blob: 040ee517c808817ec6bc6e3bd4a8328f11b40633 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
39DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290}
291
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200292/*
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
295 */
296static void
297list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298{
299 struct perf_event *group_leader = event->group_leader;
300
301 /*
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
305 */
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
311 }
312
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
317}
318
319/*
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
322 */
323static void
324list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325{
326 struct perf_event *sibling, *tmp;
327
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
333
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
336
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
339
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100340 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800341
342 /*
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
348 */
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100351
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200352 /*
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
356 */
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
358
359 list_move_tail(&sibling->group_entry, &ctx->group_list);
360 sibling->group_leader = sibling;
361 }
362}
363
364static void
365event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
368{
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
371
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
376 }
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
380
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
386}
387
388static void
389group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
392{
393 struct perf_event *event;
394
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
397
398 event_sched_out(group_event, cpuctx, ctx);
399
400 /*
401 * Schedule out siblings (if any):
402 */
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
405
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
408}
409
410/*
411 * Cross CPU call to remove a performance event
412 *
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
415 */
416static void __perf_event_remove_from_context(void *info)
417{
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
421
422 /*
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
426 */
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
429
430 spin_lock(&ctx->lock);
431 /*
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
434 */
435 perf_disable();
436
437 event_sched_out(event, cpuctx, ctx);
438
439 list_del_event(event, ctx);
440
441 if (!ctx->task) {
442 /*
443 * Allow more per task events with respect to the
444 * reservation:
445 */
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
449 }
450
451 perf_enable();
452 spin_unlock(&ctx->lock);
453}
454
455
456/*
457 * Remove the event from a task's (or a CPU's) list of events.
458 *
459 * Must be called with ctx->mutex held.
460 *
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
463 *
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
470 */
471static void perf_event_remove_from_context(struct perf_event *event)
472{
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
475
476 if (!task) {
477 /*
478 * Per cpu events are removed via an smp call and
479 * the removal is always sucessful.
480 */
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
485 }
486
487retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
490
491 spin_lock_irq(&ctx->lock);
492 /*
493 * If the context is active we need to retry the smp call.
494 */
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
496 spin_unlock_irq(&ctx->lock);
497 goto retry;
498 }
499
500 /*
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
504 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100505 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200506 list_del_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200507 spin_unlock_irq(&ctx->lock);
508}
509
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200510/*
511 * Update total_time_enabled and total_time_running for all events in a group.
512 */
513static void update_group_times(struct perf_event *leader)
514{
515 struct perf_event *event;
516
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
520}
521
522/*
523 * Cross CPU call to disable a performance event
524 */
525static void __perf_event_disable(void *info)
526{
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
530
531 /*
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
534 */
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
537
538 spin_lock(&ctx->lock);
539
540 /*
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
543 */
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
552 }
553
554 spin_unlock(&ctx->lock);
555}
556
557/*
558 * Disable a event.
559 *
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
569 */
570static void perf_event_disable(struct perf_event *event)
571{
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
574
575 if (!task) {
576 /*
577 * Disable the event on the cpu that it's on
578 */
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
582 }
583
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
586
587 spin_lock_irq(&ctx->lock);
588 /*
589 * If the event is still active, we need to retry the cross-call.
590 */
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 spin_unlock_irq(&ctx->lock);
593 goto retry;
594 }
595
596 /*
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
599 */
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
603 }
604
605 spin_unlock_irq(&ctx->lock);
606}
607
608static int
609event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx,
612 int cpu)
613{
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
616
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
619 /*
620 * The new state must be visible before we turn it on in the hardware:
621 */
622 smp_wmb();
623
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
628 }
629
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
631
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
635
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
638
639 return 0;
640}
641
642static int
643group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx,
646 int cpu)
647{
648 struct perf_event *event, *partial_group;
649 int ret;
650
651 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0;
653
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 if (ret)
656 return ret < 0 ? ret : 0;
657
658 if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 return -EAGAIN;
660
661 /*
662 * Schedule in siblings as one group (if any):
663 */
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) {
666 partial_group = event;
667 goto group_error;
668 }
669 }
670
671 return 0;
672
673group_error:
674 /*
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
677 */
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event == partial_group)
680 break;
681 event_sched_out(event, cpuctx, ctx);
682 }
683 event_sched_out(group_event, cpuctx, ctx);
684
685 return -EAGAIN;
686}
687
688/*
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
691 */
692static int is_software_only_group(struct perf_event *leader)
693{
694 struct perf_event *event;
695
696 if (!is_software_event(leader))
697 return 0;
698
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
702
703 return 1;
704}
705
706/*
707 * Work out whether we can put this event group on the CPU now.
708 */
709static int group_can_go_on(struct perf_event *event,
710 struct perf_cpu_context *cpuctx,
711 int can_add_hw)
712{
713 /*
714 * Groups consisting entirely of software events can always go on.
715 */
716 if (is_software_only_group(event))
717 return 1;
718 /*
719 * If an exclusive group is already on, no other hardware
720 * events can go on.
721 */
722 if (cpuctx->exclusive)
723 return 0;
724 /*
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
727 */
728 if (event->attr.exclusive && cpuctx->active_oncpu)
729 return 0;
730 /*
731 * Otherwise, try to add it if all previous groups were able
732 * to go on.
733 */
734 return can_add_hw;
735}
736
737static void add_event_to_ctx(struct perf_event *event,
738 struct perf_event_context *ctx)
739{
740 list_add_event(event, ctx);
741 event->tstamp_enabled = ctx->time;
742 event->tstamp_running = ctx->time;
743 event->tstamp_stopped = ctx->time;
744}
745
746/*
747 * Cross CPU call to install and enable a performance event
748 *
749 * Must be called with ctx->mutex held
750 */
751static void __perf_install_in_context(void *info)
752{
753 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err;
759
760 /*
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
766 */
767 if (ctx->task && cpuctx->task_ctx != ctx) {
768 if (cpuctx->task_ctx || ctx->task != current)
769 return;
770 cpuctx->task_ctx = ctx;
771 }
772
773 spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 update_context_time(ctx);
776
777 /*
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
780 */
781 perf_disable();
782
783 add_event_to_ctx(event, ctx);
784
785 /*
786 * Don't put the event on if it is disabled or if
787 * it is in a group and the group isn't on.
788 */
789 if (event->state != PERF_EVENT_STATE_INACTIVE ||
790 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
791 goto unlock;
792
793 /*
794 * An exclusive event can't go on if there are already active
795 * hardware events, and no hardware event can go on if there
796 * is already an exclusive event on.
797 */
798 if (!group_can_go_on(event, cpuctx, 1))
799 err = -EEXIST;
800 else
801 err = event_sched_in(event, cpuctx, ctx, cpu);
802
803 if (err) {
804 /*
805 * This event couldn't go on. If it is in a group
806 * then we have to pull the whole group off.
807 * If the event group is pinned then put it in error state.
808 */
809 if (leader != event)
810 group_sched_out(leader, cpuctx, ctx);
811 if (leader->attr.pinned) {
812 update_group_times(leader);
813 leader->state = PERF_EVENT_STATE_ERROR;
814 }
815 }
816
817 if (!err && !ctx->task && cpuctx->max_pertask)
818 cpuctx->max_pertask--;
819
820 unlock:
821 perf_enable();
822
823 spin_unlock(&ctx->lock);
824}
825
826/*
827 * Attach a performance event to a context
828 *
829 * First we add the event to the list with the hardware enable bit
830 * in event->hw_config cleared.
831 *
832 * If the event is attached to a task which is on a CPU we use a smp
833 * call to enable it in the task context. The task might have been
834 * scheduled away, but we check this in the smp call again.
835 *
836 * Must be called with ctx->mutex held.
837 */
838static void
839perf_install_in_context(struct perf_event_context *ctx,
840 struct perf_event *event,
841 int cpu)
842{
843 struct task_struct *task = ctx->task;
844
845 if (!task) {
846 /*
847 * Per cpu events are installed via an smp call and
848 * the install is always sucessful.
849 */
850 smp_call_function_single(cpu, __perf_install_in_context,
851 event, 1);
852 return;
853 }
854
855retry:
856 task_oncpu_function_call(task, __perf_install_in_context,
857 event);
858
859 spin_lock_irq(&ctx->lock);
860 /*
861 * we need to retry the smp call.
862 */
863 if (ctx->is_active && list_empty(&event->group_entry)) {
864 spin_unlock_irq(&ctx->lock);
865 goto retry;
866 }
867
868 /*
869 * The lock prevents that this context is scheduled in so we
870 * can add the event safely, if it the call above did not
871 * succeed.
872 */
873 if (list_empty(&event->group_entry))
874 add_event_to_ctx(event, ctx);
875 spin_unlock_irq(&ctx->lock);
876}
877
878/*
879 * Put a event into inactive state and update time fields.
880 * Enabling the leader of a group effectively enables all
881 * the group members that aren't explicitly disabled, so we
882 * have to update their ->tstamp_enabled also.
883 * Note: this works for group members as well as group leaders
884 * since the non-leader members' sibling_lists will be empty.
885 */
886static void __perf_event_mark_enabled(struct perf_event *event,
887 struct perf_event_context *ctx)
888{
889 struct perf_event *sub;
890
891 event->state = PERF_EVENT_STATE_INACTIVE;
892 event->tstamp_enabled = ctx->time - event->total_time_enabled;
893 list_for_each_entry(sub, &event->sibling_list, group_entry)
894 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
895 sub->tstamp_enabled =
896 ctx->time - sub->total_time_enabled;
897}
898
899/*
900 * Cross CPU call to enable a performance event
901 */
902static void __perf_event_enable(void *info)
903{
904 struct perf_event *event = info;
905 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
906 struct perf_event_context *ctx = event->ctx;
907 struct perf_event *leader = event->group_leader;
908 int err;
909
910 /*
911 * If this is a per-task event, need to check whether this
912 * event's task is the current task on this cpu.
913 */
914 if (ctx->task && cpuctx->task_ctx != ctx) {
915 if (cpuctx->task_ctx || ctx->task != current)
916 return;
917 cpuctx->task_ctx = ctx;
918 }
919
920 spin_lock(&ctx->lock);
921 ctx->is_active = 1;
922 update_context_time(ctx);
923
924 if (event->state >= PERF_EVENT_STATE_INACTIVE)
925 goto unlock;
926 __perf_event_mark_enabled(event, ctx);
927
928 /*
929 * If the event is in a group and isn't the group leader,
930 * then don't put it on unless the group is on.
931 */
932 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
933 goto unlock;
934
935 if (!group_can_go_on(event, cpuctx, 1)) {
936 err = -EEXIST;
937 } else {
938 perf_disable();
939 if (event == leader)
940 err = group_sched_in(event, cpuctx, ctx,
941 smp_processor_id());
942 else
943 err = event_sched_in(event, cpuctx, ctx,
944 smp_processor_id());
945 perf_enable();
946 }
947
948 if (err) {
949 /*
950 * If this event can't go on and it's part of a
951 * group, then the whole group has to come off.
952 */
953 if (leader != event)
954 group_sched_out(leader, cpuctx, ctx);
955 if (leader->attr.pinned) {
956 update_group_times(leader);
957 leader->state = PERF_EVENT_STATE_ERROR;
958 }
959 }
960
961 unlock:
962 spin_unlock(&ctx->lock);
963}
964
965/*
966 * Enable a event.
967 *
968 * If event->ctx is a cloned context, callers must make sure that
969 * every task struct that event->ctx->task could possibly point to
970 * remains valid. This condition is satisfied when called through
971 * perf_event_for_each_child or perf_event_for_each as described
972 * for perf_event_disable.
973 */
974static void perf_event_enable(struct perf_event *event)
975{
976 struct perf_event_context *ctx = event->ctx;
977 struct task_struct *task = ctx->task;
978
979 if (!task) {
980 /*
981 * Enable the event on the cpu that it's on
982 */
983 smp_call_function_single(event->cpu, __perf_event_enable,
984 event, 1);
985 return;
986 }
987
988 spin_lock_irq(&ctx->lock);
989 if (event->state >= PERF_EVENT_STATE_INACTIVE)
990 goto out;
991
992 /*
993 * If the event is in error state, clear that first.
994 * That way, if we see the event in error state below, we
995 * know that it has gone back into error state, as distinct
996 * from the task having been scheduled away before the
997 * cross-call arrived.
998 */
999 if (event->state == PERF_EVENT_STATE_ERROR)
1000 event->state = PERF_EVENT_STATE_OFF;
1001
1002 retry:
1003 spin_unlock_irq(&ctx->lock);
1004 task_oncpu_function_call(task, __perf_event_enable, event);
1005
1006 spin_lock_irq(&ctx->lock);
1007
1008 /*
1009 * If the context is active and the event is still off,
1010 * we need to retry the cross-call.
1011 */
1012 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1013 goto retry;
1014
1015 /*
1016 * Since we have the lock this context can't be scheduled
1017 * in, so we can change the state safely.
1018 */
1019 if (event->state == PERF_EVENT_STATE_OFF)
1020 __perf_event_mark_enabled(event, ctx);
1021
1022 out:
1023 spin_unlock_irq(&ctx->lock);
1024}
1025
1026static int perf_event_refresh(struct perf_event *event, int refresh)
1027{
1028 /*
1029 * not supported on inherited events
1030 */
1031 if (event->attr.inherit)
1032 return -EINVAL;
1033
1034 atomic_add(refresh, &event->event_limit);
1035 perf_event_enable(event);
1036
1037 return 0;
1038}
1039
1040void __perf_event_sched_out(struct perf_event_context *ctx,
1041 struct perf_cpu_context *cpuctx)
1042{
1043 struct perf_event *event;
1044
1045 spin_lock(&ctx->lock);
1046 ctx->is_active = 0;
1047 if (likely(!ctx->nr_events))
1048 goto out;
1049 update_context_time(ctx);
1050
1051 perf_disable();
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001052 if (ctx->nr_active) {
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001053 list_for_each_entry(event, &ctx->group_list, group_entry)
1054 group_sched_out(event, cpuctx, ctx);
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001055 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001056 perf_enable();
1057 out:
1058 spin_unlock(&ctx->lock);
1059}
1060
1061/*
1062 * Test whether two contexts are equivalent, i.e. whether they
1063 * have both been cloned from the same version of the same context
1064 * and they both have the same number of enabled events.
1065 * If the number of enabled events is the same, then the set
1066 * of enabled events should be the same, because these are both
1067 * inherited contexts, therefore we can't access individual events
1068 * in them directly with an fd; we can only enable/disable all
1069 * events via prctl, or enable/disable all events in a family
1070 * via ioctl, which will have the same effect on both contexts.
1071 */
1072static int context_equiv(struct perf_event_context *ctx1,
1073 struct perf_event_context *ctx2)
1074{
1075 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1076 && ctx1->parent_gen == ctx2->parent_gen
1077 && !ctx1->pin_count && !ctx2->pin_count;
1078}
1079
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001080static void __perf_event_sync_stat(struct perf_event *event,
1081 struct perf_event *next_event)
1082{
1083 u64 value;
1084
1085 if (!event->attr.inherit_stat)
1086 return;
1087
1088 /*
1089 * Update the event value, we cannot use perf_event_read()
1090 * because we're in the middle of a context switch and have IRQs
1091 * disabled, which upsets smp_call_function_single(), however
1092 * we know the event must be on the current CPU, therefore we
1093 * don't need to use it.
1094 */
1095 switch (event->state) {
1096 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001097 event->pmu->read(event);
1098 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001099
1100 case PERF_EVENT_STATE_INACTIVE:
1101 update_event_times(event);
1102 break;
1103
1104 default:
1105 break;
1106 }
1107
1108 /*
1109 * In order to keep per-task stats reliable we need to flip the event
1110 * values when we flip the contexts.
1111 */
1112 value = atomic64_read(&next_event->count);
1113 value = atomic64_xchg(&event->count, value);
1114 atomic64_set(&next_event->count, value);
1115
1116 swap(event->total_time_enabled, next_event->total_time_enabled);
1117 swap(event->total_time_running, next_event->total_time_running);
1118
1119 /*
1120 * Since we swizzled the values, update the user visible data too.
1121 */
1122 perf_event_update_userpage(event);
1123 perf_event_update_userpage(next_event);
1124}
1125
1126#define list_next_entry(pos, member) \
1127 list_entry(pos->member.next, typeof(*pos), member)
1128
1129static void perf_event_sync_stat(struct perf_event_context *ctx,
1130 struct perf_event_context *next_ctx)
1131{
1132 struct perf_event *event, *next_event;
1133
1134 if (!ctx->nr_stat)
1135 return;
1136
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001137 update_context_time(ctx);
1138
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001139 event = list_first_entry(&ctx->event_list,
1140 struct perf_event, event_entry);
1141
1142 next_event = list_first_entry(&next_ctx->event_list,
1143 struct perf_event, event_entry);
1144
1145 while (&event->event_entry != &ctx->event_list &&
1146 &next_event->event_entry != &next_ctx->event_list) {
1147
1148 __perf_event_sync_stat(event, next_event);
1149
1150 event = list_next_entry(event, event_entry);
1151 next_event = list_next_entry(next_event, event_entry);
1152 }
1153}
1154
1155/*
1156 * Called from scheduler to remove the events of the current task,
1157 * with interrupts disabled.
