blob: 26795adab3ad9a97538b5f3c39c2bc9acb6387a8 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070055#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
Eric Dumazet5517d862007-05-08 00:32:57 -070057#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070058#include <asm/unistd.h>
59
60/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080061 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
70/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
Ingo Molnar6aa645e2007-07-09 18:51:58 +020094#define NICE_0_LOAD SCHED_LOAD_SCALE
95#define NICE_0_SHIFT SCHED_LOAD_SHIFT
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097/*
98 * These are the 'tuning knobs' of the scheduler:
99 *
100 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
101 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
102 * Timeslices get refilled after they expire.
103 */
104#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
105#define DEF_TIMESLICE (100 * HZ / 1000)
106#define ON_RUNQUEUE_WEIGHT 30
107#define CHILD_PENALTY 95
108#define PARENT_PENALTY 100
109#define EXIT_WEIGHT 3
110#define PRIO_BONUS_RATIO 25
111#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
112#define INTERACTIVE_DELTA 2
113#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
114#define STARVATION_LIMIT (MAX_SLEEP_AVG)
115#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
116
117/*
118 * If a task is 'interactive' then we reinsert it in the active
119 * array after it has expired its current timeslice. (it will not
120 * continue to run immediately, it will still roundrobin with
121 * other interactive tasks.)
122 *
123 * This part scales the interactivity limit depending on niceness.
124 *
125 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
126 * Here are a few examples of different nice levels:
127 *
128 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
129 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
130 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
131 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
132 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
133 *
134 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
135 * priority range a task can explore, a value of '1' means the
136 * task is rated interactive.)
137 *
138 * Ie. nice +19 tasks can never get 'interactive' enough to be
139 * reinserted into the active array. And only heavily CPU-hog nice -20
140 * tasks will be expired. Default nice 0 tasks are somewhere between,
141 * it takes some effort for them to get interactive, but it's not
142 * too hard.
143 */
144
145#define CURRENT_BONUS(p) \
146 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
147 MAX_SLEEP_AVG)
148
149#define GRANULARITY (10 * HZ / 1000 ? : 1)
150
151#ifdef CONFIG_SMP
152#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
154 num_online_cpus())
155#else
156#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
157 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
158#endif
159
160#define SCALE(v1,v1_max,v2_max) \
161 (v1) * (v2_max) / (v1_max)
162
163#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800164 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
165 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166
167#define TASK_INTERACTIVE(p) \
168 ((p)->prio <= (p)->static_prio - DELTA(p))
169
170#define INTERACTIVE_SLEEP(p) \
171 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
172 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
173
174#define TASK_PREEMPTS_CURR(p, rq) \
Andrew Mortond5f9f942007-05-08 20:27:06 -0700175 ((p)->prio < (rq)->curr->prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700178 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179
Peter Williams2dd73a42006-06-27 02:54:34 -0700180static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181{
Peter Williams2dd73a42006-06-27 02:54:34 -0700182 if (static_prio < NICE_TO_PRIO(0))
183 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700185 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
Peter Williams2dd73a42006-06-27 02:54:34 -0700187
Eric Dumazet5517d862007-05-08 00:32:57 -0700188#ifdef CONFIG_SMP
189/*
190 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
191 * Since cpu_power is a 'constant', we can use a reciprocal divide.
192 */
193static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
194{
195 return reciprocal_divide(load, sg->reciprocal_cpu_power);
196}
197
198/*
199 * Each time a sched group cpu_power is changed,
200 * we must compute its reciprocal value
201 */
202static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
203{
204 sg->__cpu_power += val;
205 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
206}
207#endif
208
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700209/*
210 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
211 * to time slice values: [800ms ... 100ms ... 5ms]
212 *
213 * The higher a thread's priority, the bigger timeslices
214 * it gets during one round of execution. But even the lowest
215 * priority thread gets MIN_TIMESLICE worth of execution time.
216 */
217
Ingo Molnar36c8b582006-07-03 00:25:41 -0700218static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700219{
220 return static_prio_timeslice(p->static_prio);
221}
222
Ingo Molnare05606d2007-07-09 18:51:59 +0200223static inline int rt_policy(int policy)
224{
225 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
226 return 1;
227 return 0;
228}
229
230static inline int task_has_rt_policy(struct task_struct *p)
231{
232 return rt_policy(p->policy);
233}
234
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200236 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200238struct rt_prio_array {
239 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
240 struct list_head queue[MAX_RT_PRIO];
241};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200243struct load_stat {
244 struct load_weight load;
245 u64 load_update_start, load_update_last;
246 unsigned long delta_fair, delta_exec, delta_stat;
247};
248
249/* CFS-related fields in a runqueue */
250struct cfs_rq {
251 struct load_weight load;
252 unsigned long nr_running;
253
254 s64 fair_clock;
255 u64 exec_clock;
256 s64 wait_runtime;
257 u64 sleeper_bonus;
258 unsigned long wait_runtime_overruns, wait_runtime_underruns;
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262 struct rb_node *rb_load_balance_curr;
263#ifdef CONFIG_FAIR_GROUP_SCHED
264 /* 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr;
268 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
269
270 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
271 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
272 * (like users, containers etc.)
273 *
274 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
275 * list is used during load balance.
276 */
277 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
278#endif
279};
280
281/* Real-Time classes' related field in a runqueue: */
282struct rt_rq {
283 struct rt_prio_array active;
284 int rt_load_balance_idx;
285 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
286};
287
288/*
289 * The prio-array type of the old scheduler:
290 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291struct prio_array {
292 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700293 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294 struct list_head queue[MAX_PRIO];
295};
296
297/*
298 * This is the main, per-CPU runqueue data structure.
299 *
300 * Locking rule: those places that want to lock multiple runqueues
301 * (such as the load balancing or the thread migration code), lock
302 * acquire operations must be ordered by ascending &runqueue.
303 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700304struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200305 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700306
307 /*
308 * nr_running and cpu_load should be in the same cacheline because
309 * remote CPUs use both these fields when doing load calculation.
