| /* | 
 |  * fs/f2fs/checkpoint.c | 
 |  * | 
 |  * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
 |  *             http://www.samsung.com/ | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 | #include <linux/fs.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/mpage.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/f2fs_fs.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/swap.h> | 
 |  | 
 | #include "f2fs.h" | 
 | #include "node.h" | 
 | #include "segment.h" | 
 | #include "trace.h" | 
 | #include <trace/events/f2fs.h> | 
 |  | 
 | static struct kmem_cache *ino_entry_slab; | 
 | struct kmem_cache *inode_entry_slab; | 
 |  | 
 | /* | 
 |  * We guarantee no failure on the returned page. | 
 |  */ | 
 | struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) | 
 | { | 
 | 	struct address_space *mapping = META_MAPPING(sbi); | 
 | 	struct page *page = NULL; | 
 | repeat: | 
 | 	page = grab_cache_page(mapping, index); | 
 | 	if (!page) { | 
 | 		cond_resched(); | 
 | 		goto repeat; | 
 | 	} | 
 | 	f2fs_wait_on_page_writeback(page, META); | 
 | 	SetPageUptodate(page); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * We guarantee no failure on the returned page. | 
 |  */ | 
 | static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, | 
 | 							bool is_meta) | 
 | { | 
 | 	struct address_space *mapping = META_MAPPING(sbi); | 
 | 	struct page *page; | 
 | 	struct f2fs_io_info fio = { | 
 | 		.sbi = sbi, | 
 | 		.type = META, | 
 | 		.rw = READ_SYNC | REQ_META | REQ_PRIO, | 
 | 		.blk_addr = index, | 
 | 		.encrypted_page = NULL, | 
 | 	}; | 
 |  | 
 | 	if (unlikely(!is_meta)) | 
 | 		fio.rw &= ~REQ_META; | 
 | repeat: | 
 | 	page = grab_cache_page(mapping, index); | 
 | 	if (!page) { | 
 | 		cond_resched(); | 
 | 		goto repeat; | 
 | 	} | 
 | 	if (PageUptodate(page)) | 
 | 		goto out; | 
 |  | 
 | 	fio.page = page; | 
 |  | 
 | 	if (f2fs_submit_page_bio(&fio)) { | 
 | 		f2fs_put_page(page, 1); | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	lock_page(page); | 
 | 	if (unlikely(page->mapping != mapping)) { | 
 | 		f2fs_put_page(page, 1); | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if there is any IO error when accessing device, make our filesystem | 
 | 	 * readonly and make sure do not write checkpoint with non-uptodate | 
 | 	 * meta page. | 
 | 	 */ | 
 | 	if (unlikely(!PageUptodate(page))) | 
 | 		f2fs_stop_checkpoint(sbi); | 
 | out: | 
 | 	return page; | 
 | } | 
 |  | 
 | struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) | 
 | { | 
 | 	return __get_meta_page(sbi, index, true); | 
 | } | 
 |  | 
 | /* for POR only */ | 
 | struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) | 
 | { | 
 | 	return __get_meta_page(sbi, index, false); | 
 | } | 
 |  | 
 | bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) | 
 | { | 
 | 	switch (type) { | 
 | 	case META_NAT: | 
 | 		break; | 
 | 	case META_SIT: | 
 | 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) | 
 | 			return false; | 
 | 		break; | 
 | 	case META_SSA: | 
 | 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || | 
 | 			blkaddr < SM_I(sbi)->ssa_blkaddr)) | 
 | 			return false; | 
 | 		break; | 
 | 	case META_CP: | 
 | 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || | 
 | 			blkaddr < __start_cp_addr(sbi))) | 
 | 			return false; | 
 | 		break; | 
 | 	case META_POR: | 
 | 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || | 
 | 			blkaddr < MAIN_BLKADDR(sbi))) | 
 | 			return false; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Readahead CP/NAT/SIT/SSA pages | 
 |  */ | 
 | int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, | 
 | 							int type, bool sync) | 
 | { | 
 | 	block_t prev_blk_addr = 0; | 
 | 	struct page *page; | 
 | 	block_t blkno = start; | 
 | 	struct f2fs_io_info fio = { | 
 | 		.sbi = sbi, | 
 | 		.type = META, | 
 | 		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA, | 
 | 		.encrypted_page = NULL, | 
 | 	}; | 
 |  | 
 | 	if (unlikely(type == META_POR)) | 
 | 		fio.rw &= ~REQ_META; | 
 |  | 
 | 	for (; nrpages-- > 0; blkno++) { | 
 |  | 
 | 		if (!is_valid_blkaddr(sbi, blkno, type)) | 
 | 			goto out; | 
 |  | 
 | 		switch (type) { | 
 | 		case META_NAT: | 
 | 			if (unlikely(blkno >= | 
 | 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) | 
 | 				blkno = 0; | 
 | 			/* get nat block addr */ | 
 | 			fio.blk_addr = current_nat_addr(sbi, | 
 | 					blkno * NAT_ENTRY_PER_BLOCK); | 
