Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 1 | #include <linux/kernel.h> |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 2 | #include <linux/sched.h> |
| 3 | #include <linux/init.h> |
| 4 | #include <linux/module.h> |
| 5 | #include <linux/timer.h> |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 6 | #include <linux/acpi_pmtmr.h> |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame^] | 7 | #include <linux/cpufreq.h> |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 8 | |
| 9 | #include <asm/hpet.h> |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 10 | |
| 11 | unsigned int cpu_khz; /* TSC clocks / usec, not used here */ |
| 12 | EXPORT_SYMBOL(cpu_khz); |
| 13 | unsigned int tsc_khz; |
| 14 | EXPORT_SYMBOL(tsc_khz); |
| 15 | |
| 16 | /* |
| 17 | * TSC can be unstable due to cpufreq or due to unsynced TSCs |
| 18 | */ |
| 19 | int tsc_unstable; |
| 20 | |
| 21 | /* native_sched_clock() is called before tsc_init(), so |
| 22 | we must start with the TSC soft disabled to prevent |
| 23 | erroneous rdtsc usage on !cpu_has_tsc processors */ |
| 24 | int tsc_disabled = -1; |
| 25 | |
| 26 | /* |
| 27 | * Scheduler clock - returns current time in nanosec units. |
| 28 | */ |
| 29 | u64 native_sched_clock(void) |
| 30 | { |
| 31 | u64 this_offset; |
| 32 | |
| 33 | /* |
| 34 | * Fall back to jiffies if there's no TSC available: |
| 35 | * ( But note that we still use it if the TSC is marked |
| 36 | * unstable. We do this because unlike Time Of Day, |
| 37 | * the scheduler clock tolerates small errors and it's |
| 38 | * very important for it to be as fast as the platform |
| 39 | * can achive it. ) |
| 40 | */ |
| 41 | if (unlikely(tsc_disabled)) { |
| 42 | /* No locking but a rare wrong value is not a big deal: */ |
| 43 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); |
| 44 | } |
| 45 | |
| 46 | /* read the Time Stamp Counter: */ |
| 47 | rdtscll(this_offset); |
| 48 | |
| 49 | /* return the value in ns */ |
| 50 | return cycles_2_ns(this_offset); |
| 51 | } |
| 52 | |
| 53 | /* We need to define a real function for sched_clock, to override the |
| 54 | weak default version */ |
| 55 | #ifdef CONFIG_PARAVIRT |
| 56 | unsigned long long sched_clock(void) |
| 57 | { |
| 58 | return paravirt_sched_clock(); |
| 59 | } |
| 60 | #else |
| 61 | unsigned long long |
| 62 | sched_clock(void) __attribute__((alias("native_sched_clock"))); |
| 63 | #endif |
| 64 | |
| 65 | int check_tsc_unstable(void) |
| 66 | { |
| 67 | return tsc_unstable; |
| 68 | } |
| 69 | EXPORT_SYMBOL_GPL(check_tsc_unstable); |
| 70 | |
| 71 | #ifdef CONFIG_X86_TSC |
| 72 | int __init notsc_setup(char *str) |
| 73 | { |
| 74 | printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " |
| 75 | "cannot disable TSC completely.\n"); |
| 76 | tsc_disabled = 1; |
| 77 | return 1; |
| 78 | } |
| 79 | #else |
| 80 | /* |
| 81 | * disable flag for tsc. Takes effect by clearing the TSC cpu flag |
| 82 | * in cpu/common.c |
| 83 | */ |
| 84 | int __init notsc_setup(char *str) |
| 85 | { |
| 86 | setup_clear_cpu_cap(X86_FEATURE_TSC); |
| 87 | return 1; |
| 88 | } |
| 89 | #endif |
| 90 | |
| 91 | __setup("notsc", notsc_setup); |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 92 | |
| 93 | #define MAX_RETRIES 5 |
| 94 | #define SMI_TRESHOLD 50000 |
| 95 | |
| 96 | /* |
| 97 | * Read TSC and the reference counters. Take care of SMI disturbance |
| 98 | */ |
| 99 | static u64 __init tsc_read_refs(u64 *pm, u64 *hpet) |
| 100 | { |
| 101 | u64 t1, t2; |
| 102 | int i; |
| 103 | |
| 104 | for (i = 0; i < MAX_RETRIES; i++) { |
| 105 | t1 = get_cycles(); |
| 106 | if (hpet) |
| 107 | *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; |
