|  | /* | 
|  | * Slab allocator functions that are independent of the allocator strategy | 
|  | * | 
|  | * (C) 2012 Christoph Lameter <cl@linux.com> | 
|  | */ | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/page.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <trace/events/kmem.h> | 
|  |  | 
|  | #include "slab.h" | 
|  |  | 
|  | enum slab_state slab_state; | 
|  | LIST_HEAD(slab_caches); | 
|  | DEFINE_MUTEX(slab_mutex); | 
|  | struct kmem_cache *kmem_cache; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | static int kmem_cache_sanity_check(const char *name, size_t size) | 
|  | { | 
|  | struct kmem_cache *s = NULL; | 
|  |  | 
|  | if (!name || in_interrupt() || size < sizeof(void *) || | 
|  | size > KMALLOC_MAX_SIZE) { | 
|  | pr_err("kmem_cache_create(%s) integrity check failed\n", name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | char tmp; | 
|  | int res; | 
|  |  | 
|  | /* | 
|  | * This happens when the module gets unloaded and doesn't | 
|  | * destroy its slab cache and no-one else reuses the vmalloc | 
|  | * area of the module.  Print a warning. | 
|  | */ | 
|  | res = probe_kernel_address(s->name, tmp); | 
|  | if (res) { | 
|  | pr_err("Slab cache with size %d has lost its name\n", | 
|  | s->object_size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON) | 
|  | if (!strcmp(s->name, name)) { | 
|  | pr_err("%s (%s): Cache name already exists.\n", | 
|  | __func__, name); | 
|  | dump_stack(); | 
|  | s = NULL; | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int kmem_cache_sanity_check(const char *name, size_t size) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | int memcg_update_all_caches(int num_memcgs) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int ret = 0; | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | if (!is_root_cache(s)) | 
|  | continue; | 
|  |  | 
|  | ret = memcg_update_cache_size(s, num_memcgs); | 
|  | /* | 
|  | * See comment in memcontrol.c, memcg_update_cache_size: | 
|  | * Instead of freeing the memory, we'll just leave the caches | 
|  | * up to this point in an updated state. | 
|  | */ | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcg_update_array_size(num_memcgs); | 
|  | out: | 
|  | mutex_unlock(&slab_mutex); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Figure out what the alignment of the objects will be given a set of | 
|  | * flags, a user specified alignment and the size of the objects. | 
|  | */ | 
|  | unsigned long calculate_alignment(unsigned long flags, | 
|  | unsigned long align, unsigned long size) | 
|  | { | 
|  | /* | 
|  | * If the user wants hardware cache aligned objects then follow that | 
|  | * suggestion if the object is sufficiently large. | 
|  | * | 
|  | * The hardware cache alignment cannot override the specified | 
|  | * alignment though. If that is greater then use it. | 
|  | */ | 
|  | if (flags & SLAB_HWCACHE_ALIGN) { | 
|  | unsigned long ralign = cache_line_size(); | 
|  | while (size <= ralign / 2) | 
|  | ralign /= 2; | 
|  | align = max(align, ralign); | 
|  | } | 
|  |  | 
|  | if (align < ARCH_SLAB_MINALIGN) | 
|  | align = ARCH_SLAB_MINALIGN; | 
|  |  | 
|  | return ALIGN(align, sizeof(void *)); | 
|  | } | 
|  |  | 
|  | static struct kmem_cache * | 
|  | do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align, | 
|  | unsigned long flags, void (*ctor)(void *), | 
|  | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | 
|  | if (!s) | 
|  | goto out; | 
|  |  | 
|  | s->name = name; | 
|  | s->object_size = object_size; | 
|  | s->size = size; | 
|  | s->align = align; | 
|  | s->ctor = ctor; | 
|  |  | 
|  | err = memcg_alloc_cache_params(memcg, s, root_cache); | 
|  | if (err) | 
|  | goto out_free_cache; | 
|  |  | 
|  | err = __kmem_cache_create(s, flags); | 
|  | if (err) | 
|  | goto out_free_cache; | 
|  |  | 
|  | s->refcount = 1; | 
|  | list_add(&s->list, &slab_caches); | 
|  | memcg_register_cache(s); | 
|  | out: | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | return s; | 
|  |  | 
|  | out_free_cache: | 
|  | memcg_free_cache_params(s); | 
