|  | /* | 
|  | *  CFQ, or complete fairness queueing, disk scheduler. | 
|  | * | 
|  | *  Based on ideas from a previously unfinished io | 
|  | *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. | 
|  | * | 
|  | *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/elevator.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/ioprio.h> | 
|  | #include <linux/blktrace_api.h> | 
|  | #include <linux/blk-cgroup.h> | 
|  | #include "blk.h" | 
|  |  | 
|  | /* | 
|  | * tunables | 
|  | */ | 
|  | /* max queue in one round of service */ | 
|  | static const int cfq_quantum = 8; | 
|  | static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 }; | 
|  | /* maximum backwards seek, in KiB */ | 
|  | static const int cfq_back_max = 16 * 1024; | 
|  | /* penalty of a backwards seek */ | 
|  | static const int cfq_back_penalty = 2; | 
|  | static const int cfq_slice_sync = HZ / 10; | 
|  | static int cfq_slice_async = HZ / 25; | 
|  | static const int cfq_slice_async_rq = 2; | 
|  | static int cfq_slice_idle = HZ / 125; | 
|  | static int cfq_group_idle = HZ / 125; | 
|  | static const int cfq_target_latency = HZ * 3/10; /* 300 ms */ | 
|  | static const int cfq_hist_divisor = 4; | 
|  |  | 
|  | /* | 
|  | * offset from end of service tree | 
|  | */ | 
|  | #define CFQ_IDLE_DELAY		(HZ / 5) | 
|  |  | 
|  | /* | 
|  | * below this threshold, we consider thinktime immediate | 
|  | */ | 
|  | #define CFQ_MIN_TT		(2) | 
|  |  | 
|  | #define CFQ_SLICE_SCALE		(5) | 
|  | #define CFQ_HW_QUEUE_MIN	(5) | 
|  | #define CFQ_SERVICE_SHIFT       12 | 
|  |  | 
|  | #define CFQQ_SEEK_THR		(sector_t)(8 * 100) | 
|  | #define CFQQ_CLOSE_THR		(sector_t)(8 * 1024) | 
|  | #define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32) | 
|  | #define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8) | 
|  |  | 
|  | #define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq) | 
|  | #define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0]) | 
|  | #define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1]) | 
|  |  | 
|  | static struct kmem_cache *cfq_pool; | 
|  |  | 
|  | #define CFQ_PRIO_LISTS		IOPRIO_BE_NR | 
|  | #define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) | 
|  | #define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT) | 
|  |  | 
|  | #define sample_valid(samples)	((samples) > 80) | 
|  | #define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node) | 
|  |  | 
|  | /* blkio-related constants */ | 
|  | #define CFQ_WEIGHT_LEGACY_MIN	10 | 
|  | #define CFQ_WEIGHT_LEGACY_DFL	500 | 
|  | #define CFQ_WEIGHT_LEGACY_MAX	1000 | 
|  |  | 
|  | struct cfq_ttime { | 
|  | unsigned long last_end_request; | 
|  |  | 
|  | unsigned long ttime_total; | 
|  | unsigned long ttime_samples; | 
|  | unsigned long ttime_mean; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Most of our rbtree usage is for sorting with min extraction, so | 
|  | * if we cache the leftmost node we don't have to walk down the tree | 
|  | * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should | 
|  | * move this into the elevator for the rq sorting as well. | 
|  | */ | 
|  | struct cfq_rb_root { | 
|  | struct rb_root rb; | 
|  | struct rb_node *left; | 
|  | unsigned count; | 
|  | u64 min_vdisktime; | 
|  | struct cfq_ttime ttime; | 
|  | }; | 
|  | #define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \ | 
|  | .ttime = {.last_end_request = jiffies,},} | 
|  |  | 
|  | /* | 
|  | * Per process-grouping structure | 
|  | */ | 
|  | struct cfq_queue { | 
|  | /* reference count */ | 
|  | int ref; | 
|  | /* various state flags, see below */ | 
|  | unsigned int flags; | 
|  | /* parent cfq_data */ | 
|  | struct cfq_data *cfqd; | 
|  | /* service_tree member */ | 
|  | struct rb_node rb_node; | 
|  | /* service_tree key */ | 
|  | unsigned long rb_key; | 
|  | /* prio tree member */ | 
|  | struct rb_node p_node; | 
|  | /* prio tree root we belong to, if any */ | 
|  | struct rb_root *p_root; | 
|  | /* sorted list of pending requests */ | 
|  | struct rb_root sort_list; | 
|  | /* if fifo isn't expired, next request to serve */ | 
|  | struct request *next_rq; | 
|  | /* requests queued in sort_list */ | 
|  | int queued[2]; | 
|  | /* currently allocated requests */ | 
|  | int allocated[2]; | 
|  | /* fifo list of requests in sort_list */ | 
|  | struct list_head fifo; | 
|  |  | 
|  | /* time when queue got scheduled in to dispatch first request. */ | 
|  | unsigned long dispatch_start; | 
|  | unsigned int allocated_slice; | 
|  | unsigned int slice_dispatch; | 
|  | /* time when first request from queue completed and slice started. */ | 
|  | unsigned long slice_start; | 
|  | unsigned long slice_end; | 
|  | long slice_resid; | 
|  |  | 
|  | /* pending priority requests */ | 
|  | int prio_pending; | 
|  | /* number of requests that are on the dispatch list or inside driver */ | 
|  | int dispatched; | 
|  |  | 
|  | /* io prio of this group */ | 
|  | unsigned short ioprio, org_ioprio; | 
|  | unsigned short ioprio_class; | 
|  |  | 
|  | pid_t pid; | 
|  |  | 
|  | u32 seek_history; | 
|  | sector_t last_request_pos; | 
|  |  | 
|  | struct cfq_rb_root *service_tree; | 
|  | struct cfq_queue *new_cfqq; | 
|  | struct cfq_group *cfqg; | 
|  | /* Number of sectors dispatched from queue in single dispatch round */ | 
|  | unsigned long nr_sectors; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * First index in the service_trees. | 
|  | * IDLE is handled separately, so it has negative index | 
|  | */ | 
|  | enum wl_class_t { | 
|  | BE_WORKLOAD = 0, | 
|  | RT_WORKLOAD = 1, | 
|  | IDLE_WORKLOAD = 2, | 
|  | CFQ_PRIO_NR, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Second index in the service_trees. | 
|  | */ | 
|  | enum wl_type_t { | 
|  | ASYNC_WORKLOAD = 0, | 
|  | SYNC_NOIDLE_WORKLOAD = 1, | 
|  | SYNC_WORKLOAD = 2 | 
|  | }; | 
|  |  | 
|  | struct cfqg_stats { | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | /* number of ios merged */ | 
|  | struct blkg_rwstat		merged; | 
|  | /* total time spent on device in ns, may not be accurate w/ queueing */ | 
|  | struct blkg_rwstat		service_time; | 
|  | /* total time spent waiting in scheduler queue in ns */ | 
|  | struct blkg_rwstat		wait_time; | 
|  | /* number of IOs queued up */ | 
|  | struct blkg_rwstat		queued; | 
|  | /* total disk time and nr sectors dispatched by this group */ | 
|  | struct blkg_stat		time; | 
|  | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
|  | /* time not charged to this cgroup */ | 
|  | struct blkg_stat		unaccounted_time; | 
|  | /* sum of number of ios queued across all samples */ | 
|  | struct blkg_stat		avg_queue_size_sum; | 
|  | /* count of samples taken for average */ | 
|  | struct blkg_stat		avg_queue_size_samples; | 
|  | /* how many times this group has been removed from service tree */ | 
|  | struct blkg_stat		dequeue; | 
|  | /* total time spent waiting for it to be assigned a timeslice. */ | 
|  | struct blkg_stat		group_wait_time; | 
|  | /* time spent idling for this blkcg_gq */ | 
|  | struct blkg_stat		idle_time; | 
|  | /* total time with empty current active q with other requests queued */ | 
|  | struct blkg_stat		empty_time; | 
|  | /* fields after this shouldn't be cleared on stat reset */ | 
|  | uint64_t			start_group_wait_time; | 
|  | uint64_t			start_idle_time; | 
|  | uint64_t			start_empty_time; | 
|  | uint16_t			flags; | 
|  | #endif	/* CONFIG_DEBUG_BLK_CGROUP */ | 
|  | #endif	/* CONFIG_CFQ_GROUP_IOSCHED */ | 
|  | }; | 
|  |  | 
|  | /* Per-cgroup data */ | 
|  | struct cfq_group_data { | 
|  | /* must be the first member */ | 
|  | struct blkcg_policy_data cpd; | 
|  |  | 
|  | unsigned int weight; | 
|  | unsigned int leaf_weight; | 
|  | }; | 
|  |  | 
|  | /* This is per cgroup per device grouping structure */ | 
|  | struct cfq_group { | 
|  | /* must be the first member */ | 
|  | struct blkg_policy_data pd; | 
|  |  | 
|  | /* group service_tree member */ | 
|  | struct rb_node rb_node; | 
|  |  | 
|  | /* group service_tree key */ | 
|  | u64 vdisktime; | 
|  |  | 
|  | /* | 
|  | * The number of active cfqgs and sum of their weights under this | 
|  | * cfqg.  This covers this cfqg's leaf_weight and all children's | 
|  | * weights, but does not cover weights of further descendants. | 
|  | * | 
|  | * If a cfqg is on the service tree, it's active.  An active cfqg | 
|  | * also activates its parent and contributes to the children_weight | 
|  | * of the parent. | 
|  | */ | 
|  | int nr_active; | 
|  | unsigned int children_weight; | 
|  |  | 
|  | /* | 
|  | * vfraction is the fraction of vdisktime that the tasks in this | 
|  | * cfqg are entitled to.  This is determined by compounding the | 
|  | * ratios walking up from this cfqg to the root. | 
|  | * | 
|  | * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all | 
|  | * vfractions on a service tree is approximately 1.  The sum may | 
|  | * deviate a bit due to rounding errors and fluctuations caused by | 
|  | * cfqgs entering and leaving the service tree. | 
|  | */ | 
|  | unsigned int vfraction; | 
|  |  | 
|  | /* | 
|  | * There are two weights - (internal) weight is the weight of this | 
|  | * cfqg against the sibling cfqgs.  leaf_weight is the wight of | 
|  | * this cfqg against the child cfqgs.  For the root cfqg, both | 
|  | * weights are kept in sync for backward compatibility. | 
|  | */ | 
|  | unsigned int weight; | 
|  | unsigned int new_weight; | 
|  | unsigned int dev_weight; | 
|  |  | 
|  | unsigned int leaf_weight; | 
|  | unsigned int new_leaf_weight; | 
|  | unsigned int dev_leaf_weight; | 
|  |  | 
|  | /* number of cfqq currently on this group */ | 
|  | int nr_cfqq; | 
|  |  | 
|  | /* | 
|  | * Per group busy queues average. Useful for workload slice calc. We | 
|  | * create the array for each prio class but at run time it is used | 
|  | * only for RT and BE class and slot for IDLE class remains unused. | 
|  | * This is primarily done to avoid confusion and a gcc warning. | 
|  | */ | 
|  | unsigned int busy_queues_avg[CFQ_PRIO_NR]; | 
|  | /* | 
|  | * rr lists of queues with requests. We maintain service trees for | 
|  | * RT and BE classes. These trees are subdivided in subclasses | 
|  | * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE | 
|  | * class there is no subclassification and all the cfq queues go on | 
|  | * a single tree service_tree_idle. | 
|  | * Counts are embedded in the cfq_rb_root | 
|  | */ | 
|  | struct cfq_rb_root service_trees[2][3]; | 
|  | struct cfq_rb_root service_tree_idle; | 
|  |  | 
|  | unsigned long saved_wl_slice; | 
|  | enum wl_type_t saved_wl_type; | 
|  | enum wl_class_t saved_wl_class; | 
|  |  | 
|  | /* number of requests that are on the dispatch list or inside driver */ | 
|  | int dispatched; | 
|  | struct cfq_ttime ttime; | 
|  | struct cfqg_stats stats;	/* stats for this cfqg */ | 
|  |  | 
|  | /* async queue for each priority case */ | 
|  | struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR]; | 
|  | struct cfq_queue *async_idle_cfqq; | 
|  |  | 
|  | }; | 
|  |  | 
|  | struct cfq_io_cq { | 
|  | struct io_cq		icq;		/* must be the first member */ | 
|  | struct cfq_queue	*cfqq[2]; | 
|  | struct cfq_ttime	ttime; | 
|  | int			ioprio;		/* the current ioprio */ | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | uint64_t		blkcg_serial_nr; /* the current blkcg serial */ | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Per block device queue structure | 
|  | */ | 
|  | struct cfq_data { | 
|  | struct request_queue *queue; | 
|  | /* Root service tree for cfq_groups */ | 
|  | struct cfq_rb_root grp_service_tree; | 
|  | struct cfq_group *root_group; | 
|  |  | 
|  | /* | 
|  | * The priority currently being served | 
|  | */ | 
|  | enum wl_class_t serving_wl_class; | 
|  | enum wl_type_t serving_wl_type; | 
|  | unsigned long workload_expires; | 
|  | struct cfq_group *serving_group; | 
|  |  | 
|  | /* | 
|  | * Each priority tree is sorted by next_request position.  These | 
|  | * trees are used when determining if two or more queues are | 
|  | * interleaving requests (see cfq_close_cooperator). | 
|  | */ | 
|  | struct rb_root prio_trees[CFQ_PRIO_LISTS]; | 
|  |  | 
|  | unsigned int busy_queues; | 
|  | unsigned int busy_sync_queues; | 
|  |  | 
|  | int rq_in_driver; | 
|  | int rq_in_flight[2]; | 
|  |  | 
|  | /* | 
|  | * queue-depth detection | 
|  | */ | 
|  | int rq_queued; | 
|  | int hw_tag; | 
|  | /* | 
|  | * hw_tag can be | 
|  | * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection) | 
|  | *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth) | 
|  | *  0 => no NCQ | 
|  | */ | 
|  | int hw_tag_est_depth; | 
|  | unsigned int hw_tag_samples; | 
|  |  | 
|  | /* | 
|  | * idle window management | 
|  | */ | 
|  | struct timer_list idle_slice_timer; | 
|  | struct work_struct unplug_work; | 
|  |  | 
|  | struct cfq_queue *active_queue; | 
|  | struct cfq_io_cq *active_cic; | 
|  |  | 
|  | sector_t last_position; | 
|  |  | 
|  | /* | 
|  | * tunables, see top of file | 
|  | */ | 
|  | unsigned int cfq_quantum; | 
|  | unsigned int cfq_fifo_expire[2]; | 
|  | unsigned int cfq_back_penalty; | 
|  | unsigned int cfq_back_max; | 
|  | unsigned int cfq_slice[2]; | 
|  | unsigned int cfq_slice_async_rq; | 
|  | unsigned int cfq_slice_idle; | 
|  | unsigned int cfq_group_idle; | 
|  | unsigned int cfq_latency; | 
|  | unsigned int cfq_target_latency; | 
|  |  | 
|  | /* | 
|  | * Fallback dummy cfqq for extreme OOM conditions | 
|  | */ | 
|  | struct cfq_queue oom_cfqq; | 
|  |  | 
|  | unsigned long last_delayed_sync; | 
|  | }; | 
|  |  | 
|  | static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd); | 
|  | static void cfq_put_queue(struct cfq_queue *cfqq); | 
|  |  | 
|  | static struct cfq_rb_root *st_for(struct cfq_group *cfqg, | 
|  | enum wl_class_t class, | 
|  | enum wl_type_t type) | 
|  | { | 
|  | if (!cfqg) | 
|  | return NULL; | 
|  |  | 
|  | if (class == IDLE_WORKLOAD) | 
|  | return &cfqg->service_tree_idle; | 
|  |  | 
|  | return &cfqg->service_trees[class][type]; | 
|  | } | 
|  |  | 
|  | enum cfqq_state_flags { | 
|  | CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */ | 
|  | CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */ | 
|  | CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */ | 
|  | CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */ | 
|  | CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */ | 
|  | CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */ | 
|  | CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */ | 
|  | CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */ | 
|  | CFQ_CFQQ_FLAG_sync,		/* synchronous queue */ | 
|  | CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */ | 
|  | CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */ | 
|  | CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */ | 
|  | CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */ | 
|  | }; | 
|  |  | 
|  | #define CFQ_CFQQ_FNS(name)						\ | 
|  | static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\ | 
|  | {									\ | 
|  | (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\ | 
|  | }									\ | 
|  | static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\ | 
|  | {									\ | 
|  | (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\ | 
|  | }									\ | 
|  | static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\ | 
|  | {									\ | 
|  | return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\ | 
|  | } | 
|  |  | 
|  | CFQ_CFQQ_FNS(on_rr); | 
|  | CFQ_CFQQ_FNS(wait_request); | 
|  | CFQ_CFQQ_FNS(must_dispatch); | 
|  | CFQ_CFQQ_FNS(must_alloc_slice); | 
|  | CFQ_CFQQ_FNS(fifo_expire); | 
|  | CFQ_CFQQ_FNS(idle_window); | 
|  | CFQ_CFQQ_FNS(prio_changed); | 
|  | CFQ_CFQQ_FNS(slice_new); | 
|  | CFQ_CFQQ_FNS(sync); | 
|  | CFQ_CFQQ_FNS(coop); | 
|  | CFQ_CFQQ_FNS(split_coop); | 
|  | CFQ_CFQQ_FNS(deep); | 
|  | CFQ_CFQQ_FNS(wait_busy); | 
|  | #undef CFQ_CFQQ_FNS | 
|  |  | 
|  | #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) | 
|  |  | 
|  | /* cfqg stats flags */ | 
|  | enum cfqg_stats_flags { | 
|  | CFQG_stats_waiting = 0, | 
|  | CFQG_stats_idling, | 
|  | CFQG_stats_empty, | 
|  | }; | 
|  |  | 
|  | #define CFQG_FLAG_FNS(name)						\ | 
|  | static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\ | 
|  | {									\ | 
|  | stats->flags |= (1 << CFQG_stats_##name);			\ | 
|  | }									\ | 
|  | static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\ | 
|  | {									\ | 
|  | stats->flags &= ~(1 << CFQG_stats_##name);			\ | 
|  | }									\ | 
|  | static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\ | 
|  | {									\ | 
|  | return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\ | 
|  | }									\ | 
|  |  | 
|  | CFQG_FLAG_FNS(waiting) | 
|  | CFQG_FLAG_FNS(idling) | 
|  | CFQG_FLAG_FNS(empty) | 
|  | #undef CFQG_FLAG_FNS | 
|  |  | 
|  | /* This should be called with the queue_lock held. */ | 
|  | static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats) | 
|  | { | 
|  | unsigned long long now; | 
|  |  | 
|  | if (!cfqg_stats_waiting(stats)) | 
|  | return; | 
|  |  | 
|  | now = sched_clock(); | 
|  | if (time_after64(now, stats->start_group_wait_time)) | 
|  | blkg_stat_add(&stats->group_wait_time, | 
|  | now - stats->start_group_wait_time); | 
|  | cfqg_stats_clear_waiting(stats); | 
|  | } | 
|  |  | 
|  | /* This should be called with the queue_lock held. */ | 
|  | static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, | 
|  | struct cfq_group *curr_cfqg) | 
|  | { | 
|  | struct cfqg_stats *stats = &cfqg->stats; | 
|  |  | 
|  | if (cfqg_stats_waiting(stats)) | 
|  | return; | 
|  | if (cfqg == curr_cfqg) | 
|  | return; | 
|  | stats->start_group_wait_time = sched_clock(); | 
|  | cfqg_stats_mark_waiting(stats); | 
|  | } | 
|  |  | 
|  | /* This should be called with the queue_lock held. */ | 
|  | static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) | 
|  | { | 
|  | unsigned long long now; | 
|  |  | 
|  | if (!cfqg_stats_empty(stats)) | 
|  | return; | 
|  |  | 
|  | now = sched_clock(); | 
|  | if (time_after64(now, stats->start_empty_time)) | 
|  | blkg_stat_add(&stats->empty_time, | 
|  | now - stats->start_empty_time); | 
|  | cfqg_stats_clear_empty(stats); | 
|  | } | 
|  |  | 
|  | static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) | 
|  | { | 
|  | blkg_stat_add(&cfqg->stats.dequeue, 1); | 
|  | } | 
|  |  | 
|  | static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfqg_stats *stats = &cfqg->stats; | 
|  |  | 
|  | if (blkg_rwstat_total(&stats->queued)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * group is already marked empty. This can happen if cfqq got new | 
|  | * request in parent group and moved to this group while being added | 
|  | * to service tree. Just ignore the event and move on. | 