| 108 | else |
| 109 | *pm = acpi_pm_read_early(); |
| 110 | t2 = get_cycles(); |
| 111 | if ((t2 - t1) < SMI_TRESHOLD) |
| 112 | return t2; |
| 113 | } |
| 114 | return ULLONG_MAX; |
| 115 | } |
| 116 | |
| 117 | /** |
| 118 | * tsc_calibrate - calibrate the tsc on boot |
| 119 | */ |
| 120 | static unsigned int __init tsc_calibrate(void) |
| 121 | { |
| 122 | unsigned long flags; |
| 123 | u64 tsc1, tsc2, tr1, tr2, delta, pm1, pm2, hpet1, hpet2; |
| 124 | int hpet = is_hpet_enabled(); |
| 125 | unsigned int tsc_khz_val = 0; |
| 126 | |
| 127 | local_irq_save(flags); |
| 128 | |
| 129 | tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); |
| 130 | |
| 131 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 132 | |
| 133 | outb(0xb0, 0x43); |
| 134 | outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); |
| 135 | outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); |
| 136 | tr1 = get_cycles(); |
| 137 | while ((inb(0x61) & 0x20) == 0); |
| 138 | tr2 = get_cycles(); |
| 139 | |
| 140 | tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); |
| 141 | |
| 142 | local_irq_restore(flags); |
| 143 | |
| 144 | /* |
| 145 | * Preset the result with the raw and inaccurate PIT |
| 146 | * calibration value |
| 147 | */ |
| 148 | delta = (tr2 - tr1); |
| 149 | do_div(delta, 50); |
| 150 | tsc_khz_val = delta; |
| 151 | |
| 152 | /* hpet or pmtimer available ? */ |
| 153 | if (!hpet && !pm1 && !pm2) { |
| 154 | printk(KERN_INFO "TSC calibrated against PIT\n"); |
| 155 | goto out; |
| 156 | } |
| 157 | |
| 158 | /* Check, whether the sampling was disturbed by an SMI */ |
| 159 | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) { |
| 160 | printk(KERN_WARNING "TSC calibration disturbed by SMI, " |
| 161 | "using PIT calibration result\n"); |
| 162 | goto out; |
| 163 | } |
| 164 | |
| 165 | tsc2 = (tsc2 - tsc1) * 1000000LL; |
| 166 | |
| 167 | if (hpet) { |
| 168 | printk(KERN_INFO "TSC calibrated against HPET\n"); |
| 169 | if (hpet2 < hpet1) |
| 170 | hpet2 += 0x100000000ULL; |
| 171 | hpet2 -= hpet1; |
| 172 | tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); |
| 173 | do_div(tsc1, 1000000); |
| 174 | } else { |
| 175 | printk(KERN_INFO "TSC calibrated against PM_TIMER\n"); |
| 176 | if (pm2 < pm1) |
| 177 | pm2 += (u64)ACPI_PM_OVRRUN; |
| 178 | pm2 -= pm1; |
| 179 | tsc1 = pm2 * 1000000000LL; |
| 180 | do_div(tsc1, PMTMR_TICKS_PER_SEC); |
| 181 | } |
| 182 | |
| 183 | do_div(tsc2, tsc1); |
| 184 | tsc_khz_val = tsc2; |
| 185 | |
| 186 | out: |
| 187 | return tsc_khz_val; |
| 188 | } |
| 189 | |
| 190 | unsigned long native_calculate_cpu_khz(void) |
| 191 | { |
| 192 | return tsc_calibrate(); |
| 193 | } |
| 194 | |
| 195 | #ifdef CONFIG_X86_32 |
| 196 | /* Only called from the Powernow K7 cpu freq driver */ |
| 197 | int recalibrate_cpu_khz(void) |
| 198 | { |
| 199 | #ifndef CONFIG_SMP |
| 200 | unsigned long cpu_khz_old = cpu_khz; |
| 201 | |
| 202 | if (cpu_has_tsc) { |
| 203 | cpu_khz = calculate_cpu_khz(); |
| 204 | tsc_khz = cpu_khz; |
| 205 | cpu_data(0).loops_per_jiffy = |
| 206 | cpufreq_scale(cpu_data(0).loops_per_jiffy, |
| 207 | cpu_khz_old, cpu_khz); |
| 208 | return 0; |
| 209 | } else |
| 210 | return -ENODEV; |
| 211 | #else |
| 212 | return -ENODEV; |
| 213 | #endif |
| 214 | } |
| 215 | |
| 216 | EXPORT_SYMBOL(recalibrate_cpu_khz); |
| 217 | |
| 218 | #endif /* CONFIG_X86_32 */ |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame^] | 219 | |
| 220 | /* Accelerators for sched_clock() |
| 221 | * convert from cycles(64bits) => nanoseconds (64bits) |
| 222 | * basic equation: |
| 223 | * ns = cycles / (freq / ns_per_sec) |