 | 			break; | 
 | 		case META_SIT: | 
 | 			/* get sit block addr */ | 
 | 			fio.blk_addr = current_sit_addr(sbi, | 
 | 					blkno * SIT_ENTRY_PER_BLOCK); | 
 | 			if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) | 
 | 				goto out; | 
 | 			prev_blk_addr = fio.blk_addr; | 
 | 			break; | 
 | 		case META_SSA: | 
 | 		case META_CP: | 
 | 		case META_POR: | 
 | 			fio.blk_addr = blkno; | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 |  | 
 | 		page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); | 
 | 		if (!page) | 
 | 			continue; | 
 | 		if (PageUptodate(page)) { | 
 | 			f2fs_put_page(page, 1); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		fio.page = page; | 
 | 		f2fs_submit_page_mbio(&fio); | 
 | 		f2fs_put_page(page, 0); | 
 | 	} | 
 | out: | 
 | 	f2fs_submit_merged_bio(sbi, META, READ); | 
 | 	return blkno - start; | 
 | } | 
 |  | 
 | void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) | 
 | { | 
 | 	struct page *page; | 
 | 	bool readahead = false; | 
 |  | 
 | 	page = find_get_page(META_MAPPING(sbi), index); | 
 | 	if (!page || (page && !PageUptodate(page))) | 
 | 		readahead = true; | 
 | 	f2fs_put_page(page, 0); | 
 |  | 
 | 	if (readahead) | 
 | 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true); | 
 | } | 
 |  | 
 | static int f2fs_write_meta_page(struct page *page, | 
 | 				struct writeback_control *wbc) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_P_SB(page); | 
 |  | 
 | 	trace_f2fs_writepage(page, META); | 
 |  | 
 | 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) | 
 | 		goto redirty_out; | 
 | 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) | 
 | 		goto redirty_out; | 
 | 	if (unlikely(f2fs_cp_error(sbi))) | 
 | 		goto redirty_out; | 
 |  | 
 | 	f2fs_wait_on_page_writeback(page, META); | 
 | 	write_meta_page(sbi, page); | 
 | 	dec_page_count(sbi, F2FS_DIRTY_META); | 
 | 	unlock_page(page); | 
 |  | 
 | 	if (wbc->for_reclaim) | 
 | 		f2fs_submit_merged_bio(sbi, META, WRITE); | 
 | 	return 0; | 
 |  | 
 | redirty_out: | 
 | 	redirty_page_for_writepage(wbc, page); | 
 | 	return AOP_WRITEPAGE_ACTIVATE; | 
 | } | 
 |  | 
 | static int f2fs_write_meta_pages(struct address_space *mapping, | 
 | 				struct writeback_control *wbc) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); | 
 | 	long diff, written; | 
 |  | 
 | 	trace_f2fs_writepages(mapping->host, wbc, META); | 
 |  | 
 | 	/* collect a number of dirty meta pages and write together */ | 
 | 	if (wbc->for_kupdate || | 
 | 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) | 
 | 		goto skip_write; | 
 |  | 
 | 	/* if mounting is failed, skip writing node pages */ | 
 | 	mutex_lock(&sbi->cp_mutex); | 
 | 	diff = nr_pages_to_write(sbi, META, wbc); | 
 | 	written = sync_meta_pages(sbi, META, wbc->nr_to_write); | 
 | 	mutex_unlock(&sbi->cp_mutex); | 
 | 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); | 
 | 	return 0; | 
 |  | 
 | skip_write: | 
 | 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); | 
 | 	return 0; | 
 | } | 
 |  | 
 | long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, | 
 | 						long nr_to_write) | 
 | { | 
 | 	struct address_space *mapping = META_MAPPING(sbi); | 
 | 	pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX; | 
 | 	struct pagevec pvec; | 
 | 	long nwritten = 0; | 
 | 	struct writeback_control wbc = { | 
 | 		.for_reclaim = 0, | 
 | 	}; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 |  | 
 | 	while (index <= end) { | 
 | 		int i, nr_pages; | 
 | 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
 | 				PAGECACHE_TAG_DIRTY, | 
 | 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 
 | 		if (unlikely(nr_pages == 0)) | 
 | 			break; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			if (prev == LONG_MAX) | 
 | 				prev = page->index - 1; | 
 | 			if (nr_to_write != LONG_MAX && page->index != prev + 1) { | 
 | 				pagevec_release(&pvec); | 
 | 				goto stop; | 
 | 			} | 
 |  | 
 | 			lock_page(page); | 
 |  | 
 | 			if (unlikely(page->mapping != mapping)) { | 
 | continue_unlock: | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 | 			if (!PageDirty(page)) { | 
 | 				/* someone wrote it for us */ | 
 | 				goto continue_unlock; | 
 | 			} | 
 |  | 
 | 			if (!clear_page_dirty_for_io(page)) | 
 | 				goto continue_unlock; | 
 |  | 
 | 			if (mapping->a_ops->writepage(page, &wbc)) { | 
 | 				unlock_page(page); | 
 | 				break; | 
 | 			} | 
 | 			nwritten++; | 