|  | */ | 
|  | if (cfqg_stats_empty(stats)) | 
|  | return; | 
|  |  | 
|  | stats->start_empty_time = sched_clock(); | 
|  | cfqg_stats_mark_empty(stats); | 
|  | } | 
|  |  | 
|  | static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfqg_stats *stats = &cfqg->stats; | 
|  |  | 
|  | if (cfqg_stats_idling(stats)) { | 
|  | unsigned long long now = sched_clock(); | 
|  |  | 
|  | if (time_after64(now, stats->start_idle_time)) | 
|  | blkg_stat_add(&stats->idle_time, | 
|  | now - stats->start_idle_time); | 
|  | cfqg_stats_clear_idling(stats); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfqg_stats *stats = &cfqg->stats; | 
|  |  | 
|  | BUG_ON(cfqg_stats_idling(stats)); | 
|  |  | 
|  | stats->start_idle_time = sched_clock(); | 
|  | cfqg_stats_mark_idling(stats); | 
|  | } | 
|  |  | 
|  | static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfqg_stats *stats = &cfqg->stats; | 
|  |  | 
|  | blkg_stat_add(&stats->avg_queue_size_sum, | 
|  | blkg_rwstat_total(&stats->queued)); | 
|  | blkg_stat_add(&stats->avg_queue_size_samples, 1); | 
|  | cfqg_stats_update_group_wait_time(stats); | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ | 
|  |  | 
|  | static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { } | 
|  | static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { } | 
|  | static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { } | 
|  | static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { } | 
|  | static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { } | 
|  | static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { } | 
|  | static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { } | 
|  |  | 
|  | #endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ | 
|  |  | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  |  | 
|  | static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd) | 
|  | { | 
|  | return pd ? container_of(pd, struct cfq_group, pd) : NULL; | 
|  | } | 
|  |  | 
|  | static struct cfq_group_data | 
|  | *cpd_to_cfqgd(struct blkcg_policy_data *cpd) | 
|  | { | 
|  | return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL; | 
|  | } | 
|  |  | 
|  | static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg) | 
|  | { | 
|  | return pd_to_blkg(&cfqg->pd); | 
|  | } | 
|  |  | 
|  | static struct blkcg_policy blkcg_policy_cfq; | 
|  |  | 
|  | static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg) | 
|  | { | 
|  | return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq)); | 
|  | } | 
|  |  | 
|  | static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg) | 
|  | { | 
|  | return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq)); | 
|  | } | 
|  |  | 
|  | static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) | 
|  | { | 
|  | struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent; | 
|  |  | 
|  | return pblkg ? blkg_to_cfqg(pblkg) : NULL; | 
|  | } | 
|  |  | 
|  | static inline void cfqg_get(struct cfq_group *cfqg) | 
|  | { | 
|  | return blkg_get(cfqg_to_blkg(cfqg)); | 
|  | } | 
|  |  | 
|  | static inline void cfqg_put(struct cfq_group *cfqg) | 
|  | { | 
|  | return blkg_put(cfqg_to_blkg(cfqg)); | 
|  | } | 
|  |  | 
|  | #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\ | 
|  | char __pbuf[128];						\ | 
|  | \ | 
|  | blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\ | 
|  | blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \ | 
|  | cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\ | 
|  | cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ | 
|  | __pbuf, ##args);				\ | 
|  | } while (0) | 
|  |  | 
|  | #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\ | 
|  | char __pbuf[128];						\ | 
|  | \ | 
|  | blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\ | 
|  | blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\ | 
|  | } while (0) | 
|  |  | 
|  | static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, | 
|  | struct cfq_group *curr_cfqg, int rw) | 
|  | { | 
|  | blkg_rwstat_add(&cfqg->stats.queued, rw, 1); | 
|  | cfqg_stats_end_empty_time(&cfqg->stats); | 
|  | cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg); | 
|  | } | 
|  |  | 
|  | static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, | 
|  | unsigned long time, unsigned long unaccounted_time) | 
|  | { | 
|  | blkg_stat_add(&cfqg->stats.time, time); | 
|  | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
|  | blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) | 
|  | { | 
|  | blkg_rwstat_add(&cfqg->stats.queued, rw, -1); | 
|  | } | 
|  |  | 
|  | static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) | 
|  | { | 
|  | blkg_rwstat_add(&cfqg->stats.merged, rw, 1); | 
|  | } | 
|  |  | 
|  | static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, | 
|  | uint64_t start_time, uint64_t io_start_time, int rw) | 
|  | { | 
|  | struct cfqg_stats *stats = &cfqg->stats; | 
|  | unsigned long long now = sched_clock(); | 
|  |  | 
|  | if (time_after64(now, io_start_time)) | 
|  | blkg_rwstat_add(&stats->service_time, rw, now - io_start_time); | 
|  | if (time_after64(io_start_time, start_time)) | 
|  | blkg_rwstat_add(&stats->wait_time, rw, | 
|  | io_start_time - start_time); | 
|  | } | 
|  |  | 
|  | /* @stats = 0 */ | 
|  | static void cfqg_stats_reset(struct cfqg_stats *stats) | 
|  | { | 
|  | /* queued stats shouldn't be cleared */ | 
|  | blkg_rwstat_reset(&stats->merged); | 
|  | blkg_rwstat_reset(&stats->service_time); | 
|  | blkg_rwstat_reset(&stats->wait_time); | 
|  | blkg_stat_reset(&stats->time); | 
|  | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
|  | blkg_stat_reset(&stats->unaccounted_time); | 
|  | blkg_stat_reset(&stats->avg_queue_size_sum); | 
|  | blkg_stat_reset(&stats->avg_queue_size_samples); | 
|  | blkg_stat_reset(&stats->dequeue); | 
|  | blkg_stat_reset(&stats->group_wait_time); | 
|  | blkg_stat_reset(&stats->idle_time); | 
|  | blkg_stat_reset(&stats->empty_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* @to += @from */ | 
|  | static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from) | 
|  | { | 
|  | /* queued stats shouldn't be cleared */ | 
|  | blkg_rwstat_add_aux(&to->merged, &from->merged); | 
|  | blkg_rwstat_add_aux(&to->service_time, &from->service_time); | 
|  | blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); | 
|  | blkg_stat_add_aux(&from->time, &from->time); | 
|  | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
|  | blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time); | 
|  | blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); | 
|  | blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples); | 
|  | blkg_stat_add_aux(&to->dequeue, &from->dequeue); | 
|  | blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time); | 
|  | blkg_stat_add_aux(&to->idle_time, &from->idle_time); | 
|  | blkg_stat_add_aux(&to->empty_time, &from->empty_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transfer @cfqg's stats to its parent's aux counts so that the ancestors' | 
|  | * recursive stats can still account for the amount used by this cfqg after | 
|  | * it's gone. | 
|  | */ | 
|  | static void cfqg_stats_xfer_dead(struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfq_group *parent = cfqg_parent(cfqg); | 
|  |  | 
|  | lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock); | 
|  |  | 
|  | if (unlikely(!parent)) | 
|  | return; | 
|  |  | 
|  | cfqg_stats_add_aux(&parent->stats, &cfqg->stats); | 
|  | cfqg_stats_reset(&cfqg->stats); | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_CFQ_GROUP_IOSCHED */ | 
|  |  | 
|  | static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; } | 
|  | static inline void cfqg_get(struct cfq_group *cfqg) { } | 
|  | static inline void cfqg_put(struct cfq_group *cfqg) { } | 
|  |  | 
|  | #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\ | 
|  | blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\ | 
|  | cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\ | 
|  | cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ | 
|  | ##args) | 
|  | #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0) | 
|  |  | 
|  | static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, | 
|  | struct cfq_group *curr_cfqg, int rw) { } | 
|  | static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, | 
|  | unsigned long time, unsigned long unaccounted_time) { } | 
|  | static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { } | 
|  | static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { } | 
|  | static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, | 
|  | uint64_t start_time, uint64_t io_start_time, int rw) { } | 
|  |  | 
|  | #endif	/* CONFIG_CFQ_GROUP_IOSCHED */ | 
|  |  | 
|  | #define cfq_log(cfqd, fmt, args...)	\ | 
|  | blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args) | 
|  |  | 
|  | /* Traverses through cfq group service trees */ | 
|  | #define for_each_cfqg_st(cfqg, i, j, st) \ | 
|  | for (i = 0; i <= IDLE_WORKLOAD; i++) \ | 
|  | for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\ | 
|  | : &cfqg->service_tree_idle; \ | 
|  | (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \ | 
|  | (i == IDLE_WORKLOAD && j == 0); \ | 
|  | j++, st = i < IDLE_WORKLOAD ? \ | 
|  | &cfqg->service_trees[i][j]: NULL) \ | 
|  |  | 
|  | static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd, | 
|  | struct cfq_ttime *ttime, bool group_idle) | 
|  | { | 
|  | unsigned long slice; | 
|  | if (!sample_valid(ttime->ttime_samples)) | 
|  | return false; | 
|  | if (group_idle) | 
|  | slice = cfqd->cfq_group_idle; | 
|  | else | 
|  | slice = cfqd->cfq_slice_idle; | 
|  | return ttime->ttime_mean > slice; | 
|  | } | 
|  |  | 
|  | static inline bool iops_mode(struct cfq_data *cfqd) | 
|  | { | 
|  | /* | 
|  | * If we are not idling on queues and it is a NCQ drive, parallel | 
|  | * execution of requests is on and measuring time is not possible | 
|  | * in most of the cases until and unless we drive shallower queue | 
|  | * depths and that becomes a performance bottleneck. In such cases | 
|  | * switch to start providing fairness in terms of number of IOs. | 
|  | */ | 
|  | if (!cfqd->cfq_slice_idle && cfqd->hw_tag) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq) | 
|  | { | 
|  | if (cfq_class_idle(cfqq)) | 
|  | return IDLE_WORKLOAD; | 
|  | if (cfq_class_rt(cfqq)) | 
|  | return RT_WORKLOAD; | 
|  | return BE_WORKLOAD; | 
|  | } | 
|  |  | 
|  |  | 
|  | static enum wl_type_t cfqq_type(struct cfq_queue *cfqq) | 
|  | { | 
|  | if (!cfq_cfqq_sync(cfqq)) | 
|  | return ASYNC_WORKLOAD; | 
|  | if (!cfq_cfqq_idle_window(cfqq)) | 
|  | return SYNC_NOIDLE_WORKLOAD; | 
|  | return SYNC_WORKLOAD; | 
|  | } | 
|  |  | 
|  | static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class, | 
|  | struct cfq_data *cfqd, | 
|  | struct cfq_group *cfqg) | 
|  | { | 
|  | if (wl_class == IDLE_WORKLOAD) | 
|  | return cfqg->service_tree_idle.count; | 
|  |  | 
|  | return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count + | 
|  | cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count + | 
|  | cfqg->service_trees[wl_class][SYNC_WORKLOAD].count; | 
|  | } | 
|  |  | 
|  | static inline int cfqg_busy_async_queues(struct cfq_data *cfqd, | 
|  | struct cfq_group *cfqg) | 
|  | { | 
|  | return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count + | 
|  | cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count; | 
|  | } | 
|  |  | 
|  | static void cfq_dispatch_insert(struct request_queue *, struct request *); | 
|  | static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync, | 
|  | struct cfq_io_cq *cic, struct bio *bio); | 
|  |  | 
|  | static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq) | 
|  | { | 
|  | /* cic->icq is the first member, %NULL will convert to %NULL */ | 
|  | return container_of(icq, struct cfq_io_cq, icq); | 
|  | } | 
|  |  | 
|  | static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd, | 
|  | struct io_context *ioc) | 
|  | { | 
|  | if (ioc) | 
|  | return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync) | 
|  | { | 
|  | return cic->cfqq[is_sync]; | 
|  | } | 
|  |  | 
|  | static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq, | 
|  | bool is_sync) | 
|  | { | 
|  | cic->cfqq[is_sync] = cfqq; | 
|  | } | 
|  |  | 
|  | static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic) | 
|  | { | 
|  | return cic->icq.q->elevator->elevator_data; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We regard a request as SYNC, if it's either a read or has the SYNC bit | 
|  | * set (in which case it could also be direct WRITE). | 
|  | */ | 
|  | static inline bool cfq_bio_sync(struct bio *bio) | 
|  | { | 
|  | return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * scheduler run of queue, if there are requests pending and no one in the | 
|  | * driver that will restart queueing | 
|  | */ | 
|  | static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) | 
|  | { | 
|  | if (cfqd->busy_queues) { | 
|  | cfq_log(cfqd, "schedule dispatch"); | 
|  | kblockd_schedule_work(&cfqd->unplug_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scale schedule slice based on io priority. Use the sync time slice only | 
|  | * if a queue is marked sync and has sync io queued. A sync queue with async | 
|  | * io only, should not get full sync slice length. | 
|  | */ | 
|  | static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync, | 
|  | unsigned short prio) | 
|  | { | 
|  | const int base_slice = cfqd->cfq_slice[sync]; | 
|  |  | 
|  | WARN_ON(prio >= IOPRIO_BE_NR); | 
|  |  | 
|  | return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio)); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cfqg_scale_charge - scale disk time charge according to cfqg weight | 
|  | * @charge: disk time being charged | 
|  | * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT | 
|  | * | 
|  | * Scale @charge according to @vfraction, which is in range (0, 1].  The | 
|  | * scaling is inversely proportional. | 
|  | * | 
|  | * scaled = charge / vfraction | 
|  | * | 
|  | * The result is also in fixed point w/ CFQ_SERVICE_SHIFT. | 
|  | */ | 
|  | static inline u64 cfqg_scale_charge(unsigned long charge, | 
|  | unsigned int vfraction) | 
|  | { | 
|  | u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */ | 
|  |  | 
|  | /* charge / vfraction */ | 
|  | c <<= CFQ_SERVICE_SHIFT; | 
|  | do_div(c, vfraction); | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime) | 
|  | { | 
|  | s64 delta = (s64)(vdisktime - min_vdisktime); | 
|  | if (delta > 0) | 
|  | min_vdisktime = vdisktime; | 
|  |  | 
|  | return min_vdisktime; | 
|  | } | 
|  |  | 
|  | static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime) | 
|  | { | 
|  | s64 delta = (s64)(vdisktime - min_vdisktime); | 
|  | if (delta < 0) | 
|  | min_vdisktime = vdisktime; | 
|  |  | 
|  | return min_vdisktime; | 
|  | } | 
|  |  | 
|  | static void update_min_vdisktime(struct cfq_rb_root *st) | 
|  | { | 
|  | struct cfq_group *cfqg; | 
|  |  | 
|  | if (st->left) { | 
|  | cfqg = rb_entry_cfqg(st->left); | 
|  | st->min_vdisktime = max_vdisktime(st->min_vdisktime, | 
|  | cfqg->vdisktime); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get averaged number of queues of RT/BE priority. | 
|  | * average is updated, with a formula that gives more weight to higher numbers, | 
|  | * to quickly follows sudden increases and decrease slowly | 
|  | */ | 
|  |  | 
|  | static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd, | 
|  | struct cfq_group *cfqg, bool rt) | 
|  | { | 
|  | unsigned min_q, max_q; | 
|  | unsigned mult  = cfq_hist_divisor - 1; | 
|  | unsigned round = cfq_hist_divisor / 2; | 
|  | unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg); | 
|  |  | 
|  | min_q = min(cfqg->busy_queues_avg[rt], busy); | 
|  | max_q = max(cfqg->busy_queues_avg[rt], busy); | 
|  | cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) / | 
|  | cfq_hist_divisor; | 
|  | return cfqg->busy_queues_avg[rt]; | 
|  | } | 
|  |  | 
|  | static inline unsigned | 
|  | cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg) | 
|  | { | 
|  | return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline unsigned | 
|  | cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | unsigned slice = cfq_prio_to_slice(cfqd, cfqq); | 
|  | if (cfqd->cfq_latency) { | 
|  | /* | 
|  | * interested queues (we consider only the ones with the same | 
|  | * priority class in the cfq group) | 
|  | */ | 
|  | unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg, | 
|  | cfq_class_rt(cfqq)); | 
|  | unsigned sync_slice = cfqd->cfq_slice[1]; | 
|  | unsigned expect_latency = sync_slice * iq; | 
|  | unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg); | 
|  |  | 
|  | if (expect_latency > group_slice) { | 
|  | unsigned base_low_slice = 2 * cfqd->cfq_slice_idle; | 
|  | /* scale low_slice according to IO priority | 
|  | * and sync vs async */ | 
|  | unsigned low_slice = | 
|  | min(slice, base_low_slice * slice / sync_slice); | 
|  | /* the adapted slice value is scaled to fit all iqs | 
|  | * into the target latency */ | 
|  | slice = max(slice * group_slice / expect_latency, | 
|  | low_slice); | 
|  | } | 
|  | } | 
|  | return slice; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq); | 
|  |  | 
|  | cfqq->slice_start = jiffies; | 
|  | cfqq->slice_end = jiffies + slice; | 
|  | cfqq->allocated_slice = slice; | 
|  | cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end | 
|  | * isn't valid until the first request from the dispatch is activated | 
|  | * and the slice time set. | 
|  | */ | 
|  | static inline bool cfq_slice_used(struct cfq_queue *cfqq) | 
|  | { | 
|  | if (cfq_cfqq_slice_new(cfqq)) | 
|  | return false; | 
|  | if (time_before(jiffies, cfqq->slice_end)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lifted from AS - choose which of rq1 and rq2 that is best served now. | 
|  | * We choose the request that is closest to the head right now. Distance | 
|  | * behind the head is penalized and only allowed to a certain extent. | 
|  | */ | 
|  | static struct request * | 
|  | cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last) | 
|  | { | 
|  | sector_t s1, s2, d1 = 0, d2 = 0; | 
|  | unsigned long back_max; | 
|  | #define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */ | 
|  | #define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */ | 
|  | unsigned wrap = 0; /* bit mask: requests behind the disk head? */ | 
|  |  | 
|  | if (rq1 == NULL || rq1 == rq2) | 
|  | return rq2; | 
|  | if (rq2 == NULL) | 
|  | return rq1; | 
|  |  | 
|  | if (rq_is_sync(rq1) != rq_is_sync(rq2)) | 
|  | return rq_is_sync(rq1) ? rq1 : rq2; | 
|  |  | 
|  | if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO) | 
|  | return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2; | 
