|  | /* | 
|  | * Interface for controlling IO bandwidth on a request queue | 
|  | * | 
|  | * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blktrace_api.h> | 
|  | #include <linux/blk-cgroup.h> | 
|  | #include "blk.h" | 
|  |  | 
|  | /* Max dispatch from a group in 1 round */ | 
|  | static int throtl_grp_quantum = 8; | 
|  |  | 
|  | /* Total max dispatch from all groups in one round */ | 
|  | static int throtl_quantum = 32; | 
|  |  | 
|  | /* Throttling is performed over 100ms slice and after that slice is renewed */ | 
|  | static unsigned long throtl_slice = HZ/10;	/* 100 ms */ | 
|  |  | 
|  | static struct blkcg_policy blkcg_policy_throtl; | 
|  |  | 
|  | /* A workqueue to queue throttle related work */ | 
|  | static struct workqueue_struct *kthrotld_workqueue; | 
|  |  | 
|  | /* | 
|  | * To implement hierarchical throttling, throtl_grps form a tree and bios | 
|  | * are dispatched upwards level by level until they reach the top and get | 
|  | * issued.  When dispatching bios from the children and local group at each | 
|  | * level, if the bios are dispatched into a single bio_list, there's a risk | 
|  | * of a local or child group which can queue many bios at once filling up | 
|  | * the list starving others. | 
|  | * | 
|  | * To avoid such starvation, dispatched bios are queued separately | 
|  | * according to where they came from.  When they are again dispatched to | 
|  | * the parent, they're popped in round-robin order so that no single source | 
|  | * hogs the dispatch window. | 
|  | * | 
|  | * throtl_qnode is used to keep the queued bios separated by their sources. | 
|  | * Bios are queued to throtl_qnode which in turn is queued to | 
|  | * throtl_service_queue and then dispatched in round-robin order. | 
|  | * | 
|  | * It's also used to track the reference counts on blkg's.  A qnode always | 
|  | * belongs to a throtl_grp and gets queued on itself or the parent, so | 
|  | * incrementing the reference of the associated throtl_grp when a qnode is | 
|  | * queued and decrementing when dequeued is enough to keep the whole blkg | 
|  | * tree pinned while bios are in flight. | 
|  | */ | 
|  | struct throtl_qnode { | 
|  | struct list_head	node;		/* service_queue->queued[] */ | 
|  | struct bio_list		bios;		/* queued bios */ | 
|  | struct throtl_grp	*tg;		/* tg this qnode belongs to */ | 
|  | }; | 
|  |  | 
|  | struct throtl_service_queue { | 
|  | struct throtl_service_queue *parent_sq;	/* the parent service_queue */ | 
|  |  | 
|  | /* | 
|  | * Bios queued directly to this service_queue or dispatched from | 
|  | * children throtl_grp's. | 
|  | */ | 
|  | struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */ | 
|  | unsigned int		nr_queued[2];	/* number of queued bios */ | 
|  |  | 
|  | /* | 
|  | * RB tree of active children throtl_grp's, which are sorted by | 
|  | * their ->disptime. | 
|  | */ | 
|  | struct rb_root		pending_tree;	/* RB tree of active tgs */ | 
|  | struct rb_node		*first_pending;	/* first node in the tree */ | 
|  | unsigned int		nr_pending;	/* # queued in the tree */ | 
|  | unsigned long		first_pending_disptime;	/* disptime of the first tg */ | 
|  | struct timer_list	pending_timer;	/* fires on first_pending_disptime */ | 
|  | }; | 
|  |  | 
|  | enum tg_state_flags { | 
|  | THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */ | 
|  | THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */ | 
|  | }; | 
|  |  | 
|  | #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node) | 
|  |  | 
|  | struct throtl_grp { | 
|  | /* must be the first member */ | 
|  | struct blkg_policy_data pd; | 
|  |  | 
|  | /* active throtl group service_queue member */ | 
|  | struct rb_node rb_node; | 
|  |  | 
|  | /* throtl_data this group belongs to */ | 
|  | struct throtl_data *td; | 
|  |  | 
|  | /* this group's service queue */ | 
|  | struct throtl_service_queue service_queue; | 
|  |  | 
|  | /* | 
|  | * qnode_on_self is used when bios are directly queued to this | 
|  | * throtl_grp so that local bios compete fairly with bios | 
|  | * dispatched from children.  qnode_on_parent is used when bios are | 
|  | * dispatched from this throtl_grp into its parent and will compete | 
|  | * with the sibling qnode_on_parents and the parent's | 
|  | * qnode_on_self. | 
|  | */ | 
|  | struct throtl_qnode qnode_on_self[2]; | 
|  | struct throtl_qnode qnode_on_parent[2]; | 
|  |  | 
|  | /* | 
|  | * Dispatch time in jiffies. This is the estimated time when group | 
|  | * will unthrottle and is ready to dispatch more bio. It is used as | 
|  | * key to sort active groups in service tree. | 
|  | */ | 
|  | unsigned long disptime; | 
|  |  | 
|  | unsigned int flags; | 
|  |  | 
|  | /* are there any throtl rules between this group and td? */ | 
|  | bool has_rules[2]; | 
|  |  | 
|  | /* bytes per second rate limits */ | 
|  | uint64_t bps[2]; | 
|  |  | 
|  | /* IOPS limits */ | 
|  | unsigned int iops[2]; | 
|  |  | 
|  | /* Number of bytes disptached in current slice */ | 
|  | uint64_t bytes_disp[2]; | 
|  | /* Number of bio's dispatched in current slice */ | 
|  | unsigned int io_disp[2]; | 
|  |  | 
|  | /* When did we start a new slice */ | 
|  | unsigned long slice_start[2]; | 
|  | unsigned long slice_end[2]; | 
|  | }; | 
|  |  | 
|  | struct throtl_data | 
|  | { | 
|  | /* service tree for active throtl groups */ | 
|  | struct throtl_service_queue service_queue; | 
|  |  | 
|  | struct request_queue *queue; | 
|  |  | 
|  | /* Total Number of queued bios on READ and WRITE lists */ | 
|  | unsigned int nr_queued[2]; | 
|  |  | 
|  | /* | 
|  | * number of total undestroyed groups | 
|  | */ | 
|  | unsigned int nr_undestroyed_grps; | 
|  |  | 
|  | /* Work for dispatching throttled bios */ | 
|  | struct work_struct dispatch_work; | 
|  | }; | 
|  |  | 
|  | static void throtl_pending_timer_fn(unsigned long arg); | 
|  |  | 
|  | static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) | 
|  | { | 
|  | return pd ? container_of(pd, struct throtl_grp, pd) : NULL; | 
|  | } | 
|  |  | 
|  | static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) | 
|  | { | 
|  | return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); | 
|  | } | 
|  |  | 
|  | static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) | 
|  | { | 