|  | kfree(s); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kmem_cache_create - Create a cache. | 
|  | * @name: A string which is used in /proc/slabinfo to identify this cache. | 
|  | * @size: The size of objects to be created in this cache. | 
|  | * @align: The required alignment for the objects. | 
|  | * @flags: SLAB flags | 
|  | * @ctor: A constructor for the objects. | 
|  | * | 
|  | * Returns a ptr to the cache on success, NULL on failure. | 
|  | * Cannot be called within a interrupt, but can be interrupted. | 
|  | * The @ctor is run when new pages are allocated by the cache. | 
|  | * | 
|  | * The flags are | 
|  | * | 
|  | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
|  | * to catch references to uninitialised memory. | 
|  | * | 
|  | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | 
|  | * for buffer overruns. | 
|  | * | 
|  | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
|  | * cacheline.  This can be beneficial if you're counting cycles as closely | 
|  | * as davem. | 
|  | */ | 
|  | struct kmem_cache * | 
|  | kmem_cache_create(const char *name, size_t size, size_t align, | 
|  | unsigned long flags, void (*ctor)(void *)) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | char *cache_name; | 
|  | int err; | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | err = kmem_cache_sanity_check(name, size); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Some allocators will constraint the set of valid flags to a subset | 
|  | * of all flags. We expect them to define CACHE_CREATE_MASK in this | 
|  | * case, and we'll just provide them with a sanitized version of the | 
|  | * passed flags. | 
|  | */ | 
|  | flags &= CACHE_CREATE_MASK; | 
|  |  | 
|  | s = __kmem_cache_alias(name, size, align, flags, ctor); | 
|  | if (s) | 
|  | goto out_unlock; | 
|  |  | 
|  | cache_name = kstrdup(name, GFP_KERNEL); | 
|  | if (!cache_name) { | 
|  | err = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | s = do_kmem_cache_create(cache_name, size, size, | 
|  | calculate_alignment(flags, align, size), | 
|  | flags, ctor, NULL, NULL); | 
|  | if (IS_ERR(s)) { | 
|  | err = PTR_ERR(s); | 
|  | kfree(cache_name); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&slab_mutex); | 
|  | put_online_cpus(); | 
|  |  | 
|  | if (err) { | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | 
|  | name, err); | 
|  | else { | 
|  | printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", | 
|  | name, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | return s; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_create); | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | /* | 
|  | * kmem_cache_create_memcg - Create a cache for a memory cgroup. | 
|  | * @memcg: The memory cgroup the new cache is for. | 
|  | * @root_cache: The parent of the new cache. | 
|  | * | 
|  | * This function attempts to create a kmem cache that will serve allocation | 
|  | * requests going from @memcg to @root_cache. The new cache inherits properties | 
|  | * from its parent. | 
|  | */ | 
|  | void kmem_cache_create_memcg(struct mem_cgroup *memcg, struct kmem_cache *root_cache) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | char *cache_name; | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | /* | 
|  | * Since per-memcg caches are created asynchronously on first | 
|  | * allocation (see memcg_kmem_get_cache()), several threads can try to | 
|  | * create the same cache, but only one of them may succeed. | 
|  | */ | 
|  | if (cache_from_memcg_idx(root_cache, memcg_cache_id(memcg))) | 
|  | goto out_unlock; | 
|  |  | 
|  | cache_name = memcg_create_cache_name(memcg, root_cache); | 
|  | if (!cache_name) | 
|  | goto out_unlock; | 
|  |  | 
|  | s = do_kmem_cache_create(cache_name, root_cache->object_size, | 
|  | root_cache->size, root_cache->align, | 
|  | root_cache->flags, root_cache->ctor, | 
|  | memcg, root_cache); | 
|  | if (IS_ERR(s)) { | 
|  | kfree(cache_name); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | s->allocflags |= __GFP_KMEMCG; | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&slab_mutex); | 