|  |  | 
|  | s1 = blk_rq_pos(rq1); | 
|  | s2 = blk_rq_pos(rq2); | 
|  |  | 
|  | /* | 
|  | * by definition, 1KiB is 2 sectors | 
|  | */ | 
|  | back_max = cfqd->cfq_back_max * 2; | 
|  |  | 
|  | /* | 
|  | * Strict one way elevator _except_ in the case where we allow | 
|  | * short backward seeks which are biased as twice the cost of a | 
|  | * similar forward seek. | 
|  | */ | 
|  | if (s1 >= last) | 
|  | d1 = s1 - last; | 
|  | else if (s1 + back_max >= last) | 
|  | d1 = (last - s1) * cfqd->cfq_back_penalty; | 
|  | else | 
|  | wrap |= CFQ_RQ1_WRAP; | 
|  |  | 
|  | if (s2 >= last) | 
|  | d2 = s2 - last; | 
|  | else if (s2 + back_max >= last) | 
|  | d2 = (last - s2) * cfqd->cfq_back_penalty; | 
|  | else | 
|  | wrap |= CFQ_RQ2_WRAP; | 
|  |  | 
|  | /* Found required data */ | 
|  |  | 
|  | /* | 
|  | * By doing switch() on the bit mask "wrap" we avoid having to | 
|  | * check two variables for all permutations: --> faster! | 
|  | */ | 
|  | switch (wrap) { | 
|  | case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ | 
|  | if (d1 < d2) | 
|  | return rq1; | 
|  | else if (d2 < d1) | 
|  | return rq2; | 
|  | else { | 
|  | if (s1 >= s2) | 
|  | return rq1; | 
|  | else | 
|  | return rq2; | 
|  | } | 
|  |  | 
|  | case CFQ_RQ2_WRAP: | 
|  | return rq1; | 
|  | case CFQ_RQ1_WRAP: | 
|  | return rq2; | 
|  | case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */ | 
|  | default: | 
|  | /* | 
|  | * Since both rqs are wrapped, | 
|  | * start with the one that's further behind head | 
|  | * (--> only *one* back seek required), | 
|  | * since back seek takes more time than forward. | 
|  | */ | 
|  | if (s1 <= s2) | 
|  | return rq1; | 
|  | else | 
|  | return rq2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The below is leftmost cache rbtree addon | 
|  | */ | 
|  | static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root) | 
|  | { | 
|  | /* Service tree is empty */ | 
|  | if (!root->count) | 
|  | return NULL; | 
|  |  | 
|  | if (!root->left) | 
|  | root->left = rb_first(&root->rb); | 
|  |  | 
|  | if (root->left) | 
|  | return rb_entry(root->left, struct cfq_queue, rb_node); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root) | 
|  | { | 
|  | if (!root->left) | 
|  | root->left = rb_first(&root->rb); | 
|  |  | 
|  | if (root->left) | 
|  | return rb_entry_cfqg(root->left); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void rb_erase_init(struct rb_node *n, struct rb_root *root) | 
|  | { | 
|  | rb_erase(n, root); | 
|  | RB_CLEAR_NODE(n); | 
|  | } | 
|  |  | 
|  | static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root) | 
|  | { | 
|  | if (root->left == n) | 
|  | root->left = NULL; | 
|  | rb_erase_init(n, &root->rb); | 
|  | --root->count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * would be nice to take fifo expire time into account as well | 
|  | */ | 
|  | static struct request * | 
|  | cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | struct request *last) | 
|  | { | 
|  | struct rb_node *rbnext = rb_next(&last->rb_node); | 
|  | struct rb_node *rbprev = rb_prev(&last->rb_node); | 
|  | struct request *next = NULL, *prev = NULL; | 
|  |  | 
|  | BUG_ON(RB_EMPTY_NODE(&last->rb_node)); | 
|  |  | 
|  | if (rbprev) | 
|  | prev = rb_entry_rq(rbprev); | 
|  |  | 
|  | if (rbnext) | 
|  | next = rb_entry_rq(rbnext); | 
|  | else { | 
|  | rbnext = rb_first(&cfqq->sort_list); | 
|  | if (rbnext && rbnext != &last->rb_node) | 
|  | next = rb_entry_rq(rbnext); | 
|  | } | 
|  |  | 
|  | return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last)); | 
|  | } | 
|  |  | 
|  | static unsigned long cfq_slice_offset(struct cfq_data *cfqd, | 
|  | struct cfq_queue *cfqq) | 
|  | { | 
|  | /* | 
|  | * just an approximation, should be ok. | 
|  | */ | 
|  | return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) - | 
|  | cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio)); | 
|  | } | 
|  |  | 
|  | static inline s64 | 
|  | cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg) | 
|  | { | 
|  | return cfqg->vdisktime - st->min_vdisktime; | 
|  | } | 
|  |  | 
|  | static void | 
|  | __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) | 
|  | { | 
|  | struct rb_node **node = &st->rb.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct cfq_group *__cfqg; | 
|  | s64 key = cfqg_key(st, cfqg); | 
|  | int left = 1; | 
|  |  | 
|  | while (*node != NULL) { | 
|  | parent = *node; | 
|  | __cfqg = rb_entry_cfqg(parent); | 
|  |  | 
|  | if (key < cfqg_key(st, __cfqg)) | 
|  | node = &parent->rb_left; | 
|  | else { | 
|  | node = &parent->rb_right; | 
|  | left = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (left) | 
|  | st->left = &cfqg->rb_node; | 
|  |  | 
|  | rb_link_node(&cfqg->rb_node, parent, node); | 
|  | rb_insert_color(&cfqg->rb_node, &st->rb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This has to be called only on activation of cfqg | 
|  | */ | 
|  | static void | 
|  | cfq_update_group_weight(struct cfq_group *cfqg) | 
|  | { | 
|  | if (cfqg->new_weight) { | 
|  | cfqg->weight = cfqg->new_weight; | 
|  | cfqg->new_weight = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | cfq_update_group_leaf_weight(struct cfq_group *cfqg) | 
|  | { | 
|  | BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); | 
|  |  | 
|  | if (cfqg->new_leaf_weight) { | 
|  | cfqg->leaf_weight = cfqg->new_leaf_weight; | 
|  | cfqg->new_leaf_weight = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) | 
|  | { | 
|  | unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */ | 
|  | struct cfq_group *pos = cfqg; | 
|  | struct cfq_group *parent; | 
|  | bool propagate; | 
|  |  | 
|  | /* add to the service tree */ | 
|  | BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); | 
|  |  | 
|  | /* | 
|  | * Update leaf_weight.  We cannot update weight at this point | 
|  | * because cfqg might already have been activated and is | 
|  | * contributing its current weight to the parent's child_weight. | 
|  | */ | 
|  | cfq_update_group_leaf_weight(cfqg); | 
|  | __cfq_group_service_tree_add(st, cfqg); | 
|  |  | 
|  | /* | 
|  | * Activate @cfqg and calculate the portion of vfraction @cfqg is | 
|  | * entitled to.  vfraction is calculated by walking the tree | 
|  | * towards the root calculating the fraction it has at each level. | 
|  | * The compounded ratio is how much vfraction @cfqg owns. | 
|  | * | 
|  | * Start with the proportion tasks in this cfqg has against active | 
|  | * children cfqgs - its leaf_weight against children_weight. | 
|  | */ | 
|  | propagate = !pos->nr_active++; | 
|  | pos->children_weight += pos->leaf_weight; | 
|  | vfr = vfr * pos->leaf_weight / pos->children_weight; | 
|  |  | 
|  | /* | 
|  | * Compound ->weight walking up the tree.  Both activation and | 
|  | * vfraction calculation are done in the same loop.  Propagation | 
|  | * stops once an already activated node is met.  vfraction | 
|  | * calculation should always continue to the root. | 
|  | */ | 
|  | while ((parent = cfqg_parent(pos))) { | 
|  | if (propagate) { | 
|  | cfq_update_group_weight(pos); | 
|  | propagate = !parent->nr_active++; | 
|  | parent->children_weight += pos->weight; | 
|  | } | 
|  | vfr = vfr * pos->weight / parent->children_weight; | 
|  | pos = parent; | 
|  | } | 
|  |  | 
|  | cfqg->vfraction = max_t(unsigned, vfr, 1); | 
|  | } | 
|  |  | 
|  | static void | 
|  | cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfq_rb_root *st = &cfqd->grp_service_tree; | 
|  | struct cfq_group *__cfqg; | 
|  | struct rb_node *n; | 
|  |  | 
|  | cfqg->nr_cfqq++; | 
|  | if (!RB_EMPTY_NODE(&cfqg->rb_node)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Currently put the group at the end. Later implement something | 
|  | * so that groups get lesser vtime based on their weights, so that | 
|  | * if group does not loose all if it was not continuously backlogged. | 
|  | */ | 
|  | n = rb_last(&st->rb); | 
|  | if (n) { | 
|  | __cfqg = rb_entry_cfqg(n); | 
|  | cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY; | 
|  | } else | 
|  | cfqg->vdisktime = st->min_vdisktime; | 
|  | cfq_group_service_tree_add(st, cfqg); | 
|  | } | 
|  |  | 
|  | static void | 
|  | cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfq_group *pos = cfqg; | 
|  | bool propagate; | 
|  |  | 
|  | /* | 
|  | * Undo activation from cfq_group_service_tree_add().  Deactivate | 
|  | * @cfqg and propagate deactivation upwards. | 
|  | */ | 
|  | propagate = !--pos->nr_active; | 
|  | pos->children_weight -= pos->leaf_weight; | 
|  |  | 
|  | while (propagate) { | 
|  | struct cfq_group *parent = cfqg_parent(pos); | 
|  |  | 
|  | /* @pos has 0 nr_active at this point */ | 
|  | WARN_ON_ONCE(pos->children_weight); | 
|  | pos->vfraction = 0; | 
|  |  | 
|  | if (!parent) | 
|  | break; | 
|  |  | 
|  | propagate = !--parent->nr_active; | 
|  | parent->children_weight -= pos->weight; | 
|  | pos = parent; | 
|  | } | 
|  |  | 
|  | /* remove from the service tree */ | 
|  | if (!RB_EMPTY_NODE(&cfqg->rb_node)) | 
|  | cfq_rb_erase(&cfqg->rb_node, st); | 
|  | } | 
|  |  | 
|  | static void | 
|  | cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfq_rb_root *st = &cfqd->grp_service_tree; | 
|  |  | 
|  | BUG_ON(cfqg->nr_cfqq < 1); | 
|  | cfqg->nr_cfqq--; | 
|  |  | 
|  | /* If there are other cfq queues under this group, don't delete it */ | 
|  | if (cfqg->nr_cfqq) | 
|  | return; | 
|  |  | 
|  | cfq_log_cfqg(cfqd, cfqg, "del_from_rr group"); | 
|  | cfq_group_service_tree_del(st, cfqg); | 
|  | cfqg->saved_wl_slice = 0; | 
|  | cfqg_stats_update_dequeue(cfqg); | 
|  | } | 
|  |  | 
|  | static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq, | 
|  | unsigned int *unaccounted_time) | 
|  | { | 
|  | unsigned int slice_used; | 
|  |  | 
|  | /* | 
|  | * Queue got expired before even a single request completed or | 
|  | * got expired immediately after first request completion. | 
|  | */ | 
|  | if (!cfqq->slice_start || cfqq->slice_start == jiffies) { | 
|  | /* | 
|  | * Also charge the seek time incurred to the group, otherwise | 
|  | * if there are mutiple queues in the group, each can dispatch | 
|  | * a single request on seeky media and cause lots of seek time | 
|  | * and group will never know it. | 
|  | */ | 
|  | slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start), | 
|  | 1); | 
|  | } else { | 
|  | slice_used = jiffies - cfqq->slice_start; | 
|  | if (slice_used > cfqq->allocated_slice) { | 
|  | *unaccounted_time = slice_used - cfqq->allocated_slice; | 
|  | slice_used = cfqq->allocated_slice; | 
|  | } | 
|  | if (time_after(cfqq->slice_start, cfqq->dispatch_start)) | 
|  | *unaccounted_time += cfqq->slice_start - | 
|  | cfqq->dispatch_start; | 
|  | } | 
|  |  | 
|  | return slice_used; | 
|  | } | 
|  |  | 
|  | static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg, | 
|  | struct cfq_queue *cfqq) | 
|  | { | 
|  | struct cfq_rb_root *st = &cfqd->grp_service_tree; | 
|  | unsigned int used_sl, charge, unaccounted_sl = 0; | 
|  | int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg) | 
|  | - cfqg->service_tree_idle.count; | 
|  | unsigned int vfr; | 
|  |  | 
|  | BUG_ON(nr_sync < 0); | 
|  | used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl); | 
|  |  | 
|  | if (iops_mode(cfqd)) | 
|  | charge = cfqq->slice_dispatch; | 
|  | else if (!cfq_cfqq_sync(cfqq) && !nr_sync) | 
|  | charge = cfqq->allocated_slice; | 
|  |  | 
|  | /* | 
|  | * Can't update vdisktime while on service tree and cfqg->vfraction | 
|  | * is valid only while on it.  Cache vfr, leave the service tree, | 
|  | * update vdisktime and go back on.  The re-addition to the tree | 
|  | * will also update the weights as necessary. | 
|  | */ | 
|  | vfr = cfqg->vfraction; | 
|  | cfq_group_service_tree_del(st, cfqg); | 
|  | cfqg->vdisktime += cfqg_scale_charge(charge, vfr); | 
|  | cfq_group_service_tree_add(st, cfqg); | 
|  |  | 
|  | /* This group is being expired. Save the context */ | 
|  | if (time_after(cfqd->workload_expires, jiffies)) { | 
|  | cfqg->saved_wl_slice = cfqd->workload_expires | 
|  | - jiffies; | 
|  | cfqg->saved_wl_type = cfqd->serving_wl_type; | 
|  | cfqg->saved_wl_class = cfqd->serving_wl_class; | 
|  | } else | 
|  | cfqg->saved_wl_slice = 0; | 
|  |  | 
|  | cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime, | 
|  | st->min_vdisktime); | 
|  | cfq_log_cfqq(cfqq->cfqd, cfqq, | 
|  | "sl_used=%u disp=%u charge=%u iops=%u sect=%lu", | 
|  | used_sl, cfqq->slice_dispatch, charge, | 
|  | iops_mode(cfqd), cfqq->nr_sectors); | 
|  | cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl); | 
|  | cfqg_stats_set_start_empty_time(cfqg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cfq_init_cfqg_base - initialize base part of a cfq_group | 
|  | * @cfqg: cfq_group to initialize | 
|  | * | 
|  | * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED | 
|  | * is enabled or not. | 
|  | */ | 
|  | static void cfq_init_cfqg_base(struct cfq_group *cfqg) | 
|  | { | 
|  | struct cfq_rb_root *st; | 
|  | int i, j; | 
|  |  | 
|  | for_each_cfqg_st(cfqg, i, j, st) | 
|  | *st = CFQ_RB_ROOT; | 
|  | RB_CLEAR_NODE(&cfqg->rb_node); | 
|  |  | 
|  | cfqg->ttime.last_end_request = jiffies; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, | 
|  | bool on_dfl, bool reset_dev, bool is_leaf_weight); | 
|  |  | 
|  | static void cfqg_stats_exit(struct cfqg_stats *stats) | 
|  | { | 
|  | blkg_rwstat_exit(&stats->merged); | 
|  | blkg_rwstat_exit(&stats->service_time); | 
|  | blkg_rwstat_exit(&stats->wait_time); | 
|  | blkg_rwstat_exit(&stats->queued); | 
|  | blkg_stat_exit(&stats->time); | 
|  | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
|  | blkg_stat_exit(&stats->unaccounted_time); | 
|  | blkg_stat_exit(&stats->avg_queue_size_sum); | 
|  | blkg_stat_exit(&stats->avg_queue_size_samples); | 
|  | blkg_stat_exit(&stats->dequeue); | 
|  | blkg_stat_exit(&stats->group_wait_time); | 
|  | blkg_stat_exit(&stats->idle_time); | 
|  | blkg_stat_exit(&stats->empty_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp) | 
|  | { | 
|  | if (blkg_rwstat_init(&stats->merged, gfp) || | 
|  | blkg_rwstat_init(&stats->service_time, gfp) || | 
|  | blkg_rwstat_init(&stats->wait_time, gfp) || | 
|  | blkg_rwstat_init(&stats->queued, gfp) || | 
|  | blkg_stat_init(&stats->time, gfp)) | 
|  | goto err; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
|  | if (blkg_stat_init(&stats->unaccounted_time, gfp) || | 
|  | blkg_stat_init(&stats->avg_queue_size_sum, gfp) || | 
|  | blkg_stat_init(&stats->avg_queue_size_samples, gfp) || | 
|  | blkg_stat_init(&stats->dequeue, gfp) || | 
|  | blkg_stat_init(&stats->group_wait_time, gfp) || | 
|  | blkg_stat_init(&stats->idle_time, gfp) || | 
|  | blkg_stat_init(&stats->empty_time, gfp)) | 
|  | goto err; | 
|  | #endif | 
|  | return 0; | 
|  | err: | 
|  | cfqg_stats_exit(stats); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp) | 
|  | { | 
|  | struct cfq_group_data *cgd; | 
|  |  | 
|  | cgd = kzalloc(sizeof(*cgd), GFP_KERNEL); | 
|  | if (!cgd) | 
|  | return NULL; | 
|  | return &cgd->cpd; | 
|  | } | 
|  |  | 
|  | static void cfq_cpd_init(struct blkcg_policy_data *cpd) | 
|  | { | 
|  | struct cfq_group_data *cgd = cpd_to_cfqgd(cpd); | 
|  | unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ? | 
|  | CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; | 
|  |  | 
|  | if (cpd_to_blkcg(cpd) == &blkcg_root) | 
|  | weight *= 2; | 
|  |  | 
|  | cgd->weight = weight; | 
|  | cgd->leaf_weight = weight; | 
|  | } | 
|  |  | 
|  | static void cfq_cpd_free(struct blkcg_policy_data *cpd) | 
|  | { | 
|  | kfree(cpd_to_cfqgd(cpd)); | 
|  | } | 
|  |  | 
|  | static void cfq_cpd_bind(struct blkcg_policy_data *cpd) | 
|  | { | 
|  | struct blkcg *blkcg = cpd_to_blkcg(cpd); | 
|  | bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys); | 
|  | unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; | 
|  |  | 
|  | if (blkcg == &blkcg_root) | 
|  | weight *= 2; | 
|  |  | 
|  | WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false)); | 
|  | WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true)); | 
|  | } | 
|  |  | 
|  | static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node) | 
|  | { | 
|  | struct cfq_group *cfqg; | 
|  |  | 
|  | cfqg = kzalloc_node(sizeof(*cfqg), gfp, node); | 
|  | if (!cfqg) | 
|  | return NULL; | 
|  |  | 
|  | cfq_init_cfqg_base(cfqg); | 
|  | if (cfqg_stats_init(&cfqg->stats, gfp)) { | 
|  | kfree(cfqg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return &cfqg->pd; | 
|  | } | 
|  |  | 
|  | static void cfq_pd_init(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct cfq_group *cfqg = pd_to_cfqg(pd); | 
|  | struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg); | 
|  |  | 
|  | cfqg->weight = cgd->weight; | 
|  | cfqg->leaf_weight = cgd->leaf_weight; | 
|  | } | 
|  |  | 
|  | static void cfq_pd_offline(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct cfq_group *cfqg = pd_to_cfqg(pd); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < IOPRIO_BE_NR; i++) { | 
|  | if (cfqg->async_cfqq[0][i]) | 
|  | cfq_put_queue(cfqg->async_cfqq[0][i]); | 
|  | if (cfqg->async_cfqq[1][i]) | 
|  | cfq_put_queue(cfqg->async_cfqq[1][i]); | 
|  | } | 
|  |  | 
|  | if (cfqg->async_idle_cfqq) | 
|  | cfq_put_queue(cfqg->async_idle_cfqq); | 
|  |  | 
|  | /* | 
|  | * @blkg is going offline and will be ignored by | 
|  | * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so | 
|  | * that they don't get lost.  If IOs complete after this point, the | 
|  | * stats for them will be lost.  Oh well... | 
|  | */ | 
|  | cfqg_stats_xfer_dead(cfqg); | 
|  | } | 
|  |  | 
|  | static void cfq_pd_free(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct cfq_group *cfqg = pd_to_cfqg(pd); | 
|  |  | 
|  | cfqg_stats_exit(&cfqg->stats); | 
|  | return kfree(cfqg); | 
|  | } | 
|  |  | 
|  | static void cfq_pd_reset_stats(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct cfq_group *cfqg = pd_to_cfqg(pd); | 
|  |  | 
|  | cfqg_stats_reset(&cfqg->stats); | 
|  | } | 
|  |  | 
|  | static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, | 
|  | struct blkcg *blkcg) | 
|  | { | 
|  | struct blkcg_gq *blkg; | 
|  |  | 
|  | blkg = blkg_lookup(blkcg, cfqd->queue); | 
|  | if (likely(blkg)) | 
|  | return blkg_to_cfqg(blkg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) | 
|  | { | 
|  | cfqq->cfqg = cfqg; | 
|  | /* cfqq reference on cfqg */ | 
|  | cfqg_get(cfqg); | 
|  | } | 
|  |  | 
|  | static u64 cfqg_prfill_weight_device(struct seq_file *sf, | 
|  | struct blkg_policy_data *pd, int off) | 
|  | { | 
|  | struct cfq_group *cfqg = pd_to_cfqg(pd); | 
|  |  | 
|  | if (!cfqg->dev_weight) | 
|  | return 0; | 
|  | return __blkg_prfill_u64(sf, pd, cfqg->dev_weight); | 
|  | } | 
|  |  | 