|  | return pd_to_blkg(&tg->pd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sq_to_tg - return the throl_grp the specified service queue belongs to | 
|  | * @sq: the throtl_service_queue of interest | 
|  | * | 
|  | * Return the throtl_grp @sq belongs to.  If @sq is the top-level one | 
|  | * embedded in throtl_data, %NULL is returned. | 
|  | */ | 
|  | static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) | 
|  | { | 
|  | if (sq && sq->parent_sq) | 
|  | return container_of(sq, struct throtl_grp, service_queue); | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sq_to_td - return throtl_data the specified service queue belongs to | 
|  | * @sq: the throtl_service_queue of interest | 
|  | * | 
|  | * A service_queue can be embeded in either a throtl_grp or throtl_data. | 
|  | * Determine the associated throtl_data accordingly and return it. | 
|  | */ | 
|  | static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) | 
|  | { | 
|  | struct throtl_grp *tg = sq_to_tg(sq); | 
|  |  | 
|  | if (tg) | 
|  | return tg->td; | 
|  | else | 
|  | return container_of(sq, struct throtl_data, service_queue); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_log - log debug message via blktrace | 
|  | * @sq: the service_queue being reported | 
|  | * @fmt: printf format string | 
|  | * @args: printf args | 
|  | * | 
|  | * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a | 
|  | * throtl_grp; otherwise, just "throtl". | 
|  | * | 
|  | * TODO: this should be made a function and name formatting should happen | 
|  | * after testing whether blktrace is enabled. | 
|  | */ | 
|  | #define throtl_log(sq, fmt, args...)	do {				\ | 
|  | struct throtl_grp *__tg = sq_to_tg((sq));			\ | 
|  | struct throtl_data *__td = sq_to_td((sq));			\ | 
|  | \ | 
|  | (void)__td;							\ | 
|  | if ((__tg)) {							\ | 
|  | char __pbuf[128];					\ | 
|  | \ | 
|  | blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\ | 
|  | blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \ | 
|  | } else {							\ | 
|  | blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\ | 
|  | }								\ | 
|  | } while (0) | 
|  |  | 
|  | static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) | 
|  | { | 
|  | INIT_LIST_HEAD(&qn->node); | 
|  | bio_list_init(&qn->bios); | 
|  | qn->tg = tg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it | 
|  | * @bio: bio being added | 
|  | * @qn: qnode to add bio to | 
|  | * @queued: the service_queue->queued[] list @qn belongs to | 
|  | * | 
|  | * Add @bio to @qn and put @qn on @queued if it's not already on. | 
|  | * @qn->tg's reference count is bumped when @qn is activated.  See the | 
|  | * comment on top of throtl_qnode definition for details. | 
|  | */ | 
|  | static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, | 
|  | struct list_head *queued) | 
|  | { | 
|  | bio_list_add(&qn->bios, bio); | 
|  | if (list_empty(&qn->node)) { | 
|  | list_add_tail(&qn->node, queued); | 
|  | blkg_get(tg_to_blkg(qn->tg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_peek_queued - peek the first bio on a qnode list | 
|  | * @queued: the qnode list to peek | 
|  | */ | 
|  | static struct bio *throtl_peek_queued(struct list_head *queued) | 
|  | { | 
|  | struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); | 
|  | struct bio *bio; | 
|  |  | 
|  | if (list_empty(queued)) | 
|  | return NULL; | 
|  |  | 
|  | bio = bio_list_peek(&qn->bios); | 
|  | WARN_ON_ONCE(!bio); | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_pop_queued - pop the first bio form a qnode list | 
|  | * @queued: the qnode list to pop a bio from | 
|  | * @tg_to_put: optional out argument for throtl_grp to put | 
|  | * | 
|  | * Pop the first bio from the qnode list @queued.  After popping, the first | 
|  | * qnode is removed from @queued if empty or moved to the end of @queued so | 
|  | * that the popping order is round-robin. | 
|  | * | 
|  | * When the first qnode is removed, its associated throtl_grp should be put | 
|  | * too.  If @tg_to_put is NULL, this function automatically puts it; | 
|  | * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is | 
|  | * responsible for putting it. | 
|  | */ | 
|  | static struct bio *throtl_pop_queued(struct list_head *queued, | 
|  | struct throtl_grp **tg_to_put) | 
|  | { | 
|  | struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); | 
|  | struct bio *bio; | 
|  |  | 
|  | if (list_empty(queued)) | 
|  | return NULL; | 
|  |  | 
|  | bio = bio_list_pop(&qn->bios); | 
|  | WARN_ON_ONCE(!bio); | 
|  |  | 
|  | if (bio_list_empty(&qn->bios)) { | 
|  | list_del_init(&qn->node); | 
|  | if (tg_to_put) | 
|  | *tg_to_put = qn->tg; | 
|  | else | 
|  | blkg_put(tg_to_blkg(qn->tg)); | 
|  | } else { | 
|  | list_move_tail(&qn->node, queued); | 
|  | } | 
|  |  | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | /* init a service_queue, assumes the caller zeroed it */ | 
|  | static void throtl_service_queue_init(struct throtl_service_queue *sq) | 
|  | { | 
|  | INIT_LIST_HEAD(&sq->queued[0]); | 
|  | INIT_LIST_HEAD(&sq->queued[1]); | 
|  | sq->pending_tree = RB_ROOT; | 
|  | setup_timer(&sq->pending_timer, throtl_pending_timer_fn, | 
|  | (unsigned long)sq); | 
|  | } | 
|  |  | 
|  | static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node) | 
|  | { | 
|  | struct throtl_grp *tg; | 
|  | int rw; | 
|  |  | 
|  | tg = kzalloc_node(sizeof(*tg), gfp, node); | 
|  | if (!tg) | 
|  | return NULL; | 
|  |  | 
|  | throtl_service_queue_init(&tg->service_queue); | 
|  |  | 
|  | for (rw = READ; rw <= WRITE; rw++) { | 
|  | throtl_qnode_init(&tg->qnode_on_self[rw], tg); | 
|  | throtl_qnode_init(&tg->qnode_on_parent[rw], tg); | 
|  | } | 
|  |  | 
|  | RB_CLEAR_NODE(&tg->rb_node); | 
|  | tg->bps[READ] = -1; | 
|  | tg->bps[WRITE] = -1; | 
|  | tg->iops[READ] = -1; | 
|  | tg->iops[WRITE] = -1; | 
|  |  | 
|  | return &tg->pd; | 
|  | } | 
|  |  | 
|  | static void throtl_pd_init(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | struct blkcg_gq *blkg = tg_to_blkg(tg); | 
|  | struct throtl_data *td = blkg->q->td; | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  |  | 
|  | /* | 
|  | * If on the default hierarchy, we switch to properly hierarchical | 
|  | * behavior where limits on a given throtl_grp are applied to the | 
|  | * whole subtree rather than just the group itself.  e.g. If 16M | 
|  | * read_bps limit is set on the root group, the whole system can't | 
