_init(&rq->lock);
Nick Piggin78979862005-06-25 14:57:13 -07005578 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005579 rq->active = rq->arrays;
5580 rq->expired = rq->arrays + 1;
5581 rq->best_expired_prio = MAX_PRIO;
5582
5583#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07005584 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07005585 for (j = 1; j < 3; j++)
5586 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005587 rq->active_balance = 0;
5588 rq->push_cpu = 0;
5589 rq->migration_thread = NULL;
5590 INIT_LIST_HEAD(&rq->migration_queue);
5591#endif
5592 atomic_set(&rq->nr_iowait, 0);
5593
5594 for (j = 0; j < 2; j++) {
5595 array = rq->arrays + j;
5596 for (k = 0; k < MAX_PRIO; k++) {
5597 INIT_LIST_HEAD(array->queue + k);
5598 __clear_bit(k, array->bitmap);
5599 }
5600 // delimiter for bitsearch
5601 __set_bit(MAX_PRIO, array->bitmap);
5602 }
5603 }
5604
5605 /*
5606 * The boot idle thread does lazy MMU switching as well:
5607 */
5608 atomic_inc(&init_mm.mm_count);
5609 enter_lazy_tlb(&init_mm, current);
5610
5611 /*
5612 * Make us the idle thread. Technically, schedule() should not be
5613 * called from this thread, however somewhere below it might be,
5614 * but because we are the idle thread, we just pick up running again
5615 * when this runqueue becomes "idle".
5616 */
5617 init_idle(current, smp_processor_id());
5618}
5619
5620#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5621void __might_sleep(char *file, int line)
5622{
5623#if defined(in_atomic)
5624 static unsigned long prev_jiffy; /* ratelimiting */
5625
5626 if ((in_atomic() || irqs_disabled()) &&
5627 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5628 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5629 return;
5630 prev_jiffy = jiffies;
5631 printk(KERN_ERR "Debug: sleeping function called from invalid"
5632 " context at %s:%d\n", file, line);
5633 printk("in_atomic():%d, irqs_disabled():%d\n",
5634 in_atomic(), irqs_disabled());
5635 dump_stack();
5636 }
5637#endif
5638}
5639EXPORT_SYMBOL(__might_sleep);
5640#endif
5641
5642#ifdef CONFIG_MAGIC_SYSRQ
5643void normalize_rt_tasks(void)
5644{
5645 struct task_struct *p;
5646 prio_array_t *array;
5647 unsigned long flags;
5648 runqueue_t *rq;
5649
5650 read_lock_irq(&tasklist_lock);
5651 for_each_process (p) {
5652 if (!rt_task(p))
5653 continue;
5654
5655 rq = task_rq_lock(p, &flags);
5656
5657 array = p->array;
5658 if (array)
5659 deactivate_task(p, task_rq(p));
5660 __setscheduler(p, SCHED_NORMAL, 0);
5661 if (array) {
5662 __activate_task(p, task_rq(p));
5663 resched_task(rq->curr);
5664 }
5665
5666 task_rq_unlock(rq, &flags);
5667 }
5668 read_unlock_irq(&tasklist_lock);
5669}
5670
5671#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07005672
5673#ifdef CONFIG_IA64
5674/*
5675 * These functions are only useful for the IA64 MCA handling.
5676 *
5677 * They can only be called when the whole system has been
5678 * stopped - every CPU needs to be quiescent, and no scheduling
5679 * activity can take place. Using them for anything else would
5680 * be a serious bug, and as a result, they aren't even visible
5681 * under any other configuration.
5682 */
5683
5684/**
5685 * curr_task - return the current task for a given cpu.
5686 * @cpu: the processor in question.
5687 *
5688 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5689 */
5690task_t *curr_task(int cpu)
5691{
5692 return cpu_curr(cpu);
5693}
5694
5695/**
5696 * set_curr_task - set the current task for a given cpu.
5697 * @cpu: the processor in question.
5698 * @p: the task pointer to set.
5699 *
5700 * Description: This function must only be used when non-maskable interrupts
5701 * are serviced on a separate stack. It allows the architecture to switch the
5702 * notion of the current task on a cpu in a non-blocking manner. This function
5703 * must be called with all CPU's synchronized, and interrupts disabled, the
5704 * and caller must save the original value of the current task (see
5705 * curr_task() above) and restore that value before reenabling interrupts and
5706 * re-starting the system.
5707 *
5708 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5709 */
5710void set_curr_task(int cpu, task_t *p)
5711{
5712 cpu_curr(cpu) = p;
5713}
5714
5715#endif