310 */
311 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700312 unsigned long raw_weighted_load;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200313 #define CPU_LOAD_IDX_MAX 5
314 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700315 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700316#ifdef CONFIG_NO_HZ
317 unsigned char in_nohz_recently;
318#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200319 struct load_stat ls; /* capture load from *all* tasks on this cpu */
320 unsigned long nr_load_updates;
321 u64 nr_switches;
322
323 struct cfs_rq cfs;
324#ifdef CONFIG_FAIR_GROUP_SCHED
325 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700326#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200327 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328
329 /*
330 * This is part of a global counter where only the total sum
331 * over all CPUs matters. A task can increase this counter on
332 * one CPU and if it got migrated afterwards it may decrease
333 * it on another CPU. Always updated under the runqueue lock:
334 */
335 unsigned long nr_uninterruptible;
336
337 unsigned long expired_timestamp;
Mike Galbraithb18ec802006-12-10 02:20:31 -0800338 unsigned long long most_recent_timestamp;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200339
Ingo Molnar36c8b582006-07-03 00:25:41 -0700340 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800341 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700342 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200343
Ingo Molnar70b97a72006-07-03 00:25:42 -0700344 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700345 int best_expired_prio;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200346
347 u64 clock, prev_clock_raw;
348 s64 clock_max_delta;
349
350 unsigned int clock_warps, clock_overflows;
351 unsigned int clock_unstable_events;
352
353 struct sched_class *load_balance_class;
354
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355 atomic_t nr_iowait;
356
357#ifdef CONFIG_SMP
358 struct sched_domain *sd;
359
360 /* For active balancing */
361 int active_balance;
362 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700363 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364
Ingo Molnar36c8b582006-07-03 00:25:41 -0700365 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366 struct list_head migration_queue;
367#endif
368
369#ifdef CONFIG_SCHEDSTATS
370 /* latency stats */
371 struct sched_info rq_sched_info;
372
373 /* sys_sched_yield() stats */
374 unsigned long yld_exp_empty;
375 unsigned long yld_act_empty;
376 unsigned long yld_both_empty;
377 unsigned long yld_cnt;
378
379 /* schedule() stats */
380 unsigned long sched_switch;
381 unsigned long sched_cnt;
382 unsigned long sched_goidle;
383
384 /* try_to_wake_up() stats */
385 unsigned long ttwu_cnt;
386 unsigned long ttwu_local;
387#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700388 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700389};
390
Siddha, Suresh Bc3396622007-05-08 00:33:09 -0700391static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700392static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700394static inline int cpu_of(struct rq *rq)
395{
396#ifdef CONFIG_SMP
397 return rq->cpu;
398#else
399 return 0;
400#endif
401}
402
Nick Piggin674311d2005-06-25 14:57:27 -0700403/*
Ingo Molnar20d315d2007-07-09 18:51:58 +0200404 * Per-runqueue clock, as finegrained as the platform can give us:
405 */
406static unsigned long long __rq_clock(struct rq *rq)
407{
408 u64 prev_raw = rq->prev_clock_raw;
409 u64 now = sched_clock();
410 s64 delta = now - prev_raw;
411 u64 clock = rq->clock;
412
413 /*
414 * Protect against sched_clock() occasionally going backwards:
415 */
416 if (unlikely(delta < 0)) {
417 clock++;
418 rq->clock_warps++;
419 } else {
420 /*
421 * Catch too large forward jumps too:
422 */
423 if (unlikely(delta > 2*TICK_NSEC)) {
424 clock++;
425 rq->clock_overflows++;
426 } else {
427 if (unlikely(delta > rq->clock_max_delta))
428 rq->clock_max_delta = delta;
429 clock += delta;
430 }
431 }
432
433 rq->prev_clock_raw = now;
434 rq->clock = clock;
435
436 return clock;
437}
438
439static inline unsigned long long rq_clock(struct rq *rq)
440{
441 int this_cpu = smp_processor_id();
442
443 if (this_cpu == cpu_of(rq))
444 return __rq_clock(rq);
445
446 return rq->clock;
447}
448
449/*
Nick Piggin674311d2005-06-25 14:57:27 -0700450 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700451 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700452 *
453 * The domain tree of any CPU may only be accessed from within
454 * preempt-disabled sections.
455 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700456#define for_each_domain(cpu, __sd) \
457 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458
459#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
460#define this_rq() (&__get_cpu_var(runqueues))
461#define task_rq(p) cpu_rq(task_cpu(p))
462#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
463
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200464#ifdef CONFIG_FAIR_GROUP_SCHED
465/* Change a task's ->cfs_rq if it moves across CPUs */
466static inline void set_task_cfs_rq(struct task_struct *p)
467{
468 p->se.cfs_rq = &task_rq(p)->cfs;
469}
470#else
471static inline void set_task_cfs_rq(struct task_struct *p)
472{
473}
474#endif
475
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700477# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700479#ifndef finish_arch_switch
480# define finish_arch_switch(prev) do { } while (0)
481#endif
482
483#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700484static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700485{
486 return rq->curr == p;
487}
488
Ingo Molnar70b97a72006-07-03 00:25:42 -0700489static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700490{
491}
492
Ingo Molnar70b97a72006-07-03 00:25:42 -0700493static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700494{
Ingo Molnarda04c032005-09-13 11:17:59 +0200495#ifdef CONFIG_DEBUG_SPINLOCK
496 /* this is a valid case when another task releases the spinlock */
497 rq->lock.owner = current;
498#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700499 /*
500 * If we are tracking spinlock dependencies then we have to
501 * fix up the runqueue lock - which gets 'carried over' from
502 * prev into current:
503 */
504 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
505
Nick Piggin4866cde2005-06-25 14:57:23 -0700506 spin_unlock_irq(&rq->lock);
507}
508
509#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700510static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700511{
512#ifdef CONFIG_SMP
513 return p->oncpu;
514#else
515 return rq->curr == p;
516#endif
517}
518
Ingo Molnar70b97a72006-07-03 00:25:42 -0700519static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700520{
521#ifdef CONFIG_SMP
522 /*
523 * We can optimise this out completely for !SMP, because the
524 * SMP rebalancing from interrupt is the only thing that cares
525 * here.
526 */
527 next->oncpu = 1;
528#endif
529#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
530 spin_unlock_irq(&rq->lock);
531#else
532 spin_unlock(&rq->lock);
533#endif
534}
535
Ingo Molnar70b97a72006-07-03 00:25:42 -0700536static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700537{
538#ifdef CONFIG_SMP
539 /*
540 * After ->oncpu is cleared, the task can be moved to a different CPU.
541 * We must ensure this doesn't happen until the switch is completely
542 * finished.
543 */
544 smp_wmb();
545 prev->oncpu = 0;
546#endif
547#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 local_irq_enable();
549#endif
550}
551#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552
553/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700554 * __task_rq_lock - lock the runqueue a given task resides on.
555 * Must be called interrupts disabled.
556 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700557static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700558 __acquires(rq->lock)
559{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700560 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700561
562repeat_lock_task:
563 rq = task_rq(p);
564 spin_lock(&rq->lock);
565 if (unlikely(rq != task_rq(p))) {
566 spin_unlock(&rq->lock);
567 goto repeat_lock_task;
568 }
569 return rq;
570}
571
572/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700573 * task_rq_lock - lock the runqueue a given task resides on and disable
574 * interrupts. Note the ordering: we can safely lookup the task_rq without
575 * explicitly disabling preemption.
576 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700577static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578 __acquires(rq->lock)
579{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700580 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581
582repeat_lock_task:
583 local_irq_save(*flags);
584 rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (unlikely(rq != task_rq(p))) {
587 spin_unlock_irqrestore(&rq->lock, *flags);
588 goto repeat_lock_task;
589 }
590 return rq;
591}
592
Ingo Molnar70b97a72006-07-03 00:25:42 -0700593static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700594 __releases(rq->lock)
595{
596 spin_unlock(&rq->lock);
597}
598
Ingo Molnar70b97a72006-07-03 00:25:42 -0700599static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600 __releases(rq->lock)
601{
602 spin_unlock_irqrestore(&rq->lock, *flags);
603}
604
Linus Torvalds1da177e2005-04-16 15:20:36 -0700605/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800606 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700608static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609 __acquires(rq->lock)
610{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700611 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612
613 local_irq_disable();
614 rq = this_rq();
615 spin_lock(&rq->lock);
616
617 return rq;
618}
619
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200620/*
621 * resched_task - mark a task 'to be rescheduled now'.