|  | * exceed 16M for the device. | 
|  | * | 
|  | * If not on the default hierarchy, the broken flat hierarchy | 
|  | * behavior is retained where all throtl_grps are treated as if | 
|  | * they're all separate root groups right below throtl_data. | 
|  | * Limits of a group don't interact with limits of other groups | 
|  | * regardless of the position of the group in the hierarchy. | 
|  | */ | 
|  | sq->parent_sq = &td->service_queue; | 
|  | if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) | 
|  | sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; | 
|  | tg->td = td; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set has_rules[] if @tg or any of its parents have limits configured. | 
|  | * This doesn't require walking up to the top of the hierarchy as the | 
|  | * parent's has_rules[] is guaranteed to be correct. | 
|  | */ | 
|  | static void tg_update_has_rules(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); | 
|  | int rw; | 
|  |  | 
|  | for (rw = READ; rw <= WRITE; rw++) | 
|  | tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || | 
|  | (tg->bps[rw] != -1 || tg->iops[rw] != -1); | 
|  | } | 
|  |  | 
|  | static void throtl_pd_online(struct blkg_policy_data *pd) | 
|  | { | 
|  | /* | 
|  | * We don't want new groups to escape the limits of its ancestors. | 
|  | * Update has_rules[] after a new group is brought online. | 
|  | */ | 
|  | tg_update_has_rules(pd_to_tg(pd)); | 
|  | } | 
|  |  | 
|  | static void throtl_pd_free(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  |  | 
|  | del_timer_sync(&tg->service_queue.pending_timer); | 
|  | kfree(tg); | 
|  | } | 
|  |  | 
|  | static struct throtl_grp * | 
|  | throtl_rb_first(struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | /* Service tree is empty */ | 
|  | if (!parent_sq->nr_pending) | 
|  | return NULL; | 
|  |  | 
|  | if (!parent_sq->first_pending) | 
|  | parent_sq->first_pending = rb_first(&parent_sq->pending_tree); | 
|  |  | 
|  | if (parent_sq->first_pending) | 
|  | return rb_entry_tg(parent_sq->first_pending); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void rb_erase_init(struct rb_node *n, struct rb_root *root) | 
|  | { | 
|  | rb_erase(n, root); | 
|  | RB_CLEAR_NODE(n); | 
|  | } | 
|  |  | 
|  | static void throtl_rb_erase(struct rb_node *n, | 
|  | struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | if (parent_sq->first_pending == n) | 
|  | parent_sq->first_pending = NULL; | 
|  | rb_erase_init(n, &parent_sq->pending_tree); | 
|  | --parent_sq->nr_pending; | 
|  | } | 
|  |  | 
|  | static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | struct throtl_grp *tg; | 
|  |  | 
|  | tg = throtl_rb_first(parent_sq); | 
|  | if (!tg) | 
|  | return; | 
|  |  | 
|  | parent_sq->first_pending_disptime = tg->disptime; | 
|  | } | 
|  |  | 
|  | static void tg_service_queue_add(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; | 
|  | struct rb_node **node = &parent_sq->pending_tree.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct throtl_grp *__tg; | 
|  | unsigned long key = tg->disptime; | 
|  | int left = 1; | 
|  |  | 
|  | while (*node != NULL) { | 
|  | parent = *node; | 
|  | __tg = rb_entry_tg(parent); | 
|  |  | 
|  | if (time_before(key, __tg->disptime)) | 
|  | node = &parent->rb_left; | 
|  | else { | 
|  | node = &parent->rb_right; | 
|  | left = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (left) | 
|  | parent_sq->first_pending = &tg->rb_node; | 
|  |  | 
|  | rb_link_node(&tg->rb_node, parent, node); | 
|  | rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); | 
|  | } | 
|  |  | 
|  | static void __throtl_enqueue_tg(struct throtl_grp *tg) | 
|  | { | 
|  | tg_service_queue_add(tg); | 
|  | tg->flags |= THROTL_TG_PENDING; | 
|  | tg->service_queue.parent_sq->nr_pending++; | 
|  | } | 
|  |  | 
|  | static void throtl_enqueue_tg(struct throtl_grp *tg) | 
|  | { | 
|  | if (!(tg->flags & THROTL_TG_PENDING)) | 
|  | __throtl_enqueue_tg(tg); | 
|  | } | 
|  |  | 
|  | static void __throtl_dequeue_tg(struct throtl_grp *tg) | 
|  | { | 
|  | throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); | 
|  | tg->flags &= ~THROTL_TG_PENDING; | 
|  | } | 
|  |  | 
|  | static void throtl_dequeue_tg(struct throtl_grp *tg) | 
|  | { | 
|  | if (tg->flags & THROTL_TG_PENDING) | 
|  | __throtl_dequeue_tg(tg); | 
|  | } | 
|  |  | 
|  | /* Call with queue lock held */ | 
|  | static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, | 
|  | unsigned long expires) | 
|  | { | 
|  | mod_timer(&sq->pending_timer, expires); | 
|  | throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", | 
|  | expires - jiffies, jiffies); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_schedule_next_dispatch - schedule the next dispatch cycle | 
|  | * @sq: the service_queue to schedule dispatch for | 
|  | * @force: force scheduling | 
|  | * | 
|  | * Arm @sq->pending_timer so that the next dispatch cycle starts on the | 
|  | * dispatch time of the first pending child.  Returns %true if either timer | 
|  | * is armed or there's no pending child left.  %false if the current | 
|  | * dispatch window is still open and the caller should continue | 
|  | * dispatching. | 
|  | * | 
|  | * If @force is %true, the dispatch timer is always scheduled and this | 
|  | * function is guaranteed to return %true.  This is to be used when the | 
|  | * caller can't dispatch itself and needs to invoke pending_timer | 
|  | * unconditionally.  Note that forced scheduling is likely to induce short | 
|  | * delay before dispatch starts even if @sq->first_pending_disptime is not | 
|  | * in the future and thus shouldn't be used in hot paths. | 
|  | */ | 
|  | static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, | 
|  | bool force) | 
|  | { | 
|  | /* any pending children left? */ | 
|  | if (!sq->nr_pending) | 
|  | return true; | 
|  |  | 
|  | update_min_dispatch_time(sq); | 
|  |  | 
|  | /* is the next dispatch time in the future? */ | 
|  | if (force || time_after(sq->first_pending_disptime, jiffies)) { | 
|  | throtl_schedule_pending_timer(sq, sq->first_pending_disptime); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* tell the caller to continue dispatching */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, | 
|  | bool rw, unsigned long start) | 
|  | { | 