|  | put_online_cpus(); | 
|  | } | 
|  |  | 
|  | static int kmem_cache_destroy_memcg_children(struct kmem_cache *s) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | if (!s->memcg_params || | 
|  | !s->memcg_params->is_root_cache) | 
|  | return 0; | 
|  |  | 
|  | mutex_unlock(&slab_mutex); | 
|  | rc = __kmem_cache_destroy_memcg_children(s); | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | #else | 
|  | static int kmem_cache_destroy_memcg_children(struct kmem_cache *s) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_MEMCG_KMEM */ | 
|  |  | 
|  | void slab_kmem_cache_release(struct kmem_cache *s) | 
|  | { | 
|  | kfree(s->name); | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | } | 
|  |  | 
|  | void kmem_cache_destroy(struct kmem_cache *s) | 
|  | { | 
|  | get_online_cpus(); | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | s->refcount--; | 
|  | if (s->refcount) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (kmem_cache_destroy_memcg_children(s) != 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | list_del(&s->list); | 
|  | memcg_unregister_cache(s); | 
|  |  | 
|  | if (__kmem_cache_shutdown(s) != 0) { | 
|  | list_add(&s->list, &slab_caches); | 
|  | memcg_register_cache(s); | 
|  | printk(KERN_ERR "kmem_cache_destroy %s: " | 
|  | "Slab cache still has objects\n", s->name); | 
|  | dump_stack(); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&slab_mutex); | 
|  | if (s->flags & SLAB_DESTROY_BY_RCU) | 
|  | rcu_barrier(); | 
|  |  | 
|  | memcg_free_cache_params(s); | 
|  | #ifdef SLAB_SUPPORTS_SYSFS | 
|  | sysfs_slab_remove(s); | 
|  | #else | 
|  | slab_kmem_cache_release(s); | 
|  | #endif | 
|  | goto out_put_cpus; | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&slab_mutex); | 
|  | out_put_cpus: | 
|  | put_online_cpus(); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  |  | 
|  | int slab_is_available(void) | 
|  | { | 
|  | return slab_state >= UP; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SLOB | 
|  | /* Create a cache during boot when no slab services are available yet */ | 
|  | void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, | 
|  | unsigned long flags) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | s->name = name; | 
|  | s->size = s->object_size = size; | 
|  | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); | 
|  | err = __kmem_cache_create(s, flags); | 
|  |  | 
|  | if (err) | 
|  | panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", | 
|  | name, size, err); | 
|  |  | 
|  | s->refcount = -1;	/* Exempt from merging for now */ | 
|  | } | 
|  |  | 
|  | struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
|  |  | 
|  | if (!s) | 
|  | panic("Out of memory when creating slab %s\n", name); | 
|  |  | 
|  | create_boot_cache(s, name, size, flags); | 
|  | list_add(&s->list, &slab_caches); | 
|  | s->refcount = 1; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; | 
|  | EXPORT_SYMBOL(kmalloc_caches); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; | 
|  | EXPORT_SYMBOL(kmalloc_dma_caches); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Conversion table for small slabs sizes / 8 to the index in the | 
|  | * kmalloc array. This is necessary for slabs < 192 since we have non power | 
|  | * of two cache sizes there. The size of larger slabs can be determined using | 
|  | * fls. | 
|  | */ | 
|  | static s8 size_index[24] = { | 
|  | 3,	/* 8 */ | 
|  | 4,	/* 16 */ | 
|  | 5,	/* 24 */ | 
|  | 5,	/* 32 */ | 
|  | 6,	/* 40 */ | 
|  | 6,	/* 48 */ | 
|  | 6,	/* 56 */ | 
|  | 6,	/* 64 */ | 
|  | 1,	/* 72 */ | 
|  | 1,	/* 80 */ | 
|  | 1,	/* 88 */ | 
|  | 1,	/* 96 */ | 
|  | 7,	/* 104 */ | 
|  | 7,	/* 112 */ | 
|  | 7,	/* 120 */ | 
|  | 7,	/* 128 */ | 
|  | 2,	/* 136 */ | 
|  | 2,	/* 144 */ | 
|  | 2,	/* 152 */ | 
|  | 2,	/* 160 */ | 
|  | 2,	/* 168 */ | 
|  | 2,	/* 176 */ | 
|  | 2,	/* 184 */ | 
|  | 2	/* 192 */ | 
|  | }; | 
|  |  | 
|  | static inline int size_index_elem(size_t bytes) | 
|  | { | 