 | 			prev = page->index; | 
 | 			if (unlikely(nwritten >= nr_to_write)) | 
 | 				break; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | stop: | 
 | 	if (nwritten) | 
 | 		f2fs_submit_merged_bio(sbi, type, WRITE); | 
 |  | 
 | 	return nwritten; | 
 | } | 
 |  | 
 | static int f2fs_set_meta_page_dirty(struct page *page) | 
 | { | 
 | 	trace_f2fs_set_page_dirty(page, META); | 
 |  | 
 | 	SetPageUptodate(page); | 
 | 	if (!PageDirty(page)) { | 
 | 		__set_page_dirty_nobuffers(page); | 
 | 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); | 
 | 		SetPagePrivate(page); | 
 | 		f2fs_trace_pid(page); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | const struct address_space_operations f2fs_meta_aops = { | 
 | 	.writepage	= f2fs_write_meta_page, | 
 | 	.writepages	= f2fs_write_meta_pages, | 
 | 	.set_page_dirty	= f2fs_set_meta_page_dirty, | 
 | 	.invalidatepage = f2fs_invalidate_page, | 
 | 	.releasepage	= f2fs_release_page, | 
 | }; | 
 |  | 
 | static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) | 
 | { | 
 | 	struct inode_management *im = &sbi->im[type]; | 
 | 	struct ino_entry *e, *tmp; | 
 |  | 
 | 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); | 
 | retry: | 
 | 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); | 
 |  | 
 | 	spin_lock(&im->ino_lock); | 
 | 	e = radix_tree_lookup(&im->ino_root, ino); | 
 | 	if (!e) { | 
 | 		e = tmp; | 
 | 		if (radix_tree_insert(&im->ino_root, ino, e)) { | 
 | 			spin_unlock(&im->ino_lock); | 
 | 			radix_tree_preload_end(); | 
 | 			goto retry; | 
 | 		} | 
 | 		memset(e, 0, sizeof(struct ino_entry)); | 
 | 		e->ino = ino; | 
 |  | 
 | 		list_add_tail(&e->list, &im->ino_list); | 
 | 		if (type != ORPHAN_INO) | 
 | 			im->ino_num++; | 
 | 	} | 
 | 	spin_unlock(&im->ino_lock); | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	if (e != tmp) | 
 | 		kmem_cache_free(ino_entry_slab, tmp); | 
 | } | 
 |  | 
 | static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) | 
 | { | 
 | 	struct inode_management *im = &sbi->im[type]; | 
 | 	struct ino_entry *e; | 
 |  | 
 | 	spin_lock(&im->ino_lock); | 
 | 	e = radix_tree_lookup(&im->ino_root, ino); | 
 | 	if (e) { | 
 | 		list_del(&e->list); | 
 | 		radix_tree_delete(&im->ino_root, ino); | 
 | 		im->ino_num--; | 
 | 		spin_unlock(&im->ino_lock); | 
 | 		kmem_cache_free(ino_entry_slab, e); | 
 | 		return; | 
 | 	} | 
 | 	spin_unlock(&im->ino_lock); | 
 | } | 
 |  | 
 | void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) | 
 | { | 
 | 	/* add new dirty ino entry into list */ | 
 | 	__add_ino_entry(sbi, ino, type); | 
 | } | 
 |  | 
 | void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) | 
 | { | 
 | 	/* remove dirty ino entry from list */ | 
 | 	__remove_ino_entry(sbi, ino, type); | 
 | } | 
 |  | 
 | /* mode should be APPEND_INO or UPDATE_INO */ | 
 | bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) | 
 | { | 
 | 	struct inode_management *im = &sbi->im[mode]; | 
 | 	struct ino_entry *e; | 
 |  | 
 | 	spin_lock(&im->ino_lock); | 
 | 	e = radix_tree_lookup(&im->ino_root, ino); | 
 | 	spin_unlock(&im->ino_lock); | 
 | 	return e ? true : false; | 
 | } | 
 |  | 
 | void release_dirty_inode(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct ino_entry *e, *tmp; | 
 | 	int i; | 
 |  | 
 | 	for (i = APPEND_INO; i <= UPDATE_INO; i++) { | 
 | 		struct inode_management *im = &sbi->im[i]; | 
 |  | 
 | 		spin_lock(&im->ino_lock); | 
 | 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) { | 
 | 			list_del(&e->list); | 
 | 			radix_tree_delete(&im->ino_root, e->ino); | 
 | 			kmem_cache_free(ino_entry_slab, e); | 
 | 			im->ino_num--; | 
 | 		} | 
 | 		spin_unlock(&im->ino_lock); | 
 | 	} | 
 | } | 
 |  | 
 | int acquire_orphan_inode(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct inode_management *im = &sbi->im[ORPHAN_INO]; | 
 | 	int err = 0; | 
 |  | 
 | 	spin_lock(&im->ino_lock); | 
 | 	if (unlikely(im->ino_num >= sbi->max_orphans)) | 
 | 		err = -ENOSPC; | 
 | 	else | 
 | 		im->ino_num++; | 
 | 	spin_unlock(&im->ino_lock); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | void release_orphan_inode(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct inode_management *im = &sbi->im[ORPHAN_INO]; | 
 |  | 
 | 	spin_lock(&im->ino_lock); | 
 | 	f2fs_bug_on(sbi, im->ino_num == 0); | 
 | 	im->ino_num--; | 
 | 	spin_unlock(&im->ino_lock); | 
 | } | 
 |  | 
 | void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	/* add new orphan ino entry into list */ | 