1158 *
1159 * We stop each event and update the event value in event->count.
1160 *
1161 * This does not protect us against NMI, but disable()
1162 * sets the disabled bit in the control field of event _before_
1163 * accessing the event control register. If a NMI hits, then it will
1164 * not restart the event.
1165 */
1166void perf_event_task_sched_out(struct task_struct *task,
1167 struct task_struct *next, int cpu)
1168{
1169 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1170 struct perf_event_context *ctx = task->perf_event_ctxp;
1171 struct perf_event_context *next_ctx;
1172 struct perf_event_context *parent;
1173 struct pt_regs *regs;
1174 int do_switch = 1;
1175
1176 regs = task_pt_regs(task);
1177 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1178
1179 if (likely(!ctx || !cpuctx->task_ctx))
1180 return;
1181
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001182 rcu_read_lock();
1183 parent = rcu_dereference(ctx->parent_ctx);
1184 next_ctx = next->perf_event_ctxp;
1185 if (parent && next_ctx &&
1186 rcu_dereference(next_ctx->parent_ctx) == parent) {
1187 /*
1188 * Looks like the two contexts are clones, so we might be
1189 * able to optimize the context switch. We lock both
1190 * contexts and check that they are clones under the
1191 * lock (including re-checking that neither has been
1192 * uncloned in the meantime). It doesn't matter which
1193 * order we take the locks because no other cpu could
1194 * be trying to lock both of these tasks.
1195 */
1196 spin_lock(&ctx->lock);
1197 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1198 if (context_equiv(ctx, next_ctx)) {
1199 /*
1200 * XXX do we need a memory barrier of sorts
1201 * wrt to rcu_dereference() of perf_event_ctxp
1202 */
1203 task->perf_event_ctxp = next_ctx;
1204 next->perf_event_ctxp = ctx;
1205 ctx->task = next;
1206 next_ctx->task = task;
1207 do_switch = 0;
1208
1209 perf_event_sync_stat(ctx, next_ctx);
1210 }
1211 spin_unlock(&next_ctx->lock);
1212 spin_unlock(&ctx->lock);
1213 }
1214 rcu_read_unlock();
1215
1216 if (do_switch) {
1217 __perf_event_sched_out(ctx, cpuctx);
1218 cpuctx->task_ctx = NULL;
1219 }
1220}
1221
1222/*
1223 * Called with IRQs disabled
1224 */
1225static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1226{
1227 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1228
1229 if (!cpuctx->task_ctx)
1230 return;
1231
1232 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1233 return;
1234
1235 __perf_event_sched_out(ctx, cpuctx);
1236 cpuctx->task_ctx = NULL;
1237}
1238
1239/*
1240 * Called with IRQs disabled
1241 */
1242static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1243{
1244 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1245}
1246
1247static void
1248__perf_event_sched_in(struct perf_event_context *ctx,
1249 struct perf_cpu_context *cpuctx, int cpu)
1250{
1251 struct perf_event *event;
1252 int can_add_hw = 1;
1253
1254 spin_lock(&ctx->lock);
1255 ctx->is_active = 1;
1256 if (likely(!ctx->nr_events))
1257 goto out;
1258
1259 ctx->timestamp = perf_clock();
1260
1261 perf_disable();
1262
1263 /*
1264 * First go through the list and put on any pinned groups
1265 * in order to give them the best chance of going on.
1266 */
1267 list_for_each_entry(event, &ctx->group_list, group_entry) {
1268 if (event->state <= PERF_EVENT_STATE_OFF ||
1269 !event->attr.pinned)
1270 continue;
1271 if (event->cpu != -1 && event->cpu != cpu)
1272 continue;
1273
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001274 if (group_can_go_on(event, cpuctx, 1))
1275 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001276
1277 /*
1278 * If this pinned group hasn't been scheduled,
1279 * put it in error state.
1280 */
1281 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1282 update_group_times(event);
1283 event->state = PERF_EVENT_STATE_ERROR;
1284 }
1285 }
1286
1287 list_for_each_entry(event, &ctx->group_list, group_entry) {
1288 /*
1289 * Ignore events in OFF or ERROR state, and
1290 * ignore pinned events since we did them already.
1291 */
1292 if (event->state <= PERF_EVENT_STATE_OFF ||
1293 event->attr.pinned)
1294 continue;
1295
1296 /*
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1299 */
1300 if (event->cpu != -1 && event->cpu != cpu)
1301 continue;
1302
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001303 if (group_can_go_on(event, cpuctx, can_add_hw))
1304 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001305 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001306 }
1307 perf_enable();
1308 out:
1309 spin_unlock(&ctx->lock);
1310}
1311
1312/*
1313 * Called from scheduler to add the events of the current task
1314 * with interrupts disabled.
1315 *
1316 * We restore the event value and then enable it.
1317 *
1318 * This does not protect us against NMI, but enable()
1319 * sets the enabled bit in the control field of event _before_
1320 * accessing the event control register. If a NMI hits, then it will
1321 * keep the event running.
1322 */
1323void perf_event_task_sched_in(struct task_struct *task, int cpu)
1324{
1325 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1326 struct perf_event_context *ctx = task->perf_event_ctxp;
1327
1328 if (likely(!ctx))
1329 return;
1330 if (cpuctx->task_ctx == ctx)
1331 return;
1332 __perf_event_sched_in(ctx, cpuctx, cpu);
1333 cpuctx->task_ctx = ctx;
1334}
1335
1336static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1337{
1338 struct perf_event_context *ctx = &cpuctx->ctx;
1339
1340 __perf_event_sched_in(ctx, cpuctx, cpu);
1341}
1342
1343#define MAX_INTERRUPTS (~0ULL)
1344
1345static void perf_log_throttle(struct perf_event *event, int enable);
1346
1347static void perf_adjust_period(struct perf_event *event, u64 events)
1348{
1349 struct hw_perf_event *hwc = &event->hw;
1350 u64 period, sample_period;
1351 s64 delta;
1352
1353 events *= hwc->sample_period;
1354 period = div64_u64(events, event->attr.sample_freq);
1355
1356 delta = (s64)(period - hwc->sample_period);
1357 delta = (delta + 7) / 8; /* low pass filter */
1358
1359 sample_period = hwc->sample_period + delta;
1360
1361 if (!sample_period)
1362 sample_period = 1;
1363
1364 hwc->sample_period = sample_period;
1365}
1366
1367static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1368{
1369 struct perf_event *event;
1370 struct hw_perf_event *hwc;
1371 u64 interrupts, freq;
1372
1373 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001374 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001375 if (event->state != PERF_EVENT_STATE_ACTIVE)
1376 continue;
1377
1378 hwc = &event->hw;
1379
1380 interrupts = hwc->interrupts;
1381 hwc->interrupts = 0;
1382
1383 /*
1384 * unthrottle events on the tick
1385 */
1386 if (interrupts == MAX_INTERRUPTS) {
1387 perf_log_throttle(event, 1);
1388 event->pmu->unthrottle(event);
1389 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1390 }
1391
1392 if (!event->attr.freq || !event->attr.sample_freq)
1393 continue;
1394
1395 /*
1396 * if the specified freq < HZ then we need to skip ticks
1397 */
1398 if (event->attr.sample_freq < HZ) {
1399 freq = event->attr.sample_freq;
1400
1401 hwc->freq_count += freq;
1402 hwc->freq_interrupts += interrupts;
1403
1404 if (hwc->freq_count < HZ)
1405 continue;
1406
1407 interrupts = hwc->freq_interrupts;
1408 hwc->freq_interrupts = 0;
1409 hwc->freq_count -= HZ;
1410 } else
1411 freq = HZ;
1412
1413 perf_adjust_period(event, freq * interrupts);
1414
1415 /*
1416 * In order to avoid being stalled by an (accidental) huge
1417 * sample period, force reset the sample period if we didn't
1418 * get any events in this freq period.
1419 */
1420 if (!interrupts) {
1421 perf_disable();
1422 event->pmu->disable(event);
1423 atomic64_set(&hwc->period_left, 0);
1424 event->pmu->enable(event);
1425 perf_enable();
1426 }
1427 }
1428 spin_unlock(&ctx->lock);
1429}
1430
1431/*
1432 * Round-robin a context's events:
1433 */
1434static void rotate_ctx(struct perf_event_context *ctx)
1435{
1436 struct perf_event *event;
1437
1438 if (!ctx->nr_events)
1439 return;
1440
1441 spin_lock(&ctx->lock);
1442 /*
1443 * Rotate the first entry last (works just fine for group events too):
1444 */
1445 perf_disable();
1446 list_for_each_entry(event, &ctx->group_list, group_entry) {
1447 list_move_tail(&event->group_entry, &ctx->group_list);
1448 break;
1449 }
1450 perf_enable();
1451
1452 spin_unlock(&ctx->lock);
1453}
1454
1455void perf_event_task_tick(struct task_struct *curr, int cpu)
1456{
1457 struct perf_cpu_context *cpuctx;
1458 struct perf_event_context *ctx;
1459
1460 if (!atomic_read(&nr_events))
1461 return;
1462
1463 cpuctx = &per_cpu(perf_cpu_context, cpu);
1464 ctx = curr->perf_event_ctxp;
1465
1466 perf_ctx_adjust_freq(&cpuctx->ctx);
1467 if (ctx)
1468 perf_ctx_adjust_freq(ctx);
1469
1470 perf_event_cpu_sched_out(cpuctx);
1471 if (ctx)
1472 __perf_event_task_sched_out(ctx);
1473
1474 rotate_ctx(&cpuctx->ctx);
1475 if (ctx)
1476 rotate_ctx(ctx);
1477
1478 perf_event_cpu_sched_in(cpuctx, cpu);
1479 if (ctx)
1480 perf_event_task_sched_in(curr, cpu);
1481}
1482
1483/*
1484 * Enable all of a task's events that have been marked enable-on-exec.
1485 * This expects task == current.
1486 */
1487static void perf_event_enable_on_exec(struct task_struct *task)
1488{
1489 struct perf_event_context *ctx;
1490 struct perf_event *event;
1491 unsigned long flags;
1492 int enabled = 0;
1493
1494 local_irq_save(flags);
1495 ctx = task->perf_event_ctxp;
1496 if (!ctx || !ctx->nr_events)
1497 goto out;
1498
1499 __perf_event_task_sched_out(ctx);
1500
1501 spin_lock(&ctx->lock);
1502
1503 list_for_each_entry(event, &ctx->group_list, group_entry) {
1504 if (!event->attr.enable_on_exec)
1505 continue;
1506 event->attr.enable_on_exec = 0;
1507 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1508 continue;
1509 __perf_event_mark_enabled(event, ctx);
1510 enabled = 1;
1511 }
1512
1513 /*
1514 * Unclone this context if we enabled any event.
1515 */
1516 if (enabled)
1517 unclone_ctx(ctx);
1518
1519 spin_unlock(&ctx->lock);
1520
1521 perf_event_task_sched_in(task, smp_processor_id());
1522 out:
1523 local_irq_restore(flags);
1524}
1525
1526/*
1527 * Cross CPU call to read the hardware event
1528 */
1529static void __perf_event_read(void *info)
1530{
1531 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1532 struct perf_event *event = info;
1533 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001534
1535 /*
1536 * If this is a task context, we need to check whether it is
1537 * the current task context of this cpu. If not it has been
1538 * scheduled out before the smp call arrived. In that case
1539 * event->count would have been updated to a recent sample
1540 * when the event was scheduled out.
1541 */
1542 if (ctx->task && cpuctx->task_ctx != ctx)
1543 return;
1544
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001545 spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001546 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001547 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001548 spin_unlock(&ctx->lock);
1549
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001550 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001551}
1552
1553static u64 perf_event_read(struct perf_event *event)
1554{
1555 /*
1556 * If event is enabled and currently active on a CPU, update the
1557 * value in the event structure:
1558 */
1559 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1560 smp_call_function_single(event->oncpu,
1561 __perf_event_read, event, 1);
1562 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001563 struct perf_event_context *ctx = event->ctx;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&ctx->lock, flags);
1567 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001568 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001569 spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001570 }
1571
1572 return atomic64_read(&event->count);
1573}
1574
1575/*
1576 * Initialize the perf_event context in a task_struct:
1577 */
1578static void
1579__perf_event_init_context(struct perf_event_context *ctx,
1580 struct task_struct *task)
1581{
1582 memset(ctx, 0, sizeof(*ctx));
1583 spin_lock_init(&ctx->lock);
1584 mutex_init(&ctx->mutex);
1585 INIT_LIST_HEAD(&ctx->group_list);
1586 INIT_LIST_HEAD(&ctx->event_list);
1587 atomic_set(&ctx->refcount, 1);
1588 ctx->task = task;
1589}
1590
1591static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1592{
1593 struct perf_event_context *ctx;
1594 struct perf_cpu_context *cpuctx;
1595 struct task_struct *task;
1596 unsigned long flags;
1597 int err;
1598
1599 /*
1600 * If cpu is not a wildcard then this is a percpu event:
1601 */
1602 if (cpu != -1) {
1603 /* Must be root to operate on a CPU event: */
1604 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1605 return ERR_PTR(-EACCES);
1606
1607 if (cpu < 0 || cpu > num_possible_cpus())
1608 return ERR_PTR(-EINVAL);
1609
1610 /*
1611 * We could be clever and allow to attach a event to an
1612 * offline CPU and activate it when the CPU comes up, but
1613 * that's for later.
1614 */
1615 if (!cpu_isset(cpu, cpu_online_map))
1616 return ERR_PTR(-ENODEV);
1617
1618 cpuctx = &per_cpu(perf_cpu_context, cpu);
1619 ctx = &cpuctx->ctx;
1620 get_ctx(ctx);
1621
1622 return ctx;
1623 }
1624
1625 rcu_read_lock();
1626 if (!pid)
1627 task = current;
1628 else
1629 task = find_task_by_vpid(pid);
1630 if (task)
1631 get_task_struct(task);
1632 rcu_read_unlock();
1633
1634 if (!task)
1635 return ERR_PTR(-ESRCH);
1636
1637 /*
1638 * Can't attach events to a dying task.
1639 */
1640 err = -ESRCH;
1641 if (task->flags & PF_EXITING)
1642 goto errout;
1643
1644 /* Reuse ptrace permission checks for now. */
1645 err = -EACCES;
1646 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1647 goto errout;
1648
1649 retry:
1650 ctx = perf_lock_task_context(task, &flags);
1651 if (ctx) {
1652 unclone_ctx(ctx);
1653 spin_unlock_irqrestore(&ctx->lock, flags);
1654 }
1655
1656 if (!ctx) {
1657 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1658 err = -ENOMEM;
1659 if (!ctx)
1660 goto errout;
1661 __perf_event_init_context(ctx, task);
1662 get_ctx(ctx);
1663 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1664 /*
1665 * We raced with some other task; use
1666 * the context they set.
1667 */
1668 kfree(ctx);
1669 goto retry;
1670 }
1671 get_task_struct(task);
1672 }
1673
1674 put_task_struct(task);
1675 return ctx;
1676
1677 errout:
1678 put_task_struct(task);
1679 return ERR_PTR(err);
1680}
1681
Li Zefan6fb29152009-10-15 11:21:42 +08001682static void perf_event_free_filter(struct perf_event *event);
1683
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001684static void free_event_rcu(struct rcu_head *head)
1685{
1686 struct perf_event *event;
1687
1688 event = container_of(head, struct perf_event, rcu_head);
1689 if (event->ns)
1690 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001691 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001692 kfree(event);
1693}
1694
1695static void perf_pending_sync(struct perf_event *event);
1696
1697static void free_event(struct perf_event *event)
1698{
1699 perf_pending_sync(event);
1700
1701 if (!event->parent) {
1702 atomic_dec(&nr_events);
1703 if (event->attr.mmap)
1704 atomic_dec(&nr_mmap_events);
1705 if (event->attr.comm)
1706 atomic_dec(&nr_comm_events);
1707 if (event->attr.task)
1708 atomic_dec(&nr_task_events);
1709 }
1710
1711 if (event->output) {
1712 fput(event->output->filp);
1713 event->output = NULL;
1714 }
1715
1716 if (event->destroy)
1717 event->destroy(event);
1718
1719 put_ctx(event->ctx);
1720 call_rcu(&event->rcu_head, free_event_rcu);
1721}
1722
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001723int perf_event_release_kernel(struct perf_event *event)
1724{
1725 struct perf_event_context *ctx = event->ctx;
1726
1727 WARN_ON_ONCE(ctx->parent_ctx);
1728 mutex_lock(&ctx->mutex);
1729 perf_event_remove_from_context(event);
1730 mutex_unlock(&ctx->mutex);
1731
1732 mutex_lock(&event->owner->perf_event_mutex);
1733 list_del_init(&event->owner_entry);
1734 mutex_unlock(&event->owner->perf_event_mutex);
1735 put_task_struct(event->owner);
1736
1737 free_event(event);
1738
1739 return 0;
1740}
1741EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1742
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001743/*
1744 * Called when the last reference to the file is gone.