|  | return (bytes - 1) / 8; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the kmem_cache structure that serves a given size of | 
|  | * allocation | 
|  | */ | 
|  | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | 
|  | { | 
|  | int index; | 
|  |  | 
|  | if (unlikely(size > KMALLOC_MAX_SIZE)) { | 
|  | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (size <= 192) { | 
|  | if (!size) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | index = size_index[size_index_elem(size)]; | 
|  | } else | 
|  | index = fls(size - 1); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | if (unlikely((flags & GFP_DMA))) | 
|  | return kmalloc_dma_caches[index]; | 
|  |  | 
|  | #endif | 
|  | return kmalloc_caches[index]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the kmalloc array. Some of the regular kmalloc arrays | 
|  | * may already have been created because they were needed to | 
|  | * enable allocations for slab creation. | 
|  | */ | 
|  | void __init create_kmalloc_caches(unsigned long flags) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Patch up the size_index table if we have strange large alignment | 
|  | * requirements for the kmalloc array. This is only the case for | 
|  | * MIPS it seems. The standard arches will not generate any code here. | 
|  | * | 
|  | * Largest permitted alignment is 256 bytes due to the way we | 
|  | * handle the index determination for the smaller caches. | 
|  | * | 
|  | * Make sure that nothing crazy happens if someone starts tinkering | 
|  | * around with ARCH_KMALLOC_MINALIGN | 
|  | */ | 
|  | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
|  | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | 
|  |  | 
|  | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | 
|  | int elem = size_index_elem(i); | 
|  |  | 
|  | if (elem >= ARRAY_SIZE(size_index)) | 
|  | break; | 
|  | size_index[elem] = KMALLOC_SHIFT_LOW; | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE >= 64) { | 
|  | /* | 
|  | * The 96 byte size cache is not used if the alignment | 
|  | * is 64 byte. | 
|  | */ | 
|  | for (i = 64 + 8; i <= 96; i += 8) | 
|  | size_index[size_index_elem(i)] = 7; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE >= 128) { | 
|  | /* | 
|  | * The 192 byte sized cache is not used if the alignment | 
|  | * is 128 byte. Redirect kmalloc to use the 256 byte cache | 
|  | * instead. | 
|  | */ | 
|  | for (i = 128 + 8; i <= 192; i += 8) | 
|  | size_index[size_index_elem(i)] = 8; | 
|  | } | 
|  | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { | 
|  | if (!kmalloc_caches[i]) { | 
|  | kmalloc_caches[i] = create_kmalloc_cache(NULL, | 
|  | 1 << i, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caches that are not of the two-to-the-power-of size. | 
|  | * These have to be created immediately after the | 
|  | * earlier power of two caches | 
|  | */ | 
|  | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) | 
|  | kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | 
|  | kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); | 
|  | } | 
|  |  | 
|  | /* Kmalloc array is now usable */ | 
|  | slab_state = UP; | 
|  |  | 
|  | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | 
|  | struct kmem_cache *s = kmalloc_caches[i]; | 
|  | char *n; | 
|  |  | 
|  | if (s) { | 
|  | n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); | 
|  |  | 
|  | BUG_ON(!n); | 
|  | s->name = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | 
|  | struct kmem_cache *s = kmalloc_caches[i]; | 
|  |  | 
|  | if (s) { | 
|  | int size = kmalloc_size(i); | 
|  | char *n = kasprintf(GFP_NOWAIT, | 
|  | "dma-kmalloc-%d", size); | 
|  |  | 
|  | BUG_ON(!n); | 
|  | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | 
|  | size, SLAB_CACHE_DMA | flags); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif /* !CONFIG_SLOB */ | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | 
|  | { | 
|  | void *ret = kmalloc_order(size, flags, order); | 
|  | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmalloc_order_trace); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SLABINFO | 