 | 	__add_ino_entry(sbi, ino, ORPHAN_INO); | 
 | } | 
 |  | 
 | void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	/* remove orphan entry from orphan list */ | 
 | 	__remove_ino_entry(sbi, ino, ORPHAN_INO); | 
 | } | 
 |  | 
 | static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	struct inode *inode; | 
 |  | 
 | 	inode = f2fs_iget(sbi->sb, ino); | 
 | 	if (IS_ERR(inode)) { | 
 | 		/* | 
 | 		 * there should be a bug that we can't find the entry | 
 | 		 * to orphan inode. | 
 | 		 */ | 
 | 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); | 
 | 		return PTR_ERR(inode); | 
 | 	} | 
 |  | 
 | 	clear_nlink(inode); | 
 |  | 
 | 	/* truncate all the data during iput */ | 
 | 	iput(inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int recover_orphan_inodes(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	block_t start_blk, orphan_blocks, i, j; | 
 | 	int err; | 
 |  | 
 | 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) | 
 | 		return 0; | 
 |  | 
 | 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); | 
 | 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); | 
 |  | 
 | 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); | 
 |  | 
 | 	for (i = 0; i < orphan_blocks; i++) { | 
 | 		struct page *page = get_meta_page(sbi, start_blk + i); | 
 | 		struct f2fs_orphan_block *orphan_blk; | 
 |  | 
 | 		orphan_blk = (struct f2fs_orphan_block *)page_address(page); | 
 | 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { | 
 | 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]); | 
 | 			err = recover_orphan_inode(sbi, ino); | 
 | 			if (err) { | 
 | 				f2fs_put_page(page, 1); | 
 | 				return err; | 
 | 			} | 
 | 		} | 
 | 		f2fs_put_page(page, 1); | 
 | 	} | 
 | 	/* clear Orphan Flag */ | 
 | 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) | 
 | { | 
 | 	struct list_head *head; | 
 | 	struct f2fs_orphan_block *orphan_blk = NULL; | 
 | 	unsigned int nentries = 0; | 
 | 	unsigned short index = 1; | 
 | 	unsigned short orphan_blocks; | 
 | 	struct page *page = NULL; | 
 | 	struct ino_entry *orphan = NULL; | 
 | 	struct inode_management *im = &sbi->im[ORPHAN_INO]; | 
 |  | 
 | 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); | 
 |  | 
 | 	/* | 
 | 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the | 
 | 	 * orphan inode operations are covered under f2fs_lock_op(). | 
 | 	 * And, spin_lock should be avoided due to page operations below. | 
 | 	 */ | 
 | 	head = &im->ino_list; | 
 |  | 
 | 	/* loop for each orphan inode entry and write them in Jornal block */ | 
 | 	list_for_each_entry(orphan, head, list) { | 
 | 		if (!page) { | 
 | 			page = grab_meta_page(sbi, start_blk++); | 
 | 			orphan_blk = | 
 | 				(struct f2fs_orphan_block *)page_address(page); | 
 | 			memset(orphan_blk, 0, sizeof(*orphan_blk)); | 
 | 		} | 
 |  | 
 | 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); | 
 |  | 
 | 		if (nentries == F2FS_ORPHANS_PER_BLOCK) { | 
 | 			/* | 
 | 			 * an orphan block is full of 1020 entries, | 
 | 			 * then we need to flush current orphan blocks | 
 | 			 * and bring another one in memory | 
 | 			 */ | 
 | 			orphan_blk->blk_addr = cpu_to_le16(index); | 
 | 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks); | 
 | 			orphan_blk->entry_count = cpu_to_le32(nentries); | 
 | 			set_page_dirty(page); | 
 | 			f2fs_put_page(page, 1); | 
 | 			index++; | 
 | 			nentries = 0; | 
 | 			page = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (page) { | 
 | 		orphan_blk->blk_addr = cpu_to_le16(index); | 
 | 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks); | 
 | 		orphan_blk->entry_count = cpu_to_le32(nentries); | 
 | 		set_page_dirty(page); | 
 | 		f2fs_put_page(page, 1); | 
 | 	} | 
 | } | 
 |  | 
 | static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, | 
 | 				block_t cp_addr, unsigned long long *version) | 
 | { | 
 | 	struct page *cp_page_1, *cp_page_2 = NULL; | 
 | 	unsigned long blk_size = sbi->blocksize; | 
 | 	struct f2fs_checkpoint *cp_block; | 
 | 	unsigned long long cur_version = 0, pre_version = 0; | 
 | 	size_t crc_offset; | 
 | 	__u32 crc = 0; | 
 |  | 
 | 	/* Read the 1st cp block in this CP pack */ | 
 | 	cp_page_1 = get_meta_page(sbi, cp_addr); | 
 |  | 
 | 	/* get the version number */ | 
 | 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); | 
 | 	crc_offset = le32_to_cpu(cp_block->checksum_offset); | 