1745 */
1746static int perf_release(struct inode *inode, struct file *file)
1747{
1748 struct perf_event *event = file->private_data;
1749
1750 file->private_data = NULL;
1751
1752 return perf_event_release_kernel(event);
1753}
1754
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001755static int perf_event_read_size(struct perf_event *event)
1756{
1757 int entry = sizeof(u64); /* value */
1758 int size = 0;
1759 int nr = 1;
1760
1761 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1762 size += sizeof(u64);
1763
1764 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1765 size += sizeof(u64);
1766
1767 if (event->attr.read_format & PERF_FORMAT_ID)
1768 entry += sizeof(u64);
1769
1770 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1771 nr += event->group_leader->nr_siblings;
1772 size += sizeof(u64);
1773 }
1774
1775 size += entry * nr;
1776
1777 return size;
1778}
1779
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001780u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001781{
1782 struct perf_event *child;
1783 u64 total = 0;
1784
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001785 *enabled = 0;
1786 *running = 0;
1787
Peter Zijlstra6f105812009-11-20 22:19:56 +01001788 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001789 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001790 *enabled += event->total_time_enabled +
1791 atomic64_read(&event->child_total_time_enabled);
1792 *running += event->total_time_running +
1793 atomic64_read(&event->child_total_time_running);
1794
1795 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001796 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001797 *enabled += child->total_time_enabled;
1798 *running += child->total_time_running;
1799 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001800 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001801
1802 return total;
1803}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001804EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001805
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001806static int perf_event_read_group(struct perf_event *event,
1807 u64 read_format, char __user *buf)
1808{
1809 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001810 int n = 0, size = 0, ret = -EFAULT;
1811 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001812 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001813 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001814
Peter Zijlstra6f105812009-11-20 22:19:56 +01001815 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001816 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001817
1818 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001819 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1820 values[n++] = enabled;
1821 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1822 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001823 values[n++] = count;
1824 if (read_format & PERF_FORMAT_ID)
1825 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001826
1827 size = n * sizeof(u64);
1828
1829 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001830 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001831
Peter Zijlstra6f105812009-11-20 22:19:56 +01001832 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001833
1834 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001835 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001836
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001837 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001838 if (read_format & PERF_FORMAT_ID)
1839 values[n++] = primary_event_id(sub);
1840
1841 size = n * sizeof(u64);
1842
Stephane Eranian184d3da2009-11-23 21:40:49 -08001843 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001844 ret = -EFAULT;
1845 goto unlock;
1846 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001847
1848 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001849 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001850unlock:
1851 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001852
Peter Zijlstraabf48682009-11-20 22:19:49 +01001853 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001854}
1855
1856static int perf_event_read_one(struct perf_event *event,
1857 u64 read_format, char __user *buf)
1858{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001859 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001860 u64 values[4];
1861 int n = 0;
1862
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001863 values[n++] = perf_event_read_value(event, &enabled, &running);
1864 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1865 values[n++] = enabled;
1866 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1867 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001868 if (read_format & PERF_FORMAT_ID)
1869 values[n++] = primary_event_id(event);
1870
1871 if (copy_to_user(buf, values, n * sizeof(u64)))
1872 return -EFAULT;
1873
1874 return n * sizeof(u64);
1875}
1876
1877/*
1878 * Read the performance event - simple non blocking version for now
1879 */
1880static ssize_t
1881perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1882{
1883 u64 read_format = event->attr.read_format;
1884 int ret;
1885
1886 /*
1887 * Return end-of-file for a read on a event that is in
1888 * error state (i.e. because it was pinned but it couldn't be
1889 * scheduled on to the CPU at some point).
1890 */
1891 if (event->state == PERF_EVENT_STATE_ERROR)
1892 return 0;
1893
1894 if (count < perf_event_read_size(event))
1895 return -ENOSPC;
1896
1897 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001898 if (read_format & PERF_FORMAT_GROUP)
1899 ret = perf_event_read_group(event, read_format, buf);
1900 else
1901 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001902
1903 return ret;
1904}
1905
1906static ssize_t
1907perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1908{
1909 struct perf_event *event = file->private_data;
1910
1911 return perf_read_hw(event, buf, count);
1912}
1913
1914static unsigned int perf_poll(struct file *file, poll_table *wait)
1915{
1916 struct perf_event *event = file->private_data;
1917 struct perf_mmap_data *data;
1918 unsigned int events = POLL_HUP;
1919
1920 rcu_read_lock();
1921 data = rcu_dereference(event->data);
1922 if (data)
1923 events = atomic_xchg(&data->poll, 0);
1924 rcu_read_unlock();
1925
1926 poll_wait(file, &event->waitq, wait);
1927
1928 return events;
1929}
1930
1931static void perf_event_reset(struct perf_event *event)
1932{
1933 (void)perf_event_read(event);
1934 atomic64_set(&event->count, 0);
1935 perf_event_update_userpage(event);
1936}
1937
1938/*
1939 * Holding the top-level event's child_mutex means that any
1940 * descendant process that has inherited this event will block
1941 * in sync_child_event if it goes to exit, thus satisfying the
1942 * task existence requirements of perf_event_enable/disable.
1943 */
1944static void perf_event_for_each_child(struct perf_event *event,
1945 void (*func)(struct perf_event *))
1946{
1947 struct perf_event *child;
1948
1949 WARN_ON_ONCE(event->ctx->parent_ctx);
1950 mutex_lock(&event->child_mutex);
1951 func(event);
1952 list_for_each_entry(child, &event->child_list, child_list)
1953 func(child);
1954 mutex_unlock(&event->child_mutex);
1955}
1956
1957static void perf_event_for_each(struct perf_event *event,
1958 void (*func)(struct perf_event *))
1959{
1960 struct perf_event_context *ctx = event->ctx;
1961 struct perf_event *sibling;
1962
1963 WARN_ON_ONCE(ctx->parent_ctx);
1964 mutex_lock(&ctx->mutex);
1965 event = event->group_leader;
1966
1967 perf_event_for_each_child(event, func);
1968 func(event);
1969 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1970 perf_event_for_each_child(event, func);
1971 mutex_unlock(&ctx->mutex);
1972}
1973
1974static int perf_event_period(struct perf_event *event, u64 __user *arg)
1975{
1976 struct perf_event_context *ctx = event->ctx;
1977 unsigned long size;
1978 int ret = 0;
1979 u64 value;
1980
1981 if (!event->attr.sample_period)
1982 return -EINVAL;
1983
1984 size = copy_from_user(&value, arg, sizeof(value));
1985 if (size != sizeof(value))
1986 return -EFAULT;
1987
1988 if (!value)
1989 return -EINVAL;
1990
1991 spin_lock_irq(&ctx->lock);
1992 if (event->attr.freq) {
1993 if (value > sysctl_perf_event_sample_rate) {
1994 ret = -EINVAL;
1995 goto unlock;
1996 }
1997
1998 event->attr.sample_freq = value;
1999 } else {
2000 event->attr.sample_period = value;
2001 event->hw.sample_period = value;
2002 }
2003unlock:
2004 spin_unlock_irq(&ctx->lock);
2005
2006 return ret;
2007}
2008
Li Zefan6fb29152009-10-15 11:21:42 +08002009static int perf_event_set_output(struct perf_event *event, int output_fd);
2010static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002011
2012static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2013{
2014 struct perf_event *event = file->private_data;
2015 void (*func)(struct perf_event *);
2016 u32 flags = arg;
2017
2018 switch (cmd) {
2019 case PERF_EVENT_IOC_ENABLE:
2020 func = perf_event_enable;
2021 break;
2022 case PERF_EVENT_IOC_DISABLE:
2023 func = perf_event_disable;
2024 break;
2025 case PERF_EVENT_IOC_RESET:
2026 func = perf_event_reset;
2027 break;
2028
2029 case PERF_EVENT_IOC_REFRESH:
2030 return perf_event_refresh(event, arg);
2031
2032 case PERF_EVENT_IOC_PERIOD:
2033 return perf_event_period(event, (u64 __user *)arg);
2034
2035 case PERF_EVENT_IOC_SET_OUTPUT:
2036 return perf_event_set_output(event, arg);
2037
Li Zefan6fb29152009-10-15 11:21:42 +08002038 case PERF_EVENT_IOC_SET_FILTER:
2039 return perf_event_set_filter(event, (void __user *)arg);
2040
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002041 default:
2042 return -ENOTTY;
2043 }
2044
2045 if (flags & PERF_IOC_FLAG_GROUP)
2046 perf_event_for_each(event, func);
2047 else
2048 perf_event_for_each_child(event, func);
2049
2050 return 0;
2051}
2052
2053int perf_event_task_enable(void)
2054{
2055 struct perf_event *event;
2056
2057 mutex_lock(&current->perf_event_mutex);
2058 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2059 perf_event_for_each_child(event, perf_event_enable);
2060 mutex_unlock(&current->perf_event_mutex);
2061
2062 return 0;
2063}
2064
2065int perf_event_task_disable(void)
2066{
2067 struct perf_event *event;
2068
2069 mutex_lock(&current->perf_event_mutex);
2070 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2071 perf_event_for_each_child(event, perf_event_disable);
2072 mutex_unlock(&current->perf_event_mutex);
2073
2074 return 0;
2075}
2076
2077#ifndef PERF_EVENT_INDEX_OFFSET
2078# define PERF_EVENT_INDEX_OFFSET 0
2079#endif
2080
2081static int perf_event_index(struct perf_event *event)
2082{
2083 if (event->state != PERF_EVENT_STATE_ACTIVE)
2084 return 0;
2085
2086 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2087}
2088
2089/*
2090 * Callers need to ensure there can be no nesting of this function, otherwise
2091 * the seqlock logic goes bad. We can not serialize this because the arch
2092 * code calls this from NMI context.
2093 */
2094void perf_event_update_userpage(struct perf_event *event)
2095{
2096 struct perf_event_mmap_page *userpg;
2097 struct perf_mmap_data *data;
2098
2099 rcu_read_lock();
2100 data = rcu_dereference(event->data);
2101 if (!data)
2102 goto unlock;
2103
2104 userpg = data->user_page;
2105
2106 /*
2107 * Disable preemption so as to not let the corresponding user-space
2108 * spin too long if we get preempted.
2109 */
2110 preempt_disable();
2111 ++userpg->lock;
2112 barrier();
2113 userpg->index = perf_event_index(event);
2114 userpg->offset = atomic64_read(&event->count);
2115 if (event->state == PERF_EVENT_STATE_ACTIVE)
2116 userpg->offset -= atomic64_read(&event->hw.prev_count);
2117
2118 userpg->time_enabled = event->total_time_enabled +
2119 atomic64_read(&event->child_total_time_enabled);
2120
2121 userpg->time_running = event->total_time_running +
2122 atomic64_read(&event->child_total_time_running);
2123
2124 barrier();
2125 ++userpg->lock;
2126 preempt_enable();
2127unlock:
2128 rcu_read_unlock();
2129}
2130
Peter Zijlstra906010b2009-09-21 16:08:49 +02002131static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002132{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002133 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002134}
2135
Peter Zijlstra906010b2009-09-21 16:08:49 +02002136#ifndef CONFIG_PERF_USE_VMALLOC
2137
2138/*
2139 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2140 */
2141
2142static struct page *
2143perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2144{
2145 if (pgoff > data->nr_pages)
2146 return NULL;
2147
2148 if (pgoff == 0)
2149 return virt_to_page(data->user_page);
2150
2151 return virt_to_page(data->data_pages[pgoff - 1]);
2152}
2153
2154static struct perf_mmap_data *
2155perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002156{
2157 struct perf_mmap_data *data;
2158 unsigned long size;
2159 int i;
2160
2161 WARN_ON(atomic_read(&event->mmap_count));
2162
2163 size = sizeof(struct perf_mmap_data);
2164 size += nr_pages * sizeof(void *);
2165
2166 data = kzalloc(size, GFP_KERNEL);
2167 if (!data)
2168 goto fail;
2169
2170 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2171 if (!data->user_page)
2172 goto fail_user_page;
2173
2174 for (i = 0; i < nr_pages; i++) {
2175 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2176 if (!data->data_pages[i])
2177 goto fail_data_pages;
2178 }
2179
Peter Zijlstra906010b2009-09-21 16:08:49 +02002180 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002181 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002182
Peter Zijlstra906010b2009-09-21 16:08:49 +02002183 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002184
2185fail_data_pages:
2186 for (i--; i >= 0; i--)
2187 free_page((unsigned long)data->data_pages[i]);
2188
2189 free_page((unsigned long)data->user_page);
2190
2191fail_user_page:
2192 kfree(data);
2193
2194fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002195 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002196}
2197
2198static void perf_mmap_free_page(unsigned long addr)
2199{
2200 struct page *page = virt_to_page((void *)addr);
2201
2202 page->mapping = NULL;
2203 __free_page(page);
2204}
2205
Peter Zijlstra906010b2009-09-21 16:08:49 +02002206static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002207{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002208 int i;
2209
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002210 perf_mmap_free_page((unsigned long)data->user_page);
2211 for (i = 0; i < data->nr_pages; i++)
2212 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002213}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002214
Peter Zijlstra906010b2009-09-21 16:08:49 +02002215#else
2216
2217/*
2218 * Back perf_mmap() with vmalloc memory.
2219 *
2220 * Required for architectures that have d-cache aliasing issues.
2221 */
2222
2223static struct page *
2224perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2225{
2226 if (pgoff > (1UL << data->data_order))
2227 return NULL;
2228
2229 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2230}
2231
2232static void perf_mmap_unmark_page(void *addr)
2233{
2234 struct page *page = vmalloc_to_page(addr);
2235
2236 page->mapping = NULL;
2237}
2238
2239static void perf_mmap_data_free_work(struct work_struct *work)
2240{
2241 struct perf_mmap_data *data;
2242 void *base;
2243 int i, nr;
2244
2245 data = container_of(work, struct perf_mmap_data, work);
2246 nr = 1 << data->data_order;
2247
2248 base = data->user_page;
2249 for (i = 0; i < nr + 1; i++)
2250 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2251
2252 vfree(base);
2253}
2254
2255static void perf_mmap_data_free(struct perf_mmap_data *data)
2256{
2257 schedule_work(&data->work);
2258}
2259
2260static struct perf_mmap_data *
2261perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2262{
2263 struct perf_mmap_data *data;
2264 unsigned long size;
2265 void *all_buf;
2266
2267 WARN_ON(atomic_read(&event->mmap_count));
2268
2269 size = sizeof(struct perf_mmap_data);
2270 size += sizeof(void *);
2271
2272 data = kzalloc(size, GFP_KERNEL);
2273 if (!data)
2274 goto fail;
2275
2276 INIT_WORK(&data->work, perf_mmap_data_free_work);
2277
2278 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2279 if (!all_buf)
2280 goto fail_all_buf;
2281
2282 data->user_page = all_buf;
2283 data->data_pages[0] = all_buf + PAGE_SIZE;
2284 data->data_order = ilog2(nr_pages);
2285 data->nr_pages = 1;
2286
2287 return data;
2288
2289fail_all_buf:
2290 kfree(data);
2291
2292fail:
2293 return NULL;
2294}
2295
2296#endif
2297
2298static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2299{
2300 struct perf_event *event = vma->vm_file->private_data;
2301 struct perf_mmap_data *data;
2302 int ret = VM_FAULT_SIGBUS;
2303
2304 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2305 if (vmf->pgoff == 0)
2306 ret = 0;
2307 return ret;
2308 }
2309
2310 rcu_read_lock();
2311 data = rcu_dereference(event->data);
2312 if (!data)
2313 goto unlock;
2314
2315 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2316 goto unlock;
2317
2318 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2319 if (!vmf->page)
2320 goto unlock;
2321
2322 get_page(vmf->page);
2323 vmf->page->mapping = vma->vm_file->f_mapping;
2324 vmf->page->index = vmf->pgoff;
2325
2326 ret = 0;
2327unlock:
2328 rcu_read_unlock();
2329
2330 return ret;
2331}
2332
2333static void
2334perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2335{
2336 long max_size = perf_data_size(data);
2337
2338 atomic_set(&data->lock, -1);
2339
2340 if (event->attr.watermark) {
2341 data->watermark = min_t(long, max_size,
2342 event->attr.wakeup_watermark);
2343 }
2344
2345 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002346 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002347
2348
2349 rcu_assign_pointer(event->data, data);
2350}
2351
2352static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2353{
2354 struct perf_mmap_data *data;
2355
2356 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2357 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002358 kfree(data);
2359}
2360
Peter Zijlstra906010b2009-09-21 16:08:49 +02002361static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002362{
2363 struct perf_mmap_data *data = event->data;
2364
2365 WARN_ON(atomic_read(&event->mmap_count));
2366
2367 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002368 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002369}
2370
2371static void perf_mmap_open(struct vm_area_struct *vma)
2372{
2373 struct perf_event *event = vma->vm_file->private_data;
2374
2375 atomic_inc(&event->mmap_count);
2376}
2377
2378static void perf_mmap_close(struct vm_area_struct *vma)
2379{
2380 struct perf_event *event = vma->vm_file->private_data;
2381
2382 WARN_ON_ONCE(event->ctx->parent_ctx);
2383 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002384 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002385 struct user_struct *user = current_user();
2386
Peter Zijlstra906010b2009-09-21 16:08:49 +02002387 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002388 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002389 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002390 mutex_unlock(&event->mmap_mutex);
2391 }
2392}
2393
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002394static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002395 .open = perf_mmap_open,
2396 .close = perf_mmap_close,
2397 .fault = perf_mmap_fault,
2398 .page_mkwrite = perf_mmap_fault,
2399};
2400
2401static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2402{
2403 struct perf_event *event = file->private_data;
2404 unsigned long user_locked, user_lock_limit;
2405 struct user_struct *user = current_user();
2406 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002407 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002408 unsigned long vma_size;
2409 unsigned long nr_pages;
2410 long user_extra, extra;
2411 int ret = 0;
2412
2413 if (!(vma->vm_flags & VM_SHARED))
2414 return -EINVAL;
2415
2416 vma_size = vma->vm_end - vma->vm_start;
2417 nr_pages = (vma_size / PAGE_SIZE) - 1;
2418
2419 /*
2420 * If we have data pages ensure they're a power-of-two number, so we
2421 * can do bitmasks instead of modulo.