|  |  | 
|  | #ifdef CONFIG_SLAB | 
|  | #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) | 
|  | #else | 
|  | #define SLABINFO_RIGHTS S_IRUSR | 
|  | #endif | 
|  |  | 
|  | void print_slabinfo_header(struct seq_file *m) | 
|  | { | 
|  | /* | 
|  | * Output format version, so at least we can change it | 
|  | * without _too_ many complaints. | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | 
|  | #else | 
|  | seq_puts(m, "slabinfo - version: 2.1\n"); | 
|  | #endif | 
|  | seq_puts(m, "# name            <active_objs> <num_objs> <objsize> " | 
|  | "<objperslab> <pagesperslab>"); | 
|  | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
|  | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " | 
|  | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | 
|  | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 
|  | #endif | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static void *s_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | loff_t n = *pos; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | if (!n) | 
|  | print_slabinfo_header(m); | 
|  |  | 
|  | return seq_list_start(&slab_caches, *pos); | 
|  | } | 
|  |  | 
|  | void *slab_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(p, &slab_caches, pos); | 
|  | } | 
|  |  | 
|  | void slab_stop(struct seq_file *m, void *p) | 
|  | { | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | static void | 
|  | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | 
|  | { | 
|  | struct kmem_cache *c; | 
|  | struct slabinfo sinfo; | 
|  | int i; | 
|  |  | 
|  | if (!is_root_cache(s)) | 
|  | return; | 
|  |  | 
|  | for_each_memcg_cache_index(i) { | 
|  | c = cache_from_memcg_idx(s, i); | 
|  | if (!c) | 
|  | continue; | 
|  |  | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(c, &sinfo); | 
|  |  | 
|  | info->active_slabs += sinfo.active_slabs; | 
|  | info->num_slabs += sinfo.num_slabs; | 
|  | info->shared_avail += sinfo.shared_avail; | 
|  | info->active_objs += sinfo.active_objs; | 
|  | info->num_objs += sinfo.num_objs; | 
|  | } | 
|  | } | 
|  |  | 
|  | int cache_show(struct kmem_cache *s, struct seq_file *m) | 
|  | { | 
|  | struct slabinfo sinfo; | 
|  |  | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(s, &sinfo); | 
|  |  | 
|  | memcg_accumulate_slabinfo(s, &sinfo); | 
|  |  | 
|  | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
|  | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, | 
|  | sinfo.objects_per_slab, (1 << sinfo.cache_order)); | 
|  |  | 
|  | seq_printf(m, " : tunables %4u %4u %4u", | 
|  | sinfo.limit, sinfo.batchcount, sinfo.shared); | 
|  | seq_printf(m, " : slabdata %6lu %6lu %6lu", | 
|  | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | 
|  | slabinfo_show_stats(m, s); | 
|  | seq_putc(m, '\n'); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | 
|  |  | 
|  | if (!is_root_cache(s)) | 
|  | return 0; | 
|  | return cache_show(s, m); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * slabinfo_op - iterator that generates /proc/slabinfo | 
|  | * | 
|  | * Output layout: | 
|  | * cache-name | 
|  | * num-active-objs | 
|  | * total-objs | 
|  | * object size | 
|  | * num-active-slabs | 
|  | * total-slabs | 
|  | * num-pages-per-slab | 
|  | * + further values on SMP and with statistics enabled | 
|  | */ | 
|  | static const struct seq_operations slabinfo_op = { | 
|  | .start = s_start, | 
|  | .next = slab_next, | 
|  | .stop = slab_stop, | 
|  | .show = s_show, | 
|  | }; | 
|  |  | 
|  | static int slabinfo_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &slabinfo_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_slabinfo_operations = { | 
|  | .open		= slabinfo_open, | 
|  | .read		= seq_read, | 
|  | .write          = slabinfo_write, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init slab_proc_init(void) | 
|  | { | 
|  | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, | 
|  | &proc_slabinfo_operations); | 
|  | return 0; | 
|  | } | 
|  | module_init(slab_proc_init); | 
|  | #endif /* CONFIG_SLABINFO */ |