622 *
623 * On UP this means the setting of the need_resched flag, on SMP it
624 * might also involve a cross-CPU call to trigger the scheduler on
625 * the target CPU.
626 */
627#ifdef CONFIG_SMP
628
629#ifndef tsk_is_polling
630#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
631#endif
632
633static void resched_task(struct task_struct *p)
634{
635 int cpu;
636
637 assert_spin_locked(&task_rq(p)->lock);
638
639 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
640 return;
641
642 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
643
644 cpu = task_cpu(p);
645 if (cpu == smp_processor_id())
646 return;
647
648 /* NEED_RESCHED must be visible before we test polling */
649 smp_mb();
650 if (!tsk_is_polling(p))
651 smp_send_reschedule(cpu);
652}
653
654static void resched_cpu(int cpu)
655{
656 struct rq *rq = cpu_rq(cpu);
657 unsigned long flags;
658
659 if (!spin_trylock_irqsave(&rq->lock, flags))
660 return;
661 resched_task(cpu_curr(cpu));
662 spin_unlock_irqrestore(&rq->lock, flags);
663}
664#else
665static inline void resched_task(struct task_struct *p)
666{
667 assert_spin_locked(&task_rq(p)->lock);
668 set_tsk_need_resched(p);
669}
670#endif
671
Ingo Molnar425e0962007-07-09 18:51:58 +0200672#include "sched_stats.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200674static u64 div64_likely32(u64 divident, unsigned long divisor)
675{
676#if BITS_PER_LONG == 32
677 if (likely(divident <= 0xffffffffULL))
678 return (u32)divident / divisor;
679 do_div(divident, divisor);
680
681 return divident;
682#else
683 return divident / divisor;
684#endif
685}
686
687#if BITS_PER_LONG == 32
688# define WMULT_CONST (~0UL)
689#else
690# define WMULT_CONST (1UL << 32)
691#endif
692
693#define WMULT_SHIFT 32
694
695static inline unsigned long
696calc_delta_mine(unsigned long delta_exec, unsigned long weight,
697 struct load_weight *lw)
698{
699 u64 tmp;
700
701 if (unlikely(!lw->inv_weight))
702 lw->inv_weight = WMULT_CONST / lw->weight;
703
704 tmp = (u64)delta_exec * weight;
705 /*
706 * Check whether we'd overflow the 64-bit multiplication:
707 */
708 if (unlikely(tmp > WMULT_CONST)) {
709 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
710 >> (WMULT_SHIFT/2);
711 } else {
712 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
713 }
714
715 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
716}
717
718static inline unsigned long
719calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
720{
721 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
722}
723
724static void update_load_add(struct load_weight *lw, unsigned long inc)
725{
726 lw->weight += inc;
727 lw->inv_weight = 0;
728}
729
730static void update_load_sub(struct load_weight *lw, unsigned long dec)
731{
732 lw->weight -= dec;
733 lw->inv_weight = 0;
734}
735
736static void __update_curr_load(struct rq *rq, struct load_stat *ls)
737{
738 if (rq->curr != rq->idle && ls->load.weight) {
739 ls->delta_exec += ls->delta_stat;
740 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
741 ls->delta_stat = 0;
742 }
743}
744
745/*
746 * Update delta_exec, delta_fair fields for rq.
747 *
748 * delta_fair clock advances at a rate inversely proportional to
749 * total load (rq->ls.load.weight) on the runqueue, while
750 * delta_exec advances at the same rate as wall-clock (provided
751 * cpu is not idle).
752 *
753 * delta_exec / delta_fair is a measure of the (smoothened) load on this
754 * runqueue over any given interval. This (smoothened) load is used
755 * during load balance.
756 *
757 * This function is called /before/ updating rq->ls.load
758 * and when switching tasks.
759 */
760static void update_curr_load(struct rq *rq, u64 now)
761{
762 struct load_stat *ls = &rq->ls;
763 u64 start;
764
765 start = ls->load_update_start;
766 ls->load_update_start = now;
767 ls->delta_stat += now - start;
768 /*
769 * Stagger updates to ls->delta_fair. Very frequent updates
770 * can be expensive.
771 */
772 if (ls->delta_stat >= sysctl_sched_stat_granularity)
773 __update_curr_load(rq, ls);
774}
775
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700777 * To aid in avoiding the subversion of "niceness" due to uneven distribution
778 * of tasks with abnormal "nice" values across CPUs the contribution that
779 * each task makes to its run queue's load is weighted according to its
780 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
781 * scaled version of the new time slice allocation that they receive on time
782 * slice expiry etc.
783 */
784
785/*
786 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
787 * If static_prio_timeslice() is ever changed to break this assumption then
788 * this code will need modification
789 */
790#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
791#define LOAD_WEIGHT(lp) \
792 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
793#define PRIO_TO_LOAD_WEIGHT(prio) \
794 LOAD_WEIGHT(static_prio_timeslice(prio))
795#define RTPRIO_TO_LOAD_WEIGHT(rp) \
796 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
797
Ingo Molnar36c8b582006-07-03 00:25:41 -0700798static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700799inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700800{
801 rq->raw_weighted_load += p->load_weight;
802}
803
Ingo Molnar36c8b582006-07-03 00:25:41 -0700804static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700805dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700806{
807 rq->raw_weighted_load -= p->load_weight;
808}
809
Ingo Molnar70b97a72006-07-03 00:25:42 -0700810static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700811{
812 rq->nr_running++;
813 inc_raw_weighted_load(rq, p);
814}
815
Ingo Molnar70b97a72006-07-03 00:25:42 -0700816static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700817{
818 rq->nr_running--;
819 dec_raw_weighted_load(rq, p);
820}
821
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200822static void set_load_weight(struct task_struct *p)
823{
824 if (task_has_rt_policy(p)) {
825#ifdef CONFIG_SMP
826 if (p == task_rq(p)->migration_thread)
827 /*
828 * The migration thread does the actual balancing.
829 * Giving its load any weight will skew balancing
830 * adversely.
831 */
832 p->load_weight = 0;
833 else
834#endif
835 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
836 } else
837 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
838}
839
Peter Williams2dd73a42006-06-27 02:54:34 -0700840/*
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200841 * Adding/removing a task to/from a priority array:
842 */
843static void dequeue_task(struct task_struct *p, struct prio_array *array)
844{
845 array->nr_active--;
846 list_del(&p->run_list);
847 if (list_empty(array->queue + p->prio))
848 __clear_bit(p->prio, array->bitmap);
849}
850
851static void enqueue_task(struct task_struct *p, struct prio_array *array)
852{
853 sched_info_queued(p);
854 list_add_tail(&p->run_list, array->queue + p->prio);
855 __set_bit(p->prio, array->bitmap);
856 array->nr_active++;
857 p->array = array;
858}
859
860/*
861 * Put task to the end of the run list without the overhead of dequeue
862 * followed by enqueue.