2422 */
2423 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2424 return -EINVAL;
2425
2426 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2427 return -EINVAL;
2428
2429 if (vma->vm_pgoff != 0)
2430 return -EINVAL;
2431
2432 WARN_ON_ONCE(event->ctx->parent_ctx);
2433 mutex_lock(&event->mmap_mutex);
2434 if (event->output) {
2435 ret = -EINVAL;
2436 goto unlock;
2437 }
2438
2439 if (atomic_inc_not_zero(&event->mmap_count)) {
2440 if (nr_pages != event->data->nr_pages)
2441 ret = -EINVAL;
2442 goto unlock;
2443 }
2444
2445 user_extra = nr_pages + 1;
2446 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2447
2448 /*
2449 * Increase the limit linearly with more CPUs:
2450 */
2451 user_lock_limit *= num_online_cpus();
2452
2453 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2454
2455 extra = 0;
2456 if (user_locked > user_lock_limit)
2457 extra = user_locked - user_lock_limit;
2458
2459 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2460 lock_limit >>= PAGE_SHIFT;
2461 locked = vma->vm_mm->locked_vm + extra;
2462
2463 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2464 !capable(CAP_IPC_LOCK)) {
2465 ret = -EPERM;
2466 goto unlock;
2467 }
2468
2469 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002470
2471 data = perf_mmap_data_alloc(event, nr_pages);
2472 ret = -ENOMEM;
2473 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002474 goto unlock;
2475
Peter Zijlstra906010b2009-09-21 16:08:49 +02002476 ret = 0;
2477 perf_mmap_data_init(event, data);
2478
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002479 atomic_set(&event->mmap_count, 1);
2480 atomic_long_add(user_extra, &user->locked_vm);
2481 vma->vm_mm->locked_vm += extra;
2482 event->data->nr_locked = extra;
2483 if (vma->vm_flags & VM_WRITE)
2484 event->data->writable = 1;
2485
2486unlock:
2487 mutex_unlock(&event->mmap_mutex);
2488
2489 vma->vm_flags |= VM_RESERVED;
2490 vma->vm_ops = &perf_mmap_vmops;
2491
2492 return ret;
2493}
2494
2495static int perf_fasync(int fd, struct file *filp, int on)
2496{
2497 struct inode *inode = filp->f_path.dentry->d_inode;
2498 struct perf_event *event = filp->private_data;
2499 int retval;
2500
2501 mutex_lock(&inode->i_mutex);
2502 retval = fasync_helper(fd, filp, on, &event->fasync);
2503 mutex_unlock(&inode->i_mutex);
2504
2505 if (retval < 0)
2506 return retval;
2507
2508 return 0;
2509}
2510
2511static const struct file_operations perf_fops = {
2512 .release = perf_release,
2513 .read = perf_read,
2514 .poll = perf_poll,
2515 .unlocked_ioctl = perf_ioctl,
2516 .compat_ioctl = perf_ioctl,
2517 .mmap = perf_mmap,
2518 .fasync = perf_fasync,
2519};
2520
2521/*
2522 * Perf event wakeup
2523 *
2524 * If there's data, ensure we set the poll() state and publish everything
2525 * to user-space before waking everybody up.
2526 */
2527
2528void perf_event_wakeup(struct perf_event *event)
2529{
2530 wake_up_all(&event->waitq);
2531
2532 if (event->pending_kill) {
2533 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2534 event->pending_kill = 0;
2535 }
2536}
2537
2538/*
2539 * Pending wakeups
2540 *
2541 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2542 *
2543 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2544 * single linked list and use cmpxchg() to add entries lockless.
2545 */
2546
2547static void perf_pending_event(struct perf_pending_entry *entry)
2548{
2549 struct perf_event *event = container_of(entry,
2550 struct perf_event, pending);
2551
2552 if (event->pending_disable) {
2553 event->pending_disable = 0;
2554 __perf_event_disable(event);
2555 }
2556
2557 if (event->pending_wakeup) {
2558 event->pending_wakeup = 0;
2559 perf_event_wakeup(event);
2560 }
2561}
2562
2563#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2564
2565static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2566 PENDING_TAIL,
2567};
2568
2569static void perf_pending_queue(struct perf_pending_entry *entry,
2570 void (*func)(struct perf_pending_entry *))
2571{
2572 struct perf_pending_entry **head;
2573
2574 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2575 return;
2576
2577 entry->func = func;
2578
2579 head = &get_cpu_var(perf_pending_head);
2580
2581 do {
2582 entry->next = *head;
2583 } while (cmpxchg(head, entry->next, entry) != entry->next);
2584
2585 set_perf_event_pending();
2586
2587 put_cpu_var(perf_pending_head);
2588}
2589
2590static int __perf_pending_run(void)
2591{
2592 struct perf_pending_entry *list;
2593 int nr = 0;
2594
2595 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2596 while (list != PENDING_TAIL) {
2597 void (*func)(struct perf_pending_entry *);
2598 struct perf_pending_entry *entry = list;
2599
2600 list = list->next;
2601
2602 func = entry->func;
2603 entry->next = NULL;
2604 /*
2605 * Ensure we observe the unqueue before we issue the wakeup,
2606 * so that we won't be waiting forever.
2607 * -- see perf_not_pending().
2608 */
2609 smp_wmb();
2610
2611 func(entry);
2612 nr++;
2613 }
2614
2615 return nr;
2616}
2617
2618static inline int perf_not_pending(struct perf_event *event)
2619{
2620 /*
2621 * If we flush on whatever cpu we run, there is a chance we don't
2622 * need to wait.
2623 */
2624 get_cpu();
2625 __perf_pending_run();
2626 put_cpu();
2627
2628 /*
2629 * Ensure we see the proper queue state before going to sleep
2630 * so that we do not miss the wakeup. -- see perf_pending_handle()
2631 */
2632 smp_rmb();
2633 return event->pending.next == NULL;
2634}
2635
2636static void perf_pending_sync(struct perf_event *event)
2637{
2638 wait_event(event->waitq, perf_not_pending(event));
2639}
2640
2641void perf_event_do_pending(void)
2642{
2643 __perf_pending_run();
2644}
2645
2646/*
2647 * Callchain support -- arch specific
2648 */
2649
2650__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2651{
2652 return NULL;
2653}
2654
2655/*
2656 * Output
2657 */
2658static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2659 unsigned long offset, unsigned long head)
2660{
2661 unsigned long mask;
2662
2663 if (!data->writable)
2664 return true;
2665
Peter Zijlstra906010b2009-09-21 16:08:49 +02002666 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002667
2668 offset = (offset - tail) & mask;
2669 head = (head - tail) & mask;
2670
2671 if ((int)(head - offset) < 0)
2672 return false;
2673
2674 return true;
2675}
2676
2677static void perf_output_wakeup(struct perf_output_handle *handle)
2678{
2679 atomic_set(&handle->data->poll, POLL_IN);
2680
2681 if (handle->nmi) {
2682 handle->event->pending_wakeup = 1;
2683 perf_pending_queue(&handle->event->pending,
2684 perf_pending_event);
2685 } else
2686 perf_event_wakeup(handle->event);
2687}
2688
2689/*
2690 * Curious locking construct.
2691 *
2692 * We need to ensure a later event_id doesn't publish a head when a former
2693 * event_id isn't done writing. However since we need to deal with NMIs we
2694 * cannot fully serialize things.
2695 *
2696 * What we do is serialize between CPUs so we only have to deal with NMI
2697 * nesting on a single CPU.
2698 *
2699 * We only publish the head (and generate a wakeup) when the outer-most
2700 * event_id completes.
2701 */
2702static void perf_output_lock(struct perf_output_handle *handle)
2703{
2704 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002705 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002706
2707 handle->locked = 0;
2708
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002709 for (;;) {
2710 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2711 if (cur == -1) {
2712 handle->locked = 1;
2713 break;
2714 }
2715 if (cur == cpu)
2716 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002717
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002718 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002719 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002720}
2721
2722static void perf_output_unlock(struct perf_output_handle *handle)
2723{
2724 struct perf_mmap_data *data = handle->data;
2725 unsigned long head;
2726 int cpu;
2727
2728 data->done_head = data->head;
2729
2730 if (!handle->locked)
2731 goto out;
2732
2733again:
2734 /*
2735 * The xchg implies a full barrier that ensures all writes are done
2736 * before we publish the new head, matched by a rmb() in userspace when
2737 * reading this position.
2738 */
2739 while ((head = atomic_long_xchg(&data->done_head, 0)))
2740 data->user_page->data_head = head;
2741
2742 /*
2743 * NMI can happen here, which means we can miss a done_head update.
2744 */
2745
2746 cpu = atomic_xchg(&data->lock, -1);
2747 WARN_ON_ONCE(cpu != smp_processor_id());
2748
2749 /*
2750 * Therefore we have to validate we did not indeed do so.
2751 */
2752 if (unlikely(atomic_long_read(&data->done_head))) {
2753 /*
2754 * Since we had it locked, we can lock it again.
2755 */
2756 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2757 cpu_relax();
2758
2759 goto again;
2760 }
2761
2762 if (atomic_xchg(&data->wakeup, 0))
2763 perf_output_wakeup(handle);
2764out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002765 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002766}
2767
2768void perf_output_copy(struct perf_output_handle *handle,
2769 const void *buf, unsigned int len)
2770{
2771 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002772 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002773 unsigned int size;
2774 void **pages;
2775
2776 offset = handle->offset;
2777 pages_mask = handle->data->nr_pages - 1;
2778 pages = handle->data->data_pages;
2779
2780 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002781 unsigned long page_offset;
2782 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002783 int nr;
2784
2785 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002786 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2787 page_offset = offset & (page_size - 1);
2788 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002789
2790 memcpy(pages[nr] + page_offset, buf, size);
2791
2792 len -= size;
2793 buf += size;
2794 offset += size;
2795 } while (len);
2796
2797 handle->offset = offset;
2798
2799 /*
2800 * Check we didn't copy past our reservation window, taking the
2801 * possible unsigned int wrap into account.
2802 */
2803 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2804}
2805
2806int perf_output_begin(struct perf_output_handle *handle,
2807 struct perf_event *event, unsigned int size,
2808 int nmi, int sample)
2809{
2810 struct perf_event *output_event;
2811 struct perf_mmap_data *data;
2812 unsigned long tail, offset, head;
2813 int have_lost;
2814 struct {
2815 struct perf_event_header header;
2816 u64 id;
2817 u64 lost;
2818 } lost_event;
2819
2820 rcu_read_lock();
2821 /*
2822 * For inherited events we send all the output towards the parent.
2823 */
2824 if (event->parent)
2825 event = event->parent;
2826
2827 output_event = rcu_dereference(event->output);
2828 if (output_event)
2829 event = output_event;
2830
2831 data = rcu_dereference(event->data);
2832 if (!data)
2833 goto out;
2834
2835 handle->data = data;
2836 handle->event = event;
2837 handle->nmi = nmi;
2838 handle->sample = sample;
2839
2840 if (!data->nr_pages)
2841 goto fail;
2842
2843 have_lost = atomic_read(&data->lost);
2844 if (have_lost)
2845 size += sizeof(lost_event);
2846
2847 perf_output_lock(handle);
2848
2849 do {
2850 /*
2851 * Userspace could choose to issue a mb() before updating the
2852 * tail pointer. So that all reads will be completed before the
2853 * write is issued.