|  | tg->bytes_disp[rw] = 0; | 
|  | tg->io_disp[rw] = 0; | 
|  |  | 
|  | /* | 
|  | * Previous slice has expired. We must have trimmed it after last | 
|  | * bio dispatch. That means since start of last slice, we never used | 
|  | * that bandwidth. Do try to make use of that bandwidth while giving | 
|  | * credit. | 
|  | */ | 
|  | if (time_after_eq(start, tg->slice_start[rw])) | 
|  | tg->slice_start[rw] = start; | 
|  |  | 
|  | tg->slice_end[rw] = jiffies + throtl_slice; | 
|  | throtl_log(&tg->service_queue, | 
|  | "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
|  | tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | tg->bytes_disp[rw] = 0; | 
|  | tg->io_disp[rw] = 0; | 
|  | tg->slice_start[rw] = jiffies; | 
|  | tg->slice_end[rw] = jiffies + throtl_slice; | 
|  | throtl_log(&tg->service_queue, | 
|  | "[%c] new slice start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
|  | tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, | 
|  | unsigned long jiffy_end) | 
|  | { | 
|  | tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); | 
|  | } | 
|  |  | 
|  | static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, | 
|  | unsigned long jiffy_end) | 
|  | { | 
|  | tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); | 
|  | throtl_log(&tg->service_queue, | 
|  | "[%c] extend slice start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
|  | tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | /* Determine if previously allocated or extended slice is complete or not */ | 
|  | static bool throtl_slice_used(struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) | 
|  | return false; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Trim the used slices and adjust slice start accordingly */ | 
|  | static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | unsigned long nr_slices, time_elapsed, io_trim; | 
|  | u64 bytes_trim, tmp; | 
|  |  | 
|  | BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); | 
|  |  | 
|  | /* | 
|  | * If bps are unlimited (-1), then time slice don't get | 
|  | * renewed. Don't try to trim the slice if slice is used. A new | 
|  | * slice will start when appropriate. | 
|  | */ | 
|  | if (throtl_slice_used(tg, rw)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * A bio has been dispatched. Also adjust slice_end. It might happen | 
|  | * that initially cgroup limit was very low resulting in high | 
|  | * slice_end, but later limit was bumped up and bio was dispached | 
|  | * sooner, then we need to reduce slice_end. A high bogus slice_end | 
|  | * is bad because it does not allow new slice to start. | 
|  | */ | 
|  |  | 
|  | throtl_set_slice_end(tg, rw, jiffies + throtl_slice); | 
|  |  | 
|  | time_elapsed = jiffies - tg->slice_start[rw]; | 
|  |  | 
|  | nr_slices = time_elapsed / throtl_slice; | 
|  |  | 
|  | if (!nr_slices) | 
|  | return; | 
|  | tmp = tg->bps[rw] * throtl_slice * nr_slices; | 
|  | do_div(tmp, HZ); | 
|  | bytes_trim = tmp; | 
|  |  | 
|  | io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; | 
|  |  | 
|  | if (!bytes_trim && !io_trim) | 
|  | return; | 
|  |  | 
|  | if (tg->bytes_disp[rw] >= bytes_trim) | 
|  | tg->bytes_disp[rw] -= bytes_trim; | 
|  | else | 
|  | tg->bytes_disp[rw] = 0; | 
|  |  | 
|  | if (tg->io_disp[rw] >= io_trim) | 
|  | tg->io_disp[rw] -= io_trim; | 
|  | else | 
|  | tg->io_disp[rw] = 0; | 
|  |  | 
|  | tg->slice_start[rw] += nr_slices * throtl_slice; | 
|  |  | 
|  | throtl_log(&tg->service_queue, | 
|  | "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, | 
|  | tg->slice_start[rw], tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, | 
|  | unsigned long *wait) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | unsigned int io_allowed; | 
|  | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
|  | u64 tmp; | 
|  |  | 
|  | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 
|  |  | 
|  | /* Slice has just started. Consider one slice interval */ | 
|  | if (!jiffy_elapsed) | 
|  | jiffy_elapsed_rnd = throtl_slice; | 
|  |  | 
|  | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); | 
|  |  | 
|  | /* | 
|  | * jiffy_elapsed_rnd should not be a big value as minimum iops can be | 
|  | * 1 then at max jiffy elapsed should be equivalent of 1 second as we | 
|  | * will allow dispatch after 1 second and after that slice should | 
|  | * have been trimmed. | 
|  | */ | 
|  |  | 
|  | tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; | 
|  | do_div(tmp, HZ); | 
|  |  | 
|  | if (tmp > UINT_MAX) | 
|  | io_allowed = UINT_MAX; | 
|  | else | 
|  | io_allowed = tmp; | 
|  |  | 
|  | if (tg->io_disp[rw] + 1 <= io_allowed) { | 
|  | if (wait) | 
|  | *wait = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Calc approx time to dispatch */ | 
|  | jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; | 
|  |  | 
|  | if (jiffy_wait > jiffy_elapsed) | 
|  | jiffy_wait = jiffy_wait - jiffy_elapsed; | 
|  | else | 
|  | jiffy_wait = 1; | 
|  |  | 
|  | if (wait) | 
|  | *wait = jiffy_wait; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, | 
|  | unsigned long *wait) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | u64 bytes_allowed, extra_bytes, tmp; | 
|  | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
|  |  | 
|  | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 
|  |  | 
|  | /* Slice has just started. Consider one slice interval */ | 
|  | if (!jiffy_elapsed) | 
|  | jiffy_elapsed_rnd = throtl_slice; | 
|  |  | 
|  | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); | 
|  |  | 
|  | tmp = tg->bps[rw] * jiffy_elapsed_rnd; | 
|  | do_div(tmp, HZ); | 
|  | bytes_allowed = tmp; | 
|  |  | 
|  | if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) { | 
|  | if (wait) | 
|  | *wait = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Calc approx time to dispatch */ | 
|  | extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed; | 
|  | jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); | 
|  |  | 
|  | if (!jiffy_wait) | 
|  | jiffy_wait = 1; | 
|  |  | 
|  | /* | 
|  | * This wait time is without taking into consideration the rounding | 
|  | * up we did. Add that time also. | 
|  | */ | 
|  | jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); | 
|  | if (wait) | 
|  | *wait = jiffy_wait; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns whether one can dispatch a bio or not. Also returns approx number | 