 | 	if (crc_offset >= blk_size) | 
 | 		goto invalid_cp1; | 
 |  | 
 | 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); | 
 | 	if (!f2fs_crc_valid(crc, cp_block, crc_offset)) | 
 | 		goto invalid_cp1; | 
 |  | 
 | 	pre_version = cur_cp_version(cp_block); | 
 |  | 
 | 	/* Read the 2nd cp block in this CP pack */ | 
 | 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; | 
 | 	cp_page_2 = get_meta_page(sbi, cp_addr); | 
 |  | 
 | 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); | 
 | 	crc_offset = le32_to_cpu(cp_block->checksum_offset); | 
 | 	if (crc_offset >= blk_size) | 
 | 		goto invalid_cp2; | 
 |  | 
 | 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); | 
 | 	if (!f2fs_crc_valid(crc, cp_block, crc_offset)) | 
 | 		goto invalid_cp2; | 
 |  | 
 | 	cur_version = cur_cp_version(cp_block); | 
 |  | 
 | 	if (cur_version == pre_version) { | 
 | 		*version = cur_version; | 
 | 		f2fs_put_page(cp_page_2, 1); | 
 | 		return cp_page_1; | 
 | 	} | 
 | invalid_cp2: | 
 | 	f2fs_put_page(cp_page_2, 1); | 
 | invalid_cp1: | 
 | 	f2fs_put_page(cp_page_1, 1); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int get_valid_checkpoint(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_checkpoint *cp_block; | 
 | 	struct f2fs_super_block *fsb = sbi->raw_super; | 
 | 	struct page *cp1, *cp2, *cur_page; | 
 | 	unsigned long blk_size = sbi->blocksize; | 
 | 	unsigned long long cp1_version = 0, cp2_version = 0; | 
 | 	unsigned long long cp_start_blk_no; | 
 | 	unsigned int cp_blks = 1 + __cp_payload(sbi); | 
 | 	block_t cp_blk_no; | 
 | 	int i; | 
 |  | 
 | 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); | 
 | 	if (!sbi->ckpt) | 
 | 		return -ENOMEM; | 
 | 	/* | 
 | 	 * Finding out valid cp block involves read both | 
 | 	 * sets( cp pack1 and cp pack 2) | 
 | 	 */ | 
 | 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); | 
 | 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); | 
 |  | 
 | 	/* The second checkpoint pack should start at the next segment */ | 
 | 	cp_start_blk_no += ((unsigned long long)1) << | 
 | 				le32_to_cpu(fsb->log_blocks_per_seg); | 
 | 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); | 
 |  | 
 | 	if (cp1 && cp2) { | 
 | 		if (ver_after(cp2_version, cp1_version)) | 
 | 			cur_page = cp2; | 
 | 		else | 
 | 			cur_page = cp1; | 
 | 	} else if (cp1) { | 
 | 		cur_page = cp1; | 
 | 	} else if (cp2) { | 
 | 		cur_page = cp2; | 
 | 	} else { | 
 | 		goto fail_no_cp; | 
 | 	} | 
 |  | 
 | 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page); | 
 | 	memcpy(sbi->ckpt, cp_block, blk_size); | 
 |  | 
 | 	if (cp_blks <= 1) | 
 | 		goto done; | 
 |  | 
 | 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); | 
 | 	if (cur_page == cp2) | 
 | 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); | 
 |  | 
 | 	for (i = 1; i < cp_blks; i++) { | 
 | 		void *sit_bitmap_ptr; | 
 | 		unsigned char *ckpt = (unsigned char *)sbi->ckpt; | 
 |  | 
 | 		cur_page = get_meta_page(sbi, cp_blk_no + i); | 
 | 		sit_bitmap_ptr = page_address(cur_page); | 
 | 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); | 
 | 		f2fs_put_page(cur_page, 1); | 
 | 	} | 
 | done: | 
 | 	f2fs_put_page(cp1, 1); | 
 | 	f2fs_put_page(cp2, 1); | 
 | 	return 0; | 
 |  | 
 | fail_no_cp: | 
 | 	kfree(sbi->ckpt); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int __add_dirty_inode(struct inode *inode, struct inode_entry *new) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 |  | 
 | 	if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) | 
 | 		return -EEXIST; | 
 |  | 
 | 	set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); | 
 | 	F2FS_I(inode)->dirty_dir = new; | 
 | 	list_add_tail(&new->list, &sbi->dir_inode_list); | 
 | 	stat_inc_dirty_dir(sbi); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void update_dirty_page(struct inode *inode, struct page *page) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct inode_entry *new; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && | 
 | 			!S_ISLNK(inode->i_mode)) | 
 | 		return; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) { | 
 | 		inode_inc_dirty_pages(inode); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); | 
 | 	new->inode = inode; | 
 | 	INIT_LIST_HEAD(&new->list); | 
 |  | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 | 	ret = __add_dirty_inode(inode, new); | 
 | 	inode_inc_dirty_pages(inode); | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 |  | 