2854 */
2855 tail = ACCESS_ONCE(data->user_page->data_tail);
2856 smp_rmb();
2857 offset = head = atomic_long_read(&data->head);
2858 head += size;
2859 if (unlikely(!perf_output_space(data, tail, offset, head)))
2860 goto fail;
2861 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2862
2863 handle->offset = offset;
2864 handle->head = head;
2865
2866 if (head - tail > data->watermark)
2867 atomic_set(&data->wakeup, 1);
2868
2869 if (have_lost) {
2870 lost_event.header.type = PERF_RECORD_LOST;
2871 lost_event.header.misc = 0;
2872 lost_event.header.size = sizeof(lost_event);
2873 lost_event.id = event->id;
2874 lost_event.lost = atomic_xchg(&data->lost, 0);
2875
2876 perf_output_put(handle, lost_event);
2877 }
2878
2879 return 0;
2880
2881fail:
2882 atomic_inc(&data->lost);
2883 perf_output_unlock(handle);
2884out:
2885 rcu_read_unlock();
2886
2887 return -ENOSPC;
2888}
2889
2890void perf_output_end(struct perf_output_handle *handle)
2891{
2892 struct perf_event *event = handle->event;
2893 struct perf_mmap_data *data = handle->data;
2894
2895 int wakeup_events = event->attr.wakeup_events;
2896
2897 if (handle->sample && wakeup_events) {
2898 int events = atomic_inc_return(&data->events);
2899 if (events >= wakeup_events) {
2900 atomic_sub(wakeup_events, &data->events);
2901 atomic_set(&data->wakeup, 1);
2902 }
2903 }
2904
2905 perf_output_unlock(handle);
2906 rcu_read_unlock();
2907}
2908
2909static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2910{
2911 /*
2912 * only top level events have the pid namespace they were created in
2913 */
2914 if (event->parent)
2915 event = event->parent;
2916
2917 return task_tgid_nr_ns(p, event->ns);
2918}
2919
2920static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2921{
2922 /*
2923 * only top level events have the pid namespace they were created in
2924 */
2925 if (event->parent)
2926 event = event->parent;
2927
2928 return task_pid_nr_ns(p, event->ns);
2929}
2930
2931static void perf_output_read_one(struct perf_output_handle *handle,
2932 struct perf_event *event)
2933{
2934 u64 read_format = event->attr.read_format;
2935 u64 values[4];
2936 int n = 0;
2937
2938 values[n++] = atomic64_read(&event->count);
2939 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2940 values[n++] = event->total_time_enabled +
2941 atomic64_read(&event->child_total_time_enabled);
2942 }
2943 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2944 values[n++] = event->total_time_running +
2945 atomic64_read(&event->child_total_time_running);
2946 }
2947 if (read_format & PERF_FORMAT_ID)
2948 values[n++] = primary_event_id(event);
2949
2950 perf_output_copy(handle, values, n * sizeof(u64));
2951}
2952
2953/*
2954 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2955 */
2956static void perf_output_read_group(struct perf_output_handle *handle,
2957 struct perf_event *event)
2958{
2959 struct perf_event *leader = event->group_leader, *sub;
2960 u64 read_format = event->attr.read_format;
2961 u64 values[5];
2962 int n = 0;
2963
2964 values[n++] = 1 + leader->nr_siblings;
2965
2966 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2967 values[n++] = leader->total_time_enabled;
2968
2969 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2970 values[n++] = leader->total_time_running;
2971
2972 if (leader != event)
2973 leader->pmu->read(leader);
2974
2975 values[n++] = atomic64_read(&leader->count);
2976 if (read_format & PERF_FORMAT_ID)
2977 values[n++] = primary_event_id(leader);
2978
2979 perf_output_copy(handle, values, n * sizeof(u64));
2980
2981 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2982 n = 0;
2983
2984 if (sub != event)
2985 sub->pmu->read(sub);
2986
2987 values[n++] = atomic64_read(&sub->count);
2988 if (read_format & PERF_FORMAT_ID)
2989 values[n++] = primary_event_id(sub);
2990
2991 perf_output_copy(handle, values, n * sizeof(u64));
2992 }
2993}
2994
2995static void perf_output_read(struct perf_output_handle *handle,
2996 struct perf_event *event)
2997{
2998 if (event->attr.read_format & PERF_FORMAT_GROUP)
2999 perf_output_read_group(handle, event);
3000 else
3001 perf_output_read_one(handle, event);
3002}
3003
3004void perf_output_sample(struct perf_output_handle *handle,
3005 struct perf_event_header *header,
3006 struct perf_sample_data *data,
3007 struct perf_event *event)
3008{
3009 u64 sample_type = data->type;
3010
3011 perf_output_put(handle, *header);
3012
3013 if (sample_type & PERF_SAMPLE_IP)
3014 perf_output_put(handle, data->ip);
3015
3016 if (sample_type & PERF_SAMPLE_TID)
3017 perf_output_put(handle, data->tid_entry);
3018
3019 if (sample_type & PERF_SAMPLE_TIME)
3020 perf_output_put(handle, data->time);
3021
3022 if (sample_type & PERF_SAMPLE_ADDR)
3023 perf_output_put(handle, data->addr);
3024
3025 if (sample_type & PERF_SAMPLE_ID)
3026 perf_output_put(handle, data->id);
3027
3028 if (sample_type & PERF_SAMPLE_STREAM_ID)
3029 perf_output_put(handle, data->stream_id);
3030
3031 if (sample_type & PERF_SAMPLE_CPU)
3032 perf_output_put(handle, data->cpu_entry);
3033
3034 if (sample_type & PERF_SAMPLE_PERIOD)
3035 perf_output_put(handle, data->period);
3036
3037 if (sample_type & PERF_SAMPLE_READ)
3038 perf_output_read(handle, event);
3039
3040 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3041 if (data->callchain) {
3042 int size = 1;
3043
3044 if (data->callchain)
3045 size += data->callchain->nr;
3046
3047 size *= sizeof(u64);
3048
3049 perf_output_copy(handle, data->callchain, size);
3050 } else {
3051 u64 nr = 0;
3052 perf_output_put(handle, nr);
3053 }
3054 }
3055
3056 if (sample_type & PERF_SAMPLE_RAW) {
3057 if (data->raw) {
3058 perf_output_put(handle, data->raw->size);
3059 perf_output_copy(handle, data->raw->data,
3060 data->raw->size);
3061 } else {
3062 struct {
3063 u32 size;
3064 u32 data;
3065 } raw = {
3066 .size = sizeof(u32),
3067 .data = 0,
3068 };
3069 perf_output_put(handle, raw);
3070 }
3071 }
3072}
3073
3074void perf_prepare_sample(struct perf_event_header *header,
3075 struct perf_sample_data *data,
3076 struct perf_event *event,
3077 struct pt_regs *regs)
3078{
3079 u64 sample_type = event->attr.sample_type;
3080
3081 data->type = sample_type;
3082
3083 header->type = PERF_RECORD_SAMPLE;
3084 header->size = sizeof(*header);
3085
3086 header->misc = 0;
3087 header->misc |= perf_misc_flags(regs);
3088
3089 if (sample_type & PERF_SAMPLE_IP) {
3090 data->ip = perf_instruction_pointer(regs);
3091
3092 header->size += sizeof(data->ip);
3093 }
3094
3095 if (sample_type & PERF_SAMPLE_TID) {
3096 /* namespace issues */
3097 data->tid_entry.pid = perf_event_pid(event, current);
3098 data->tid_entry.tid = perf_event_tid(event, current);
3099
3100 header->size += sizeof(data->tid_entry);
3101 }
3102
3103 if (sample_type & PERF_SAMPLE_TIME) {
3104 data->time = perf_clock();
3105
3106 header->size += sizeof(data->time);
3107 }
3108
3109 if (sample_type & PERF_SAMPLE_ADDR)
3110 header->size += sizeof(data->addr);
3111
3112 if (sample_type & PERF_SAMPLE_ID) {
3113 data->id = primary_event_id(event);
3114
3115 header->size += sizeof(data->id);
3116 }
3117
3118 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3119 data->stream_id = event->id;
3120
3121 header->size += sizeof(data->stream_id);
3122 }
3123
3124 if (sample_type & PERF_SAMPLE_CPU) {
3125 data->cpu_entry.cpu = raw_smp_processor_id();
3126 data->cpu_entry.reserved = 0;
3127
3128 header->size += sizeof(data->cpu_entry);
3129 }
3130
3131 if (sample_type & PERF_SAMPLE_PERIOD)
3132 header->size += sizeof(data->period);
3133
3134 if (sample_type & PERF_SAMPLE_READ)
3135 header->size += perf_event_read_size(event);
3136
3137 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3138 int size = 1;
3139
3140 data->callchain = perf_callchain(regs);
3141
3142 if (data->callchain)
3143 size += data->callchain->nr;
3144
3145 header->size += size * sizeof(u64);
3146 }
3147
3148 if (sample_type & PERF_SAMPLE_RAW) {
3149 int size = sizeof(u32);
3150
3151 if (data->raw)
3152 size += data->raw->size;
3153 else
3154 size += sizeof(u32);
3155
3156 WARN_ON_ONCE(size & (sizeof(u64)-1));
3157 header->size += size;
3158 }
3159}
3160
3161static void perf_event_output(struct perf_event *event, int nmi,
3162 struct perf_sample_data *data,
3163 struct pt_regs *regs)
3164{
3165 struct perf_output_handle handle;
3166 struct perf_event_header header;
3167
3168 perf_prepare_sample(&header, data, event, regs);
3169
3170 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3171 return;
3172
3173 perf_output_sample(&handle, &header, data, event);
3174
3175 perf_output_end(&handle);
3176}
3177
3178/*
3179 * read event_id
3180 */
3181
3182struct perf_read_event {
3183 struct perf_event_header header;
3184
3185 u32 pid;
3186 u32 tid;
3187};
3188
3189static void
3190perf_event_read_event(struct perf_event *event,
3191 struct task_struct *task)
3192{
3193 struct perf_output_handle handle;
3194 struct perf_read_event read_event = {
3195 .header = {
3196 .type = PERF_RECORD_READ,
3197 .misc = 0,
3198 .size = sizeof(read_event) + perf_event_read_size(event),
3199 },
3200 .pid = perf_event_pid(event, task),
3201 .tid = perf_event_tid(event, task),
3202 };
3203 int ret;
3204
3205 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3206 if (ret)
3207 return;
3208
3209 perf_output_put(&handle, read_event);
3210 perf_output_read(&handle, event);
3211
3212 perf_output_end(&handle);
3213}
3214
3215/*
3216 * task tracking -- fork/exit
3217 *
3218 * enabled by: attr.comm | attr.mmap | attr.task
3219 */
3220
3221struct perf_task_event {
3222 struct task_struct *task;
3223 struct perf_event_context *task_ctx;
3224
3225 struct {
3226 struct perf_event_header header;
3227
3228 u32 pid;
3229 u32 ppid;
3230 u32 tid;
3231 u32 ptid;
3232 u64 time;
3233 } event_id;
3234};
3235
3236static void perf_event_task_output(struct perf_event *event,
3237 struct perf_task_event *task_event)
3238{
3239 struct perf_output_handle handle;
3240 int size;
3241 struct task_struct *task = task_event->task;
3242 int ret;
3243
3244 size = task_event->event_id.header.size;
3245 ret = perf_output_begin(&handle, event, size, 0, 0);
3246
3247 if (ret)
3248 return;
3249
3250 task_event->event_id.pid = perf_event_pid(event, task);
3251 task_event->event_id.ppid = perf_event_pid(event, current);
3252
3253 task_event->event_id.tid = perf_event_tid(event, task);
3254 task_event->event_id.ptid = perf_event_tid(event, current);
3255
3256 task_event->event_id.time = perf_clock();
3257
3258 perf_output_put(&handle, task_event->event_id);
3259
3260 perf_output_end(&handle);
3261}
3262
3263static int perf_event_task_match(struct perf_event *event)
3264{
3265 if (event->attr.comm || event->attr.mmap || event->attr.task)
3266 return 1;
3267
3268 return 0;
3269}
3270
3271static void perf_event_task_ctx(struct perf_event_context *ctx,
3272 struct perf_task_event *task_event)
3273{
3274 struct perf_event *event;
3275
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003276 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3277 if (perf_event_task_match(event))
3278 perf_event_task_output(event, task_event);
3279 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003280}
3281
3282static void perf_event_task_event(struct perf_task_event *task_event)
3283{
3284 struct perf_cpu_context *cpuctx;
3285 struct perf_event_context *ctx = task_event->task_ctx;
3286
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003287 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003288 cpuctx = &get_cpu_var(perf_cpu_context);
3289 perf_event_task_ctx(&cpuctx->ctx, task_event);
3290 put_cpu_var(perf_cpu_context);
3291
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003292 if (!ctx)
3293 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3294 if (ctx)
3295 perf_event_task_ctx(ctx, task_event);
3296 rcu_read_unlock();
3297}
3298
3299static void perf_event_task(struct task_struct *task,
3300 struct perf_event_context *task_ctx,
3301 int new)
3302{
3303 struct perf_task_event task_event;
3304
3305 if (!atomic_read(&nr_comm_events) &&
3306 !atomic_read(&nr_mmap_events) &&
3307 !atomic_read(&nr_task_events))
3308 return;
3309
3310 task_event = (struct perf_task_event){
3311 .task = task,
3312 .task_ctx = task_ctx,
3313 .event_id = {
3314 .header = {
3315 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3316 .misc = 0,
3317 .size = sizeof(task_event.event_id),
3318 },
3319 /* .pid */
3320 /* .ppid */
3321 /* .tid */
3322 /* .ptid */
3323 },
3324 };
3325
3326 perf_event_task_event(&task_event);
3327}
3328
3329void perf_event_fork(struct task_struct *task)
3330{
3331 perf_event_task(task, NULL, 1);
3332}
3333
3334/*
3335 * comm tracking
3336 */
3337
3338struct perf_comm_event {
3339 struct task_struct *task;
3340 char *comm;
3341 int comm_size;
3342
3343 struct {
3344 struct perf_event_header header;
3345
3346 u32 pid;
3347 u32 tid;
3348 } event_id;
3349};
3350
3351static void perf_event_comm_output(struct perf_event *event,
3352 struct perf_comm_event *comm_event)
3353{
3354 struct perf_output_handle handle;
3355 int size = comm_event->event_id.header.size;
3356 int ret = perf_output_begin(&handle, event, size, 0, 0);
3357
3358 if (ret)
3359 return;
3360
3361 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3362 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3363
3364 perf_output_put(&handle, comm_event->event_id);
3365 perf_output_copy(&handle, comm_event->comm,
3366 comm_event->comm_size);
3367 perf_output_end(&handle);
3368}
3369
3370static int perf_event_comm_match(struct perf_event *event)
3371{
3372 if (event->attr.comm)
3373 return 1;
3374
3375 return 0;
3376}
3377
3378static void perf_event_comm_ctx(struct perf_event_context *ctx,
3379 struct perf_comm_event *comm_event)
3380{
3381 struct perf_event *event;
3382
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003383 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3384 if (perf_event_comm_match(event))
3385 perf_event_comm_output(event, comm_event);
3386 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003387}
3388
3389static void perf_event_comm_event(struct perf_comm_event *comm_event)
3390{
3391 struct perf_cpu_context *cpuctx;
3392 struct perf_event_context *ctx;
3393 unsigned int size;
3394 char comm[TASK_COMM_LEN];
3395
3396 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003397 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003398 size = ALIGN(strlen(comm)+1, sizeof(u64));
3399
3400 comm_event->comm = comm;
3401 comm_event->comm_size = size;
3402
3403 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3404
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003405 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003406 cpuctx = &get_cpu_var(perf_cpu_context);
3407 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3408 put_cpu_var(perf_cpu_context);
3409
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003410 /*
3411 * doesn't really matter which of the child contexts the
3412 * events ends up in.
3413 */
3414 ctx = rcu_dereference(current->perf_event_ctxp);
3415 if (ctx)
3416 perf_event_comm_ctx(ctx, comm_event);
3417 rcu_read_unlock();
3418}
3419
3420void perf_event_comm(struct task_struct *task)
3421{
3422 struct perf_comm_event comm_event;
3423
3424 if (task->perf_event_ctxp)
3425 perf_event_enable_on_exec(task);
3426
3427 if (!atomic_read(&nr_comm_events))
3428 return;
3429
3430 comm_event = (struct perf_comm_event){
3431 .task = task,
3432 /* .comm */
3433 /* .comm_size */
3434 .event_id = {
3435 .header = {
3436 .type = PERF_RECORD_COMM,
3437 .misc = 0,
3438 /* .size */
3439 },
3440 /* .pid */
3441 /* .tid */
3442 },
3443 };
3444
3445 perf_event_comm_event(&comm_event);
3446}
3447
3448/*
3449 * mmap tracking
3450 */
3451
3452struct perf_mmap_event {
3453 struct vm_area_struct *vma;
3454
3455 const char *file_name;
3456 int file_size;
3457
3458 struct {
3459 struct perf_event_header header;
3460
3461 u32 pid;
3462 u32 tid;
3463 u64 start;
3464 u64 len;
3465 u64 pgoff;
3466 } event_id;
3467};
3468
3469static void perf_event_mmap_output(struct perf_event *event,
3470 struct perf_mmap_event *mmap_event)
3471{
3472 struct perf_output_handle handle;
3473 int size = mmap_event->event_id.header.size;
3474 int ret = perf_output_begin(&handle, event, size, 0, 0);
3475
3476 if (ret)
3477 return;
3478
3479 mmap_event->event_id.pid = perf_event_pid(event, current);
3480 mmap_event->event_id.tid = perf_event_tid(event, current);
3481
3482 perf_output_put(&handle, mmap_event->event_id);
3483 perf_output_copy(&handle, mmap_event->file_name,
3484 mmap_event->file_size);
3485 perf_output_end(&handle);
3486}
3487
3488static int perf_event_mmap_match(struct perf_event *event,
3489 struct perf_mmap_event *mmap_event)
3490{
3491 if (event->attr.mmap)
3492 return 1;
3493
3494 return 0;
3495}
3496
3497static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3498 struct perf_mmap_event *mmap_event)
3499{
3500 struct perf_event *event;
3501
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003502 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3503 if (perf_event_mmap_match(event, mmap_event))
3504 perf_event_mmap_output(event, mmap_event);
3505 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003506}
3507
3508static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3509{
3510 struct perf_cpu_context *cpuctx;
3511 struct perf_event_context *ctx;
3512 struct vm_area_struct *vma = mmap_event->vma;
3513 struct file *file = vma->vm_file;
3514 unsigned int size;
3515 char tmp[16];
3516 char *buf = NULL;
3517 const char *name;
3518
3519 memset(tmp, 0, sizeof(tmp));
3520
3521 if (file) {
3522 /*
3523 * d_path works from the end of the buffer backwards, so we
3524 * need to add enough zero bytes after the string to handle
3525 * the 64bit alignment we do later.
3526 */
3527 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3528 if (!buf) {
3529 name = strncpy(tmp, "//enomem", sizeof(tmp));
3530 goto got_name;
3531 }
3532 name = d_path(&file->f_path, buf, PATH_MAX);
3533 if (IS_ERR(name)) {
3534 name = strncpy(tmp, "//toolong", sizeof(tmp));
3535 goto got_name;
3536 }
3537 } else {
3538 if (arch_vma_name(mmap_event->vma)) {
3539 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3540 sizeof(tmp));
3541 goto got_name;
3542 }
3543
3544 if (!vma->vm_mm) {
3545 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3546 goto got_name;
3547 }
3548
3549 name = strncpy(tmp, "//anon", sizeof(tmp));
3550 goto got_name;
3551 }
3552
3553got_name:
3554 size = ALIGN(strlen(name)+1, sizeof(u64));
3555
3556 mmap_event->file_name = name;
3557 mmap_event->file_size = size;
3558
3559 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3560
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003561 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003562 cpuctx = &get_cpu_var(perf_cpu_context);
3563 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3564 put_cpu_var(perf_cpu_context);
3565
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003566 /*
3567 * doesn't really matter which of the child contexts the
3568 * events ends up in.