|  | * of jiffies to wait before this bio is with-in IO rate and can be dispatched | 
|  | */ | 
|  | static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, | 
|  | unsigned long *wait) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; | 
|  |  | 
|  | /* | 
|  | * Currently whole state machine of group depends on first bio | 
|  | * queued in the group bio list. So one should not be calling | 
|  | * this function with a different bio if there are other bios | 
|  | * queued. | 
|  | */ | 
|  | BUG_ON(tg->service_queue.nr_queued[rw] && | 
|  | bio != throtl_peek_queued(&tg->service_queue.queued[rw])); | 
|  |  | 
|  | /* If tg->bps = -1, then BW is unlimited */ | 
|  | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { | 
|  | if (wait) | 
|  | *wait = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If previous slice expired, start a new one otherwise renew/extend | 
|  | * existing slice to make sure it is at least throtl_slice interval | 
|  | * long since now. | 
|  | */ | 
|  | if (throtl_slice_used(tg, rw)) | 
|  | throtl_start_new_slice(tg, rw); | 
|  | else { | 
|  | if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) | 
|  | throtl_extend_slice(tg, rw, jiffies + throtl_slice); | 
|  | } | 
|  |  | 
|  | if (tg_with_in_bps_limit(tg, bio, &bps_wait) && | 
|  | tg_with_in_iops_limit(tg, bio, &iops_wait)) { | 
|  | if (wait) | 
|  | *wait = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | max_wait = max(bps_wait, iops_wait); | 
|  |  | 
|  | if (wait) | 
|  | *wait = max_wait; | 
|  |  | 
|  | if (time_before(tg->slice_end[rw], jiffies + max_wait)) | 
|  | throtl_extend_slice(tg, rw, jiffies + max_wait); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  |  | 
|  | /* Charge the bio to the group */ | 
|  | tg->bytes_disp[rw] += bio->bi_iter.bi_size; | 
|  | tg->io_disp[rw]++; | 
|  |  | 
|  | /* | 
|  | * REQ_THROTTLED is used to prevent the same bio to be throttled | 
|  | * more than once as a throttled bio will go through blk-throtl the | 
|  | * second time when it eventually gets issued.  Set it when a bio | 
|  | * is being charged to a tg. | 
|  | */ | 
|  | if (!(bio->bi_rw & REQ_THROTTLED)) | 
|  | bio->bi_rw |= REQ_THROTTLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_add_bio_tg - add a bio to the specified throtl_grp | 
|  | * @bio: bio to add | 
|  | * @qn: qnode to use | 
|  | * @tg: the target throtl_grp | 
|  | * | 
|  | * Add @bio to @tg's service_queue using @qn.  If @qn is not specified, | 
|  | * tg->qnode_on_self[] is used. | 
|  | */ | 
|  | static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, | 
|  | struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | bool rw = bio_data_dir(bio); | 
|  |  | 
|  | if (!qn) | 
|  | qn = &tg->qnode_on_self[rw]; | 
|  |  | 
|  | /* | 
|  | * If @tg doesn't currently have any bios queued in the same | 
|  | * direction, queueing @bio can change when @tg should be | 
|  | * dispatched.  Mark that @tg was empty.  This is automatically | 
|  | * cleaered on the next tg_update_disptime(). | 
|  | */ | 
|  | if (!sq->nr_queued[rw]) | 
|  | tg->flags |= THROTL_TG_WAS_EMPTY; | 
|  |  | 
|  | throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); | 
|  |  | 
|  | sq->nr_queued[rw]++; | 
|  | throtl_enqueue_tg(tg); | 
|  | } | 
|  |  | 
|  | static void tg_update_disptime(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; | 
|  | struct bio *bio; | 
|  |  | 
|  | if ((bio = throtl_peek_queued(&sq->queued[READ]))) | 
|  | tg_may_dispatch(tg, bio, &read_wait); | 
|  |  | 
|  | if ((bio = throtl_peek_queued(&sq->queued[WRITE]))) | 
|  | tg_may_dispatch(tg, bio, &write_wait); | 
|  |  | 
|  | min_wait = min(read_wait, write_wait); | 
|  | disptime = jiffies + min_wait; | 
|  |  | 
|  | /* Update dispatch time */ | 
|  | throtl_dequeue_tg(tg); | 
|  | tg->disptime = disptime; | 
|  | throtl_enqueue_tg(tg); | 
|  |  | 
|  | /* see throtl_add_bio_tg() */ | 
|  | tg->flags &= ~THROTL_TG_WAS_EMPTY; | 
|  | } | 
|  |  | 
|  | static void start_parent_slice_with_credit(struct throtl_grp *child_tg, | 
|  | struct throtl_grp *parent_tg, bool rw) | 
|  | { | 
|  | if (throtl_slice_used(parent_tg, rw)) { | 
|  | throtl_start_new_slice_with_credit(parent_tg, rw, | 
|  | child_tg->slice_start[rw]); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | struct throtl_service_queue *parent_sq = sq->parent_sq; | 
|  | struct throtl_grp *parent_tg = sq_to_tg(parent_sq); | 
|  | struct throtl_grp *tg_to_put = NULL; | 
|  | struct bio *bio; | 
|  |  | 
|  | /* | 
|  | * @bio is being transferred from @tg to @parent_sq.  Popping a bio | 
|  | * from @tg may put its reference and @parent_sq might end up | 
|  | * getting released prematurely.  Remember the tg to put and put it | 
|  | * after @bio is transferred to @parent_sq. | 
|  | */ | 
|  | bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); | 
|  | sq->nr_queued[rw]--; | 
|  |  | 
|  | throtl_charge_bio(tg, bio); | 
|  |  | 
|  | /* | 
|  | * If our parent is another tg, we just need to transfer @bio to | 
|  | * the parent using throtl_add_bio_tg().  If our parent is | 
|  | * @td->service_queue, @bio is ready to be issued.  Put it on its | 
|  | * bio_lists[] and decrease total number queued.  The caller is | 
|  | * responsible for issuing these bios. | 
|  | */ | 
|  | if (parent_tg) { | 
|  | throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); | 
|  | start_parent_slice_with_credit(tg, parent_tg, rw); | 
|  | } else { | 
|  | throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], | 
|  | &parent_sq->queued[rw]); | 
|  | BUG_ON(tg->td->nr_queued[rw] <= 0); | 
|  | tg->td->nr_queued[rw]--; | 
|  | } | 
|  |  | 
|  | throtl_trim_slice(tg, rw); | 
|  |  | 
|  | if (tg_to_put) | 
|  | blkg_put(tg_to_blkg(tg_to_put)); | 
|  | } | 
|  |  | 
|  | static int throtl_dispatch_tg(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | unsigned int nr_reads = 0, nr_writes = 0; | 
|  | unsigned int max_nr_reads = throtl_grp_quantum*3/4; | 
|  | unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; | 
|  | struct bio *bio; | 
|  |  | 
|  | /* Try to dispatch 75% READS and 25% WRITES */ | 
|  |  | 
|  | while ((bio = throtl_peek_queued(&sq->queued[READ])) && | 
|  | tg_may_dispatch(tg, bio, NULL)) { | 
|  |  | 
|  | tg_dispatch_one_bio(tg, bio_data_dir(bio)); | 
|  | nr_reads++; | 