|  | static int cfqg_print_weight_device(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | cfqg_prfill_weight_device, &blkcg_policy_cfq, | 
|  | 0, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf, | 
|  | struct blkg_policy_data *pd, int off) | 
|  | { | 
|  | struct cfq_group *cfqg = pd_to_cfqg(pd); | 
|  |  | 
|  | if (!cfqg->dev_leaf_weight) | 
|  | return 0; | 
|  | return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight); | 
|  | } | 
|  |  | 
|  | static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, | 
|  | 0, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfq_print_weight(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
|  | struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); | 
|  | unsigned int val = 0; | 
|  |  | 
|  | if (cgd) | 
|  | val = cgd->weight; | 
|  |  | 
|  | seq_printf(sf, "%u\n", val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfq_print_leaf_weight(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
|  | struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); | 
|  | unsigned int val = 0; | 
|  |  | 
|  | if (cgd) | 
|  | val = cgd->leaf_weight; | 
|  |  | 
|  | seq_printf(sf, "%u\n", val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off, | 
|  | bool on_dfl, bool is_leaf_weight) | 
|  | { | 
|  | unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; | 
|  | unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; | 
|  | struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
|  | struct blkg_conf_ctx ctx; | 
|  | struct cfq_group *cfqg; | 
|  | struct cfq_group_data *cfqgd; | 
|  | int ret; | 
|  | u64 v; | 
|  |  | 
|  | ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (sscanf(ctx.body, "%llu", &v) == 1) { | 
|  | /* require "default" on dfl */ | 
|  | ret = -ERANGE; | 
|  | if (!v && on_dfl) | 
|  | goto out_finish; | 
|  | } else if (!strcmp(strim(ctx.body), "default")) { | 
|  | v = 0; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | goto out_finish; | 
|  | } | 
|  |  | 
|  | cfqg = blkg_to_cfqg(ctx.blkg); | 
|  | cfqgd = blkcg_to_cfqgd(blkcg); | 
|  |  | 
|  | ret = -ERANGE; | 
|  | if (!v || (v >= min && v <= max)) { | 
|  | if (!is_leaf_weight) { | 
|  | cfqg->dev_weight = v; | 
|  | cfqg->new_weight = v ?: cfqgd->weight; | 
|  | } else { | 
|  | cfqg->dev_leaf_weight = v; | 
|  | cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight; | 
|  | } | 
|  | ret = 0; | 
|  | } | 
|  | out_finish: | 
|  | blkg_conf_finish(&ctx); | 
|  | return ret ?: nbytes; | 
|  | } | 
|  |  | 
|  | static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | return __cfqg_set_weight_device(of, buf, nbytes, off, false, false); | 
|  | } | 
|  |  | 
|  | static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | return __cfqg_set_weight_device(of, buf, nbytes, off, false, true); | 
|  | } | 
|  |  | 
|  | static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, | 
|  | bool on_dfl, bool reset_dev, bool is_leaf_weight) | 
|  | { | 
|  | unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; | 
|  | unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; | 
|  | struct blkcg *blkcg = css_to_blkcg(css); | 
|  | struct blkcg_gq *blkg; | 
|  | struct cfq_group_data *cfqgd; | 
|  | int ret = 0; | 
|  |  | 
|  | if (val < min || val > max) | 
|  | return -ERANGE; | 
|  |  | 
|  | spin_lock_irq(&blkcg->lock); | 
|  | cfqgd = blkcg_to_cfqgd(blkcg); | 
|  | if (!cfqgd) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!is_leaf_weight) | 
|  | cfqgd->weight = val; | 
|  | else | 
|  | cfqgd->leaf_weight = val; | 
|  |  | 
|  | hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { | 
|  | struct cfq_group *cfqg = blkg_to_cfqg(blkg); | 
|  |  | 
|  | if (!cfqg) | 
|  | continue; | 
|  |  | 
|  | if (!is_leaf_weight) { | 
|  | if (reset_dev) | 
|  | cfqg->dev_weight = 0; | 
|  | if (!cfqg->dev_weight) | 
|  | cfqg->new_weight = cfqgd->weight; | 
|  | } else { | 
|  | if (reset_dev) | 
|  | cfqg->dev_leaf_weight = 0; | 
|  | if (!cfqg->dev_leaf_weight) | 
|  | cfqg->new_leaf_weight = cfqgd->leaf_weight; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock_irq(&blkcg->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | return __cfq_set_weight(css, val, false, false, false); | 
|  | } | 
|  |  | 
|  | static int cfq_set_leaf_weight(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | return __cfq_set_weight(css, val, false, false, true); | 
|  | } | 
|  |  | 
|  | static int cfqg_print_stat(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, | 
|  | &blkcg_policy_cfq, seq_cft(sf)->private, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfqg_print_rwstat(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, | 
|  | &blkcg_policy_cfq, seq_cft(sf)->private, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 cfqg_prfill_stat_recursive(struct seq_file *sf, | 
|  | struct blkg_policy_data *pd, int off) | 
|  | { | 
|  | u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd), | 
|  | &blkcg_policy_cfq, off); | 
|  | return __blkg_prfill_u64(sf, pd, sum); | 
|  | } | 
|  |  | 
|  | static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf, | 
|  | struct blkg_policy_data *pd, int off) | 
|  | { | 
|  | struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd), | 
|  | &blkcg_policy_cfq, off); | 
|  | return __blkg_prfill_rwstat(sf, pd, &sum); | 
|  | } | 
|  |  | 
|  | static int cfqg_print_stat_recursive(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | cfqg_prfill_stat_recursive, &blkcg_policy_cfq, | 
|  | seq_cft(sf)->private, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq, | 
|  | seq_cft(sf)->private, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, | 
|  | int off) | 
|  | { | 
|  | u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes); | 
|  |  | 
|  | return __blkg_prfill_u64(sf, pd, sum >> 9); | 
|  | } | 
|  |  | 
|  | static int cfqg_print_stat_sectors(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf, | 
|  | struct blkg_policy_data *pd, int off) | 
|  | { | 
|  | struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL, | 
|  | offsetof(struct blkcg_gq, stat_bytes)); | 
|  | u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) + | 
|  | atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]); | 
|  |  | 
|  | return __blkg_prfill_u64(sf, pd, sum >> 9); | 
|  | } | 
|  |  | 
|  | static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0, | 
|  | false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
|  | static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, | 
|  | struct blkg_policy_data *pd, int off) | 
|  | { | 
|  | struct cfq_group *cfqg = pd_to_cfqg(pd); | 
|  | u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples); | 
|  | u64 v = 0; | 
|  |  | 
|  | if (samples) { | 
|  | v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum); | 
|  | v = div64_u64(v, samples); | 
|  | } | 
|  | __blkg_prfill_u64(sf, pd, v); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* print avg_queue_size */ | 
|  | static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | cfqg_prfill_avg_queue_size, &blkcg_policy_cfq, | 
|  | 0, false); | 
|  | return 0; | 
|  | } | 
|  | #endif	/* CONFIG_DEBUG_BLK_CGROUP */ | 
|  |  | 
|  | static struct cftype cfq_blkcg_legacy_files[] = { | 
|  | /* on root, weight is mapped to leaf_weight */ | 
|  | { | 
|  | .name = "weight_device", | 
|  | .flags = CFTYPE_ONLY_ON_ROOT, | 
|  | .seq_show = cfqg_print_leaf_weight_device, | 
|  | .write = cfqg_set_leaf_weight_device, | 
|  | }, | 
|  | { | 
|  | .name = "weight", | 
|  | .flags = CFTYPE_ONLY_ON_ROOT, | 
|  | .seq_show = cfq_print_leaf_weight, | 
|  | .write_u64 = cfq_set_leaf_weight, | 
|  | }, | 
|  |  | 
|  | /* no such mapping necessary for !roots */ | 
|  | { | 
|  | .name = "weight_device", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = cfqg_print_weight_device, | 
|  | .write = cfqg_set_weight_device, | 
|  | }, | 
|  | { | 
|  | .name = "weight", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = cfq_print_weight, | 
|  | .write_u64 = cfq_set_weight, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "leaf_weight_device", | 
|  | .seq_show = cfqg_print_leaf_weight_device, | 
|  | .write = cfqg_set_leaf_weight_device, | 
|  | }, | 
|  | { | 
|  | .name = "leaf_weight", | 
|  | .seq_show = cfq_print_leaf_weight, | 
|  | .write_u64 = cfq_set_leaf_weight, | 
|  | }, | 
|  |  | 
|  | /* statistics, covers only the tasks in the cfqg */ | 
|  | { | 
|  | .name = "time", | 
|  | .private = offsetof(struct cfq_group, stats.time), | 
|  | .seq_show = cfqg_print_stat, | 
|  | }, | 
|  | { | 
|  | .name = "sectors", | 
|  | .seq_show = cfqg_print_stat_sectors, | 
|  | }, | 
|  | { | 
|  | .name = "io_service_bytes", | 
|  | .private = (unsigned long)&blkcg_policy_cfq, | 
|  | .seq_show = blkg_print_stat_bytes, | 
|  | }, | 
|  | { | 
|  | .name = "io_serviced", | 
|  | .private = (unsigned long)&blkcg_policy_cfq, | 
|  | .seq_show = blkg_print_stat_ios, | 
|  | }, | 
|  | { | 
|  | .name = "io_service_time", | 
|  | .private = offsetof(struct cfq_group, stats.service_time), | 
|  | .seq_show = cfqg_print_rwstat, | 
|  | }, | 
|  | { | 
|  | .name = "io_wait_time", | 
|  | .private = offsetof(struct cfq_group, stats.wait_time), | 
|  | .seq_show = cfqg_print_rwstat, | 
|  | }, | 
|  | { | 
|  | .name = "io_merged", | 
|  | .private = offsetof(struct cfq_group, stats.merged), | 
|  | .seq_show = cfqg_print_rwstat, | 
|  | }, | 
|  | { | 
|  | .name = "io_queued", | 
|  | .private = offsetof(struct cfq_group, stats.queued), | 
|  | .seq_show = cfqg_print_rwstat, | 
|  | }, | 
|  |  | 
|  | /* the same statictics which cover the cfqg and its descendants */ | 
|  | { | 
|  | .name = "time_recursive", | 
|  | .private = offsetof(struct cfq_group, stats.time), | 
|  | .seq_show = cfqg_print_stat_recursive, | 
|  | }, | 
|  | { | 
|  | .name = "sectors_recursive", | 
|  | .seq_show = cfqg_print_stat_sectors_recursive, | 
|  | }, | 
|  | { | 
|  | .name = "io_service_bytes_recursive", | 
|  | .private = (unsigned long)&blkcg_policy_cfq, | 
|  | .seq_show = blkg_print_stat_bytes_recursive, | 
|  | }, | 
|  | { | 
|  | .name = "io_serviced_recursive", | 
|  | .private = (unsigned long)&blkcg_policy_cfq, | 
|  | .seq_show = blkg_print_stat_ios_recursive, | 
|  | }, | 
|  | { | 
|  | .name = "io_service_time_recursive", | 
|  | .private = offsetof(struct cfq_group, stats.service_time), | 
|  | .seq_show = cfqg_print_rwstat_recursive, | 
|  | }, | 
|  | { | 
|  | .name = "io_wait_time_recursive", | 
|  | .private = offsetof(struct cfq_group, stats.wait_time), | 
|  | .seq_show = cfqg_print_rwstat_recursive, | 
|  | }, | 
|  | { | 
|  | .name = "io_merged_recursive", | 
|  | .private = offsetof(struct cfq_group, stats.merged), | 
|  | .seq_show = cfqg_print_rwstat_recursive, | 
|  | }, | 
|  | { | 
|  | .name = "io_queued_recursive", | 
|  | .private = offsetof(struct cfq_group, stats.queued), | 
|  | .seq_show = cfqg_print_rwstat_recursive, | 
|  | }, | 
|  | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
|  | { | 
|  | .name = "avg_queue_size", | 
|  | .seq_show = cfqg_print_avg_queue_size, | 
|  | }, | 
|  | { | 
|  | .name = "group_wait_time", | 
|  | .private = offsetof(struct cfq_group, stats.group_wait_time), | 
|  | .seq_show = cfqg_print_stat, | 
|  | }, | 
|  | { | 
|  | .name = "idle_time", | 
|  | .private = offsetof(struct cfq_group, stats.idle_time), | 
|  | .seq_show = cfqg_print_stat, | 
|  | }, | 
|  | { | 
|  | .name = "empty_time", | 
|  | .private = offsetof(struct cfq_group, stats.empty_time), | 
|  | .seq_show = cfqg_print_stat, | 
|  | }, | 
|  | { | 
|  | .name = "dequeue", | 
|  | .private = offsetof(struct cfq_group, stats.dequeue), | 
|  | .seq_show = cfqg_print_stat, | 
|  | }, | 
|  | { | 
|  | .name = "unaccounted_time", | 
|  | .private = offsetof(struct cfq_group, stats.unaccounted_time), | 
|  | .seq_show = cfqg_print_stat, | 
|  | }, | 
|  | #endif	/* CONFIG_DEBUG_BLK_CGROUP */ | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
|  | struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); | 
|  |  | 
|  | seq_printf(sf, "default %u\n", cgd->weight); | 
|  | blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device, | 
|  | &blkcg_policy_cfq, 0, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | char *endp; | 
|  | int ret; | 
|  | u64 v; | 
|  |  | 
|  | buf = strim(buf); | 
|  |  | 
|  | /* "WEIGHT" or "default WEIGHT" sets the default weight */ | 
|  | v = simple_strtoull(buf, &endp, 0); | 
|  | if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) { | 
|  | ret = __cfq_set_weight(of_css(of), v, true, false, false); | 
|  | return ret ?: nbytes; | 
|  | } | 
|  |  | 
|  | /* "MAJ:MIN WEIGHT" */ | 
|  | return __cfqg_set_weight_device(of, buf, nbytes, off, true, false); | 
|  | } | 
|  |  | 
|  | static struct cftype cfq_blkcg_files[] = { | 
|  | { | 
|  | .name = "weight", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = cfq_print_weight_on_dfl, | 
|  | .write = cfq_set_weight_on_dfl, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | #else /* GROUP_IOSCHED */ | 
|  | static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, | 
|  | struct blkcg *blkcg) | 
|  | { | 
|  | return cfqd->root_group; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) { | 
|  | cfqq->cfqg = cfqg; | 
|  | } | 
|  |  | 
|  | #endif /* GROUP_IOSCHED */ | 
|  |  | 
|  | /* | 
|  | * The cfqd->service_trees holds all pending cfq_queue's that have | 
|  | * requests waiting to be processed. It is sorted in the order that | 
|  | * we will service the queues. | 
|  | */ | 
|  | static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | bool add_front) | 
|  | { | 
|  | struct rb_node **p, *parent; | 
|  | struct cfq_queue *__cfqq; | 
|  | unsigned long rb_key; | 
|  | struct cfq_rb_root *st; | 
|  | int left; | 
|  | int new_cfqq = 1; | 
|  |  | 
|  | st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq)); | 
|  | if (cfq_class_idle(cfqq)) { | 
|  | rb_key = CFQ_IDLE_DELAY; | 
|  | parent = rb_last(&st->rb); | 
|  | if (parent && parent != &cfqq->rb_node) { | 
|  | __cfqq = rb_entry(parent, struct cfq_queue, rb_node); | 
|  | rb_key += __cfqq->rb_key; | 
|  | } else | 
|  | rb_key += jiffies; | 
|  | } else if (!add_front) { | 
|  | /* | 
|  | * Get our rb key offset. Subtract any residual slice | 
|  | * value carried from last service. A negative resid | 
|  | * count indicates slice overrun, and this should position | 
|  | * the next service time further away in the tree. | 
|  | */ | 
|  | rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies; | 
|  | rb_key -= cfqq->slice_resid; | 
|  | cfqq->slice_resid = 0; | 
|  | } else { | 
|  | rb_key = -HZ; | 
|  | __cfqq = cfq_rb_first(st); | 
|  | rb_key += __cfqq ? __cfqq->rb_key : jiffies; | 
|  | } | 
|  |  | 
|  | if (!RB_EMPTY_NODE(&cfqq->rb_node)) { | 
|  | new_cfqq = 0; | 
|  | /* | 
|  | * same position, nothing more to do | 
|  | */ | 
|  | if (rb_key == cfqq->rb_key && cfqq->service_tree == st) | 
|  | return; | 
|  |  | 
|  | cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); | 
|  | cfqq->service_tree = NULL; | 
|  | } | 
|  |  | 
|  | left = 1; | 
|  | parent = NULL; | 
|  | cfqq->service_tree = st; | 
|  | p = &st->rb.rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | __cfqq = rb_entry(parent, struct cfq_queue, rb_node); | 
|  |  | 
|  | /* | 
|  | * sort by key, that represents service time. | 
|  | */ | 
|  | if (time_before(rb_key, __cfqq->rb_key)) | 
|  | p = &parent->rb_left; | 
|  | else { | 
|  | p = &parent->rb_right; | 
|  | left = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (left) | 
|  | st->left = &cfqq->rb_node; | 
|  |  | 
|  | cfqq->rb_key = rb_key; | 
|  | rb_link_node(&cfqq->rb_node, parent, p); | 
|  | rb_insert_color(&cfqq->rb_node, &st->rb); | 
|  | st->count++; | 
|  | if (add_front || !new_cfqq) | 
|  | return; | 
|  | cfq_group_notify_queue_add(cfqd, cfqq->cfqg); | 
|  | } | 
|  |  | 
|  | static struct cfq_queue * | 
|  | cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root, | 
|  | sector_t sector, struct rb_node **ret_parent, | 
|  | struct rb_node ***rb_link) | 
|  | { | 
|  | struct rb_node **p, *parent; | 
|  | struct cfq_queue *cfqq = NULL; | 
|  |  | 
|  | parent = NULL; | 
|  | p = &root->rb_node; | 
|  | while (*p) { | 
|  | struct rb_node **n; | 
|  |  | 
|  | parent = *p; | 
|  | cfqq = rb_entry(parent, struct cfq_queue, p_node); | 
|  |  | 
|  | /* | 
|  | * Sort strictly based on sector.  Smallest to the left, | 
|  | * largest to the right. | 
|  | */ | 
|  | if (sector > blk_rq_pos(cfqq->next_rq)) | 
|  | n = &(*p)->rb_right; | 
|  | else if (sector < blk_rq_pos(cfqq->next_rq)) | 
|  | n = &(*p)->rb_left; | 
|  | else | 
|  | break; | 
|  | p = n; | 
|  | cfqq = NULL; | 
|  | } | 
|  |  | 
|  | *ret_parent = parent; | 
|  | if (rb_link) | 
|  | *rb_link = p; | 
|  | return cfqq; | 
|  | } | 
|  |  | 
|  | static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | struct rb_node **p, *parent; | 
|  | struct cfq_queue *__cfqq; | 
|  |  | 
|  | if (cfqq->p_root) { | 
|  | rb_erase(&cfqq->p_node, cfqq->p_root); | 
|  | cfqq->p_root = NULL; | 
|  | } | 
|  |  | 
|  | if (cfq_class_idle(cfqq)) | 
|  | return; | 
|  | if (!cfqq->next_rq) | 
|  | return; | 
|  |  | 
|  | cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio]; | 
|  | __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, | 
|  | blk_rq_pos(cfqq->next_rq), &parent, &p); | 
|  | if (!__cfqq) { | 
|  | rb_link_node(&cfqq->p_node, parent, p); | 
|  | rb_insert_color(&cfqq->p_node, cfqq->p_root); | 
|  | } else | 
|  | cfqq->p_root = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update cfqq's position in the service tree. | 
|  | */ | 
|  | static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | /* | 
|  | * Resorting requires the cfqq to be on the RR list already. | 
|  | */ | 
|  | if (cfq_cfqq_on_rr(cfqq)) { | 
|  | cfq_service_tree_add(cfqd, cfqq, 0); | 
|  | cfq_prio_tree_add(cfqd, cfqq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add to busy list of queues for service, trying to be fair in ordering | 
|  | * the pending list according to last request service | 
|  | */ | 
|  | static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | cfq_log_cfqq(cfqd, cfqq, "add_to_rr"); | 
|  | BUG_ON(cfq_cfqq_on_rr(cfqq)); | 
|  | cfq_mark_cfqq_on_rr(cfqq); | 
|  | cfqd->busy_queues++; | 
|  | if (cfq_cfqq_sync(cfqq)) | 
|  | cfqd->busy_sync_queues++; | 
|  |  | 
|  | cfq_resort_rr_list(cfqd, cfqq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when the cfqq no longer has requests pending, remove it from | 
|  | * the service tree. | 
|  | */ | 
|  | static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | cfq_log_cfqq(cfqd, cfqq, "del_from_rr"); | 
|  | BUG_ON(!cfq_cfqq_on_rr(cfqq)); | 
|  | cfq_clear_cfqq_on_rr(cfqq); | 
|  |  | 
|  | if (!RB_EMPTY_NODE(&cfqq->rb_node)) { | 
|  | cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); | 
|  | cfqq->service_tree = NULL; | 