863 */
864static void requeue_task(struct task_struct *p, struct prio_array *array)
865{
866 list_move_tail(&p->run_list, array->queue + p->prio);
867}
868
869static inline void
870enqueue_task_head(struct task_struct *p, struct prio_array *array)
871{
872 list_add(&p->run_list, array->queue + p->prio);
873 __set_bit(p->prio, array->bitmap);
874 array->nr_active++;
875 p->array = array;
876}
877
878/*
Ingo Molnar14531182007-07-09 18:51:59 +0200879 * __normal_prio - return the priority that is based on the static
880 * priority but is modified by bonuses/penalties.
881 *
882 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
883 * into the -5 ... 0 ... +5 bonus/penalty range.
884 *
885 * We use 25% of the full 0...39 priority range so that:
886 *
887 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
888 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
889 *
890 * Both properties are important to certain workloads.
891 */
892
893static inline int __normal_prio(struct task_struct *p)
894{
895 int bonus, prio;
896
897 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
898
899 prio = p->static_prio - bonus;
900 if (prio < MAX_RT_PRIO)
901 prio = MAX_RT_PRIO;
902 if (prio > MAX_PRIO-1)
903 prio = MAX_PRIO-1;
904 return prio;
905}
906
907/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700908 * Calculate the expected normal priority: i.e. priority
909 * without taking RT-inheritance into account. Might be
910 * boosted by interactivity modifiers. Changes upon fork,
911 * setprio syscalls, and whenever the interactivity
912 * estimator recalculates.
913 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700914static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700915{
916 int prio;
917
Ingo Molnare05606d2007-07-09 18:51:59 +0200918 if (task_has_rt_policy(p))
Ingo Molnarb29739f2006-06-27 02:54:51 -0700919 prio = MAX_RT_PRIO-1 - p->rt_priority;
920 else
921 prio = __normal_prio(p);
922 return prio;
923}
924
925/*
926 * Calculate the current priority, i.e. the priority
927 * taken into account by the scheduler. This value might
928 * be boosted by RT tasks, or might be boosted by
929 * interactivity modifiers. Will be RT if the task got
930 * RT-boosted. If not then it returns p->normal_prio.
931 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700932static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700933{
934 p->normal_prio = normal_prio(p);
935 /*
936 * If we are RT tasks or we were boosted to RT priority,
937 * keep the priority unchanged. Otherwise, update priority
938 * to the normal priority:
939 */
940 if (!rt_prio(p->prio))
941 return p->normal_prio;
942 return p->prio;
943}
944
945/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946 * __activate_task - move a task to the runqueue.
947 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700948static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700949{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700950 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800951
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700952 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800953 target = rq->expired;
954 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700955 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956}
957
958/*
959 * __activate_idle_task - move idle task to the _front_ of runqueue.
960 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700961static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700962{
963 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700964 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965}
966
Ingo Molnarb29739f2006-06-27 02:54:51 -0700967/*
968 * Recalculate p->normal_prio and p->prio after having slept,
969 * updating the sleep-average too:
970 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700971static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972{
973 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700974 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700975
Con Kolivasd425b272006-03-31 02:31:29 -0800976 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800977 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978
979 if (likely(sleep_time > 0)) {
980 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700981 * This ceiling is set to the lowest priority that would allow
982 * a task to be reinserted into the active array on timeslice
983 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700984 */
Con Kolivas72d28542006-06-27 02:54:30 -0700985 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800986
Con Kolivas72d28542006-06-27 02:54:30 -0700987 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
988 /*
989 * Prevents user tasks from achieving best priority
990 * with one single large enough sleep.
991 */
992 p->sleep_avg = ceiling;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700993 } else {
994 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700995 * This code gives a bonus to interactive tasks.
996 *
997 * The boost works by updating the 'average sleep time'
998 * value here, based on ->timestamp. The more time a
999 * task spends sleeping, the higher the average gets -
1000 * and the higher the priority boost gets as well.
1001 */
1002 p->sleep_avg += sleep_time;
1003
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004 }
Con Kolivas72d28542006-06-27 02:54:30 -07001005 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
1006 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001007 }
1008
Chen Shanga3464a12005-06-25 14:57:31 -07001009 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001010}
1011
1012/*
1013 * activate_task - move a task to the runqueue and do priority recalculation
1014 *
1015 * Update all the scheduling statistics stuff. (sleep average
1016 * calculation, priority modifiers, etc.)
1017 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001018static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019{
1020 unsigned long long now;
1021
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001022 if (rt_task(p))
1023 goto out;
1024
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025 now = sched_clock();
1026#ifdef CONFIG_SMP
1027 if (!local) {
1028 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001029 struct rq *this_rq = this_rq();
Mike Galbraithb18ec802006-12-10 02:20:31 -08001030 now = (now - this_rq->most_recent_timestamp)
1031 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 }
1033#endif
1034
Ingo Molnarece8a682006-12-06 20:37:24 -08001035 /*
1036 * Sleep time is in units of nanosecs, so shift by 20 to get a
1037 * milliseconds-range estimation of the amount of time that the task
1038 * spent sleeping:
1039 */
1040 if (unlikely(prof_on == SLEEP_PROFILING)) {
1041 if (p->state == TASK_UNINTERRUPTIBLE)
1042 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1043 (now - p->timestamp) >> 20);
1044 }
1045
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001046 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001047 p->timestamp = now;
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001048out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001049 __activate_task(p, rq);
1050}
1051
1052/*
1053 * deactivate_task - remove a task from the runqueue.
1054 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001055static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056{
Peter Williams2dd73a42006-06-27 02:54:34 -07001057 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058 dequeue_task(p, p->array);
1059 p->array = NULL;
1060}
1061
Linus Torvalds1da177e2005-04-16 15:20:36 -07001062/**
1063 * task_curr - is this task currently executing on a CPU?
1064 * @p: the task in question.
1065 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001066inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067{
1068 return cpu_curr(task_cpu(p)) == p;
1069}
1070
Peter Williams2dd73a42006-06-27 02:54:34 -07001071/* Used instead of source_load when we know the type == 0 */
1072unsigned long weighted_cpuload(const int cpu)
1073{
1074 return cpu_rq(cpu)->raw_weighted_load;
1075}
1076
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +02001078
1079void set_task_cpu(struct task_struct *p, unsigned int cpu)
1080{
1081 task_thread_info(p)->cpu = cpu;
1082}
1083
Ingo Molnar70b97a72006-07-03 00:25:42 -07001084struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001085 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001086
Ingo Molnar36c8b582006-07-03 00:25:41 -07001087 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001088 int dest_cpu;
1089
Linus Torvalds1da177e2005-04-16 15:20:36 -07001090 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001091};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092
1093/*
1094 * The task's runqueue lock must be held.
1095 * Returns true if you have to wait for migration thread.
1096 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001097static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001098migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001100 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001101
1102 /*
1103 * If the task is not on a runqueue (and not running), then
1104 * it is sufficient to simply update the task's cpu field.