3569 */
3570 ctx = rcu_dereference(current->perf_event_ctxp);
3571 if (ctx)
3572 perf_event_mmap_ctx(ctx, mmap_event);
3573 rcu_read_unlock();
3574
3575 kfree(buf);
3576}
3577
3578void __perf_event_mmap(struct vm_area_struct *vma)
3579{
3580 struct perf_mmap_event mmap_event;
3581
3582 if (!atomic_read(&nr_mmap_events))
3583 return;
3584
3585 mmap_event = (struct perf_mmap_event){
3586 .vma = vma,
3587 /* .file_name */
3588 /* .file_size */
3589 .event_id = {
3590 .header = {
3591 .type = PERF_RECORD_MMAP,
3592 .misc = 0,
3593 /* .size */
3594 },
3595 /* .pid */
3596 /* .tid */
3597 .start = vma->vm_start,
3598 .len = vma->vm_end - vma->vm_start,
3599 .pgoff = vma->vm_pgoff,
3600 },
3601 };
3602
3603 perf_event_mmap_event(&mmap_event);
3604}
3605
3606/*
3607 * IRQ throttle logging
3608 */
3609
3610static void perf_log_throttle(struct perf_event *event, int enable)
3611{
3612 struct perf_output_handle handle;
3613 int ret;
3614
3615 struct {
3616 struct perf_event_header header;
3617 u64 time;
3618 u64 id;
3619 u64 stream_id;
3620 } throttle_event = {
3621 .header = {
3622 .type = PERF_RECORD_THROTTLE,
3623 .misc = 0,
3624 .size = sizeof(throttle_event),
3625 },
3626 .time = perf_clock(),
3627 .id = primary_event_id(event),
3628 .stream_id = event->id,
3629 };
3630
3631 if (enable)
3632 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3633
3634 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3635 if (ret)
3636 return;
3637
3638 perf_output_put(&handle, throttle_event);
3639 perf_output_end(&handle);
3640}
3641
3642/*
3643 * Generic event overflow handling, sampling.
3644 */
3645
3646static int __perf_event_overflow(struct perf_event *event, int nmi,
3647 int throttle, struct perf_sample_data *data,
3648 struct pt_regs *regs)
3649{
3650 int events = atomic_read(&event->event_limit);
3651 struct hw_perf_event *hwc = &event->hw;
3652 int ret = 0;
3653
3654 throttle = (throttle && event->pmu->unthrottle != NULL);
3655
3656 if (!throttle) {
3657 hwc->interrupts++;
3658 } else {
3659 if (hwc->interrupts != MAX_INTERRUPTS) {
3660 hwc->interrupts++;
3661 if (HZ * hwc->interrupts >
3662 (u64)sysctl_perf_event_sample_rate) {
3663 hwc->interrupts = MAX_INTERRUPTS;
3664 perf_log_throttle(event, 0);
3665 ret = 1;
3666 }
3667 } else {
3668 /*
3669 * Keep re-disabling events even though on the previous
3670 * pass we disabled it - just in case we raced with a
3671 * sched-in and the event got enabled again:
3672 */
3673 ret = 1;
3674 }
3675 }
3676
3677 if (event->attr.freq) {
3678 u64 now = perf_clock();
3679 s64 delta = now - hwc->freq_stamp;
3680
3681 hwc->freq_stamp = now;
3682
3683 if (delta > 0 && delta < TICK_NSEC)
3684 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3685 }
3686
3687 /*
3688 * XXX event_limit might not quite work as expected on inherited
3689 * events
3690 */
3691
3692 event->pending_kill = POLL_IN;
3693 if (events && atomic_dec_and_test(&event->event_limit)) {
3694 ret = 1;
3695 event->pending_kill = POLL_HUP;
3696 if (nmi) {
3697 event->pending_disable = 1;
3698 perf_pending_queue(&event->pending,
3699 perf_pending_event);
3700 } else
3701 perf_event_disable(event);
3702 }
3703
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003704 if (event->overflow_handler)
3705 event->overflow_handler(event, nmi, data, regs);
3706 else
3707 perf_event_output(event, nmi, data, regs);
3708
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003709 return ret;
3710}
3711
3712int perf_event_overflow(struct perf_event *event, int nmi,
3713 struct perf_sample_data *data,
3714 struct pt_regs *regs)
3715{
3716 return __perf_event_overflow(event, nmi, 1, data, regs);
3717}
3718
3719/*
3720 * Generic software event infrastructure
3721 */
3722
3723/*
3724 * We directly increment event->count and keep a second value in
3725 * event->hw.period_left to count intervals. This period event
3726 * is kept in the range [-sample_period, 0] so that we can use the
3727 * sign as trigger.
3728 */
3729
3730static u64 perf_swevent_set_period(struct perf_event *event)
3731{
3732 struct hw_perf_event *hwc = &event->hw;
3733 u64 period = hwc->last_period;
3734 u64 nr, offset;
3735 s64 old, val;
3736
3737 hwc->last_period = hwc->sample_period;
3738
3739again:
3740 old = val = atomic64_read(&hwc->period_left);
3741 if (val < 0)
3742 return 0;
3743
3744 nr = div64_u64(period + val, period);
3745 offset = nr * period;
3746 val -= offset;
3747 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3748 goto again;
3749
3750 return nr;
3751}
3752
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003753static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003754 int nmi, struct perf_sample_data *data,
3755 struct pt_regs *regs)
3756{
3757 struct hw_perf_event *hwc = &event->hw;
3758 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003759
3760 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003761 if (!overflow)
3762 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003763
3764 if (hwc->interrupts == MAX_INTERRUPTS)
3765 return;
3766
3767 for (; overflow; overflow--) {
3768 if (__perf_event_overflow(event, nmi, throttle,
3769 data, regs)) {
3770 /*
3771 * We inhibit the overflow from happening when
3772 * hwc->interrupts == MAX_INTERRUPTS.
3773 */
3774 break;
3775 }
3776 throttle = 1;
3777 }
3778}
3779
3780static void perf_swevent_unthrottle(struct perf_event *event)
3781{
3782 /*
3783 * Nothing to do, we already reset hwc->interrupts.
3784 */
3785}
3786
3787static void perf_swevent_add(struct perf_event *event, u64 nr,
3788 int nmi, struct perf_sample_data *data,
3789 struct pt_regs *regs)
3790{
3791 struct hw_perf_event *hwc = &event->hw;
3792
3793 atomic64_add(nr, &event->count);
3794
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003795 if (!regs)
3796 return;
3797
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003798 if (!hwc->sample_period)
3799 return;
3800
3801 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3802 return perf_swevent_overflow(event, 1, nmi, data, regs);
3803
3804 if (atomic64_add_negative(nr, &hwc->period_left))
3805 return;
3806
3807 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003808}
3809
3810static int perf_swevent_is_counting(struct perf_event *event)
3811{
3812 /*
3813 * The event is active, we're good!
3814 */
3815 if (event->state == PERF_EVENT_STATE_ACTIVE)
3816 return 1;
3817
3818 /*
3819 * The event is off/error, not counting.
3820 */
3821 if (event->state != PERF_EVENT_STATE_INACTIVE)
3822 return 0;
3823
3824 /*
3825 * The event is inactive, if the context is active
3826 * we're part of a group that didn't make it on the 'pmu',
3827 * not counting.
3828 */
3829 if (event->ctx->is_active)
3830 return 0;
3831
3832 /*
3833 * We're inactive and the context is too, this means the
3834 * task is scheduled out, we're counting events that happen
3835 * to us, like migration events.
3836 */
3837 return 1;
3838}
3839
Li Zefan6fb29152009-10-15 11:21:42 +08003840static int perf_tp_event_match(struct perf_event *event,
3841 struct perf_sample_data *data);
3842
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003843static int perf_exclude_event(struct perf_event *event,
3844 struct pt_regs *regs)
3845{
3846 if (regs) {
3847 if (event->attr.exclude_user && user_mode(regs))
3848 return 1;
3849
3850 if (event->attr.exclude_kernel && !user_mode(regs))
3851 return 1;
3852 }
3853
3854 return 0;
3855}
3856
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003857static int perf_swevent_match(struct perf_event *event,
3858 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003859 u32 event_id,
3860 struct perf_sample_data *data,
3861 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003862{
3863 if (!perf_swevent_is_counting(event))
3864 return 0;
3865
3866 if (event->attr.type != type)
3867 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003868
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003869 if (event->attr.config != event_id)
3870 return 0;
3871
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003872 if (perf_exclude_event(event, regs))
3873 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003874
Li Zefan6fb29152009-10-15 11:21:42 +08003875 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3876 !perf_tp_event_match(event, data))
3877 return 0;
3878
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003879 return 1;
3880}
3881
3882static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3883 enum perf_type_id type,
3884 u32 event_id, u64 nr, int nmi,
3885 struct perf_sample_data *data,
3886 struct pt_regs *regs)
3887{
3888 struct perf_event *event;
3889
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003890 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003891 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003892 perf_swevent_add(event, nr, nmi, data, regs);
3893 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003894}
3895
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003896int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003897{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003898 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3899 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003900
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003901 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003902 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003903 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003904 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003905 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003906 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003907 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003908 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003909
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003910 if (cpuctx->recursion[rctx]) {
3911 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003912 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003913 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003914
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003915 cpuctx->recursion[rctx]++;
3916 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003917
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003918 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003919}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003920EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003921
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003922void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003923{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003924 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3925 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01003926 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003927 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003928}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003929EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003930
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003931static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3932 u64 nr, int nmi,
3933 struct perf_sample_data *data,
3934 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003935{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003936 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003937 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003938
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003939 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01003940 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003941 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3942 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003943 /*
3944 * doesn't really matter which of the child contexts the
3945 * events ends up in.
3946 */
3947 ctx = rcu_dereference(current->perf_event_ctxp);
3948 if (ctx)
3949 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3950 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003951}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003952
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003953void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3954 struct pt_regs *regs, u64 addr)
3955{
Ingo Molnara4234bf2009-11-23 10:57:59 +01003956 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003957 int rctx;
3958
3959 rctx = perf_swevent_get_recursion_context();
3960 if (rctx < 0)
3961 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003962
Ingo Molnara4234bf2009-11-23 10:57:59 +01003963 data.addr = addr;
3964 data.raw = NULL;
3965
3966 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003967
3968 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003969}
3970
3971static void perf_swevent_read(struct perf_event *event)
3972{
3973}
3974
3975static int perf_swevent_enable(struct perf_event *event)
3976{
3977 struct hw_perf_event *hwc = &event->hw;
3978
3979 if (hwc->sample_period) {
3980 hwc->last_period = hwc->sample_period;
3981 perf_swevent_set_period(event);
3982 }
3983 return 0;
3984}
3985
3986static void perf_swevent_disable(struct perf_event *event)
3987{
3988}
3989
3990static const struct pmu perf_ops_generic = {
3991 .enable = perf_swevent_enable,
3992 .disable = perf_swevent_disable,
3993 .read = perf_swevent_read,
3994 .unthrottle = perf_swevent_unthrottle,
3995};
3996
3997/*
3998 * hrtimer based swevent callback
3999 */
4000
4001static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4002{
4003 enum hrtimer_restart ret = HRTIMER_RESTART;
4004 struct perf_sample_data data;
4005 struct pt_regs *regs;
4006 struct perf_event *event;
4007 u64 period;
4008
4009 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4010 event->pmu->read(event);
4011
4012 data.addr = 0;
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004013 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004014 regs = get_irq_regs();
4015 /*
4016 * In case we exclude kernel IPs or are somehow not in interrupt
4017 * context, provide the next best thing, the user IP.
4018 */
4019 if ((event->attr.exclude_kernel || !regs) &&
4020 !event->attr.exclude_user)
4021 regs = task_pt_regs(current);
4022
4023 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004024 if (!(event->attr.exclude_idle && current->pid == 0))
4025 if (perf_event_overflow(event, 0, &data, regs))
4026 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004027 }
4028
4029 period = max_t(u64, 10000, event->hw.sample_period);
4030 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4031
4032 return ret;
4033}
4034
Soeren Sandmann721a6692009-09-15 14:33:08 +02004035static void perf_swevent_start_hrtimer(struct perf_event *event)
4036{
4037 struct hw_perf_event *hwc = &event->hw;
4038
4039 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4040 hwc->hrtimer.function = perf_swevent_hrtimer;
4041 if (hwc->sample_period) {
4042 u64 period;
4043
4044 if (hwc->remaining) {
4045 if (hwc->remaining < 0)
4046 period = 10000;
4047 else
4048 period = hwc->remaining;
4049 hwc->remaining = 0;
4050 } else {
4051 period = max_t(u64, 10000, hwc->sample_period);
4052 }
4053 __hrtimer_start_range_ns(&hwc->hrtimer,
4054 ns_to_ktime(period), 0,
4055 HRTIMER_MODE_REL, 0);
4056 }
4057}
4058
4059static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4060{
4061 struct hw_perf_event *hwc = &event->hw;
4062
4063 if (hwc->sample_period) {
4064 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4065 hwc->remaining = ktime_to_ns(remaining);
4066
4067 hrtimer_cancel(&hwc->hrtimer);
4068 }
4069}
4070
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004071/*
4072 * Software event: cpu wall time clock
4073 */
4074
4075static void cpu_clock_perf_event_update(struct perf_event *event)
4076{
4077 int cpu = raw_smp_processor_id();
4078 s64 prev;
4079 u64 now;
4080
4081 now = cpu_clock(cpu);
4082 prev = atomic64_read(&event->hw.prev_count);
4083 atomic64_set(&event->hw.prev_count, now);
4084 atomic64_add(now - prev, &event->count);
4085}
4086
4087static int cpu_clock_perf_event_enable(struct perf_event *event)
4088{
4089 struct hw_perf_event *hwc = &event->hw;
4090 int cpu = raw_smp_processor_id();
4091
4092 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004093 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004094
4095 return 0;
4096}
4097
4098static void cpu_clock_perf_event_disable(struct perf_event *event)
4099{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004100 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004101 cpu_clock_perf_event_update(event);
4102}
4103
4104static void cpu_clock_perf_event_read(struct perf_event *event)
4105{
4106 cpu_clock_perf_event_update(event);
4107}
4108
4109static const struct pmu perf_ops_cpu_clock = {
4110 .enable = cpu_clock_perf_event_enable,
4111 .disable = cpu_clock_perf_event_disable,
4112 .read = cpu_clock_perf_event_read,
4113};
4114
4115/*
4116 * Software event: task time clock
4117 */
4118
4119static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4120{
4121 u64 prev;
4122 s64 delta;
4123
4124 prev = atomic64_xchg(&event->hw.prev_count, now);
4125 delta = now - prev;
4126 atomic64_add(delta, &event->count);
4127}
4128
4129static int task_clock_perf_event_enable(struct perf_event *event)
4130{
4131 struct hw_perf_event *hwc = &event->hw;
4132 u64 now;
4133
4134 now = event->ctx->time;
4135
4136 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004137
4138 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004139
4140 return 0;
4141}
4142
4143static void task_clock_perf_event_disable(struct perf_event *event)
4144{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004145 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004146 task_clock_perf_event_update(event, event->ctx->time);
4147
4148}
4149
4150static void task_clock_perf_event_read(struct perf_event *event)
4151{
4152 u64 time;
4153
4154 if (!in_nmi()) {
4155 update_context_time(event->ctx);
4156 time = event->ctx->time;
4157 } else {
4158 u64 now = perf_clock();
4159 u64 delta = now - event->ctx->timestamp;
4160 time = event->ctx->time + delta;
4161 }
4162
4163 task_clock_perf_event_update(event, time);
4164}
4165
4166static const struct pmu perf_ops_task_clock = {
4167 .enable = task_clock_perf_event_enable,
4168 .disable = task_clock_perf_event_disable,
4169 .read = task_clock_perf_event_read,
4170};
4171
4172#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004173
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004174void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4175 int entry_size)
4176{
4177 struct perf_raw_record raw = {
4178 .size = entry_size,
4179 .data = record,
4180 };
4181
4182 struct perf_sample_data data = {
4183 .addr = addr,
4184 .raw = &raw,
4185 };
4186
4187 struct pt_regs *regs = get_irq_regs();
4188
4189 if (!regs)
4190 regs = task_pt_regs(current);
4191
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004192 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004193 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004194 &data, regs);
4195}
4196EXPORT_SYMBOL_GPL(perf_tp_event);
4197
Li Zefan6fb29152009-10-15 11:21:42 +08004198static int perf_tp_event_match(struct perf_event *event,
4199 struct perf_sample_data *data)
4200{
4201 void *record = data->raw->data;
4202
4203 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4204 return 1;
4205 return 0;
4206}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004207
4208static void tp_perf_event_destroy(struct perf_event *event)
4209{
4210 ftrace_profile_disable(event->attr.config);
4211}
4212
4213static const struct pmu *tp_perf_event_init(struct perf_event *event)
4214{
4215 /*
4216 * Raw tracepoint data is a severe data leak, only allow root to
4217 * have these.