|  | } | 
|  | if (cfqq->p_root) { | 
|  | rb_erase(&cfqq->p_node, cfqq->p_root); | 
|  | cfqq->p_root = NULL; | 
|  | } | 
|  |  | 
|  | cfq_group_notify_queue_del(cfqd, cfqq->cfqg); | 
|  | BUG_ON(!cfqd->busy_queues); | 
|  | cfqd->busy_queues--; | 
|  | if (cfq_cfqq_sync(cfqq)) | 
|  | cfqd->busy_sync_queues--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rb tree support functions | 
|  | */ | 
|  | static void cfq_del_rq_rb(struct request *rq) | 
|  | { | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
|  | const int sync = rq_is_sync(rq); | 
|  |  | 
|  | BUG_ON(!cfqq->queued[sync]); | 
|  | cfqq->queued[sync]--; | 
|  |  | 
|  | elv_rb_del(&cfqq->sort_list, rq); | 
|  |  | 
|  | if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) { | 
|  | /* | 
|  | * Queue will be deleted from service tree when we actually | 
|  | * expire it later. Right now just remove it from prio tree | 
|  | * as it is empty. | 
|  | */ | 
|  | if (cfqq->p_root) { | 
|  | rb_erase(&cfqq->p_node, cfqq->p_root); | 
|  | cfqq->p_root = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfq_add_rq_rb(struct request *rq) | 
|  | { | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
|  | struct cfq_data *cfqd = cfqq->cfqd; | 
|  | struct request *prev; | 
|  |  | 
|  | cfqq->queued[rq_is_sync(rq)]++; | 
|  |  | 
|  | elv_rb_add(&cfqq->sort_list, rq); | 
|  |  | 
|  | if (!cfq_cfqq_on_rr(cfqq)) | 
|  | cfq_add_cfqq_rr(cfqd, cfqq); | 
|  |  | 
|  | /* | 
|  | * check if this request is a better next-serve candidate | 
|  | */ | 
|  | prev = cfqq->next_rq; | 
|  | cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position); | 
|  |  | 
|  | /* | 
|  | * adjust priority tree position, if ->next_rq changes | 
|  | */ | 
|  | if (prev != cfqq->next_rq) | 
|  | cfq_prio_tree_add(cfqd, cfqq); | 
|  |  | 
|  | BUG_ON(!cfqq->next_rq); | 
|  | } | 
|  |  | 
|  | static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq) | 
|  | { | 
|  | elv_rb_del(&cfqq->sort_list, rq); | 
|  | cfqq->queued[rq_is_sync(rq)]--; | 
|  | cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); | 
|  | cfq_add_rq_rb(rq); | 
|  | cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group, | 
|  | rq->cmd_flags); | 
|  | } | 
|  |  | 
|  | static struct request * | 
|  | cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct cfq_io_cq *cic; | 
|  | struct cfq_queue *cfqq; | 
|  |  | 
|  | cic = cfq_cic_lookup(cfqd, tsk->io_context); | 
|  | if (!cic) | 
|  | return NULL; | 
|  |  | 
|  | cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio)); | 
|  | if (cfqq) | 
|  | return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio)); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void cfq_activate_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  |  | 
|  | cfqd->rq_in_driver++; | 
|  | cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d", | 
|  | cfqd->rq_in_driver); | 
|  |  | 
|  | cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); | 
|  | } | 
|  |  | 
|  | static void cfq_deactivate_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  |  | 
|  | WARN_ON(!cfqd->rq_in_driver); | 
|  | cfqd->rq_in_driver--; | 
|  | cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d", | 
|  | cfqd->rq_in_driver); | 
|  | } | 
|  |  | 
|  | static void cfq_remove_request(struct request *rq) | 
|  | { | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
|  |  | 
|  | if (cfqq->next_rq == rq) | 
|  | cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq); | 
|  |  | 
|  | list_del_init(&rq->queuelist); | 
|  | cfq_del_rq_rb(rq); | 
|  |  | 
|  | cfqq->cfqd->rq_queued--; | 
|  | cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); | 
|  | if (rq->cmd_flags & REQ_PRIO) { | 
|  | WARN_ON(!cfqq->prio_pending); | 
|  | cfqq->prio_pending--; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cfq_merge(struct request_queue *q, struct request **req, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  | struct request *__rq; | 
|  |  | 
|  | __rq = cfq_find_rq_fmerge(cfqd, bio); | 
|  | if (__rq && elv_rq_merge_ok(__rq, bio)) { | 
|  | *req = __rq; | 
|  | return ELEVATOR_FRONT_MERGE; | 
|  | } | 
|  |  | 
|  | return ELEVATOR_NO_MERGE; | 
|  | } | 
|  |  | 
|  | static void cfq_merged_request(struct request_queue *q, struct request *req, | 
|  | int type) | 
|  | { | 
|  | if (type == ELEVATOR_FRONT_MERGE) { | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(req); | 
|  |  | 
|  | cfq_reposition_rq_rb(cfqq, req); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfq_bio_merged(struct request_queue *q, struct request *req, | 
|  | struct bio *bio) | 
|  | { | 
|  | cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw); | 
|  | } | 
|  |  | 
|  | static void | 
|  | cfq_merged_requests(struct request_queue *q, struct request *rq, | 
|  | struct request *next) | 
|  | { | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  |  | 
|  | /* | 
|  | * reposition in fifo if next is older than rq | 
|  | */ | 
|  | if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && | 
|  | time_before(next->fifo_time, rq->fifo_time) && | 
|  | cfqq == RQ_CFQQ(next)) { | 
|  | list_move(&rq->queuelist, &next->queuelist); | 
|  | rq->fifo_time = next->fifo_time; | 
|  | } | 
|  |  | 
|  | if (cfqq->next_rq == next) | 
|  | cfqq->next_rq = rq; | 
|  | cfq_remove_request(next); | 
|  | cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags); | 
|  |  | 
|  | cfqq = RQ_CFQQ(next); | 
|  | /* | 
|  | * all requests of this queue are merged to other queues, delete it | 
|  | * from the service tree. If it's the active_queue, | 
|  | * cfq_dispatch_requests() will choose to expire it or do idle | 
|  | */ | 
|  | if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) && | 
|  | cfqq != cfqd->active_queue) | 
|  | cfq_del_cfqq_rr(cfqd, cfqq); | 
|  | } | 
|  |  | 
|  | static int cfq_allow_merge(struct request_queue *q, struct request *rq, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  | struct cfq_io_cq *cic; | 
|  | struct cfq_queue *cfqq; | 
|  |  | 
|  | /* | 
|  | * Disallow merge of a sync bio into an async request. | 
|  | */ | 
|  | if (cfq_bio_sync(bio) && !rq_is_sync(rq)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Lookup the cfqq that this bio will be queued with and allow | 
|  | * merge only if rq is queued there. | 
|  | */ | 
|  | cic = cfq_cic_lookup(cfqd, current->io_context); | 
|  | if (!cic) | 
|  | return false; | 
|  |  | 
|  | cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio)); | 
|  | return cfqq == RQ_CFQQ(rq); | 
|  | } | 
|  |  | 
|  | static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | del_timer(&cfqd->idle_slice_timer); | 
|  | cfqg_stats_update_idle_time(cfqq->cfqg); | 
|  | } | 
|  |  | 
|  | static void __cfq_set_active_queue(struct cfq_data *cfqd, | 
|  | struct cfq_queue *cfqq) | 
|  | { | 
|  | if (cfqq) { | 
|  | cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d", | 
|  | cfqd->serving_wl_class, cfqd->serving_wl_type); | 
|  | cfqg_stats_update_avg_queue_size(cfqq->cfqg); | 
|  | cfqq->slice_start = 0; | 
|  | cfqq->dispatch_start = jiffies; | 
|  | cfqq->allocated_slice = 0; | 
|  | cfqq->slice_end = 0; | 
|  | cfqq->slice_dispatch = 0; | 
|  | cfqq->nr_sectors = 0; | 
|  |  | 
|  | cfq_clear_cfqq_wait_request(cfqq); | 
|  | cfq_clear_cfqq_must_dispatch(cfqq); | 
|  | cfq_clear_cfqq_must_alloc_slice(cfqq); | 
|  | cfq_clear_cfqq_fifo_expire(cfqq); | 
|  | cfq_mark_cfqq_slice_new(cfqq); | 
|  |  | 
|  | cfq_del_timer(cfqd, cfqq); | 
|  | } | 
|  |  | 
|  | cfqd->active_queue = cfqq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * current cfqq expired its slice (or was too idle), select new one | 
|  | */ | 
|  | static void | 
|  | __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | bool timed_out) | 
|  | { | 
|  | cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out); | 
|  |  | 
|  | if (cfq_cfqq_wait_request(cfqq)) | 
|  | cfq_del_timer(cfqd, cfqq); | 
|  |  | 
|  | cfq_clear_cfqq_wait_request(cfqq); | 
|  | cfq_clear_cfqq_wait_busy(cfqq); | 
|  |  | 
|  | /* | 
|  | * If this cfqq is shared between multiple processes, check to | 
|  | * make sure that those processes are still issuing I/Os within | 
|  | * the mean seek distance.  If not, it may be time to break the | 
|  | * queues apart again. | 
|  | */ | 
|  | if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq)) | 
|  | cfq_mark_cfqq_split_coop(cfqq); | 
|  |  | 
|  | /* | 
|  | * store what was left of this slice, if the queue idled/timed out | 
|  | */ | 
|  | if (timed_out) { | 
|  | if (cfq_cfqq_slice_new(cfqq)) | 
|  | cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq); | 
|  | else | 
|  | cfqq->slice_resid = cfqq->slice_end - jiffies; | 
|  | cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid); | 
|  | } | 
|  |  | 
|  | cfq_group_served(cfqd, cfqq->cfqg, cfqq); | 
|  |  | 
|  | if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) | 
|  | cfq_del_cfqq_rr(cfqd, cfqq); | 
|  |  | 
|  | cfq_resort_rr_list(cfqd, cfqq); | 
|  |  | 
|  | if (cfqq == cfqd->active_queue) | 
|  | cfqd->active_queue = NULL; | 
|  |  | 
|  | if (cfqd->active_cic) { | 
|  | put_io_context(cfqd->active_cic->icq.ioc); | 
|  | cfqd->active_cic = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out) | 
|  | { | 
|  | struct cfq_queue *cfqq = cfqd->active_queue; | 
|  |  | 
|  | if (cfqq) | 
|  | __cfq_slice_expired(cfqd, cfqq, timed_out); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get next queue for service. Unless we have a queue preemption, | 
|  | * we'll simply select the first cfqq in the service tree. | 
|  | */ | 
|  | static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) | 
|  | { | 
|  | struct cfq_rb_root *st = st_for(cfqd->serving_group, | 
|  | cfqd->serving_wl_class, cfqd->serving_wl_type); | 
|  |  | 
|  | if (!cfqd->rq_queued) | 
|  | return NULL; | 
|  |  | 
|  | /* There is nothing to dispatch */ | 
|  | if (!st) | 
|  | return NULL; | 
|  | if (RB_EMPTY_ROOT(&st->rb)) | 
|  | return NULL; | 
|  | return cfq_rb_first(st); | 
|  | } | 
|  |  | 
|  | static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd) | 
|  | { | 
|  | struct cfq_group *cfqg; | 
|  | struct cfq_queue *cfqq; | 
|  | int i, j; | 
|  | struct cfq_rb_root *st; | 
|  |  | 
|  | if (!cfqd->rq_queued) | 
|  | return NULL; | 
|  |  | 
|  | cfqg = cfq_get_next_cfqg(cfqd); | 
|  | if (!cfqg) | 
|  | return NULL; | 
|  |  | 
|  | for_each_cfqg_st(cfqg, i, j, st) | 
|  | if ((cfqq = cfq_rb_first(st)) != NULL) | 
|  | return cfqq; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get and set a new active queue for service. | 
|  | */ | 
|  | static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd, | 
|  | struct cfq_queue *cfqq) | 
|  | { | 
|  | if (!cfqq) | 
|  | cfqq = cfq_get_next_queue(cfqd); | 
|  |  | 
|  | __cfq_set_active_queue(cfqd, cfqq); | 
|  | return cfqq; | 
|  | } | 
|  |  | 
|  | static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd, | 
|  | struct request *rq) | 
|  | { | 
|  | if (blk_rq_pos(rq) >= cfqd->last_position) | 
|  | return blk_rq_pos(rq) - cfqd->last_position; | 
|  | else | 
|  | return cfqd->last_position - blk_rq_pos(rq); | 
|  | } | 
|  |  | 
|  | static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | struct request *rq) | 
|  | { | 
|  | return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR; | 
|  | } | 
|  |  | 
|  | static struct cfq_queue *cfqq_close(struct cfq_data *cfqd, | 
|  | struct cfq_queue *cur_cfqq) | 
|  | { | 
|  | struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio]; | 
|  | struct rb_node *parent, *node; | 
|  | struct cfq_queue *__cfqq; | 
|  | sector_t sector = cfqd->last_position; | 
|  |  | 
|  | if (RB_EMPTY_ROOT(root)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * First, if we find a request starting at the end of the last | 
|  | * request, choose it. | 
|  | */ | 
|  | __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL); | 
|  | if (__cfqq) | 
|  | return __cfqq; | 
|  |  | 
|  | /* | 
|  | * If the exact sector wasn't found, the parent of the NULL leaf | 
|  | * will contain the closest sector. | 
|  | */ | 
|  | __cfqq = rb_entry(parent, struct cfq_queue, p_node); | 
|  | if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) | 
|  | return __cfqq; | 
|  |  | 
|  | if (blk_rq_pos(__cfqq->next_rq) < sector) | 
|  | node = rb_next(&__cfqq->p_node); | 
|  | else | 
|  | node = rb_prev(&__cfqq->p_node); | 
|  | if (!node) | 
|  | return NULL; | 
|  |  | 
|  | __cfqq = rb_entry(node, struct cfq_queue, p_node); | 
|  | if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) | 
|  | return __cfqq; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cfqd - obvious | 
|  | * cur_cfqq - passed in so that we don't decide that the current queue is | 
|  | * 	      closely cooperating with itself. | 
|  | * | 
|  | * So, basically we're assuming that that cur_cfqq has dispatched at least | 
|  | * one request, and that cfqd->last_position reflects a position on the disk | 
|  | * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid | 
|  | * assumption. | 
|  | */ | 
|  | static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd, | 
|  | struct cfq_queue *cur_cfqq) | 
|  | { | 
|  | struct cfq_queue *cfqq; | 
|  |  | 
|  | if (cfq_class_idle(cur_cfqq)) | 
|  | return NULL; | 
|  | if (!cfq_cfqq_sync(cur_cfqq)) | 
|  | return NULL; | 
|  | if (CFQQ_SEEKY(cur_cfqq)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Don't search priority tree if it's the only queue in the group. | 
|  | */ | 
|  | if (cur_cfqq->cfqg->nr_cfqq == 1) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We should notice if some of the queues are cooperating, eg | 
|  | * working closely on the same area of the disk. In that case, | 
|  | * we can group them together and don't waste time idling. | 
|  | */ | 
|  | cfqq = cfqq_close(cfqd, cur_cfqq); | 
|  | if (!cfqq) | 
|  | return NULL; | 
|  |  | 
|  | /* If new queue belongs to different cfq_group, don't choose it */ | 
|  | if (cur_cfqq->cfqg != cfqq->cfqg) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * It only makes sense to merge sync queues. | 
|  | */ | 
|  | if (!cfq_cfqq_sync(cfqq)) | 
|  | return NULL; | 
|  | if (CFQQ_SEEKY(cfqq)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Do not merge queues of different priority classes | 
|  | */ | 
|  | if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq)) | 
|  | return NULL; | 
|  |  | 
|  | return cfqq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine whether we should enforce idle window for this queue. | 
|  | */ | 
|  |  | 
|  | static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | enum wl_class_t wl_class = cfqq_class(cfqq); | 
|  | struct cfq_rb_root *st = cfqq->service_tree; | 
|  |  | 
|  | BUG_ON(!st); | 
|  | BUG_ON(!st->count); | 
|  |  | 
|  | if (!cfqd->cfq_slice_idle) | 
|  | return false; | 
|  |  | 
|  | /* We never do for idle class queues. */ | 
|  | if (wl_class == IDLE_WORKLOAD) | 
|  | return false; | 
|  |  | 
|  | /* We do for queues that were marked with idle window flag. */ | 
|  | if (cfq_cfqq_idle_window(cfqq) && | 
|  | !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Otherwise, we do only if they are the last ones | 
|  | * in their service tree. | 
|  | */ | 
|  | if (st->count == 1 && cfq_cfqq_sync(cfqq) && | 
|  | !cfq_io_thinktime_big(cfqd, &st->ttime, false)) | 
|  | return true; | 
|  | cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void cfq_arm_slice_timer(struct cfq_data *cfqd) | 
|  | { | 
|  | struct cfq_queue *cfqq = cfqd->active_queue; | 
|  | struct cfq_io_cq *cic; | 
|  | unsigned long sl, group_idle = 0; | 
|  |  | 
|  | /* | 
|  | * SSD device without seek penalty, disable idling. But only do so | 
|  | * for devices that support queuing, otherwise we still have a problem | 
|  | * with sync vs async workloads. | 
|  | */ | 
|  | if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list)); | 
|  | WARN_ON(cfq_cfqq_slice_new(cfqq)); | 
|  |  | 
|  | /* | 
|  | * idle is disabled, either manually or by past process history | 
|  | */ | 
|  | if (!cfq_should_idle(cfqd, cfqq)) { | 
|  | /* no queue idling. Check for group idling */ | 
|  | if (cfqd->cfq_group_idle) | 
|  | group_idle = cfqd->cfq_group_idle; | 
|  | else | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * still active requests from this queue, don't idle | 
|  | */ | 
|  | if (cfqq->dispatched) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * task has exited, don't wait | 
|  | */ | 
|  | cic = cfqd->active_cic; | 
|  | if (!cic || !atomic_read(&cic->icq.ioc->active_ref)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If our average think time is larger than the remaining time | 
|  | * slice, then don't idle. This avoids overrunning the allotted | 
|  | * time slice. | 
|  | */ | 
|  | if (sample_valid(cic->ttime.ttime_samples) && | 
|  | (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) { | 
|  | cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu", | 
|  | cic->ttime.ttime_mean); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* There are other queues in the group, don't do group idle */ | 
|  | if (group_idle && cfqq->cfqg->nr_cfqq > 1) | 
|  | return; | 
|  |  | 
|  | cfq_mark_cfqq_wait_request(cfqq); | 
|  |  | 
|  | if (group_idle) | 
|  | sl = cfqd->cfq_group_idle; | 
|  | else | 
|  | sl = cfqd->cfq_slice_idle; | 
|  |  | 
|  | mod_timer(&cfqd->idle_slice_timer, jiffies + sl); | 
|  | cfqg_stats_set_start_idle_time(cfqq->cfqg); | 
|  | cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl, | 
|  | group_idle ? 1 : 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move request from internal lists to the request queue dispatch list. | 
|  | */ | 
|  | static void cfq_dispatch_insert(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
|  |  | 
|  | cfq_log_cfqq(cfqd, cfqq, "dispatch_insert"); | 
|  |  | 
|  | cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq); | 
|  | cfq_remove_request(rq); | 
|  | cfqq->dispatched++; | 
|  | (RQ_CFQG(rq))->dispatched++; | 
|  | elv_dispatch_sort(q, rq); | 
|  |  | 
|  | cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++; | 
|  | cfqq->nr_sectors += blk_rq_sectors(rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return expired entry, or NULL to just start from scratch in rbtree | 
|  | */ | 
|  | static struct request *cfq_check_fifo(struct cfq_queue *cfqq) | 
|  | { | 
|  | struct request *rq = NULL; | 
|  |  | 
|  | if (cfq_cfqq_fifo_expire(cfqq)) | 
|  | return NULL; | 
|  |  | 
|  | cfq_mark_cfqq_fifo_expire(cfqq); | 
|  |  | 
|  | if (list_empty(&cfqq->fifo)) | 
|  | return NULL; | 
|  |  | 
|  | rq = rq_entry_fifo(cfqq->fifo.next); | 
|  | if (time_before(jiffies, rq->fifo_time)) | 
|  | rq = NULL; | 
|  |  | 
|  | cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq); | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | const int base_rq = cfqd->cfq_slice_async_rq; | 