1105 */
1106 if (!p->array && !task_running(rq, p)) {
1107 set_task_cpu(p, dest_cpu);
1108 return 0;
1109 }
1110
1111 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001112 req->task = p;
1113 req->dest_cpu = dest_cpu;
1114 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001115
Linus Torvalds1da177e2005-04-16 15:20:36 -07001116 return 1;
1117}
1118
1119/*
1120 * wait_task_inactive - wait for a thread to unschedule.
1121 *
1122 * The caller must ensure that the task *will* unschedule sometime soon,
1123 * else this function might spin for a *long* time. This function can't
1124 * be called with interrupts off, or it may introduce deadlock with
1125 * smp_call_function() if an IPI is sent by the same process we are
1126 * waiting to become inactive.
1127 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001128void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129{
1130 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001131 struct rq *rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001132 struct prio_array *array;
1133 int running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001134
1135repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001136 /*
1137 * We do the initial early heuristics without holding
1138 * any task-queue locks at all. We'll only try to get
1139 * the runqueue lock when things look like they will
1140 * work out!
1141 */
1142 rq = task_rq(p);
1143
1144 /*
1145 * If the task is actively running on another CPU
1146 * still, just relax and busy-wait without holding
1147 * any locks.
1148 *
1149 * NOTE! Since we don't hold any locks, it's not
1150 * even sure that "rq" stays as the right runqueue!
1151 * But we don't care, since "task_running()" will
1152 * return false if the runqueue has changed and p
1153 * is actually now running somewhere else!
1154 */
1155 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001156 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001157
1158 /*
1159 * Ok, time to look more closely! We need the rq
1160 * lock now, to be *sure*. If we're wrong, we'll
1161 * just go back and repeat.
1162 */
1163 rq = task_rq_lock(p, &flags);
1164 running = task_running(rq, p);
1165 array = p->array;
1166 task_rq_unlock(rq, &flags);
1167
1168 /*
1169 * Was it really running after all now that we
1170 * checked with the proper locks actually held?
1171 *
1172 * Oops. Go back and try again..
1173 */
1174 if (unlikely(running)) {
1175 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 goto repeat;
1177 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001178
1179 /*
1180 * It's not enough that it's not actively running,
1181 * it must be off the runqueue _entirely_, and not
1182 * preempted!
1183 *
1184 * So if it wa still runnable (but just not actively
1185 * running right now), it's preempted, and we should
1186 * yield - it could be a while.
1187 */
1188 if (unlikely(array)) {
1189 yield();
1190 goto repeat;
1191 }
1192
1193 /*
1194 * Ahh, all good. It wasn't running, and it wasn't
1195 * runnable, which means that it will never become
1196 * running in the future either. We're all done!
1197 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198}
1199
1200/***
1201 * kick_process - kick a running thread to enter/exit the kernel
1202 * @p: the to-be-kicked thread
1203 *
1204 * Cause a process which is running on another CPU to enter
1205 * kernel-mode, without any delay. (to get signals handled.)
1206 *
1207 * NOTE: this function doesnt have to take the runqueue lock,
1208 * because all it wants to ensure is that the remote task enters
1209 * the kernel. If the IPI races and the task has been migrated
1210 * to another CPU then no harm is done and the purpose has been
1211 * achieved as well.
1212 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001213void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001214{
1215 int cpu;
1216
1217 preempt_disable();
1218 cpu = task_cpu(p);
1219 if ((cpu != smp_processor_id()) && task_curr(p))
1220 smp_send_reschedule(cpu);
1221 preempt_enable();
1222}
1223
1224/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001225 * Return a low guess at the load of a migration-source cpu weighted
1226 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001227 *
1228 * We want to under-estimate the load of migration sources, to
1229 * balance conservatively.
1230 */
Con Kolivasb9104722005-11-08 21:38:55 -08001231static inline unsigned long source_load(int cpu, int type)
1232{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001233 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001234
Peter Williams2dd73a42006-06-27 02:54:34 -07001235 if (type == 0)
1236 return rq->raw_weighted_load;
1237
1238 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001239}
1240
1241/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001242 * Return a high guess at the load of a migration-target cpu weighted
1243 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 */
Con Kolivasb9104722005-11-08 21:38:55 -08001245static inline unsigned long target_load(int cpu, int type)
1246{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001247 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001248
Peter Williams2dd73a42006-06-27 02:54:34 -07001249 if (type == 0)
1250 return rq->raw_weighted_load;
1251
1252 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1253}
1254
1255/*
1256 * Return the average load per task on the cpu's run queue
1257 */
1258static inline unsigned long cpu_avg_load_per_task(int cpu)
1259{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001260 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001261 unsigned long n = rq->nr_running;
1262
Ingo Molnar48f24c42006-07-03 00:25:40 -07001263 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001264}
1265
Nick Piggin147cbb42005-06-25 14:57:19 -07001266/*
1267 * find_idlest_group finds and returns the least busy CPU group within the
1268 * domain.
1269 */
1270static struct sched_group *
1271find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1272{
1273 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1274 unsigned long min_load = ULONG_MAX, this_load = 0;
1275 int load_idx = sd->forkexec_idx;
1276 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1277
1278 do {
1279 unsigned long load, avg_load;
1280 int local_group;
1281 int i;
1282
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001283 /* Skip over this group if it has no CPUs allowed */
1284 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1285 goto nextgroup;
1286
Nick Piggin147cbb42005-06-25 14:57:19 -07001287 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001288
1289 /* Tally up the load of all CPUs in the group */
1290 avg_load = 0;
1291
1292 for_each_cpu_mask(i, group->cpumask) {
1293 /* Bias balancing toward cpus of our domain */
1294 if (local_group)
1295 load = source_load(i, load_idx);
1296 else
1297 load = target_load(i, load_idx);
1298
1299 avg_load += load;
1300 }
1301
1302 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001303 avg_load = sg_div_cpu_power(group,
1304 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001305
1306 if (local_group) {
1307 this_load = avg_load;
1308 this = group;
1309 } else if (avg_load < min_load) {
1310 min_load = avg_load;
1311 idlest = group;
1312 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001313nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001314 group = group->next;
1315 } while (group != sd->groups);
1316
1317 if (!idlest || 100*this_load < imbalance*min_load)
1318 return NULL;
1319 return idlest;
1320}
1321
1322/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001323 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001324 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001325static int
1326find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001327{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001328 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001329 unsigned long load, min_load = ULONG_MAX;
1330 int idlest = -1;
1331 int i;
1332
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001333 /* Traverse only the allowed CPUs */
1334 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1335
1336 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001337 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001338
1339 if (load < min_load || (load == min_load && i == this_cpu)) {
1340 min_load = load;
1341 idlest = i;
1342 }
1343 }
1344
1345 return idlest;
1346}
1347
Nick Piggin476d1392005-06-25 14:57:29 -07001348/*
1349 * sched_balance_self: balance the current task (running on cpu) in domains
1350 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1351 * SD_BALANCE_EXEC.