4218 */
4219 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4220 perf_paranoid_tracepoint_raw() &&
4221 !capable(CAP_SYS_ADMIN))
4222 return ERR_PTR(-EPERM);
4223
4224 if (ftrace_profile_enable(event->attr.config))
4225 return NULL;
4226
4227 event->destroy = tp_perf_event_destroy;
4228
4229 return &perf_ops_generic;
4230}
Li Zefan6fb29152009-10-15 11:21:42 +08004231
4232static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4233{
4234 char *filter_str;
4235 int ret;
4236
4237 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4238 return -EINVAL;
4239
4240 filter_str = strndup_user(arg, PAGE_SIZE);
4241 if (IS_ERR(filter_str))
4242 return PTR_ERR(filter_str);
4243
4244 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4245
4246 kfree(filter_str);
4247 return ret;
4248}
4249
4250static void perf_event_free_filter(struct perf_event *event)
4251{
4252 ftrace_profile_free_filter(event);
4253}
4254
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004255#else
Li Zefan6fb29152009-10-15 11:21:42 +08004256
4257static int perf_tp_event_match(struct perf_event *event,
4258 struct perf_sample_data *data)
4259{
4260 return 1;
4261}
4262
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004263static const struct pmu *tp_perf_event_init(struct perf_event *event)
4264{
4265 return NULL;
4266}
Li Zefan6fb29152009-10-15 11:21:42 +08004267
4268static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4269{
4270 return -ENOENT;
4271}
4272
4273static void perf_event_free_filter(struct perf_event *event)
4274{
4275}
4276
4277#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004278
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004279#ifdef CONFIG_HAVE_HW_BREAKPOINT
4280static void bp_perf_event_destroy(struct perf_event *event)
4281{
4282 release_bp_slot(event);
4283}
4284
4285static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4286{
4287 int err;
4288 /*
4289 * The breakpoint is already filled if we haven't created the counter
4290 * through perf syscall
4291 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4292 */
4293 if (!bp->callback)
4294 err = register_perf_hw_breakpoint(bp);
4295 else
4296 err = __register_perf_hw_breakpoint(bp);
4297 if (err)
4298 return ERR_PTR(err);
4299
4300 bp->destroy = bp_perf_event_destroy;
4301
4302 return &perf_ops_bp;
4303}
4304
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004305void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004306{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004307 struct perf_sample_data sample;
4308 struct pt_regs *regs = data;
4309
4310 sample.addr = bp->attr.bp_addr;
4311
4312 if (!perf_exclude_event(bp, regs))
4313 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004314}
4315#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004316static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4317{
4318 return NULL;
4319}
4320
4321void perf_bp_event(struct perf_event *bp, void *regs)
4322{
4323}
4324#endif
4325
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004326atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4327
4328static void sw_perf_event_destroy(struct perf_event *event)
4329{
4330 u64 event_id = event->attr.config;
4331
4332 WARN_ON(event->parent);
4333
4334 atomic_dec(&perf_swevent_enabled[event_id]);
4335}
4336
4337static const struct pmu *sw_perf_event_init(struct perf_event *event)
4338{
4339 const struct pmu *pmu = NULL;
4340 u64 event_id = event->attr.config;
4341
4342 /*
4343 * Software events (currently) can't in general distinguish
4344 * between user, kernel and hypervisor events.
4345 * However, context switches and cpu migrations are considered
4346 * to be kernel events, and page faults are never hypervisor
4347 * events.
4348 */
4349 switch (event_id) {
4350 case PERF_COUNT_SW_CPU_CLOCK:
4351 pmu = &perf_ops_cpu_clock;
4352
4353 break;
4354 case PERF_COUNT_SW_TASK_CLOCK:
4355 /*
4356 * If the user instantiates this as a per-cpu event,
4357 * use the cpu_clock event instead.
4358 */
4359 if (event->ctx->task)
4360 pmu = &perf_ops_task_clock;
4361 else
4362 pmu = &perf_ops_cpu_clock;
4363
4364 break;
4365 case PERF_COUNT_SW_PAGE_FAULTS:
4366 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4367 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4368 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4369 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004370 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4371 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004372 if (!event->parent) {
4373 atomic_inc(&perf_swevent_enabled[event_id]);
4374 event->destroy = sw_perf_event_destroy;
4375 }
4376 pmu = &perf_ops_generic;
4377 break;
4378 }
4379
4380 return pmu;
4381}
4382
4383/*
4384 * Allocate and initialize a event structure
4385 */
4386static struct perf_event *
4387perf_event_alloc(struct perf_event_attr *attr,
4388 int cpu,
4389 struct perf_event_context *ctx,
4390 struct perf_event *group_leader,
4391 struct perf_event *parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004392 perf_callback_t callback,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004393 gfp_t gfpflags)
4394{
4395 const struct pmu *pmu;
4396 struct perf_event *event;
4397 struct hw_perf_event *hwc;
4398 long err;
4399
4400 event = kzalloc(sizeof(*event), gfpflags);
4401 if (!event)
4402 return ERR_PTR(-ENOMEM);
4403
4404 /*
4405 * Single events are their own group leaders, with an
4406 * empty sibling list:
4407 */
4408 if (!group_leader)
4409 group_leader = event;
4410
4411 mutex_init(&event->child_mutex);
4412 INIT_LIST_HEAD(&event->child_list);
4413
4414 INIT_LIST_HEAD(&event->group_entry);
4415 INIT_LIST_HEAD(&event->event_entry);
4416 INIT_LIST_HEAD(&event->sibling_list);
4417 init_waitqueue_head(&event->waitq);
4418
4419 mutex_init(&event->mmap_mutex);
4420
4421 event->cpu = cpu;
4422 event->attr = *attr;
4423 event->group_leader = group_leader;
4424 event->pmu = NULL;
4425 event->ctx = ctx;
4426 event->oncpu = -1;
4427
4428 event->parent = parent_event;
4429
4430 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4431 event->id = atomic64_inc_return(&perf_event_id);
4432
4433 event->state = PERF_EVENT_STATE_INACTIVE;
4434
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004435 if (!callback && parent_event)
4436 callback = parent_event->callback;
4437
4438 event->callback = callback;
4439
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004440 if (attr->disabled)
4441 event->state = PERF_EVENT_STATE_OFF;
4442
4443 pmu = NULL;
4444
4445 hwc = &event->hw;
4446 hwc->sample_period = attr->sample_period;
4447 if (attr->freq && attr->sample_freq)
4448 hwc->sample_period = 1;
4449 hwc->last_period = hwc->sample_period;
4450
4451 atomic64_set(&hwc->period_left, hwc->sample_period);
4452
4453 /*
4454 * we currently do not support PERF_FORMAT_GROUP on inherited events
4455 */
4456 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4457 goto done;
4458
4459 switch (attr->type) {
4460 case PERF_TYPE_RAW:
4461 case PERF_TYPE_HARDWARE:
4462 case PERF_TYPE_HW_CACHE:
4463 pmu = hw_perf_event_init(event);
4464 break;
4465
4466 case PERF_TYPE_SOFTWARE:
4467 pmu = sw_perf_event_init(event);
4468 break;
4469
4470 case PERF_TYPE_TRACEPOINT:
4471 pmu = tp_perf_event_init(event);
4472 break;
4473
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004474 case PERF_TYPE_BREAKPOINT:
4475 pmu = bp_perf_event_init(event);
4476 break;
4477
4478
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004479 default:
4480 break;
4481 }
4482done:
4483 err = 0;
4484 if (!pmu)
4485 err = -EINVAL;
4486 else if (IS_ERR(pmu))
4487 err = PTR_ERR(pmu);
4488
4489 if (err) {
4490 if (event->ns)
4491 put_pid_ns(event->ns);
4492 kfree(event);
4493 return ERR_PTR(err);
4494 }
4495
4496 event->pmu = pmu;
4497
4498 if (!event->parent) {
4499 atomic_inc(&nr_events);
4500 if (event->attr.mmap)
4501 atomic_inc(&nr_mmap_events);
4502 if (event->attr.comm)
4503 atomic_inc(&nr_comm_events);
4504 if (event->attr.task)
4505 atomic_inc(&nr_task_events);
4506 }
4507
4508 return event;
4509}
4510
4511static int perf_copy_attr(struct perf_event_attr __user *uattr,
4512 struct perf_event_attr *attr)
4513{
4514 u32 size;
4515 int ret;
4516
4517 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4518 return -EFAULT;
4519
4520 /*
4521 * zero the full structure, so that a short copy will be nice.
4522 */
4523 memset(attr, 0, sizeof(*attr));
4524
4525 ret = get_user(size, &uattr->size);
4526 if (ret)
4527 return ret;
4528
4529 if (size > PAGE_SIZE) /* silly large */
4530 goto err_size;
4531
4532 if (!size) /* abi compat */
4533 size = PERF_ATTR_SIZE_VER0;
4534
4535 if (size < PERF_ATTR_SIZE_VER0)
4536 goto err_size;
4537
4538 /*
4539 * If we're handed a bigger struct than we know of,
4540 * ensure all the unknown bits are 0 - i.e. new
4541 * user-space does not rely on any kernel feature
4542 * extensions we dont know about yet.
4543 */
4544 if (size > sizeof(*attr)) {
4545 unsigned char __user *addr;
4546 unsigned char __user *end;
4547 unsigned char val;
4548
4549 addr = (void __user *)uattr + sizeof(*attr);
4550 end = (void __user *)uattr + size;
4551
4552 for (; addr < end; addr++) {
4553 ret = get_user(val, addr);
4554 if (ret)
4555 return ret;
4556 if (val)
4557 goto err_size;
4558 }
4559 size = sizeof(*attr);
4560 }
4561
4562 ret = copy_from_user(attr, uattr, size);
4563 if (ret)
4564 return -EFAULT;
4565
4566 /*
4567 * If the type exists, the corresponding creation will verify
4568 * the attr->config.
4569 */
4570 if (attr->type >= PERF_TYPE_MAX)
4571 return -EINVAL;
4572
4573 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4574 return -EINVAL;
4575
4576 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4577 return -EINVAL;
4578
4579 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4580 return -EINVAL;
4581
4582out:
4583 return ret;
4584
4585err_size:
4586 put_user(sizeof(*attr), &uattr->size);
4587 ret = -E2BIG;
4588 goto out;
4589}
4590
Li Zefan6fb29152009-10-15 11:21:42 +08004591static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004592{
4593 struct perf_event *output_event = NULL;
4594 struct file *output_file = NULL;
4595 struct perf_event *old_output;
4596 int fput_needed = 0;
4597 int ret = -EINVAL;
4598
4599 if (!output_fd)
4600 goto set;
4601
4602 output_file = fget_light(output_fd, &fput_needed);
4603 if (!output_file)
4604 return -EBADF;
4605
4606 if (output_file->f_op != &perf_fops)
4607 goto out;
4608
4609 output_event = output_file->private_data;
4610
4611 /* Don't chain output fds */
4612 if (output_event->output)
4613 goto out;
4614
4615 /* Don't set an output fd when we already have an output channel */
4616 if (event->data)
4617 goto out;
4618
4619 atomic_long_inc(&output_file->f_count);
4620
4621set:
4622 mutex_lock(&event->mmap_mutex);
4623 old_output = event->output;
4624 rcu_assign_pointer(event->output, output_event);
4625 mutex_unlock(&event->mmap_mutex);
4626
4627 if (old_output) {
4628 /*
4629 * we need to make sure no existing perf_output_*()
4630 * is still referencing this event.
4631 */
4632 synchronize_rcu();
4633 fput(old_output->filp);
4634 }
4635
4636 ret = 0;
4637out:
4638 fput_light(output_file, fput_needed);
4639 return ret;
4640}
4641
4642/**
4643 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4644 *
4645 * @attr_uptr: event_id type attributes for monitoring/sampling
4646 * @pid: target pid
4647 * @cpu: target cpu
4648 * @group_fd: group leader event fd
4649 */
4650SYSCALL_DEFINE5(perf_event_open,
4651 struct perf_event_attr __user *, attr_uptr,
4652 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4653{
4654 struct perf_event *event, *group_leader;
4655 struct perf_event_attr attr;
4656 struct perf_event_context *ctx;
4657 struct file *event_file = NULL;
4658 struct file *group_file = NULL;
4659 int fput_needed = 0;
4660 int fput_needed2 = 0;
4661 int err;
4662
4663 /* for future expandability... */
4664 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4665 return -EINVAL;
4666
4667 err = perf_copy_attr(attr_uptr, &attr);
4668 if (err)
4669 return err;
4670
4671 if (!attr.exclude_kernel) {
4672 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4673 return -EACCES;
4674 }
4675
4676 if (attr.freq) {
4677 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4678 return -EINVAL;
4679 }
4680
4681 /*
4682 * Get the target context (task or percpu):
4683 */
4684 ctx = find_get_context(pid, cpu);
4685 if (IS_ERR(ctx))
4686 return PTR_ERR(ctx);
4687
4688 /*
4689 * Look up the group leader (we will attach this event to it):
4690 */
4691 group_leader = NULL;
4692 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4693 err = -EINVAL;
4694 group_file = fget_light(group_fd, &fput_needed);
4695 if (!group_file)
4696 goto err_put_context;
4697 if (group_file->f_op != &perf_fops)
4698 goto err_put_context;
4699
4700 group_leader = group_file->private_data;
4701 /*
4702 * Do not allow a recursive hierarchy (this new sibling
4703 * becoming part of another group-sibling):
4704 */
4705 if (group_leader->group_leader != group_leader)
4706 goto err_put_context;
4707 /*
4708 * Do not allow to attach to a group in a different
4709 * task or CPU context:
4710 */
4711 if (group_leader->ctx != ctx)
4712 goto err_put_context;
4713 /*
4714 * Only a group leader can be exclusive or pinned
4715 */
4716 if (attr.exclusive || attr.pinned)
4717 goto err_put_context;
4718 }
4719
4720 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004721 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004722 err = PTR_ERR(event);
4723 if (IS_ERR(event))
4724 goto err_put_context;
4725
4726 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4727 if (err < 0)
4728 goto err_free_put_context;
4729
4730 event_file = fget_light(err, &fput_needed2);
4731 if (!event_file)
4732 goto err_free_put_context;
4733
4734 if (flags & PERF_FLAG_FD_OUTPUT) {
4735 err = perf_event_set_output(event, group_fd);
4736 if (err)
4737 goto err_fput_free_put_context;
4738 }
4739
4740 event->filp = event_file;
4741 WARN_ON_ONCE(ctx->parent_ctx);
4742 mutex_lock(&ctx->mutex);
4743 perf_install_in_context(ctx, event, cpu);
4744 ++ctx->generation;
4745 mutex_unlock(&ctx->mutex);
4746
4747 event->owner = current;
4748 get_task_struct(current);
4749 mutex_lock(&current->perf_event_mutex);
4750 list_add_tail(&event->owner_entry, &current->perf_event_list);
4751 mutex_unlock(&current->perf_event_mutex);
4752
4753err_fput_free_put_context:
4754 fput_light(event_file, fput_needed2);
4755
4756err_free_put_context:
4757 if (err < 0)
4758 kfree(event);
4759
4760err_put_context:
4761 if (err < 0)
4762 put_ctx(ctx);
4763
4764 fput_light(group_file, fput_needed);
4765
4766 return err;
4767}
4768
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004769/**
4770 * perf_event_create_kernel_counter
4771 *
4772 * @attr: attributes of the counter to create
4773 * @cpu: cpu in which the counter is bound
4774 * @pid: task to profile
4775 */
4776struct perf_event *
4777perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004778 pid_t pid, perf_callback_t callback)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004779{
4780 struct perf_event *event;
4781 struct perf_event_context *ctx;
4782 int err;
4783
4784 /*
4785 * Get the target context (task or percpu):
4786 */
4787
4788 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004789 if (IS_ERR(ctx)) {
4790 err = PTR_ERR(ctx);
4791 goto err_exit;
4792 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004793
4794 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004795 NULL, callback, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004796 if (IS_ERR(event)) {
4797 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004798 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004799 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004800
4801 event->filp = NULL;
4802 WARN_ON_ONCE(ctx->parent_ctx);
4803 mutex_lock(&ctx->mutex);
4804 perf_install_in_context(ctx, event, cpu);
4805 ++ctx->generation;
4806 mutex_unlock(&ctx->mutex);
4807
4808 event->owner = current;
4809 get_task_struct(current);
4810 mutex_lock(&current->perf_event_mutex);
4811 list_add_tail(&event->owner_entry, &current->perf_event_list);
4812 mutex_unlock(&current->perf_event_mutex);
4813
4814 return event;
4815
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004816 err_put_context:
4817 put_ctx(ctx);
4818 err_exit:
4819 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004820}
4821EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4822
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004823/*
4824 * inherit a event from parent task to child task:
4825 */
4826static struct perf_event *
4827inherit_event(struct perf_event *parent_event,
4828 struct task_struct *parent,
4829 struct perf_event_context *parent_ctx,
4830 struct task_struct *child,
4831 struct perf_event *group_leader,
4832 struct perf_event_context *child_ctx)
4833{
4834 struct perf_event *child_event;
4835
4836 /*
4837 * Instead of creating recursive hierarchies of events,
4838 * we link inherited events back to the original parent,
4839 * which has a filp for sure, which we use as the reference
4840 * count:
4841 */
4842 if (parent_event->parent)
4843 parent_event = parent_event->parent;
4844
4845 child_event = perf_event_alloc(&parent_event->attr,
4846 parent_event->cpu, child_ctx,
4847 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004848 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004849 if (IS_ERR(child_event))
4850 return child_event;
4851 get_ctx(child_ctx);
4852
4853 /*
4854 * Make the child state follow the state of the parent event,
4855 * not its attr.disabled bit. We hold the parent's mutex,
4856 * so we won't race with perf_event_{en, dis}able_family.