|  |  | 
|  | WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); | 
|  |  | 
|  | return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called with the queue_lock held. | 
|  | */ | 
|  | static int cfqq_process_refs(struct cfq_queue *cfqq) | 
|  | { | 
|  | int process_refs, io_refs; | 
|  |  | 
|  | io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE]; | 
|  | process_refs = cfqq->ref - io_refs; | 
|  | BUG_ON(process_refs < 0); | 
|  | return process_refs; | 
|  | } | 
|  |  | 
|  | static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq) | 
|  | { | 
|  | int process_refs, new_process_refs; | 
|  | struct cfq_queue *__cfqq; | 
|  |  | 
|  | /* | 
|  | * If there are no process references on the new_cfqq, then it is | 
|  | * unsafe to follow the ->new_cfqq chain as other cfqq's in the | 
|  | * chain may have dropped their last reference (not just their | 
|  | * last process reference). | 
|  | */ | 
|  | if (!cfqq_process_refs(new_cfqq)) | 
|  | return; | 
|  |  | 
|  | /* Avoid a circular list and skip interim queue merges */ | 
|  | while ((__cfqq = new_cfqq->new_cfqq)) { | 
|  | if (__cfqq == cfqq) | 
|  | return; | 
|  | new_cfqq = __cfqq; | 
|  | } | 
|  |  | 
|  | process_refs = cfqq_process_refs(cfqq); | 
|  | new_process_refs = cfqq_process_refs(new_cfqq); | 
|  | /* | 
|  | * If the process for the cfqq has gone away, there is no | 
|  | * sense in merging the queues. | 
|  | */ | 
|  | if (process_refs == 0 || new_process_refs == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Merge in the direction of the lesser amount of work. | 
|  | */ | 
|  | if (new_process_refs >= process_refs) { | 
|  | cfqq->new_cfqq = new_cfqq; | 
|  | new_cfqq->ref += process_refs; | 
|  | } else { | 
|  | new_cfqq->new_cfqq = cfqq; | 
|  | cfqq->ref += new_process_refs; | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd, | 
|  | struct cfq_group *cfqg, enum wl_class_t wl_class) | 
|  | { | 
|  | struct cfq_queue *queue; | 
|  | int i; | 
|  | bool key_valid = false; | 
|  | unsigned long lowest_key = 0; | 
|  | enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD; | 
|  |  | 
|  | for (i = 0; i <= SYNC_WORKLOAD; ++i) { | 
|  | /* select the one with lowest rb_key */ | 
|  | queue = cfq_rb_first(st_for(cfqg, wl_class, i)); | 
|  | if (queue && | 
|  | (!key_valid || time_before(queue->rb_key, lowest_key))) { | 
|  | lowest_key = queue->rb_key; | 
|  | cur_best = i; | 
|  | key_valid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return cur_best; | 
|  | } | 
|  |  | 
|  | static void | 
|  | choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg) | 
|  | { | 
|  | unsigned slice; | 
|  | unsigned count; | 
|  | struct cfq_rb_root *st; | 
|  | unsigned group_slice; | 
|  | enum wl_class_t original_class = cfqd->serving_wl_class; | 
|  |  | 
|  | /* Choose next priority. RT > BE > IDLE */ | 
|  | if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg)) | 
|  | cfqd->serving_wl_class = RT_WORKLOAD; | 
|  | else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg)) | 
|  | cfqd->serving_wl_class = BE_WORKLOAD; | 
|  | else { | 
|  | cfqd->serving_wl_class = IDLE_WORKLOAD; | 
|  | cfqd->workload_expires = jiffies + 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (original_class != cfqd->serving_wl_class) | 
|  | goto new_workload; | 
|  |  | 
|  | /* | 
|  | * For RT and BE, we have to choose also the type | 
|  | * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload | 
|  | * expiration time | 
|  | */ | 
|  | st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); | 
|  | count = st->count; | 
|  |  | 
|  | /* | 
|  | * check workload expiration, and that we still have other queues ready | 
|  | */ | 
|  | if (count && !time_after(jiffies, cfqd->workload_expires)) | 
|  | return; | 
|  |  | 
|  | new_workload: | 
|  | /* otherwise select new workload type */ | 
|  | cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg, | 
|  | cfqd->serving_wl_class); | 
|  | st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); | 
|  | count = st->count; | 
|  |  | 
|  | /* | 
|  | * the workload slice is computed as a fraction of target latency | 
|  | * proportional to the number of queues in that workload, over | 
|  | * all the queues in the same priority class | 
|  | */ | 
|  | group_slice = cfq_group_slice(cfqd, cfqg); | 
|  |  | 
|  | slice = group_slice * count / | 
|  | max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class], | 
|  | cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd, | 
|  | cfqg)); | 
|  |  | 
|  | if (cfqd->serving_wl_type == ASYNC_WORKLOAD) { | 
|  | unsigned int tmp; | 
|  |  | 
|  | /* | 
|  | * Async queues are currently system wide. Just taking | 
|  | * proportion of queues with-in same group will lead to higher | 
|  | * async ratio system wide as generally root group is going | 
|  | * to have higher weight. A more accurate thing would be to | 
|  | * calculate system wide asnc/sync ratio. | 
|  | */ | 
|  | tmp = cfqd->cfq_target_latency * | 
|  | cfqg_busy_async_queues(cfqd, cfqg); | 
|  | tmp = tmp/cfqd->busy_queues; | 
|  | slice = min_t(unsigned, slice, tmp); | 
|  |  | 
|  | /* async workload slice is scaled down according to | 
|  | * the sync/async slice ratio. */ | 
|  | slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1]; | 
|  | } else | 
|  | /* sync workload slice is at least 2 * cfq_slice_idle */ | 
|  | slice = max(slice, 2 * cfqd->cfq_slice_idle); | 
|  |  | 
|  | slice = max_t(unsigned, slice, CFQ_MIN_TT); | 
|  | cfq_log(cfqd, "workload slice:%d", slice); | 
|  | cfqd->workload_expires = jiffies + slice; | 
|  | } | 
|  |  | 
|  | static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd) | 
|  | { | 
|  | struct cfq_rb_root *st = &cfqd->grp_service_tree; | 
|  | struct cfq_group *cfqg; | 
|  |  | 
|  | if (RB_EMPTY_ROOT(&st->rb)) | 
|  | return NULL; | 
|  | cfqg = cfq_rb_first_group(st); | 
|  | update_min_vdisktime(st); | 
|  | return cfqg; | 
|  | } | 
|  |  | 
|  | static void cfq_choose_cfqg(struct cfq_data *cfqd) | 
|  | { | 
|  | struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd); | 
|  |  | 
|  | cfqd->serving_group = cfqg; | 
|  |  | 
|  | /* Restore the workload type data */ | 
|  | if (cfqg->saved_wl_slice) { | 
|  | cfqd->workload_expires = jiffies + cfqg->saved_wl_slice; | 
|  | cfqd->serving_wl_type = cfqg->saved_wl_type; | 
|  | cfqd->serving_wl_class = cfqg->saved_wl_class; | 
|  | } else | 
|  | cfqd->workload_expires = jiffies - 1; | 
|  |  | 
|  | choose_wl_class_and_type(cfqd, cfqg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select a queue for service. If we have a current active queue, | 
|  | * check whether to continue servicing it, or retrieve and set a new one. | 
|  | */ | 
|  | static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd) | 
|  | { | 
|  | struct cfq_queue *cfqq, *new_cfqq = NULL; | 
|  |  | 
|  | cfqq = cfqd->active_queue; | 
|  | if (!cfqq) | 
|  | goto new_queue; | 
|  |  | 
|  | if (!cfqd->rq_queued) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We were waiting for group to get backlogged. Expire the queue | 
|  | */ | 
|  | if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list)) | 
|  | goto expire; | 
|  |  | 
|  | /* | 
|  | * The active queue has run out of time, expire it and select new. | 
|  | */ | 
|  | if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) { | 
|  | /* | 
|  | * If slice had not expired at the completion of last request | 
|  | * we might not have turned on wait_busy flag. Don't expire | 
|  | * the queue yet. Allow the group to get backlogged. | 
|  | * | 
|  | * The very fact that we have used the slice, that means we | 
|  | * have been idling all along on this queue and it should be | 
|  | * ok to wait for this request to complete. | 
|  | */ | 
|  | if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list) | 
|  | && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { | 
|  | cfqq = NULL; | 
|  | goto keep_queue; | 
|  | } else | 
|  | goto check_group_idle; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The active queue has requests and isn't expired, allow it to | 
|  | * dispatch. | 
|  | */ | 
|  | if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | 
|  | goto keep_queue; | 
|  |  | 
|  | /* | 
|  | * If another queue has a request waiting within our mean seek | 
|  | * distance, let it run.  The expire code will check for close | 
|  | * cooperators and put the close queue at the front of the service | 
|  | * tree.  If possible, merge the expiring queue with the new cfqq. | 
|  | */ | 
|  | new_cfqq = cfq_close_cooperator(cfqd, cfqq); | 
|  | if (new_cfqq) { | 
|  | if (!cfqq->new_cfqq) | 
|  | cfq_setup_merge(cfqq, new_cfqq); | 
|  | goto expire; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No requests pending. If the active queue still has requests in | 
|  | * flight or is idling for a new request, allow either of these | 
|  | * conditions to happen (or time out) before selecting a new queue. | 
|  | */ | 
|  | if (timer_pending(&cfqd->idle_slice_timer)) { | 
|  | cfqq = NULL; | 
|  | goto keep_queue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a deep seek queue, but the device is much faster than | 
|  | * the queue can deliver, don't idle | 
|  | **/ | 
|  | if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) && | 
|  | (cfq_cfqq_slice_new(cfqq) || | 
|  | (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) { | 
|  | cfq_clear_cfqq_deep(cfqq); | 
|  | cfq_clear_cfqq_idle_window(cfqq); | 
|  | } | 
|  |  | 
|  | if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { | 
|  | cfqq = NULL; | 
|  | goto keep_queue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If group idle is enabled and there are requests dispatched from | 
|  | * this group, wait for requests to complete. | 
|  | */ | 
|  | check_group_idle: | 
|  | if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 && | 
|  | cfqq->cfqg->dispatched && | 
|  | !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) { | 
|  | cfqq = NULL; | 
|  | goto keep_queue; | 
|  | } | 
|  |  | 
|  | expire: | 
|  | cfq_slice_expired(cfqd, 0); | 
|  | new_queue: | 
|  | /* | 
|  | * Current queue expired. Check if we have to switch to a new | 
|  | * service tree | 
|  | */ | 
|  | if (!new_cfqq) | 
|  | cfq_choose_cfqg(cfqd); | 
|  |  | 
|  | cfqq = cfq_set_active_queue(cfqd, new_cfqq); | 
|  | keep_queue: | 
|  | return cfqq; | 
|  | } | 
|  |  | 
|  | static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq) | 
|  | { | 
|  | int dispatched = 0; | 
|  |  | 
|  | while (cfqq->next_rq) { | 
|  | cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq); | 
|  | dispatched++; | 
|  | } | 
|  |  | 
|  | BUG_ON(!list_empty(&cfqq->fifo)); | 
|  |  | 
|  | /* By default cfqq is not expired if it is empty. Do it explicitly */ | 
|  | __cfq_slice_expired(cfqq->cfqd, cfqq, 0); | 
|  | return dispatched; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drain our current requests. Used for barriers and when switching | 
|  | * io schedulers on-the-fly. | 
|  | */ | 
|  | static int cfq_forced_dispatch(struct cfq_data *cfqd) | 
|  | { | 
|  | struct cfq_queue *cfqq; | 
|  | int dispatched = 0; | 
|  |  | 
|  | /* Expire the timeslice of the current active queue first */ | 
|  | cfq_slice_expired(cfqd, 0); | 
|  | while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) { | 
|  | __cfq_set_active_queue(cfqd, cfqq); | 
|  | dispatched += __cfq_forced_dispatch_cfqq(cfqq); | 
|  | } | 
|  |  | 
|  | BUG_ON(cfqd->busy_queues); | 
|  |  | 
|  | cfq_log(cfqd, "forced_dispatch=%d", dispatched); | 
|  | return dispatched; | 
|  | } | 
|  |  | 
|  | static inline bool cfq_slice_used_soon(struct cfq_data *cfqd, | 
|  | struct cfq_queue *cfqq) | 
|  | { | 
|  | /* the queue hasn't finished any request, can't estimate */ | 
|  | if (cfq_cfqq_slice_new(cfqq)) | 
|  | return true; | 
|  | if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched, | 
|  | cfqq->slice_end)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | unsigned int max_dispatch; | 
|  |  | 
|  | /* | 
|  | * Drain async requests before we start sync IO | 
|  | */ | 
|  | if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC]) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If this is an async queue and we have sync IO in flight, let it wait | 
|  | */ | 
|  | if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq)) | 
|  | return false; | 
|  |  | 
|  | max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1); | 
|  | if (cfq_class_idle(cfqq)) | 
|  | max_dispatch = 1; | 
|  |  | 
|  | /* | 
|  | * Does this cfqq already have too much IO in flight? | 
|  | */ | 
|  | if (cfqq->dispatched >= max_dispatch) { | 
|  | bool promote_sync = false; | 
|  | /* | 
|  | * idle queue must always only have a single IO in flight | 
|  | */ | 
|  | if (cfq_class_idle(cfqq)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If there is only one sync queue | 
|  | * we can ignore async queue here and give the sync | 
|  | * queue no dispatch limit. The reason is a sync queue can | 
|  | * preempt async queue, limiting the sync queue doesn't make | 
|  | * sense. This is useful for aiostress test. | 
|  | */ | 
|  | if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) | 
|  | promote_sync = true; | 
|  |  | 
|  | /* | 
|  | * We have other queues, don't allow more IO from this one | 
|  | */ | 
|  | if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) && | 
|  | !promote_sync) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Sole queue user, no limit | 
|  | */ | 
|  | if (cfqd->busy_queues == 1 || promote_sync) | 
|  | max_dispatch = -1; | 
|  | else | 
|  | /* | 
|  | * Normally we start throttling cfqq when cfq_quantum/2 | 
|  | * requests have been dispatched. But we can drive | 
|  | * deeper queue depths at the beginning of slice | 
|  | * subjected to upper limit of cfq_quantum. | 
|  | * */ | 
|  | max_dispatch = cfqd->cfq_quantum; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Async queues must wait a bit before being allowed dispatch. | 
|  | * We also ramp up the dispatch depth gradually for async IO, | 
|  | * based on the last sync IO we serviced | 
|  | */ | 
|  | if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) { | 
|  | unsigned long last_sync = jiffies - cfqd->last_delayed_sync; | 
|  | unsigned int depth; | 
|  |  | 
|  | depth = last_sync / cfqd->cfq_slice[1]; | 
|  | if (!depth && !cfqq->dispatched) | 
|  | depth = 1; | 
|  | if (depth < max_dispatch) | 
|  | max_dispatch = depth; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're below the current max, allow a dispatch | 
|  | */ | 
|  | return cfqq->dispatched < max_dispatch; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispatch a request from cfqq, moving them to the request queue | 
|  | * dispatch list. | 
|  | */ | 
|  | static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | struct request *rq; | 
|  |  | 
|  | BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list)); | 
|  |  | 
|  | if (!cfq_may_dispatch(cfqd, cfqq)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * follow expired path, else get first next available | 
|  | */ | 
|  | rq = cfq_check_fifo(cfqq); | 
|  | if (!rq) | 
|  | rq = cfqq->next_rq; | 
|  |  | 
|  | /* | 
|  | * insert request into driver dispatch list | 
|  | */ | 
|  | cfq_dispatch_insert(cfqd->queue, rq); | 
|  |  | 
|  | if (!cfqd->active_cic) { | 
|  | struct cfq_io_cq *cic = RQ_CIC(rq); | 
|  |  | 
|  | atomic_long_inc(&cic->icq.ioc->refcount); | 
|  | cfqd->active_cic = cic; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the cfqq that we need to service and move a request from that to the | 
|  | * dispatch list | 
|  | */ | 
|  | static int cfq_dispatch_requests(struct request_queue *q, int force) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  | struct cfq_queue *cfqq; | 
|  |  | 
|  | if (!cfqd->busy_queues) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(force)) | 
|  | return cfq_forced_dispatch(cfqd); | 
|  |  | 
|  | cfqq = cfq_select_queue(cfqd); | 
|  | if (!cfqq) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Dispatch a request from this cfqq, if it is allowed | 
|  | */ | 
|  | if (!cfq_dispatch_request(cfqd, cfqq)) | 
|  | return 0; | 
|  |  | 
|  | cfqq->slice_dispatch++; | 
|  | cfq_clear_cfqq_must_dispatch(cfqq); | 
|  |  | 
|  | /* | 
|  | * expire an async queue immediately if it has used up its slice. idle | 
|  | * queue always expire after 1 dispatch round. | 
|  | */ | 
|  | if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) && | 
|  | cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) || | 
|  | cfq_class_idle(cfqq))) { | 
|  | cfqq->slice_end = jiffies + 1; | 
|  | cfq_slice_expired(cfqd, 0); | 
|  | } | 
|  |  | 
|  | cfq_log_cfqq(cfqd, cfqq, "dispatched a request"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * task holds one reference to the queue, dropped when task exits. each rq | 
|  | * in-flight on this queue also holds a reference, dropped when rq is freed. | 
|  | * | 
|  | * Each cfq queue took a reference on the parent group. Drop it now. | 
|  | * queue lock must be held here. | 
|  | */ | 
|  | static void cfq_put_queue(struct cfq_queue *cfqq) | 
|  | { | 
|  | struct cfq_data *cfqd = cfqq->cfqd; | 
|  | struct cfq_group *cfqg; | 
|  |  | 
|  | BUG_ON(cfqq->ref <= 0); | 
|  |  | 
|  | cfqq->ref--; | 
|  | if (cfqq->ref) | 
|  | return; | 
|  |  | 
|  | cfq_log_cfqq(cfqd, cfqq, "put_queue"); | 
|  | BUG_ON(rb_first(&cfqq->sort_list)); | 
|  | BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); | 
|  | cfqg = cfqq->cfqg; | 
|  |  | 
|  | if (unlikely(cfqd->active_queue == cfqq)) { | 
|  | __cfq_slice_expired(cfqd, cfqq, 0); | 
|  | cfq_schedule_dispatch(cfqd); | 
|  | } | 
|  |  | 
|  | BUG_ON(cfq_cfqq_on_rr(cfqq)); | 
|  | kmem_cache_free(cfq_pool, cfqq); | 
|  | cfqg_put(cfqg); | 
|  | } | 
|  |  | 
|  | static void cfq_put_cooperator(struct cfq_queue *cfqq) | 
|  | { | 
|  | struct cfq_queue *__cfqq, *next; | 
|  |  | 
|  | /* | 
|  | * If this queue was scheduled to merge with another queue, be | 
|  | * sure to drop the reference taken on that queue (and others in | 
|  | * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs. | 
|  | */ | 
|  | __cfqq = cfqq->new_cfqq; | 
|  | while (__cfqq) { | 
|  | if (__cfqq == cfqq) { | 
|  | WARN(1, "cfqq->new_cfqq loop detected\n"); | 
|  | break; | 
|  | } | 
|  | next = __cfqq->new_cfqq; | 
|  | cfq_put_queue(__cfqq); | 
|  | __cfqq = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | if (unlikely(cfqq == cfqd->active_queue)) { | 
|  | __cfq_slice_expired(cfqd, cfqq, 0); | 
|  | cfq_schedule_dispatch(cfqd); | 
|  | } | 
|  |  | 
|  | cfq_put_cooperator(cfqq); | 
|  |  | 
|  | cfq_put_queue(cfqq); | 
|  | } | 
|  |  | 
|  | static void cfq_init_icq(struct io_cq *icq) | 
|  | { | 
|  | struct cfq_io_cq *cic = icq_to_cic(icq); | 
|  |  | 
|  | cic->ttime.last_end_request = jiffies; | 