 | 	if (ret) | 
 | 		kmem_cache_free(inode_entry_slab, new); | 
 | out: | 
 | 	SetPagePrivate(page); | 
 | 	f2fs_trace_pid(page); | 
 | } | 
 |  | 
 | void add_dirty_dir_inode(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct inode_entry *new = | 
 | 			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); | 
 | 	int ret = 0; | 
 |  | 
 | 	new->inode = inode; | 
 | 	INIT_LIST_HEAD(&new->list); | 
 |  | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 | 	ret = __add_dirty_inode(inode, new); | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 |  | 
 | 	if (ret) | 
 | 		kmem_cache_free(inode_entry_slab, new); | 
 | } | 
 |  | 
 | void remove_dirty_dir_inode(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct inode_entry *entry; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 | 	if (get_dirty_pages(inode) || | 
 | 			!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { | 
 | 		spin_unlock(&sbi->dir_inode_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	entry = F2FS_I(inode)->dirty_dir; | 
 | 	list_del(&entry->list); | 
 | 	F2FS_I(inode)->dirty_dir = NULL; | 
 | 	clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); | 
 | 	stat_dec_dirty_dir(sbi); | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 | 	kmem_cache_free(inode_entry_slab, entry); | 
 |  | 
 | 	/* Only from the recovery routine */ | 
 | 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { | 
 | 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); | 
 | 		iput(inode); | 
 | 	} | 
 | } | 
 |  | 
 | void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct list_head *head; | 
 | 	struct inode_entry *entry; | 
 | 	struct inode *inode; | 
 | retry: | 
 | 	if (unlikely(f2fs_cp_error(sbi))) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&sbi->dir_inode_lock); | 
 |  | 
 | 	head = &sbi->dir_inode_list; | 
 | 	if (list_empty(head)) { | 
 | 		spin_unlock(&sbi->dir_inode_lock); | 
 | 		return; | 
 | 	} | 
 | 	entry = list_entry(head->next, struct inode_entry, list); | 
 | 	inode = igrab(entry->inode); | 
 | 	spin_unlock(&sbi->dir_inode_lock); | 
 | 	if (inode) { | 
 | 		filemap_fdatawrite(inode->i_mapping); | 
 | 		iput(inode); | 
 | 	} else { | 
 | 		/* | 
 | 		 * We should submit bio, since it exists several | 
 | 		 * wribacking dentry pages in the freeing inode. | 
 | 		 */ | 
 | 		f2fs_submit_merged_bio(sbi, DATA, WRITE); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	goto retry; | 
 | } | 
 |  | 
 | /* | 
 |  * Freeze all the FS-operations for checkpoint. | 
 |  */ | 
 | static int block_operations(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = WB_SYNC_ALL, | 
 | 		.nr_to_write = LONG_MAX, | 
 | 		.for_reclaim = 0, | 
 | 	}; | 
 | 	struct blk_plug plug; | 
 | 	int err = 0; | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | retry_flush_dents: | 
 | 	f2fs_lock_all(sbi); | 
 | 	/* write all the dirty dentry pages */ | 
 | 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) { | 
 | 		f2fs_unlock_all(sbi); | 
 | 		sync_dirty_dir_inodes(sbi); | 
 | 		if (unlikely(f2fs_cp_error(sbi))) { | 
 | 			err = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 		goto retry_flush_dents; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * POR: we should ensure that there are no dirty node pages | 
 | 	 * until finishing nat/sit flush. | 
 | 	 */ | 
 | retry_flush_nodes: | 
 | 	down_write(&sbi->node_write); | 
 |  | 
 | 	if (get_pages(sbi, F2FS_DIRTY_NODES)) { | 
 | 		up_write(&sbi->node_write); | 
 | 		sync_node_pages(sbi, 0, &wbc); | 
 | 		if (unlikely(f2fs_cp_error(sbi))) { | 
 | 			f2fs_unlock_all(sbi); | 
 | 			err = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 		goto retry_flush_nodes; | 
 | 	} | 
 | out: | 
 | 	blk_finish_plug(&plug); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void unblock_operations(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	up_write(&sbi->node_write); | 
 | 	f2fs_unlock_all(sbi); | 
 | } | 
 |  | 
 | static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	for (;;) { | 
 | 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); | 
 |  | 
 | 		if (!get_pages(sbi, F2FS_WRITEBACK)) | 
 | 			break; | 
 |  | 
 | 		io_schedule(); | 
 | 	} | 
 | 	finish_wait(&sbi->cp_wait, &wait); | 
 | } | 
 |  | 
 | static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) | 
 | { | 
 | 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; | 
 | 	nid_t last_nid = nm_i->next_scan_nid; | 
 | 	block_t start_blk; | 