4857 */
4858 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4859 child_event->state = PERF_EVENT_STATE_INACTIVE;
4860 else
4861 child_event->state = PERF_EVENT_STATE_OFF;
4862
4863 if (parent_event->attr.freq)
4864 child_event->hw.sample_period = parent_event->hw.sample_period;
4865
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004866 child_event->overflow_handler = parent_event->overflow_handler;
4867
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004868 /*
4869 * Link it up in the child's context:
4870 */
4871 add_event_to_ctx(child_event, child_ctx);
4872
4873 /*
4874 * Get a reference to the parent filp - we will fput it
4875 * when the child event exits. This is safe to do because
4876 * we are in the parent and we know that the filp still
4877 * exists and has a nonzero count:
4878 */
4879 atomic_long_inc(&parent_event->filp->f_count);
4880
4881 /*
4882 * Link this into the parent event's child list
4883 */
4884 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4885 mutex_lock(&parent_event->child_mutex);
4886 list_add_tail(&child_event->child_list, &parent_event->child_list);
4887 mutex_unlock(&parent_event->child_mutex);
4888
4889 return child_event;
4890}
4891
4892static int inherit_group(struct perf_event *parent_event,
4893 struct task_struct *parent,
4894 struct perf_event_context *parent_ctx,
4895 struct task_struct *child,
4896 struct perf_event_context *child_ctx)
4897{
4898 struct perf_event *leader;
4899 struct perf_event *sub;
4900 struct perf_event *child_ctr;
4901
4902 leader = inherit_event(parent_event, parent, parent_ctx,
4903 child, NULL, child_ctx);
4904 if (IS_ERR(leader))
4905 return PTR_ERR(leader);
4906 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4907 child_ctr = inherit_event(sub, parent, parent_ctx,
4908 child, leader, child_ctx);
4909 if (IS_ERR(child_ctr))
4910 return PTR_ERR(child_ctr);
4911 }
4912 return 0;
4913}
4914
4915static void sync_child_event(struct perf_event *child_event,
4916 struct task_struct *child)
4917{
4918 struct perf_event *parent_event = child_event->parent;
4919 u64 child_val;
4920
4921 if (child_event->attr.inherit_stat)
4922 perf_event_read_event(child_event, child);
4923
4924 child_val = atomic64_read(&child_event->count);
4925
4926 /*
4927 * Add back the child's count to the parent's count:
4928 */
4929 atomic64_add(child_val, &parent_event->count);
4930 atomic64_add(child_event->total_time_enabled,
4931 &parent_event->child_total_time_enabled);
4932 atomic64_add(child_event->total_time_running,
4933 &parent_event->child_total_time_running);
4934
4935 /*
4936 * Remove this event from the parent's list
4937 */
4938 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4939 mutex_lock(&parent_event->child_mutex);
4940 list_del_init(&child_event->child_list);
4941 mutex_unlock(&parent_event->child_mutex);
4942
4943 /*
4944 * Release the parent event, if this was the last
4945 * reference to it.
4946 */
4947 fput(parent_event->filp);
4948}
4949
4950static void
4951__perf_event_exit_task(struct perf_event *child_event,
4952 struct perf_event_context *child_ctx,
4953 struct task_struct *child)
4954{
4955 struct perf_event *parent_event;
4956
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004957 perf_event_remove_from_context(child_event);
4958
4959 parent_event = child_event->parent;
4960 /*
4961 * It can happen that parent exits first, and has events
4962 * that are still around due to the child reference. These
4963 * events need to be zapped - but otherwise linger.
4964 */
4965 if (parent_event) {
4966 sync_child_event(child_event, child);
4967 free_event(child_event);
4968 }
4969}
4970
4971/*
4972 * When a child task exits, feed back event values to parent events.
4973 */
4974void perf_event_exit_task(struct task_struct *child)
4975{
4976 struct perf_event *child_event, *tmp;
4977 struct perf_event_context *child_ctx;
4978 unsigned long flags;
4979
4980 if (likely(!child->perf_event_ctxp)) {
4981 perf_event_task(child, NULL, 0);
4982 return;
4983 }
4984
4985 local_irq_save(flags);
4986 /*
4987 * We can't reschedule here because interrupts are disabled,
4988 * and either child is current or it is a task that can't be
4989 * scheduled, so we are now safe from rescheduling changing
4990 * our context.
4991 */
4992 child_ctx = child->perf_event_ctxp;
4993 __perf_event_task_sched_out(child_ctx);
4994
4995 /*
4996 * Take the context lock here so that if find_get_context is
4997 * reading child->perf_event_ctxp, we wait until it has
4998 * incremented the context's refcount before we do put_ctx below.
4999 */
5000 spin_lock(&child_ctx->lock);
5001 child->perf_event_ctxp = NULL;
5002 /*
5003 * If this context is a clone; unclone it so it can't get
5004 * swapped to another process while we're removing all
5005 * the events from it.
5006 */
5007 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005008 update_context_time(child_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005009 spin_unlock_irqrestore(&child_ctx->lock, flags);
5010
5011 /*
5012 * Report the task dead after unscheduling the events so that we
5013 * won't get any samples after PERF_RECORD_EXIT. We can however still
5014 * get a few PERF_RECORD_READ events.
5015 */
5016 perf_event_task(child, child_ctx, 0);
5017
5018 /*
5019 * We can recurse on the same lock type through:
5020 *
5021 * __perf_event_exit_task()
5022 * sync_child_event()
5023 * fput(parent_event->filp)
5024 * perf_release()
5025 * mutex_lock(&ctx->mutex)
5026 *
5027 * But since its the parent context it won't be the same instance.
5028 */
5029 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5030
5031again:
5032 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5033 group_entry)
5034 __perf_event_exit_task(child_event, child_ctx, child);
5035
5036 /*
5037 * If the last event was a group event, it will have appended all
5038 * its siblings to the list, but we obtained 'tmp' before that which
5039 * will still point to the list head terminating the iteration.
5040 */
5041 if (!list_empty(&child_ctx->group_list))
5042 goto again;
5043
5044 mutex_unlock(&child_ctx->mutex);
5045
5046 put_ctx(child_ctx);
5047}
5048
5049/*
5050 * free an unexposed, unused context as created by inheritance by
5051 * init_task below, used by fork() in case of fail.
5052 */
5053void perf_event_free_task(struct task_struct *task)
5054{
5055 struct perf_event_context *ctx = task->perf_event_ctxp;
5056 struct perf_event *event, *tmp;
5057
5058 if (!ctx)
5059 return;
5060
5061 mutex_lock(&ctx->mutex);
5062again:
5063 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5064 struct perf_event *parent = event->parent;
5065
5066 if (WARN_ON_ONCE(!parent))
5067 continue;
5068
5069 mutex_lock(&parent->child_mutex);
5070 list_del_init(&event->child_list);
5071 mutex_unlock(&parent->child_mutex);
5072
5073 fput(parent->filp);
5074
5075 list_del_event(event, ctx);
5076 free_event(event);
5077 }
5078
5079 if (!list_empty(&ctx->group_list))
5080 goto again;
5081
5082 mutex_unlock(&ctx->mutex);
5083
5084 put_ctx(ctx);
5085}
5086
5087/*
5088 * Initialize the perf_event context in task_struct
5089 */
5090int perf_event_init_task(struct task_struct *child)
5091{
5092 struct perf_event_context *child_ctx, *parent_ctx;
5093 struct perf_event_context *cloned_ctx;
5094 struct perf_event *event;
5095 struct task_struct *parent = current;
5096 int inherited_all = 1;
5097 int ret = 0;
5098
5099 child->perf_event_ctxp = NULL;
5100
5101 mutex_init(&child->perf_event_mutex);
5102 INIT_LIST_HEAD(&child->perf_event_list);
5103
5104 if (likely(!parent->perf_event_ctxp))
5105 return 0;
5106
5107 /*
5108 * This is executed from the parent task context, so inherit
5109 * events that have been marked for cloning.
5110 * First allocate and initialize a context for the child.
5111 */
5112
5113 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5114 if (!child_ctx)
5115 return -ENOMEM;
5116
5117 __perf_event_init_context(child_ctx, child);
5118 child->perf_event_ctxp = child_ctx;
5119 get_task_struct(child);
5120
5121 /*
5122 * If the parent's context is a clone, pin it so it won't get
5123 * swapped under us.
5124 */
5125 parent_ctx = perf_pin_task_context(parent);
5126
5127 /*
5128 * No need to check if parent_ctx != NULL here; since we saw
5129 * it non-NULL earlier, the only reason for it to become NULL
5130 * is if we exit, and since we're currently in the middle of
5131 * a fork we can't be exiting at the same time.
5132 */
5133
5134 /*
5135 * Lock the parent list. No need to lock the child - not PID
5136 * hashed yet and not running, so nobody can access it.
5137 */
5138 mutex_lock(&parent_ctx->mutex);
5139
5140 /*
5141 * We dont have to disable NMIs - we are only looking at
5142 * the list, not manipulating it:
5143 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08005144 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005145
5146 if (!event->attr.inherit) {
5147 inherited_all = 0;
5148 continue;
5149 }
5150
5151 ret = inherit_group(event, parent, parent_ctx,
5152 child, child_ctx);
5153 if (ret) {
5154 inherited_all = 0;
5155 break;
5156 }
5157 }
5158
5159 if (inherited_all) {
5160 /*
5161 * Mark the child context as a clone of the parent
5162 * context, or of whatever the parent is a clone of.
5163 * Note that if the parent is a clone, it could get
5164 * uncloned at any point, but that doesn't matter
5165 * because the list of events and the generation
5166 * count can't have changed since we took the mutex.
5167 */
5168 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5169 if (cloned_ctx) {
5170 child_ctx->parent_ctx = cloned_ctx;
5171 child_ctx->parent_gen = parent_ctx->parent_gen;
5172 } else {
5173 child_ctx->parent_ctx = parent_ctx;
5174 child_ctx->parent_gen = parent_ctx->generation;
5175 }
5176 get_ctx(child_ctx->parent_ctx);
5177 }
5178
5179 mutex_unlock(&parent_ctx->mutex);
5180
5181 perf_unpin_context(parent_ctx);
5182
5183 return ret;
5184}
5185
5186static void __cpuinit perf_event_init_cpu(int cpu)
5187{
5188 struct perf_cpu_context *cpuctx;
5189
5190 cpuctx = &per_cpu(perf_cpu_context, cpu);
5191 __perf_event_init_context(&cpuctx->ctx, NULL);
5192
5193 spin_lock(&perf_resource_lock);
5194 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5195 spin_unlock(&perf_resource_lock);
5196
5197 hw_perf_event_setup(cpu);
5198}
5199
5200#ifdef CONFIG_HOTPLUG_CPU
5201static void __perf_event_exit_cpu(void *info)
5202{
5203 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5204 struct perf_event_context *ctx = &cpuctx->ctx;
5205 struct perf_event *event, *tmp;
5206
5207 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5208 __perf_event_remove_from_context(event);
5209}
5210static void perf_event_exit_cpu(int cpu)
5211{
5212 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5213 struct perf_event_context *ctx = &cpuctx->ctx;
5214
5215 mutex_lock(&ctx->mutex);
5216 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5217 mutex_unlock(&ctx->mutex);
5218}
5219#else
5220static inline void perf_event_exit_cpu(int cpu) { }
5221#endif
5222
5223static int __cpuinit
5224perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5225{
5226 unsigned int cpu = (long)hcpu;
5227
5228 switch (action) {
5229
5230 case CPU_UP_PREPARE:
5231 case CPU_UP_PREPARE_FROZEN:
5232 perf_event_init_cpu(cpu);
5233 break;
5234
5235 case CPU_ONLINE:
5236 case CPU_ONLINE_FROZEN:
5237 hw_perf_event_setup_online(cpu);
5238 break;
5239
5240 case CPU_DOWN_PREPARE:
5241 case CPU_DOWN_PREPARE_FROZEN:
5242 perf_event_exit_cpu(cpu);
5243 break;
5244
5245 default:
5246 break;
5247 }
5248
5249 return NOTIFY_OK;
5250}
5251
5252/*
5253 * This has to have a higher priority than migration_notifier in sched.c.
5254 */
5255static struct notifier_block __cpuinitdata perf_cpu_nb = {
5256 .notifier_call = perf_cpu_notify,
5257 .priority = 20,
5258};
5259
5260void __init perf_event_init(void)
5261{
5262 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5263 (void *)(long)smp_processor_id());
5264 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5265 (void *)(long)smp_processor_id());
5266 register_cpu_notifier(&perf_cpu_nb);
5267}
5268
5269static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5270{
5271 return sprintf(buf, "%d\n", perf_reserved_percpu);
5272}
5273
5274static ssize_t
5275perf_set_reserve_percpu(struct sysdev_class *class,
5276 const char *buf,
5277 size_t count)
5278{
5279 struct perf_cpu_context *cpuctx;
5280 unsigned long val;
5281 int err, cpu, mpt;
5282
5283 err = strict_strtoul(buf, 10, &val);
5284 if (err)
5285 return err;
5286 if (val > perf_max_events)
5287 return -EINVAL;
5288
5289 spin_lock(&perf_resource_lock);
5290 perf_reserved_percpu = val;
5291 for_each_online_cpu(cpu) {
5292 cpuctx = &per_cpu(perf_cpu_context, cpu);
5293 spin_lock_irq(&cpuctx->ctx.lock);
5294 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5295 perf_max_events - perf_reserved_percpu);
5296 cpuctx->max_pertask = mpt;
5297 spin_unlock_irq(&cpuctx->ctx.lock);
5298 }
5299 spin_unlock(&perf_resource_lock);
5300
5301 return count;
5302}
5303
5304static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5305{
5306 return sprintf(buf, "%d\n", perf_overcommit);
5307}
5308
5309static ssize_t
5310perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5311{
5312 unsigned long val;
5313 int err;
5314
5315 err = strict_strtoul(buf, 10, &val);
5316 if (err)
5317 return err;
5318 if (val > 1)
5319 return -EINVAL;
5320
5321 spin_lock(&perf_resource_lock);
5322 perf_overcommit = val;
5323 spin_unlock(&perf_resource_lock);
5324
5325 return count;
5326}
5327
5328static SYSDEV_CLASS_ATTR(
5329 reserve_percpu,
5330 0644,
5331 perf_show_reserve_percpu,
5332 perf_set_reserve_percpu
5333 );
5334
5335static SYSDEV_CLASS_ATTR(
5336 overcommit,
5337 0644,
5338 perf_show_overcommit,
5339 perf_set_overcommit
5340 );
5341
5342static struct attribute *perfclass_attrs[] = {
5343 &attr_reserve_percpu.attr,
5344 &attr_overcommit.attr,
5345 NULL
5346};
5347
5348static struct attribute_group perfclass_attr_group = {
5349 .attrs = perfclass_attrs,
5350 .name = "perf_events",
5351};
5352
5353static int __init perf_event_sysfs_init(void)
5354{
5355 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5356 &perfclass_attr_group);
5357}
5358device_initcall(perf_event_sysfs_init);