|  | } | 
|  |  | 
|  | static void cfq_exit_icq(struct io_cq *icq) | 
|  | { | 
|  | struct cfq_io_cq *cic = icq_to_cic(icq); | 
|  | struct cfq_data *cfqd = cic_to_cfqd(cic); | 
|  |  | 
|  | if (cic_to_cfqq(cic, false)) { | 
|  | cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false)); | 
|  | cic_set_cfqq(cic, NULL, false); | 
|  | } | 
|  |  | 
|  | if (cic_to_cfqq(cic, true)) { | 
|  | cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true)); | 
|  | cic_set_cfqq(cic, NULL, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | int ioprio_class; | 
|  |  | 
|  | if (!cfq_cfqq_prio_changed(cfqq)) | 
|  | return; | 
|  |  | 
|  | ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); | 
|  | switch (ioprio_class) { | 
|  | default: | 
|  | printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); | 
|  | case IOPRIO_CLASS_NONE: | 
|  | /* | 
|  | * no prio set, inherit CPU scheduling settings | 
|  | */ | 
|  | cfqq->ioprio = task_nice_ioprio(tsk); | 
|  | cfqq->ioprio_class = task_nice_ioclass(tsk); | 
|  | break; | 
|  | case IOPRIO_CLASS_RT: | 
|  | cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | 
|  | cfqq->ioprio_class = IOPRIO_CLASS_RT; | 
|  | break; | 
|  | case IOPRIO_CLASS_BE: | 
|  | cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | 
|  | cfqq->ioprio_class = IOPRIO_CLASS_BE; | 
|  | break; | 
|  | case IOPRIO_CLASS_IDLE: | 
|  | cfqq->ioprio_class = IOPRIO_CLASS_IDLE; | 
|  | cfqq->ioprio = 7; | 
|  | cfq_clear_cfqq_idle_window(cfqq); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * keep track of original prio settings in case we have to temporarily | 
|  | * elevate the priority of this queue | 
|  | */ | 
|  | cfqq->org_ioprio = cfqq->ioprio; | 
|  | cfq_clear_cfqq_prio_changed(cfqq); | 
|  | } | 
|  |  | 
|  | static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio) | 
|  | { | 
|  | int ioprio = cic->icq.ioc->ioprio; | 
|  | struct cfq_data *cfqd = cic_to_cfqd(cic); | 
|  | struct cfq_queue *cfqq; | 
|  |  | 
|  | /* | 
|  | * Check whether ioprio has changed.  The condition may trigger | 
|  | * spuriously on a newly created cic but there's no harm. | 
|  | */ | 
|  | if (unlikely(!cfqd) || likely(cic->ioprio == ioprio)) | 
|  | return; | 
|  |  | 
|  | cfqq = cic_to_cfqq(cic, false); | 
|  | if (cfqq) { | 
|  | cfq_put_queue(cfqq); | 
|  | cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio); | 
|  | cic_set_cfqq(cic, cfqq, false); | 
|  | } | 
|  |  | 
|  | cfqq = cic_to_cfqq(cic, true); | 
|  | if (cfqq) | 
|  | cfq_mark_cfqq_prio_changed(cfqq); | 
|  |  | 
|  | cic->ioprio = ioprio; | 
|  | } | 
|  |  | 
|  | static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | pid_t pid, bool is_sync) | 
|  | { | 
|  | RB_CLEAR_NODE(&cfqq->rb_node); | 
|  | RB_CLEAR_NODE(&cfqq->p_node); | 
|  | INIT_LIST_HEAD(&cfqq->fifo); | 
|  |  | 
|  | cfqq->ref = 0; | 
|  | cfqq->cfqd = cfqd; | 
|  |  | 
|  | cfq_mark_cfqq_prio_changed(cfqq); | 
|  |  | 
|  | if (is_sync) { | 
|  | if (!cfq_class_idle(cfqq)) | 
|  | cfq_mark_cfqq_idle_window(cfqq); | 
|  | cfq_mark_cfqq_sync(cfqq); | 
|  | } | 
|  | cfqq->pid = pid; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) | 
|  | { | 
|  | struct cfq_data *cfqd = cic_to_cfqd(cic); | 
|  | struct cfq_queue *cfqq; | 
|  | uint64_t serial_nr; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | serial_nr = bio_blkcg(bio)->css.serial_nr; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Check whether blkcg has changed.  The condition may trigger | 
|  | * spuriously on a newly created cic but there's no harm. | 
|  | */ | 
|  | if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Drop reference to queues.  New queues will be assigned in new | 
|  | * group upon arrival of fresh requests. | 
|  | */ | 
|  | cfqq = cic_to_cfqq(cic, false); | 
|  | if (cfqq) { | 
|  | cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); | 
|  | cic_set_cfqq(cic, NULL, false); | 
|  | cfq_put_queue(cfqq); | 
|  | } | 
|  |  | 
|  | cfqq = cic_to_cfqq(cic, true); | 
|  | if (cfqq) { | 
|  | cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); | 
|  | cic_set_cfqq(cic, NULL, true); | 
|  | cfq_put_queue(cfqq); | 
|  | } | 
|  |  | 
|  | cic->blkcg_serial_nr = serial_nr; | 
|  | } | 
|  | #else | 
|  | static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { } | 
|  | #endif  /* CONFIG_CFQ_GROUP_IOSCHED */ | 
|  |  | 
|  | static struct cfq_queue ** | 
|  | cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio) | 
|  | { | 
|  | switch (ioprio_class) { | 
|  | case IOPRIO_CLASS_RT: | 
|  | return &cfqg->async_cfqq[0][ioprio]; | 
|  | case IOPRIO_CLASS_NONE: | 
|  | ioprio = IOPRIO_NORM; | 
|  | /* fall through */ | 
|  | case IOPRIO_CLASS_BE: | 
|  | return &cfqg->async_cfqq[1][ioprio]; | 
|  | case IOPRIO_CLASS_IDLE: | 
|  | return &cfqg->async_idle_cfqq; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct cfq_queue * | 
|  | cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic, | 
|  | struct bio *bio) | 
|  | { | 
|  | int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); | 
|  | int ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | 
|  | struct cfq_queue **async_cfqq = NULL; | 
|  | struct cfq_queue *cfqq; | 
|  | struct cfq_group *cfqg; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio)); | 
|  | if (!cfqg) { | 
|  | cfqq = &cfqd->oom_cfqq; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!is_sync) { | 
|  | if (!ioprio_valid(cic->ioprio)) { | 
|  | struct task_struct *tsk = current; | 
|  | ioprio = task_nice_ioprio(tsk); | 
|  | ioprio_class = task_nice_ioclass(tsk); | 
|  | } | 
|  | async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio); | 
|  | cfqq = *async_cfqq; | 
|  | if (cfqq) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO, | 
|  | cfqd->queue->node); | 
|  | if (!cfqq) { | 
|  | cfqq = &cfqd->oom_cfqq; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync); | 
|  | cfq_init_prio_data(cfqq, cic); | 
|  | cfq_link_cfqq_cfqg(cfqq, cfqg); | 
|  | cfq_log_cfqq(cfqd, cfqq, "alloced"); | 
|  |  | 
|  | if (async_cfqq) { | 
|  | /* a new async queue is created, pin and remember */ | 
|  | cfqq->ref++; | 
|  | *async_cfqq = cfqq; | 
|  | } | 
|  | out: | 
|  | cfqq->ref++; | 
|  | rcu_read_unlock(); | 
|  | return cfqq; | 
|  | } | 
|  |  | 
|  | static void | 
|  | __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle) | 
|  | { | 
|  | unsigned long elapsed = jiffies - ttime->last_end_request; | 
|  | elapsed = min(elapsed, 2UL * slice_idle); | 
|  |  | 
|  | ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8; | 
|  | ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8; | 
|  | ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples; | 
|  | } | 
|  |  | 
|  | static void | 
|  | cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | struct cfq_io_cq *cic) | 
|  | { | 
|  | if (cfq_cfqq_sync(cfqq)) { | 
|  | __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle); | 
|  | __cfq_update_io_thinktime(&cfqq->service_tree->ttime, | 
|  | cfqd->cfq_slice_idle); | 
|  | } | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void | 
|  | cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | struct request *rq) | 
|  | { | 
|  | sector_t sdist = 0; | 
|  | sector_t n_sec = blk_rq_sectors(rq); | 
|  | if (cfqq->last_request_pos) { | 
|  | if (cfqq->last_request_pos < blk_rq_pos(rq)) | 
|  | sdist = blk_rq_pos(rq) - cfqq->last_request_pos; | 
|  | else | 
|  | sdist = cfqq->last_request_pos - blk_rq_pos(rq); | 
|  | } | 
|  |  | 
|  | cfqq->seek_history <<= 1; | 
|  | if (blk_queue_nonrot(cfqd->queue)) | 
|  | cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT); | 
|  | else | 
|  | cfqq->seek_history |= (sdist > CFQQ_SEEK_THR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable idle window if the process thinks too long or seeks so much that | 
|  | * it doesn't matter | 
|  | */ | 
|  | static void | 
|  | cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | struct cfq_io_cq *cic) | 
|  | { | 
|  | int old_idle, enable_idle; | 
|  |  | 
|  | /* | 
|  | * Don't idle for async or idle io prio class | 
|  | */ | 
|  | if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq)) | 
|  | return; | 
|  |  | 
|  | enable_idle = old_idle = cfq_cfqq_idle_window(cfqq); | 
|  |  | 
|  | if (cfqq->queued[0] + cfqq->queued[1] >= 4) | 
|  | cfq_mark_cfqq_deep(cfqq); | 
|  |  | 
|  | if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE)) | 
|  | enable_idle = 0; | 
|  | else if (!atomic_read(&cic->icq.ioc->active_ref) || | 
|  | !cfqd->cfq_slice_idle || | 
|  | (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq))) | 
|  | enable_idle = 0; | 
|  | else if (sample_valid(cic->ttime.ttime_samples)) { | 
|  | if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle) | 
|  | enable_idle = 0; | 
|  | else | 
|  | enable_idle = 1; | 
|  | } | 
|  |  | 
|  | if (old_idle != enable_idle) { | 
|  | cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle); | 
|  | if (enable_idle) | 
|  | cfq_mark_cfqq_idle_window(cfqq); | 
|  | else | 
|  | cfq_clear_cfqq_idle_window(cfqq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if new_cfqq should preempt the currently active queue. Return 0 for | 
|  | * no or if we aren't sure, a 1 will cause a preempt. | 
|  | */ | 
|  | static bool | 
|  | cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, | 
|  | struct request *rq) | 
|  | { | 
|  | struct cfq_queue *cfqq; | 
|  |  | 
|  | cfqq = cfqd->active_queue; | 
|  | if (!cfqq) | 
|  | return false; | 
|  |  | 
|  | if (cfq_class_idle(new_cfqq)) | 
|  | return false; | 
|  |  | 
|  | if (cfq_class_idle(cfqq)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice. | 
|  | */ | 
|  | if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * if the new request is sync, but the currently running queue is | 
|  | * not, let the sync request have priority. | 
|  | */ | 
|  | if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq)) | 
|  | return true; | 
|  |  | 
|  | if (new_cfqq->cfqg != cfqq->cfqg) | 
|  | return false; | 
|  |  | 
|  | if (cfq_slice_used(cfqq)) | 
|  | return true; | 
|  |  | 
|  | /* Allow preemption only if we are idling on sync-noidle tree */ | 
|  | if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD && | 
|  | cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD && | 
|  | new_cfqq->service_tree->count == 2 && | 
|  | RB_EMPTY_ROOT(&cfqq->sort_list)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * So both queues are sync. Let the new request get disk time if | 
|  | * it's a metadata request and the current queue is doing regular IO. | 
|  | */ | 
|  | if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice. | 
|  | */ | 
|  | if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq)) | 
|  | return true; | 
|  |  | 
|  | /* An idle queue should not be idle now for some reason */ | 
|  | if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq)) | 
|  | return true; | 
|  |  | 
|  | if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * if this request is as-good as one we would expect from the | 
|  | * current cfqq, let it preempt | 
|  | */ | 
|  | if (cfq_rq_close(cfqd, cfqq, rq)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cfqq preempts the active queue. if we allowed preempt with no slice left, | 
|  | * let it have half of its nominal slice. | 
|  | */ | 
|  | static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | enum wl_type_t old_type = cfqq_type(cfqd->active_queue); | 
|  |  | 
|  | cfq_log_cfqq(cfqd, cfqq, "preempt"); | 
|  | cfq_slice_expired(cfqd, 1); | 
|  |  | 
|  | /* | 
|  | * workload type is changed, don't save slice, otherwise preempt | 
|  | * doesn't happen | 
|  | */ | 
|  | if (old_type != cfqq_type(cfqq)) | 
|  | cfqq->cfqg->saved_wl_slice = 0; | 
|  |  | 
|  | /* | 
|  | * Put the new queue at the front of the of the current list, | 
|  | * so we know that it will be selected next. | 
|  | */ | 
|  | BUG_ON(!cfq_cfqq_on_rr(cfqq)); | 
|  |  | 
|  | cfq_service_tree_add(cfqd, cfqq, 1); | 
|  |  | 
|  | cfqq->slice_end = 0; | 
|  | cfq_mark_cfqq_slice_new(cfqq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when a new fs request (rq) is added (to cfqq). Check if there's | 
|  | * something we should do about it | 
|  | */ | 
|  | static void | 
|  | cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
|  | struct request *rq) | 
|  | { | 
|  | struct cfq_io_cq *cic = RQ_CIC(rq); | 
|  |  | 
|  | cfqd->rq_queued++; | 
|  | if (rq->cmd_flags & REQ_PRIO) | 
|  | cfqq->prio_pending++; | 
|  |  | 
|  | cfq_update_io_thinktime(cfqd, cfqq, cic); | 
|  | cfq_update_io_seektime(cfqd, cfqq, rq); | 
|  | cfq_update_idle_window(cfqd, cfqq, cic); | 
|  |  | 
|  | cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); | 
|  |  | 
|  | if (cfqq == cfqd->active_queue) { | 
|  | /* | 
|  | * Remember that we saw a request from this process, but | 
|  | * don't start queuing just yet. Otherwise we risk seeing lots | 
|  | * of tiny requests, because we disrupt the normal plugging | 
|  | * and merging. If the request is already larger than a single | 
|  | * page, let it rip immediately. For that case we assume that | 
|  | * merging is already done. Ditto for a busy system that | 
|  | * has other work pending, don't risk delaying until the | 
|  | * idle timer unplug to continue working. | 
|  | */ | 
|  | if (cfq_cfqq_wait_request(cfqq)) { | 
|  | if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE || | 
|  | cfqd->busy_queues > 1) { | 
|  | cfq_del_timer(cfqd, cfqq); | 
|  | cfq_clear_cfqq_wait_request(cfqq); | 
|  | __blk_run_queue(cfqd->queue); | 
|  | } else { | 
|  | cfqg_stats_update_idle_time(cfqq->cfqg); | 
|  | cfq_mark_cfqq_must_dispatch(cfqq); | 
|  | } | 
|  | } | 
|  | } else if (cfq_should_preempt(cfqd, cfqq, rq)) { | 
|  | /* | 
|  | * not the active queue - expire current slice if it is | 
|  | * idle and has expired it's mean thinktime or this new queue | 
|  | * has some old slice time left and is of higher priority or | 
|  | * this new queue is RT and the current one is BE | 
|  | */ | 
|  | cfq_preempt_queue(cfqd, cfqq); | 
|  | __blk_run_queue(cfqd->queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfq_insert_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
|  |  | 
|  | cfq_log_cfqq(cfqd, cfqq, "insert_request"); | 
|  | cfq_init_prio_data(cfqq, RQ_CIC(rq)); | 
|  |  | 
|  | rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]; | 
|  | list_add_tail(&rq->queuelist, &cfqq->fifo); | 
|  | cfq_add_rq_rb(rq); | 
|  | cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, | 
|  | rq->cmd_flags); | 
|  | cfq_rq_enqueued(cfqd, cfqq, rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update hw_tag based on peak queue depth over 50 samples under | 
|  | * sufficient load. | 
|  | */ | 
|  | static void cfq_update_hw_tag(struct cfq_data *cfqd) | 
|  | { | 
|  | struct cfq_queue *cfqq = cfqd->active_queue; | 
|  |  | 
|  | if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth) | 
|  | cfqd->hw_tag_est_depth = cfqd->rq_in_driver; | 
|  |  | 
|  | if (cfqd->hw_tag == 1) | 
|  | return; | 
|  |  | 
|  | if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN && | 
|  | cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If active queue hasn't enough requests and can idle, cfq might not | 
|  | * dispatch sufficient requests to hardware. Don't zero hw_tag in this | 
|  | * case | 
|  | */ | 
|  | if (cfqq && cfq_cfqq_idle_window(cfqq) && | 
|  | cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] < | 
|  | CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN) | 
|  | return; | 
|  |  | 
|  | if (cfqd->hw_tag_samples++ < 50) | 
|  | return; | 
|  |  | 
|  | if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN) | 
|  | cfqd->hw_tag = 1; | 
|  | else | 
|  | cfqd->hw_tag = 0; | 
|  | } | 
|  |  | 
|  | static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
|  | { | 
|  | struct cfq_io_cq *cic = cfqd->active_cic; | 
|  |  | 
|  | /* If the queue already has requests, don't wait */ | 
|  | if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | 
|  | return false; | 
|  |  | 
|  | /* If there are other queues in the group, don't wait */ | 
|  | if (cfqq->cfqg->nr_cfqq > 1) | 
|  | return false; | 
|  |  | 
|  | /* the only queue in the group, but think time is big */ | 
|  | if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) | 
|  | return false; | 
|  |  | 
|  | if (cfq_slice_used(cfqq)) | 
|  | return true; | 
|  |  | 
|  | /* if slice left is less than think time, wait busy */ | 
|  | if (cic && sample_valid(cic->ttime.ttime_samples) | 
|  | && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * If think times is less than a jiffy than ttime_mean=0 and above | 
|  | * will not be true. It might happen that slice has not expired yet | 
|  | * but will expire soon (4-5 ns) during select_queue(). To cover the | 
|  | * case where think time is less than a jiffy, mark the queue wait | 
|  | * busy if only 1 jiffy is left in the slice. | 
|  | */ | 
|  | if (cfqq->slice_end - jiffies == 1) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void cfq_completed_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
|  | struct cfq_data *cfqd = cfqq->cfqd; | 
|  | const int sync = rq_is_sync(rq); | 
|  | unsigned long now; | 
|  |  | 
|  | now = jiffies; | 
|  | cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", | 
|  | !!(rq->cmd_flags & REQ_NOIDLE)); | 
|  |  | 
|  | cfq_update_hw_tag(cfqd); | 
|  |  | 
|  | WARN_ON(!cfqd->rq_in_driver); | 
|  | WARN_ON(!cfqq->dispatched); | 
|  | cfqd->rq_in_driver--; | 
|  | cfqq->dispatched--; | 
|  | (RQ_CFQG(rq))->dispatched--; | 
|  | cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq), | 
|  | rq_io_start_time_ns(rq), rq->cmd_flags); | 
|  |  | 
|  | cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--; | 
|  |  | 
|  | if (sync) { | 
|  | struct cfq_rb_root *st; | 
|  |  | 
|  | RQ_CIC(rq)->ttime.last_end_request = now; | 
|  |  | 
|  | if (cfq_cfqq_on_rr(cfqq)) | 
|  | st = cfqq->service_tree; | 
|  | else | 
|  | st = st_for(cfqq->cfqg, cfqq_class(cfqq), | 
|  | cfqq_type(cfqq)); | 
|  |  | 
|  | st->ttime.last_end_request = now; | 
|  | if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now)) | 
|  | cfqd->last_delayed_sync = now; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | cfqq->cfqg->ttime.last_end_request = now; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If this is the active queue, check if it needs to be expired, | 
|  | * or if we want to idle in case it has no pending requests. | 
|  | */ | 
|  | if (cfqd->active_queue == cfqq) { | 
|  | const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list); | 
|  |  | 
|  | if (cfq_cfqq_slice_new(cfqq)) { | 
|  | cfq_set_prio_slice(cfqd, cfqq); | 
|  | cfq_clear_cfqq_slice_new(cfqq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should we wait for next request to come in before we expire | 
|  | * the queue. | 