 | 	unsigned int data_sum_blocks, orphan_blocks; | 
 | 	__u32 crc32 = 0; | 
 | 	int i; | 
 | 	int cp_payload_blks = __cp_payload(sbi); | 
 | 	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg); | 
 | 	bool invalidate = false; | 
 |  | 
 | 	/* | 
 | 	 * This avoids to conduct wrong roll-forward operations and uses | 
 | 	 * metapages, so should be called prior to sync_meta_pages below. | 
 | 	 */ | 
 | 	if (discard_next_dnode(sbi, discard_blk)) | 
 | 		invalidate = true; | 
 |  | 
 | 	/* Flush all the NAT/SIT pages */ | 
 | 	while (get_pages(sbi, F2FS_DIRTY_META)) { | 
 | 		sync_meta_pages(sbi, META, LONG_MAX); | 
 | 		if (unlikely(f2fs_cp_error(sbi))) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	next_free_nid(sbi, &last_nid); | 
 |  | 
 | 	/* | 
 | 	 * modify checkpoint | 
 | 	 * version number is already updated | 
 | 	 */ | 
 | 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); | 
 | 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); | 
 | 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); | 
 | 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { | 
 | 		ckpt->cur_node_segno[i] = | 
 | 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); | 
 | 		ckpt->cur_node_blkoff[i] = | 
 | 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); | 
 | 		ckpt->alloc_type[i + CURSEG_HOT_NODE] = | 
 | 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); | 
 | 	} | 
 | 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { | 
 | 		ckpt->cur_data_segno[i] = | 
 | 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); | 
 | 		ckpt->cur_data_blkoff[i] = | 
 | 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); | 
 | 		ckpt->alloc_type[i + CURSEG_HOT_DATA] = | 
 | 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); | 
 | 	} | 
 |  | 
 | 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); | 
 | 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); | 
 | 	ckpt->next_free_nid = cpu_to_le32(last_nid); | 
 |  | 
 | 	/* 2 cp  + n data seg summary + orphan inode blocks */ | 
 | 	data_sum_blocks = npages_for_summary_flush(sbi, false); | 
 | 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE) | 
 | 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); | 
 | 	else | 
 | 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); | 
 |  | 
 | 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); | 
 | 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + | 
 | 			orphan_blocks); | 
 |  | 
 | 	if (__remain_node_summaries(cpc->reason)) | 
 | 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ | 
 | 				cp_payload_blks + data_sum_blocks + | 
 | 				orphan_blocks + NR_CURSEG_NODE_TYPE); | 
 | 	else | 
 | 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + | 
 | 				cp_payload_blks + data_sum_blocks + | 
 | 				orphan_blocks); | 
 |  | 
 | 	if (cpc->reason == CP_UMOUNT) | 
 | 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); | 
 | 	else | 
 | 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); | 
 |  | 
 | 	if (cpc->reason == CP_FASTBOOT) | 
 | 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); | 
 | 	else | 
 | 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); | 
 |  | 
 | 	if (orphan_num) | 
 | 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); | 
 | 	else | 
 | 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); | 
 |  | 
 | 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) | 
 | 		set_ckpt_flags(ckpt, CP_FSCK_FLAG); | 
 |  | 
 | 	/* update SIT/NAT bitmap */ | 
 | 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); | 
 | 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); | 
 |  | 
 | 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); | 
 | 	*((__le32 *)((unsigned char *)ckpt + | 
 | 				le32_to_cpu(ckpt->checksum_offset))) | 
 | 				= cpu_to_le32(crc32); | 
 |  | 
 | 	start_blk = __start_cp_addr(sbi); | 
 |  | 
 | 	/* need to wait for end_io results */ | 
 | 	wait_on_all_pages_writeback(sbi); | 
 | 	if (unlikely(f2fs_cp_error(sbi))) | 
 | 		return; | 
 |  | 
 | 	/* write out checkpoint buffer at block 0 */ | 
 | 	update_meta_page(sbi, ckpt, start_blk++); | 
 |  | 
 | 	for (i = 1; i < 1 + cp_payload_blks; i++) | 
 | 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, | 
 | 							start_blk++); | 
 |  | 
 | 	if (orphan_num) { | 
 | 		write_orphan_inodes(sbi, start_blk); | 
 | 		start_blk += orphan_blocks; | 
 | 	} | 
 |  | 
 | 	write_data_summaries(sbi, start_blk); | 