1352 *
1353 * Balance, ie. select the least loaded group.
1354 *
1355 * Returns the target CPU number, or the same CPU if no balancing is needed.
1356 *
1357 * preempt must be disabled.
1358 */
1359static int sched_balance_self(int cpu, int flag)
1360{
1361 struct task_struct *t = current;
1362 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001363
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001364 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001365 /*
1366 * If power savings logic is enabled for a domain, stop there.
1367 */
1368 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1369 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001370 if (tmp->flags & flag)
1371 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001372 }
Nick Piggin476d1392005-06-25 14:57:29 -07001373
1374 while (sd) {
1375 cpumask_t span;
1376 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001377 int new_cpu, weight;
1378
1379 if (!(sd->flags & flag)) {
1380 sd = sd->child;
1381 continue;
1382 }
Nick Piggin476d1392005-06-25 14:57:29 -07001383
1384 span = sd->span;
1385 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001386 if (!group) {
1387 sd = sd->child;
1388 continue;
1389 }
Nick Piggin476d1392005-06-25 14:57:29 -07001390
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001391 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001392 if (new_cpu == -1 || new_cpu == cpu) {
1393 /* Now try balancing at a lower domain level of cpu */
1394 sd = sd->child;
1395 continue;
1396 }
Nick Piggin476d1392005-06-25 14:57:29 -07001397
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001398 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001399 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001400 sd = NULL;
1401 weight = cpus_weight(span);
1402 for_each_domain(cpu, tmp) {
1403 if (weight <= cpus_weight(tmp->span))
1404 break;
1405 if (tmp->flags & flag)
1406 sd = tmp;
1407 }
1408 /* while loop will break here if sd == NULL */
1409 }
1410
1411 return cpu;
1412}
1413
1414#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415
1416/*
1417 * wake_idle() will wake a task on an idle cpu if task->cpu is
1418 * not idle and an idle cpu is available. The span of cpus to
1419 * search starts with cpus closest then further out as needed,
1420 * so we always favor a closer, idle cpu.
1421 *
1422 * Returns the CPU we should wake onto.
1423 */
1424#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001425static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426{
1427 cpumask_t tmp;
1428 struct sched_domain *sd;
1429 int i;
1430
Siddha, Suresh B49531982007-05-08 00:33:01 -07001431 /*
1432 * If it is idle, then it is the best cpu to run this task.
1433 *
1434 * This cpu is also the best, if it has more than one task already.
1435 * Siblings must be also busy(in most cases) as they didn't already
1436 * pickup the extra load from this cpu and hence we need not check
1437 * sibling runqueue info. This will avoid the checks and cache miss
1438 * penalities associated with that.
1439 */
1440 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 return cpu;
1442
1443 for_each_domain(cpu, sd) {
1444 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001445 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 for_each_cpu_mask(i, tmp) {
1447 if (idle_cpu(i))
1448 return i;
1449 }
1450 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001451 else
1452 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453 }
1454 return cpu;
1455}
1456#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001457static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458{
1459 return cpu;
1460}
1461#endif
1462
1463/***
1464 * try_to_wake_up - wake up a thread
1465 * @p: the to-be-woken-up thread
1466 * @state: the mask of task states that can be woken
1467 * @sync: do a synchronous wakeup?
1468 *
1469 * Put it on the run-queue if it's not already there. The "current"
1470 * thread is always on the run-queue (except when the actual
1471 * re-schedule is in progress), and as such you're allowed to do
1472 * the simpler "current->state = TASK_RUNNING" to mark yourself
1473 * runnable without the overhead of this.
1474 *
1475 * returns failure only if the task is already active.
1476 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001477static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001478{
1479 int cpu, this_cpu, success = 0;
1480 unsigned long flags;
1481 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001482 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001483#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001484 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001485 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001486 int new_cpu;
1487#endif
1488
1489 rq = task_rq_lock(p, &flags);
1490 old_state = p->state;
1491 if (!(old_state & state))
1492 goto out;
1493
1494 if (p->array)
1495 goto out_running;
1496
1497 cpu = task_cpu(p);
1498 this_cpu = smp_processor_id();
1499
1500#ifdef CONFIG_SMP
1501 if (unlikely(task_running(rq, p)))
1502 goto out_activate;
1503
Nick Piggin78979862005-06-25 14:57:13 -07001504 new_cpu = cpu;
1505
Linus Torvalds1da177e2005-04-16 15:20:36 -07001506 schedstat_inc(rq, ttwu_cnt);
1507 if (cpu == this_cpu) {
1508 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001509 goto out_set_cpu;
1510 }
1511
1512 for_each_domain(this_cpu, sd) {
1513 if (cpu_isset(cpu, sd->span)) {
1514 schedstat_inc(sd, ttwu_wake_remote);
1515 this_sd = sd;
1516 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001517 }
1518 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519
Nick Piggin78979862005-06-25 14:57:13 -07001520 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521 goto out_set_cpu;
1522
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523 /*
Nick Piggin78979862005-06-25 14:57:13 -07001524 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525 */
Nick Piggin78979862005-06-25 14:57:13 -07001526 if (this_sd) {
1527 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001529
Nick Piggina3f21bc2005-06-25 14:57:15 -07001530 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1531
Nick Piggin78979862005-06-25 14:57:13 -07001532 load = source_load(cpu, idx);
1533 this_load = target_load(this_cpu, idx);
1534
Nick Piggin78979862005-06-25 14:57:13 -07001535 new_cpu = this_cpu; /* Wake to this CPU if we can */
1536
Nick Piggina3f21bc2005-06-25 14:57:15 -07001537 if (this_sd->flags & SD_WAKE_AFFINE) {
1538 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001539 unsigned long tl_per_task;
1540
1541 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001542
Linus Torvalds1da177e2005-04-16 15:20:36 -07001543 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001544 * If sync wakeup then subtract the (maximum possible)
1545 * effect of the currently running task from the load
1546 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001547 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001548 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001549 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001550
1551 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001552 tl + target_load(cpu, idx) <= tl_per_task) ||
1553 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001554 /*
1555 * This domain has SD_WAKE_AFFINE and
1556 * p is cache cold in this domain, and
1557 * there is no bad imbalance.
1558 */
1559 schedstat_inc(this_sd, ttwu_move_affine);
1560 goto out_set_cpu;
1561 }
1562 }
1563
1564 /*
1565 * Start passive balancing when half the imbalance_pct
1566 * limit is reached.