|  | */ | 
|  | if (cfq_should_wait_busy(cfqd, cfqq)) { | 
|  | unsigned long extend_sl = cfqd->cfq_slice_idle; | 
|  | if (!cfqd->cfq_slice_idle) | 
|  | extend_sl = cfqd->cfq_group_idle; | 
|  | cfqq->slice_end = jiffies + extend_sl; | 
|  | cfq_mark_cfqq_wait_busy(cfqq); | 
|  | cfq_log_cfqq(cfqd, cfqq, "will busy wait"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Idling is not enabled on: | 
|  | * - expired queues | 
|  | * - idle-priority queues | 
|  | * - async queues | 
|  | * - queues with still some requests queued | 
|  | * - when there is a close cooperator | 
|  | */ | 
|  | if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq)) | 
|  | cfq_slice_expired(cfqd, 1); | 
|  | else if (sync && cfqq_empty && | 
|  | !cfq_close_cooperator(cfqd, cfqq)) { | 
|  | cfq_arm_slice_timer(cfqd); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!cfqd->rq_in_driver) | 
|  | cfq_schedule_dispatch(cfqd); | 
|  | } | 
|  |  | 
|  | static inline int __cfq_may_queue(struct cfq_queue *cfqq) | 
|  | { | 
|  | if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) { | 
|  | cfq_mark_cfqq_must_alloc_slice(cfqq); | 
|  | return ELV_MQUEUE_MUST; | 
|  | } | 
|  |  | 
|  | return ELV_MQUEUE_MAY; | 
|  | } | 
|  |  | 
|  | static int cfq_may_queue(struct request_queue *q, int rw) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  | struct task_struct *tsk = current; | 
|  | struct cfq_io_cq *cic; | 
|  | struct cfq_queue *cfqq; | 
|  |  | 
|  | /* | 
|  | * don't force setup of a queue from here, as a call to may_queue | 
|  | * does not necessarily imply that a request actually will be queued. | 
|  | * so just lookup a possibly existing queue, or return 'may queue' | 
|  | * if that fails | 
|  | */ | 
|  | cic = cfq_cic_lookup(cfqd, tsk->io_context); | 
|  | if (!cic) | 
|  | return ELV_MQUEUE_MAY; | 
|  |  | 
|  | cfqq = cic_to_cfqq(cic, rw_is_sync(rw)); | 
|  | if (cfqq) { | 
|  | cfq_init_prio_data(cfqq, cic); | 
|  |  | 
|  | return __cfq_may_queue(cfqq); | 
|  | } | 
|  |  | 
|  | return ELV_MQUEUE_MAY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * queue lock held here | 
|  | */ | 
|  | static void cfq_put_request(struct request *rq) | 
|  | { | 
|  | struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
|  |  | 
|  | if (cfqq) { | 
|  | const int rw = rq_data_dir(rq); | 
|  |  | 
|  | BUG_ON(!cfqq->allocated[rw]); | 
|  | cfqq->allocated[rw]--; | 
|  |  | 
|  | /* Put down rq reference on cfqg */ | 
|  | cfqg_put(RQ_CFQG(rq)); | 
|  | rq->elv.priv[0] = NULL; | 
|  | rq->elv.priv[1] = NULL; | 
|  |  | 
|  | cfq_put_queue(cfqq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct cfq_queue * | 
|  | cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic, | 
|  | struct cfq_queue *cfqq) | 
|  | { | 
|  | cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq); | 
|  | cic_set_cfqq(cic, cfqq->new_cfqq, 1); | 
|  | cfq_mark_cfqq_coop(cfqq->new_cfqq); | 
|  | cfq_put_queue(cfqq); | 
|  | return cic_to_cfqq(cic, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns NULL if a new cfqq should be allocated, or the old cfqq if this | 
|  | * was the last process referring to said cfqq. | 
|  | */ | 
|  | static struct cfq_queue * | 
|  | split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq) | 
|  | { | 
|  | if (cfqq_process_refs(cfqq) == 1) { | 
|  | cfqq->pid = current->pid; | 
|  | cfq_clear_cfqq_coop(cfqq); | 
|  | cfq_clear_cfqq_split_coop(cfqq); | 
|  | return cfqq; | 
|  | } | 
|  |  | 
|  | cic_set_cfqq(cic, NULL, 1); | 
|  |  | 
|  | cfq_put_cooperator(cfqq); | 
|  |  | 
|  | cfq_put_queue(cfqq); | 
|  | return NULL; | 
|  | } | 
|  | /* | 
|  | * Allocate cfq data structures associated with this request. | 
|  | */ | 
|  | static int | 
|  | cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct cfq_data *cfqd = q->elevator->elevator_data; | 
|  | struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq); | 
|  | const int rw = rq_data_dir(rq); | 
|  | const bool is_sync = rq_is_sync(rq); | 
|  | struct cfq_queue *cfqq; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  |  | 
|  | check_ioprio_changed(cic, bio); | 
|  | check_blkcg_changed(cic, bio); | 
|  | new_queue: | 
|  | cfqq = cic_to_cfqq(cic, is_sync); | 
|  | if (!cfqq || cfqq == &cfqd->oom_cfqq) { | 
|  | if (cfqq) | 
|  | cfq_put_queue(cfqq); | 
|  | cfqq = cfq_get_queue(cfqd, is_sync, cic, bio); | 
|  | cic_set_cfqq(cic, cfqq, is_sync); | 
|  | } else { | 
|  | /* | 
|  | * If the queue was seeky for too long, break it apart. | 
|  | */ | 
|  | if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) { | 
|  | cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq"); | 
|  | cfqq = split_cfqq(cic, cfqq); | 
|  | if (!cfqq) | 
|  | goto new_queue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if this queue is scheduled to merge with | 
|  | * another, closely cooperating queue.  The merging of | 
|  | * queues happens here as it must be done in process context. | 
|  | * The reference on new_cfqq was taken in merge_cfqqs. | 
|  | */ | 
|  | if (cfqq->new_cfqq) | 
|  | cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq); | 
|  | } | 
|  |  | 
|  | cfqq->allocated[rw]++; | 
|  |  | 
|  | cfqq->ref++; | 
|  | cfqg_get(cfqq->cfqg); | 
|  | rq->elv.priv[0] = cfqq; | 
|  | rq->elv.priv[1] = cfqq->cfqg; | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cfq_kick_queue(struct work_struct *work) | 
|  | { | 
|  | struct cfq_data *cfqd = | 
|  | container_of(work, struct cfq_data, unplug_work); | 
|  | struct request_queue *q = cfqd->queue; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | __blk_run_queue(cfqd->queue); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Timer running if the active_queue is currently idling inside its time slice | 
|  | */ | 
|  | static void cfq_idle_slice_timer(unsigned long data) | 
|  | { | 
|  | struct cfq_data *cfqd = (struct cfq_data *) data; | 
|  | struct cfq_queue *cfqq; | 
|  | unsigned long flags; | 
|  | int timed_out = 1; | 
|  |  | 
|  | cfq_log(cfqd, "idle timer fired"); | 
|  |  | 
|  | spin_lock_irqsave(cfqd->queue->queue_lock, flags); | 
|  |  | 
|  | cfqq = cfqd->active_queue; | 
|  | if (cfqq) { | 
|  | timed_out = 0; | 
|  |  | 
|  | /* | 
|  | * We saw a request before the queue expired, let it through | 
|  | */ | 
|  | if (cfq_cfqq_must_dispatch(cfqq)) | 
|  | goto out_kick; | 
|  |  | 
|  | /* | 
|  | * expired | 
|  | */ | 
|  | if (cfq_slice_used(cfqq)) | 
|  | goto expire; | 
|  |  | 
|  | /* | 
|  | * only expire and reinvoke request handler, if there are | 
|  | * other queues with pending requests | 
|  | */ | 
|  | if (!cfqd->busy_queues) | 
|  | goto out_cont; | 
|  |  | 
|  | /* | 
|  | * not expired and it has a request pending, let it dispatch | 
|  | */ | 
|  | if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | 
|  | goto out_kick; | 
|  |  | 
|  | /* | 
|  | * Queue depth flag is reset only when the idle didn't succeed | 
|  | */ | 
|  | cfq_clear_cfqq_deep(cfqq); | 
|  | } | 
|  | expire: | 
|  | cfq_slice_expired(cfqd, timed_out); | 
|  | out_kick: | 
|  | cfq_schedule_dispatch(cfqd); | 
|  | out_cont: | 
|  | spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); | 
|  | } | 
|  |  | 
|  | static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) | 
|  | { | 
|  | del_timer_sync(&cfqd->idle_slice_timer); | 
|  | cancel_work_sync(&cfqd->unplug_work); | 
|  | } | 
|  |  | 
|  | static void cfq_exit_queue(struct elevator_queue *e) | 
|  | { | 
|  | struct cfq_data *cfqd = e->elevator_data; | 
|  | struct request_queue *q = cfqd->queue; | 
|  |  | 
|  | cfq_shutdown_timer_wq(cfqd); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  |  | 
|  | if (cfqd->active_queue) | 
|  | __cfq_slice_expired(cfqd, cfqd->active_queue, 0); | 
|  |  | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | cfq_shutdown_timer_wq(cfqd); | 
|  |  | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | blkcg_deactivate_policy(q, &blkcg_policy_cfq); | 
|  | #else | 
|  | kfree(cfqd->root_group); | 
|  | #endif | 
|  | kfree(cfqd); | 
|  | } | 
|  |  | 
|  | static int cfq_init_queue(struct request_queue *q, struct elevator_type *e) | 
|  | { | 
|  | struct cfq_data *cfqd; | 
|  | struct blkcg_gq *blkg __maybe_unused; | 
|  | int i, ret; | 
|  | struct elevator_queue *eq; | 
|  |  | 
|  | eq = elevator_alloc(q, e); | 
|  | if (!eq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node); | 
|  | if (!cfqd) { | 
|  | kobject_put(&eq->kobj); | 
|  | return -ENOMEM; | 
|  | } | 
|  | eq->elevator_data = cfqd; | 
|  |  | 
|  | cfqd->queue = q; | 
|  | spin_lock_irq(q->queue_lock); | 
|  | q->elevator = eq; | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | /* Init root service tree */ | 
|  | cfqd->grp_service_tree = CFQ_RB_ROOT; | 
|  |  | 
|  | /* Init root group and prefer root group over other groups by default */ | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | ret = blkcg_activate_policy(q, &blkcg_policy_cfq); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | cfqd->root_group = blkg_to_cfqg(q->root_blkg); | 
|  | #else | 
|  | ret = -ENOMEM; | 
|  | cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group), | 
|  | GFP_KERNEL, cfqd->queue->node); | 
|  | if (!cfqd->root_group) | 
|  | goto out_free; | 
|  |  | 
|  | cfq_init_cfqg_base(cfqd->root_group); | 
|  | cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL; | 
|  | cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Not strictly needed (since RB_ROOT just clears the node and we | 
|  | * zeroed cfqd on alloc), but better be safe in case someone decides | 
|  | * to add magic to the rb code | 
|  | */ | 
|  | for (i = 0; i < CFQ_PRIO_LISTS; i++) | 
|  | cfqd->prio_trees[i] = RB_ROOT; | 
|  |  | 
|  | /* | 
|  | * Our fallback cfqq if cfq_get_queue() runs into OOM issues. | 
|  | * Grab a permanent reference to it, so that the normal code flow | 
|  | * will not attempt to free it.  oom_cfqq is linked to root_group | 
|  | * but shouldn't hold a reference as it'll never be unlinked.  Lose | 
|  | * the reference from linking right away. | 
|  | */ | 
|  | cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0); | 
|  | cfqd->oom_cfqq.ref++; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group); | 
|  | cfqg_put(cfqd->root_group); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | init_timer(&cfqd->idle_slice_timer); | 
|  | cfqd->idle_slice_timer.function = cfq_idle_slice_timer; | 
|  | cfqd->idle_slice_timer.data = (unsigned long) cfqd; | 
|  |  | 
|  | INIT_WORK(&cfqd->unplug_work, cfq_kick_queue); | 
|  |  | 
|  | cfqd->cfq_quantum = cfq_quantum; | 
|  | cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; | 
|  | cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; | 
|  | cfqd->cfq_back_max = cfq_back_max; | 
|  | cfqd->cfq_back_penalty = cfq_back_penalty; | 
|  | cfqd->cfq_slice[0] = cfq_slice_async; | 
|  | cfqd->cfq_slice[1] = cfq_slice_sync; | 
|  | cfqd->cfq_target_latency = cfq_target_latency; | 
|  | cfqd->cfq_slice_async_rq = cfq_slice_async_rq; | 
|  | cfqd->cfq_slice_idle = cfq_slice_idle; | 
|  | cfqd->cfq_group_idle = cfq_group_idle; | 
|  | cfqd->cfq_latency = 1; | 
|  | cfqd->hw_tag = -1; | 
|  | /* | 
|  | * we optimistically start assuming sync ops weren't delayed in last | 
|  | * second, in order to have larger depth for async operations. | 
|  | */ | 
|  | cfqd->last_delayed_sync = jiffies - HZ; | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | kfree(cfqd); | 
|  | kobject_put(&eq->kobj); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cfq_registered_queue(struct request_queue *q) | 
|  | { | 
|  | struct elevator_queue *e = q->elevator; | 
|  | struct cfq_data *cfqd = e->elevator_data; | 
|  |  | 
|  | /* | 
|  | * Default to IOPS mode with no idling for SSDs | 
|  | */ | 
|  | if (blk_queue_nonrot(q)) | 
|  | cfqd->cfq_slice_idle = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sysfs parts below --> | 
|  | */ | 
|  | static ssize_t | 
|  | cfq_var_show(unsigned int var, char *page) | 
|  | { | 
|  | return sprintf(page, "%u\n", var); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | cfq_var_store(unsigned int *var, const char *page, size_t count) | 
|  | { | 
|  | char *p = (char *) page; | 
|  |  | 
|  | *var = simple_strtoul(p, &p, 10); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\ | 
|  | static ssize_t __FUNC(struct elevator_queue *e, char *page)		\ | 
|  | {									\ | 
|  | struct cfq_data *cfqd = e->elevator_data;			\ | 
|  | unsigned int __data = __VAR;					\ | 
|  | if (__CONV)							\ | 
|  | __data = jiffies_to_msecs(__data);			\ | 
|  | return cfq_var_show(__data, (page));				\ | 
|  | } | 
|  | SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); | 
|  | SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); | 
|  | SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); | 
|  | SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0); | 
|  | SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0); | 
|  | SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); | 
|  | SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1); | 
|  | SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); | 
|  | SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); | 
|  | SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); | 
|  | SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0); | 
|  | SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1); | 
|  | #undef SHOW_FUNCTION | 
|  |  | 
|  | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\ | 
|  | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\ | 
|  | {									\ | 
|  | struct cfq_data *cfqd = e->elevator_data;			\ | 
|  | unsigned int __data;						\ | 
|  | int ret = cfq_var_store(&__data, (page), count);		\ | 
|  | if (__data < (MIN))						\ | 
|  | __data = (MIN);						\ | 
|  | else if (__data > (MAX))					\ | 
|  | __data = (MAX);						\ | 
|  | if (__CONV)							\ | 
|  | *(__PTR) = msecs_to_jiffies(__data);			\ | 
|  | else								\ | 
|  | *(__PTR) = __data;					\ | 
|  | return ret;							\ | 
|  | } | 
|  | STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); | 
|  | STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, | 
|  | UINT_MAX, 1); | 
|  | STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, | 
|  | UINT_MAX, 1); | 
|  | STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); | 
|  | STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, | 
|  | UINT_MAX, 0); | 
|  | STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); | 
|  | STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1); | 
|  | STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); | 
|  | STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); | 
|  | STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, | 
|  | UINT_MAX, 0); | 
|  | STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0); | 
|  | STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1); | 
|  | #undef STORE_FUNCTION | 
|  |  | 
|  | #define CFQ_ATTR(name) \ | 
|  | __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store) | 
|  |  | 
|  | static struct elv_fs_entry cfq_attrs[] = { | 
|  | CFQ_ATTR(quantum), | 
|  | CFQ_ATTR(fifo_expire_sync), | 
|  | CFQ_ATTR(fifo_expire_async), | 
|  | CFQ_ATTR(back_seek_max), | 
|  | CFQ_ATTR(back_seek_penalty), | 
|  | CFQ_ATTR(slice_sync), | 
|  | CFQ_ATTR(slice_async), | 
|  | CFQ_ATTR(slice_async_rq), | 
|  | CFQ_ATTR(slice_idle), | 
|  | CFQ_ATTR(group_idle), | 
|  | CFQ_ATTR(low_latency), | 
|  | CFQ_ATTR(target_latency), | 
|  | __ATTR_NULL | 
|  | }; | 
|  |  | 
|  | static struct elevator_type iosched_cfq = { | 
|  | .ops = { | 
|  | .elevator_merge_fn = 		cfq_merge, | 
|  | .elevator_merged_fn =		cfq_merged_request, | 
|  | .elevator_merge_req_fn =	cfq_merged_requests, | 
|  | .elevator_allow_merge_fn =	cfq_allow_merge, | 
|  | .elevator_bio_merged_fn =	cfq_bio_merged, | 
|  | .elevator_dispatch_fn =		cfq_dispatch_requests, | 
|  | .elevator_add_req_fn =		cfq_insert_request, | 
|  | .elevator_activate_req_fn =	cfq_activate_request, | 
|  | .elevator_deactivate_req_fn =	cfq_deactivate_request, | 
|  | .elevator_completed_req_fn =	cfq_completed_request, | 
|  | .elevator_former_req_fn =	elv_rb_former_request, | 
|  | .elevator_latter_req_fn =	elv_rb_latter_request, | 
|  | .elevator_init_icq_fn =		cfq_init_icq, | 
|  | .elevator_exit_icq_fn =		cfq_exit_icq, | 
|  | .elevator_set_req_fn =		cfq_set_request, | 
|  | .elevator_put_req_fn =		cfq_put_request, | 
|  | .elevator_may_queue_fn =	cfq_may_queue, | 
|  | .elevator_init_fn =		cfq_init_queue, | 
|  | .elevator_exit_fn =		cfq_exit_queue, | 
|  | .elevator_registered_fn =	cfq_registered_queue, | 
|  | }, | 
|  | .icq_size	=	sizeof(struct cfq_io_cq), | 
|  | .icq_align	=	__alignof__(struct cfq_io_cq), | 
|  | .elevator_attrs =	cfq_attrs, | 
|  | .elevator_name	=	"cfq", | 
|  | .elevator_owner =	THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | static struct blkcg_policy blkcg_policy_cfq = { | 
|  | .dfl_cftypes		= cfq_blkcg_files, | 
|  | .legacy_cftypes		= cfq_blkcg_legacy_files, | 
|  |  | 
|  | .cpd_alloc_fn		= cfq_cpd_alloc, | 
|  | .cpd_init_fn		= cfq_cpd_init, | 
|  | .cpd_free_fn		= cfq_cpd_free, | 
|  | .cpd_bind_fn		= cfq_cpd_bind, | 
|  |  | 
|  | .pd_alloc_fn		= cfq_pd_alloc, | 
|  | .pd_init_fn		= cfq_pd_init, | 
|  | .pd_offline_fn		= cfq_pd_offline, | 
|  | .pd_free_fn		= cfq_pd_free, | 
|  | .pd_reset_stats_fn	= cfq_pd_reset_stats, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static int __init cfq_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * could be 0 on HZ < 1000 setups | 
|  | */ | 
|  | if (!cfq_slice_async) | 
|  | cfq_slice_async = 1; | 
|  | if (!cfq_slice_idle) | 
|  | cfq_slice_idle = 1; | 
|  |  | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | if (!cfq_group_idle) | 
|  | cfq_group_idle = 1; | 
|  |  | 
|  | ret = blkcg_policy_register(&blkcg_policy_cfq); | 
|  | if (ret) | 
|  | return ret; | 
|  | #else | 
|  | cfq_group_idle = 0; | 
|  | #endif | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | cfq_pool = KMEM_CACHE(cfq_queue, 0); | 
|  | if (!cfq_pool) | 
|  | goto err_pol_unreg; | 
|  |  | 
|  | ret = elv_register(&iosched_cfq); | 
|  | if (ret) | 
|  | goto err_free_pool; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_free_pool: | 
|  | kmem_cache_destroy(cfq_pool); | 
|  | err_pol_unreg: | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | blkcg_policy_unregister(&blkcg_policy_cfq); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit cfq_exit(void) | 
|  | { | 
|  | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
|  | blkcg_policy_unregister(&blkcg_policy_cfq); | 
|  | #endif | 
|  | elv_unregister(&iosched_cfq); | 
|  | kmem_cache_destroy(cfq_pool); | 
|  | } | 
|  |  | 
|  | module_init(cfq_init); | 
|  | module_exit(cfq_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Jens Axboe"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler"); |