 | 	start_blk += data_sum_blocks; | 
 | 	if (__remain_node_summaries(cpc->reason)) { | 
 | 		write_node_summaries(sbi, start_blk); | 
 | 		start_blk += NR_CURSEG_NODE_TYPE; | 
 | 	} | 
 |  | 
 | 	/* writeout checkpoint block */ | 
 | 	update_meta_page(sbi, ckpt, start_blk); | 
 |  | 
 | 	/* wait for previous submitted node/meta pages writeback */ | 
 | 	wait_on_all_pages_writeback(sbi); | 
 |  | 
 | 	if (unlikely(f2fs_cp_error(sbi))) | 
 | 		return; | 
 |  | 
 | 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); | 
 | 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); | 
 |  | 
 | 	/* update user_block_counts */ | 
 | 	sbi->last_valid_block_count = sbi->total_valid_block_count; | 
 | 	sbi->alloc_valid_block_count = 0; | 
 |  | 
 | 	/* Here, we only have one bio having CP pack */ | 
 | 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX); | 
 |  | 
 | 	/* wait for previous submitted meta pages writeback */ | 
 | 	wait_on_all_pages_writeback(sbi); | 
 |  | 
 | 	/* | 
 | 	 * invalidate meta page which is used temporarily for zeroing out | 
 | 	 * block at the end of warm node chain. | 
 | 	 */ | 
 | 	if (invalidate) | 
 | 		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk, | 
 | 								discard_blk); | 
 |  | 
 | 	release_dirty_inode(sbi); | 
 |  | 
 | 	if (unlikely(f2fs_cp_error(sbi))) | 
 | 		return; | 
 |  | 
 | 	clear_prefree_segments(sbi, cpc); | 
 | 	clear_sbi_flag(sbi, SBI_IS_DIRTY); | 
 | } | 
 |  | 
 | /* | 
 |  * We guarantee that this checkpoint procedure will not fail. | 
 |  */ | 
 | void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) | 
 | { | 
 | 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
 | 	unsigned long long ckpt_ver; | 
 |  | 
 | 	mutex_lock(&sbi->cp_mutex); | 
 |  | 
 | 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && | 
 | 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || | 
 | 		(cpc->reason == CP_DISCARD && !sbi->discard_blks))) | 
 | 		goto out; | 
 | 	if (unlikely(f2fs_cp_error(sbi))) | 
 | 		goto out; | 
 | 	if (f2fs_readonly(sbi->sb)) | 
 | 		goto out; | 
 |  | 
 | 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); | 
 |  | 
 | 	if (block_operations(sbi)) | 
 | 		goto out; | 
 |  | 
 | 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); | 
 |  | 
 | 	f2fs_submit_merged_bio(sbi, DATA, WRITE); | 
 | 	f2fs_submit_merged_bio(sbi, NODE, WRITE); | 
 | 	f2fs_submit_merged_bio(sbi, META, WRITE); | 
 |  | 
 | 	/* | 
 | 	 * update checkpoint pack index | 
 | 	 * Increase the version number so that | 
 | 	 * SIT entries and seg summaries are written at correct place | 
 | 	 */ | 
 | 	ckpt_ver = cur_cp_version(ckpt); | 
 | 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); | 
 |  | 
 | 	/* write cached NAT/SIT entries to NAT/SIT area */ | 
 | 	flush_nat_entries(sbi); | 
 | 	flush_sit_entries(sbi, cpc); | 
 |  | 
 | 	/* unlock all the fs_lock[] in do_checkpoint() */ | 
 | 	do_checkpoint(sbi, cpc); | 
 |  | 
 | 	unblock_operations(sbi); | 
 | 	stat_inc_cp_count(sbi->stat_info); | 
 |  | 
 | 	if (cpc->reason == CP_RECOVERY) | 
 | 		f2fs_msg(sbi->sb, KERN_NOTICE, | 
 | 			"checkpoint: version = %llx", ckpt_ver); | 
 |  | 
 | 	/* do checkpoint periodically */ | 
 | 	sbi->cp_expires = round_jiffies_up(jiffies + HZ * sbi->cp_interval); | 
 | out: | 
 | 	mutex_unlock(&sbi->cp_mutex); | 
 | 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); | 
 | } | 
 |  | 
 | void init_ino_entry_info(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAX_INO_ENTRY; i++) { | 
 | 		struct inode_management *im = &sbi->im[i]; | 
 |  | 
 | 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); | 
 | 		spin_lock_init(&im->ino_lock); | 
 | 		INIT_LIST_HEAD(&im->ino_list); | 
 | 		im->ino_num = 0; | 
 | 	} | 
 |  | 
 | 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - | 
 | 			NR_CURSEG_TYPE - __cp_payload(sbi)) * | 
 | 				F2FS_ORPHANS_PER_BLOCK; | 
 | } | 
 |  | 
 | int __init create_checkpoint_caches(void) | 
 | { | 
 | 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", | 
 | 			sizeof(struct ino_entry)); | 
 | 	if (!ino_entry_slab) | 
 | 		return -ENOMEM; | 
 | 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", | 
 | 			sizeof(struct inode_entry)); | 
 | 	if (!inode_entry_slab) { | 
 | 		kmem_cache_destroy(ino_entry_slab); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void destroy_checkpoint_caches(void) | 
 | { | 
 | 	kmem_cache_destroy(ino_entry_slab); | 
 | 	kmem_cache_destroy(inode_entry_slab); | 
 | } |