1567 */
1568 if (this_sd->flags & SD_WAKE_BALANCE) {
1569 if (imbalance*this_load <= 100*load) {
1570 schedstat_inc(this_sd, ttwu_move_balance);
1571 goto out_set_cpu;
1572 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001573 }
1574 }
1575
1576 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1577out_set_cpu:
1578 new_cpu = wake_idle(new_cpu, p);
1579 if (new_cpu != cpu) {
1580 set_task_cpu(p, new_cpu);
1581 task_rq_unlock(rq, &flags);
1582 /* might preempt at this point */
1583 rq = task_rq_lock(p, &flags);
1584 old_state = p->state;
1585 if (!(old_state & state))
1586 goto out;
1587 if (p->array)
1588 goto out_running;
1589
1590 this_cpu = smp_processor_id();
1591 cpu = task_cpu(p);
1592 }
1593
1594out_activate:
1595#endif /* CONFIG_SMP */
Ingo Molnarf2ac58e2007-07-09 18:51:59 +02001596 if (old_state == TASK_UNINTERRUPTIBLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001597 rq->nr_uninterruptible--;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001598
1599 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001600 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601 * Sync wakeups (i.e. those types of wakeups where the waker
1602 * has indicated that it will leave the CPU in short order)
1603 * don't trigger a preemption, if the woken up task will run on
1604 * this cpu. (in this case the 'I will reschedule' promise of
1605 * the waker guarantees that the freshly woken up task is going
1606 * to be considered on this CPU.)
1607 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001608 if (!sync || cpu != this_cpu) {
1609 if (TASK_PREEMPTS_CURR(p, rq))
1610 resched_task(rq->curr);
1611 }
1612 success = 1;
1613
1614out_running:
1615 p->state = TASK_RUNNING;
1616out:
1617 task_rq_unlock(rq, &flags);
1618
1619 return success;
1620}
1621
Ingo Molnar36c8b582006-07-03 00:25:41 -07001622int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001623{
1624 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1625 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1626}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001627EXPORT_SYMBOL(wake_up_process);
1628
Ingo Molnar36c8b582006-07-03 00:25:41 -07001629int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001630{
1631 return try_to_wake_up(p, state, 0);
1632}
1633
Peter Williamsbc947632006-12-19 12:48:50 +10001634static void task_running_tick(struct rq *rq, struct task_struct *p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001635/*
1636 * Perform scheduler related setup for a newly forked process p.
1637 * p is forked by current.
1638 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001639void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001640{
Nick Piggin476d1392005-06-25 14:57:29 -07001641 int cpu = get_cpu();
1642
1643#ifdef CONFIG_SMP
1644 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1645#endif
1646 set_task_cpu(p, cpu);
1647
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648 /*
1649 * We mark the process as running here, but have not actually
1650 * inserted it onto the runqueue yet. This guarantees that
1651 * nobody will actually run it, and a signal or other external
1652 * event cannot wake it up and insert it on the runqueue either.
1653 */
1654 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001655
1656 /*
1657 * Make sure we do not leak PI boosting priority to the child:
1658 */
1659 p->prio = current->normal_prio;
1660
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661 INIT_LIST_HEAD(&p->run_list);
1662 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001663#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1664 if (unlikely(sched_info_on()))
1665 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001667#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001668 p->oncpu = 0;
1669#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001671 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001672 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001673#endif
1674 /*
1675 * Share the timeslice between parent and child, thus the
1676 * total amount of pending timeslices in the system doesn't change,
1677 * resulting in more scheduling fairness.
1678 */
1679 local_irq_disable();
1680 p->time_slice = (current->time_slice + 1) >> 1;
1681 /*
1682 * The remainder of the first timeslice might be recovered by
1683 * the parent if the child exits early enough.
1684 */
1685 p->first_time_slice = 1;
1686 current->time_slice >>= 1;
1687 p->timestamp = sched_clock();
1688 if (unlikely(!current->time_slice)) {
1689 /*
1690 * This case is rare, it happens when the parent has only
1691 * a single jiffy left from its timeslice. Taking the
1692 * runqueue lock is not a problem.
1693 */
1694 current->time_slice = 1;
Peter Williamsbc947632006-12-19 12:48:50 +10001695 task_running_tick(cpu_rq(cpu), current);
Nick Piggin476d1392005-06-25 14:57:29 -07001696 }
1697 local_irq_enable();
1698 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699}
1700
1701/*
1702 * wake_up_new_task - wake up a newly created task for the first time.
1703 *
1704 * This function will do some initial scheduler statistics housekeeping
1705 * that must be done for every newly created context, then puts the task
1706 * on the runqueue and wakes it.
1707 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001708void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001709{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001710 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001711 unsigned long flags;
1712 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001713
1714 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001715 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001716 this_cpu = smp_processor_id();
1717 cpu = task_cpu(p);
1718
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719 /*
1720 * We decrease the sleep average of forking parents
1721 * and children as well, to keep max-interactive tasks
1722 * from forking tasks that are max-interactive. The parent
1723 * (current) is done further down, under its lock.
1724 */
1725 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1726 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1727
1728 p->prio = effective_prio(p);
1729
1730 if (likely(cpu == this_cpu)) {
1731 if (!(clone_flags & CLONE_VM)) {
1732 /*
1733 * The VM isn't cloned, so we're in a good position to
1734 * do child-runs-first in anticipation of an exec. This
1735 * usually avoids a lot of COW overhead.
1736 */
1737 if (unlikely(!current->array))
1738 __activate_task(p, rq);
1739 else {
1740 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001741 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001742 list_add_tail(&p->run_list, &current->run_list);
1743 p->array = current->array;
1744 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001745 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001746 }
1747 set_need_resched();
1748 } else
1749 /* Run child last */
1750 __activate_task(p, rq);
1751 /*
1752 * We skip the following code due to cpu == this_cpu
1753 *
1754 * task_rq_unlock(rq, &flags);
1755 * this_rq = task_rq_lock(current, &flags);
1756 */
1757 this_rq = rq;
1758 } else {
1759 this_rq = cpu_rq(this_cpu);
1760
1761 /*
1762 * Not the local CPU - must adjust timestamp. This should
1763 * get optimised away in the !CONFIG_SMP case.
1764 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08001765 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1766 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 __activate_task(p, rq);
1768 if (TASK_PREEMPTS_CURR(p, rq))
1769 resched_task(rq->curr);
1770
1771 /*
1772 * Parent and child are on different CPUs, now get the
1773 * parent runqueue to update the parent's ->sleep_avg:
1774 */
1775 task_rq_unlock(rq, &flags);
1776 this_rq = task_rq_lock(current, &flags);
1777 }
1778 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1779 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1780 task_rq_unlock(this_rq, &flags);
1781}
1782
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001784 * prepare_task_switch - prepare to switch tasks
1785 * @rq: the runqueue preparing to switch
1786 * @next: the task we are going to switch to.
1787 *
1788 * This is called with the rq lock held and interrupts off. It must
1789 * be paired with a subsequent finish_task_switch after the context
1790 * switch.
1791 *
1792 * prepare_task_switch sets up locking and calls architecture specific
1793 * hooks.
1794 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001795static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001796{
1797 prepare_lock_switch(rq, next);
1798 prepare_arch_switch(next);
1799}
1800
1801/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001803 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 * @prev: the thread we just switched away from.
1805 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001806 * finish_task_switch must be called after the context switch, paired
1807 * with a prepare_task_switch call before the context switch.
1808 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1809 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810 *
1811 * Note that we may have delayed dropping an mm in context_switch(). If
1812 * so, we finish that here outside of the runqueue lock. (Doing it
1813 * with the lock held can cause deadlocks; see schedule() for
1814 * details.)