| 224 | * ns = cycles * (ns_per_sec / freq) |
| 225 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| 226 | * ns = cycles * (10^6 / cpu_khz) |
| 227 | * |
| 228 | * Then we use scaling math (suggested by george@mvista.com) to get: |
| 229 | * ns = cycles * (10^6 * SC / cpu_khz) / SC |
| 230 | * ns = cycles * cyc2ns_scale / SC |
| 231 | * |
| 232 | * And since SC is a constant power of two, we can convert the div |
| 233 | * into a shift. |
| 234 | * |
| 235 | * We can use khz divisor instead of mhz to keep a better precision, since |
| 236 | * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. |
| 237 | * (mathieu.desnoyers@polymtl.ca) |
| 238 | * |
| 239 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
| 240 | */ |
| 241 | |
| 242 | DEFINE_PER_CPU(unsigned long, cyc2ns); |
| 243 | |
| 244 | void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) |
| 245 | { |
| 246 | unsigned long long tsc_now, ns_now; |
| 247 | unsigned long flags, *scale; |
| 248 | |
| 249 | local_irq_save(flags); |
| 250 | sched_clock_idle_sleep_event(); |
| 251 | |
| 252 | scale = &per_cpu(cyc2ns, cpu); |
| 253 | |
| 254 | rdtscll(tsc_now); |
| 255 | ns_now = __cycles_2_ns(tsc_now); |
| 256 | |
| 257 | if (cpu_khz) |
| 258 | *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; |
| 259 | |
| 260 | sched_clock_idle_wakeup_event(0); |
| 261 | local_irq_restore(flags); |
| 262 | } |
| 263 | |
| 264 | #ifdef CONFIG_CPU_FREQ |
| 265 | |
| 266 | /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency |
| 267 | * changes. |
| 268 | * |
| 269 | * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's |
| 270 | * not that important because current Opteron setups do not support |
| 271 | * scaling on SMP anyroads. |
| 272 | * |
| 273 | * Should fix up last_tsc too. Currently gettimeofday in the |
| 274 | * first tick after the change will be slightly wrong. |
| 275 | */ |
| 276 | |
| 277 | static unsigned int ref_freq; |
| 278 | static unsigned long loops_per_jiffy_ref; |
| 279 | static unsigned long tsc_khz_ref; |
| 280 | |
| 281 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| 282 | void *data) |
| 283 | { |
| 284 | struct cpufreq_freqs *freq = data; |
| 285 | unsigned long *lpj, dummy; |
| 286 | |
| 287 | if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) |
| 288 | return 0; |
| 289 | |
| 290 | lpj = &dummy; |
| 291 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 292 | #ifdef CONFIG_SMP |
| 293 | lpj = &cpu_data(freq->cpu).loops_per_jiffy; |
| 294 | #else |
| 295 | lpj = &boot_cpu_data.loops_per_jiffy; |
| 296 | #endif |
| 297 | |
| 298 | if (!ref_freq) { |
| 299 | ref_freq = freq->old; |
| 300 | loops_per_jiffy_ref = *lpj; |
| 301 | tsc_khz_ref = tsc_khz; |
| 302 | } |
| 303 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| 304 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| 305 | (val == CPUFREQ_RESUMECHANGE)) { |
| 306 | *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
| 307 | |
| 308 | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); |
| 309 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 310 | mark_tsc_unstable("cpufreq changes"); |
| 311 | } |
| 312 | |
| 313 | set_cyc2ns_scale(tsc_khz_ref, freq->cpu); |
| 314 | |
| 315 | return 0; |
| 316 | } |
| 317 | |
| 318 | static struct notifier_block time_cpufreq_notifier_block = { |
| 319 | .notifier_call = time_cpufreq_notifier |
| 320 | }; |
| 321 | |
| 322 | static int __init cpufreq_tsc(void) |
| 323 | { |
| 324 | cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| 325 | CPUFREQ_TRANSITION_NOTIFIER); |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | core_initcall(cpufreq_tsc); |
| 330 | |
| 331 | #endif /* CONFIG_CPU_FREQ */ |