|  |  | 
|  | if (nr_reads >= max_nr_reads) | 
|  | break; | 
|  | } | 
|  |  | 
|  | while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && | 
|  | tg_may_dispatch(tg, bio, NULL)) { | 
|  |  | 
|  | tg_dispatch_one_bio(tg, bio_data_dir(bio)); | 
|  | nr_writes++; | 
|  |  | 
|  | if (nr_writes >= max_nr_writes) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nr_reads + nr_writes; | 
|  | } | 
|  |  | 
|  | static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | unsigned int nr_disp = 0; | 
|  |  | 
|  | while (1) { | 
|  | struct throtl_grp *tg = throtl_rb_first(parent_sq); | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  |  | 
|  | if (!tg) | 
|  | break; | 
|  |  | 
|  | if (time_before(jiffies, tg->disptime)) | 
|  | break; | 
|  |  | 
|  | throtl_dequeue_tg(tg); | 
|  |  | 
|  | nr_disp += throtl_dispatch_tg(tg); | 
|  |  | 
|  | if (sq->nr_queued[0] || sq->nr_queued[1]) | 
|  | tg_update_disptime(tg); | 
|  |  | 
|  | if (nr_disp >= throtl_quantum) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nr_disp; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_pending_timer_fn - timer function for service_queue->pending_timer | 
|  | * @arg: the throtl_service_queue being serviced | 
|  | * | 
|  | * This timer is armed when a child throtl_grp with active bio's become | 
|  | * pending and queued on the service_queue's pending_tree and expires when | 
|  | * the first child throtl_grp should be dispatched.  This function | 
|  | * dispatches bio's from the children throtl_grps to the parent | 
|  | * service_queue. | 
|  | * | 
|  | * If the parent's parent is another throtl_grp, dispatching is propagated | 
|  | * by either arming its pending_timer or repeating dispatch directly.  If | 
|  | * the top-level service_tree is reached, throtl_data->dispatch_work is | 
|  | * kicked so that the ready bio's are issued. | 
|  | */ | 
|  | static void throtl_pending_timer_fn(unsigned long arg) | 
|  | { | 
|  | struct throtl_service_queue *sq = (void *)arg; | 
|  | struct throtl_grp *tg = sq_to_tg(sq); | 
|  | struct throtl_data *td = sq_to_td(sq); | 
|  | struct request_queue *q = td->queue; | 
|  | struct throtl_service_queue *parent_sq; | 
|  | bool dispatched; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | again: | 
|  | parent_sq = sq->parent_sq; | 
|  | dispatched = false; | 
|  |  | 
|  | while (true) { | 
|  | throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", | 
|  | sq->nr_queued[READ] + sq->nr_queued[WRITE], | 
|  | sq->nr_queued[READ], sq->nr_queued[WRITE]); | 
|  |  | 
|  | ret = throtl_select_dispatch(sq); | 
|  | if (ret) { | 
|  | throtl_log(sq, "bios disp=%u", ret); | 
|  | dispatched = true; | 
|  | } | 
|  |  | 
|  | if (throtl_schedule_next_dispatch(sq, false)) | 
|  | break; | 
|  |  | 
|  | /* this dispatch windows is still open, relax and repeat */ | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | cpu_relax(); | 
|  | spin_lock_irq(q->queue_lock); | 
|  | } | 
|  |  | 
|  | if (!dispatched) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (parent_sq) { | 
|  | /* @parent_sq is another throl_grp, propagate dispatch */ | 
|  | if (tg->flags & THROTL_TG_WAS_EMPTY) { | 
|  | tg_update_disptime(tg); | 
|  | if (!throtl_schedule_next_dispatch(parent_sq, false)) { | 
|  | /* window is already open, repeat dispatching */ | 
|  | sq = parent_sq; | 
|  | tg = sq_to_tg(sq); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* reached the top-level, queue issueing */ | 
|  | queue_work(kthrotld_workqueue, &td->dispatch_work); | 
|  | } | 
|  | out_unlock: | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work | 
|  | * @work: work item being executed | 
|  | * | 
|  | * This function is queued for execution when bio's reach the bio_lists[] | 
|  | * of throtl_data->service_queue.  Those bio's are ready and issued by this | 
|  | * function. | 
|  | */ | 
|  | static void blk_throtl_dispatch_work_fn(struct work_struct *work) | 
|  | { | 
|  | struct throtl_data *td = container_of(work, struct throtl_data, | 
|  | dispatch_work); | 
|  | struct throtl_service_queue *td_sq = &td->service_queue; | 
|  | struct request_queue *q = td->queue; | 
|  | struct bio_list bio_list_on_stack; | 
|  | struct bio *bio; | 
|  | struct blk_plug plug; | 
|  | int rw; | 
|  |  | 
|  | bio_list_init(&bio_list_on_stack); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | for (rw = READ; rw <= WRITE; rw++) | 
|  | while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) | 
|  | bio_list_add(&bio_list_on_stack, bio); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | if (!bio_list_empty(&bio_list_on_stack)) { | 
|  | blk_start_plug(&plug); | 
|  | while((bio = bio_list_pop(&bio_list_on_stack))) | 
|  | generic_make_request(bio); | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, | 
|  | int off) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | u64 v = *(u64 *)((void *)tg + off); | 
|  |  | 
|  | if (v == -1) | 
|  | return 0; | 
|  | return __blkg_prfill_u64(sf, pd, v); | 
|  | } | 
|  |  | 
|  | static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, | 
|  | int off) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | unsigned int v = *(unsigned int *)((void *)tg + off); | 
|  |  | 
|  | if (v == -1) | 
|  | return 0; | 
|  | return __blkg_prfill_u64(sf, pd, v); | 
|  | } | 
|  |  | 
|  | static int tg_print_conf_u64(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, | 
|  | &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tg_print_conf_uint(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, | 
|  | &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void tg_conf_updated(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  | struct blkcg_gq *blkg; | 
|  |  | 
|  | throtl_log(&tg->service_queue, | 
|  | "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", | 
|  | tg->bps[READ], tg->bps[WRITE], | 
|  | tg->iops[READ], tg->iops[WRITE]); | 
|  |  | 
|  | /* | 
|  | * Update has_rules[] flags for the updated tg's subtree.  A tg is | 
|  | * considered to have rules if either the tg itself or any of its | 
|  | * ancestors has rules.  This identifies groups without any | 
|  | * restrictions in the whole hierarchy and allows them to bypass | 
|  | * blk-throttle. | 
|  | */ | 
|  | blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg)) | 
|  | tg_update_has_rules(blkg_to_tg(blkg)); | 
|  |  | 
|  | /* | 
|  | * We're already holding queue_lock and know @tg is valid.  Let's | 
|  | * apply the new config directly. | 
|  | * | 
|  | * Restart the slices for both READ and WRITES. It might happen | 
|  | * that a group's limit are dropped suddenly and we don't want to | 
|  | * account recently dispatched IO with new low rate. | 
|  | */ | 
|  | throtl_start_new_slice(tg, 0); | 
|  | throtl_start_new_slice(tg, 1); | 
|  |  | 
|  | if (tg->flags & THROTL_TG_PENDING) { | 
|  | tg_update_disptime(tg); | 
|  | throtl_schedule_next_dispatch(sq->parent_sq, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static ssize_t tg_set_conf(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off, bool is_u64) | 
|  | { | 
|  | struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
|  | struct blkg_conf_ctx ctx; | 
|  | struct throtl_grp *tg; | 
|  | int ret; | 
|  | u64 v; | 
|  |  | 
|  | ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (sscanf(ctx.body, "%llu", &v) != 1) | 
|  | goto out_finish; | 
|  | if (!v) | 
|  | v = -1; | 
|  |  | 
|  | tg = blkg_to_tg(ctx.blkg); | 
|  |  | 
|  | if (is_u64) | 
|  | *(u64 *)((void *)tg + of_cft(of)->private) = v; | 
|  | else | 
|  | *(unsigned int *)((void *)tg + of_cft(of)->private) = v; | 
|  |  | 
|  | tg_conf_updated(tg); | 
|  | ret = 0; | 
|  | out_finish: | 
|  | blkg_conf_finish(&ctx); | 
|  | return ret ?: nbytes; | 
|  | } | 
|  |  | 
|  | static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | return tg_set_conf(of, buf, nbytes, off, true); | 
|  | } | 
|  |  | 
|  | static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | return tg_set_conf(of, buf, nbytes, off, false); | 
|  | } | 
|  |  | 
|  | static struct cftype throtl_legacy_files[] = { | 
|  | { | 
|  | .name = "throttle.read_bps_device", | 
|  | .private = offsetof(struct throtl_grp, bps[READ]), | 
|  | .seq_show = tg_print_conf_u64, | 
|  | .write = tg_set_conf_u64, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.write_bps_device", | 
|  | .private = offsetof(struct throtl_grp, bps[WRITE]), | 
|  | .seq_show = tg_print_conf_u64, | 
|  | .write = tg_set_conf_u64, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.read_iops_device", | 
|  | .private = offsetof(struct throtl_grp, iops[READ]), | 
|  | .seq_show = tg_print_conf_uint, | 
|  | .write = tg_set_conf_uint, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.write_iops_device", | 
|  | .private = offsetof(struct throtl_grp, iops[WRITE]), | 
|  | .seq_show = tg_print_conf_uint, | 
|  | .write = tg_set_conf_uint, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.io_service_bytes", | 
|  | .private = (unsigned long)&blkcg_policy_throtl, | 
|  | .seq_show = blkg_print_stat_bytes, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.io_serviced", | 
|  | .private = (unsigned long)&blkcg_policy_throtl, | 
|  | .seq_show = blkg_print_stat_ios, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd, | 
|  | int off) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | const char *dname = blkg_dev_name(pd->blkg); | 
|  | char bufs[4][21] = { "max", "max", "max", "max" }; | 
|  |  | 
|  | if (!dname) | 
|  | return 0; | 
|  | if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 && | 
|  | tg->iops[READ] == -1 && tg->iops[WRITE] == -1) | 
|  | return 0; | 
|  |  | 
|  | if (tg->bps[READ] != -1) | 
|  | snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]); | 
|  | if (tg->bps[WRITE] != -1) | 
|  | snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]); | 
|  | if (tg->iops[READ] != -1) | 
|  | snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]); | 
|  | if (tg->iops[WRITE] != -1) | 
|  | snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]); | 
|  |  | 
|  | seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n", | 
|  | dname, bufs[0], bufs[1], bufs[2], bufs[3]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tg_print_max(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max, | 
|  | &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t tg_set_max(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
|  | struct blkg_conf_ctx ctx; | 
|  | struct throtl_grp *tg; | 
|  | u64 v[4]; | 
|  | int ret; | 
|  |  | 
|  | ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | tg = blkg_to_tg(ctx.blkg); | 
|  |  | 
|  | v[0] = tg->bps[READ]; | 
|  | v[1] = tg->bps[WRITE]; | 
|  | v[2] = tg->iops[READ]; | 
|  | v[3] = tg->iops[WRITE]; | 
|  |  | 
|  | while (true) { | 
|  | char tok[27];	/* wiops=18446744073709551616 */ | 
|  | char *p; | 
|  | u64 val = -1; | 
|  | int len; | 
|  |  | 
|  | if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) | 
|  | break; | 
|  | if (tok[0] == '\0') | 
|  | break; | 
|  | ctx.body += len; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | p = tok; | 
|  | strsep(&p, "="); | 
|  | if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) | 
|  | goto out_finish; | 
|  |  | 
|  | ret = -ERANGE; | 
|  | if (!val) | 
|  | goto out_finish; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (!strcmp(tok, "rbps")) | 
|  | v[0] = val; | 
|  | else if (!strcmp(tok, "wbps")) | 
|  | v[1] = val; | 
|  | else if (!strcmp(tok, "riops")) | 
|  | v[2] = min_t(u64, val, UINT_MAX); | 
|  | else if (!strcmp(tok, "wiops")) | 
|  | v[3] = min_t(u64, val, UINT_MAX); | 
|  | else | 
|  | goto out_finish; | 
|  | } | 
|  |  | 
|  | tg->bps[READ] = v[0]; | 
|  | tg->bps[WRITE] = v[1]; | 
|  | tg->iops[READ] = v[2]; | 
|  | tg->iops[WRITE] = v[3]; | 
|  |  | 
|  | tg_conf_updated(tg); | 
|  | ret = 0; | 
|  | out_finish: | 
|  | blkg_conf_finish(&ctx); | 
|  | return ret ?: nbytes; | 
|  | } | 
|  |  | 
|  | static struct cftype throtl_files[] = { | 
|  | { | 
|  | .name = "max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = tg_print_max, | 
|  | .write = tg_set_max, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static void throtl_shutdown_wq(struct request_queue *q) | 
|  | { | 
|  | struct throtl_data *td = q->td; | 
|  |  | 
|  | cancel_work_sync(&td->dispatch_work); | 
|  | } | 
|  |  | 
|  | static struct blkcg_policy blkcg_policy_throtl = { | 
|  | .dfl_cftypes		= throtl_files, | 
|  | .legacy_cftypes		= throtl_legacy_files, | 
|  |  | 
|  | .pd_alloc_fn		= throtl_pd_alloc, | 
|  | .pd_init_fn		= throtl_pd_init, | 
|  | .pd_online_fn		= throtl_pd_online, | 
|  | .pd_free_fn		= throtl_pd_free, | 
|  | }; | 
|  |  | 
|  | bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct throtl_qnode *qn = NULL; | 
|  | struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); | 
|  | struct throtl_service_queue *sq; | 
|  | bool rw = bio_data_dir(bio); | 
|  | bool throttled = false; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  |  | 
|  | /* see throtl_charge_bio() */ | 
|  | if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw]) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  |  | 
|  | if (unlikely(blk_queue_bypass(q))) | 
|  | goto out_unlock; | 
|  |  | 
|  | sq = &tg->service_queue; | 
|  |  | 
|  | while (true) { | 
|  | /* throtl is FIFO - if bios are already queued, should queue */ | 
|  | if (sq->nr_queued[rw]) | 
|  | break; | 
|  |  | 
|  | /* if above limits, break to queue */ | 
|  | if (!tg_may_dispatch(tg, bio, NULL)) | 
|  | break; | 
|  |  | 
|  | /* within limits, let's charge and dispatch directly */ | 
|  | throtl_charge_bio(tg, bio); | 
|  |  | 
|  | /* | 
|  | * We need to trim slice even when bios are not being queued | 
|  | * otherwise it might happen that a bio is not queued for | 
|  | * a long time and slice keeps on extending and trim is not | 
|  | * called for a long time. Now if limits are reduced suddenly | 
|  | * we take into account all the IO dispatched so far at new | 
|  | * low rate and * newly queued IO gets a really long dispatch | 
|  | * time. | 
|  | * | 
|  | * So keep on trimming slice even if bio is not queued. | 
|  | */ | 
|  | throtl_trim_slice(tg, rw); | 
|  |  | 
|  | /* | 
|  | * @bio passed through this layer without being throttled. | 
|  | * Climb up the ladder.  If we''re already at the top, it | 
|  | * can be executed directly. | 
|  | */ | 
|  | qn = &tg->qnode_on_parent[rw]; | 
|  | sq = sq->parent_sq; | 
|  | tg = sq_to_tg(sq); | 
|  | if (!tg) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* out-of-limit, queue to @tg */ | 
|  | throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", | 
|  | rw == READ ? 'R' : 'W', | 
|  | tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw], | 
|  | tg->io_disp[rw], tg->iops[rw], | 
|  | sq->nr_queued[READ], sq->nr_queued[WRITE]); | 
|  |  | 
|  | bio_associate_current(bio); | 
|  | tg->td->nr_queued[rw]++; | 
|  | throtl_add_bio_tg(bio, qn, tg); | 
|  | throttled = true; | 
|  |  | 
|  | /* | 
|  | * Update @tg's dispatch time and force schedule dispatch if @tg | 
|  | * was empty before @bio.  The forced scheduling isn't likely to | 
|  | * cause undue delay as @bio is likely to be dispatched directly if | 
|  | * its @tg's disptime is not in the future. | 
|  | */ | 
|  | if (tg->flags & THROTL_TG_WAS_EMPTY) { | 
|  | tg_update_disptime(tg); | 
|  | throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | out: | 
|  | /* | 
|  | * As multiple blk-throtls may stack in the same issue path, we | 
|  | * don't want bios to leave with the flag set.  Clear the flag if | 
|  | * being issued. | 
|  | */ | 
|  | if (!throttled) | 
|  | bio->bi_rw &= ~REQ_THROTTLED; | 
|  | return throttled; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispatch all bios from all children tg's queued on @parent_sq.  On | 
|  | * return, @parent_sq is guaranteed to not have any active children tg's | 
|  | * and all bios from previously active tg's are on @parent_sq->bio_lists[]. | 
|  | */ | 
|  | static void tg_drain_bios(struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | struct throtl_grp *tg; | 
|  |  | 
|  | while ((tg = throtl_rb_first(parent_sq))) { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | struct bio *bio; | 
|  |  | 
|  | throtl_dequeue_tg(tg); | 
|  |  | 
|  | while ((bio = throtl_peek_queued(&sq->queued[READ]))) | 
|  | tg_dispatch_one_bio(tg, bio_data_dir(bio)); | 
|  | while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) | 
|  | tg_dispatch_one_bio(tg, bio_data_dir(bio)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_throtl_drain - drain throttled bios | 
|  | * @q: request_queue to drain throttled bios for | 
|  | * | 
|  | * Dispatch all currently throttled bios on @q through ->make_request_fn(). | 
|  | */ | 
|  | void blk_throtl_drain(struct request_queue *q) | 
|  | __releases(q->queue_lock) __acquires(q->queue_lock) | 
|  | { | 
|  | struct throtl_data *td = q->td; | 
|  | struct blkcg_gq *blkg; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  | struct bio *bio; | 
|  | int rw; | 
|  |  | 
|  | queue_lockdep_assert_held(q); | 
|  | rcu_read_lock(); | 
|  |  | 
|  | /* | 
|  | * Drain each tg while doing post-order walk on the blkg tree, so | 
|  | * that all bios are propagated to td->service_queue.  It'd be | 
|  | * better to walk service_queue tree directly but blkg walk is | 
|  | * easier. | 
|  | */ | 
|  | blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) | 
|  | tg_drain_bios(&blkg_to_tg(blkg)->service_queue); | 
|  |  | 
|  | /* finally, transfer bios from top-level tg's into the td */ | 
|  | tg_drain_bios(&td->service_queue); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | /* all bios now should be in td->service_queue, issue them */ | 
|  | for (rw = READ; rw <= WRITE; rw++) | 
|  | while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], | 
|  | NULL))) | 
|  | generic_make_request(bio); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | } | 
|  |  | 
|  | int blk_throtl_init(struct request_queue *q) | 
|  | { | 
|  | struct throtl_data *td; | 
|  | int ret; | 
|  |  | 
|  | td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); | 
|  | if (!td) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); | 
|  | throtl_service_queue_init(&td->service_queue); | 
|  |  | 
|  | q->td = td; | 
|  | td->queue = q; | 
|  |  | 
|  | /* activate policy */ | 
|  | ret = blkcg_activate_policy(q, &blkcg_policy_throtl); | 
|  | if (ret) | 
|  | kfree(td); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void blk_throtl_exit(struct request_queue *q) | 
|  | { | 
|  | BUG_ON(!q->td); | 
|  | throtl_shutdown_wq(q); | 
|  | blkcg_deactivate_policy(q, &blkcg_policy_throtl); | 
|  | kfree(q->td); | 
|  | } | 
|  |  | 
|  | static int __init throtl_init(void) | 
|  | { | 
|  | kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); | 
|  | if (!kthrotld_workqueue) | 
|  | panic("Failed to create kthrotld\n"); | 
|  |  | 
|  | return blkcg_policy_register(&blkcg_policy_throtl); | 
|  | } | 
|  |  | 
|  | module_init(throtl_init); |