1815 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001816static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001817 __releases(rq->lock)
1818{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001820 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001821
1822 rq->prev_mm = NULL;
1823
1824 /*
1825 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001826 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001827 * schedule one last time. The schedule call will never return, and
1828 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001829 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830 * still held, otherwise prev could be scheduled on another cpu, die
1831 * there before we look at prev->state, and then the reference would
1832 * be dropped twice.
1833 * Manfred Spraul <manfred@colorfullife.com>
1834 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001835 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001836 finish_arch_switch(prev);
1837 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001838 if (mm)
1839 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001840 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001841 /*
1842 * Remove function-return probe instances associated with this
1843 * task and put them back on the free list.
1844 */
1845 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001847 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001848}
1849
1850/**
1851 * schedule_tail - first thing a freshly forked thread must call.
1852 * @prev: the thread we just switched away from.
1853 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001854asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855 __releases(rq->lock)
1856{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001857 struct rq *rq = this_rq();
1858
Nick Piggin4866cde2005-06-25 14:57:23 -07001859 finish_task_switch(rq, prev);
1860#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1861 /* In this case, finish_task_switch does not reenable preemption */
1862 preempt_enable();
1863#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 if (current->set_child_tid)
1865 put_user(current->pid, current->set_child_tid);
1866}
1867
1868/*
1869 * context_switch - switch to the new MM and the new
1870 * thread's register state.
1871 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001872static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001873context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001874 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875{
1876 struct mm_struct *mm = next->mm;
1877 struct mm_struct *oldmm = prev->active_mm;
1878
Zachary Amsden9226d122007-02-13 13:26:21 +01001879 /*
1880 * For paravirt, this is coupled with an exit in switch_to to
1881 * combine the page table reload and the switch backend into
1882 * one hypercall.
1883 */
1884 arch_enter_lazy_cpu_mode();
1885
Nick Pigginbeed33a2006-10-11 01:21:52 -07001886 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001887 next->active_mm = oldmm;
1888 atomic_inc(&oldmm->mm_count);
1889 enter_lazy_tlb(oldmm, next);
1890 } else
1891 switch_mm(oldmm, mm, next);
1892
Nick Pigginbeed33a2006-10-11 01:21:52 -07001893 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894 prev->active_mm = NULL;
1895 WARN_ON(rq->prev_mm);
1896 rq->prev_mm = oldmm;
1897 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001898 /*
1899 * Since the runqueue lock will be released by the next
1900 * task (which is an invalid locking op but in the case
1901 * of the scheduler it's an obvious special-case), so we
1902 * do an early lockdep release here:
1903 */
1904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001905 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001906#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907
1908 /* Here we just switch the register state and the stack. */
1909 switch_to(prev, next, prev);
1910
1911 return prev;
1912}
1913
1914/*
1915 * nr_running, nr_uninterruptible and nr_context_switches:
1916 *
1917 * externally visible scheduler statistics: current number of runnable
1918 * threads, current number of uninterruptible-sleeping threads, total
1919 * number of context switches performed since bootup.
1920 */
1921unsigned long nr_running(void)
1922{
1923 unsigned long i, sum = 0;
1924
1925 for_each_online_cpu(i)
1926 sum += cpu_rq(i)->nr_running;
1927
1928 return sum;
1929}
1930
1931unsigned long nr_uninterruptible(void)
1932{
1933 unsigned long i, sum = 0;
1934
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001935 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001936 sum += cpu_rq(i)->nr_uninterruptible;
1937
1938 /*
1939 * Since we read the counters lockless, it might be slightly
1940 * inaccurate. Do not allow it to go below zero though:
1941 */
1942 if (unlikely((long)sum < 0))
1943 sum = 0;
1944
1945 return sum;
1946}
1947
1948unsigned long long nr_context_switches(void)
1949{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001950 int i;
1951 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001952
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001953 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954 sum += cpu_rq(i)->nr_switches;
1955
1956 return sum;
1957}
1958
1959unsigned long nr_iowait(void)
1960{
1961 unsigned long i, sum = 0;
1962
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001963 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001964 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1965
1966 return sum;
1967}
1968
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001969unsigned long nr_active(void)
1970{
1971 unsigned long i, running = 0, uninterruptible = 0;
1972
1973 for_each_online_cpu(i) {
1974 running += cpu_rq(i)->nr_running;
1975 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1976 }
1977
1978 if (unlikely((long)uninterruptible < 0))
1979 uninterruptible = 0;
1980
1981 return running + uninterruptible;
1982}
1983
Linus Torvalds1da177e2005-04-16 15:20:36 -07001984#ifdef CONFIG_SMP
1985
1986/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07001987 * Is this task likely cache-hot:
1988 */
1989static inline int
1990task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1991{
1992 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1993}
1994
1995/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001996 * double_rq_lock - safely lock two runqueues
1997 *
1998 * Note this does not disable interrupts like task_rq_lock,
1999 * you need to do so manually before calling.
2000 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002001static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002002 __acquires(rq1->lock)
2003 __acquires(rq2->lock)
2004{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002005 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002006 if (rq1 == rq2) {
2007 spin_lock(&rq1->lock);
2008 __acquire(rq2->lock); /* Fake it out ;) */
2009 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002010 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002011 spin_lock(&rq1->lock);
2012 spin_lock(&rq2->lock);
2013 } else {
2014 spin_lock(&rq2->lock);
2015 spin_lock(&rq1->lock);
2016 }
2017 }
2018}
2019
2020/*
2021 * double_rq_unlock - safely unlock two runqueues
2022 *
2023 * Note this does not restore interrupts like task_rq_unlock,
2024 * you need to do so manually after calling.
2025 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002026static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027 __releases(rq1->lock)
2028 __releases(rq2->lock)
2029{
2030 spin_unlock(&rq1->lock);
2031 if (rq1 != rq2)
2032 spin_unlock(&rq2->lock);
2033 else
2034 __release(rq2->lock);
2035}
2036
2037/*
2038 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2039 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002040static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002041 __releases(this_rq->lock)
2042 __acquires(busiest->lock)
2043 __acquires(this_rq->lock)
2044{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002045 if (unlikely(!irqs_disabled())) {
2046 /* printk() doesn't work good under rq->lock */
2047 spin_unlock(&this_rq->lock);
2048 BUG_ON(1);
2049 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002050 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002051 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 spin_unlock(&this_rq->lock);
2053 spin_lock(&busiest->lock);
2054 spin_lock(&this_rq->lock);
2055 } else
2056 spin_lock(&busiest->lock);
2057 }
2058}
2059
2060/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061 * If dest_cpu is allowed for this process, migrate the task to it.
2062 * This is accomplished by forcing the cpu_allowed mask to only
2063 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2064 * the cpu_allowed mask is restored.
2065 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002066static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002067{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002068 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002069 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002070 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002071
2072 rq = task_rq_lock(p, &flags);
2073 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2074 || unlikely(cpu_is_offline(dest_cpu)))
2075 goto out;
2076
2077 /* force the process onto the specified CPU */
2078 if (migrate_task(p, dest_cpu, &req)) {
2079 /* Need to wait for migration thread (might exit: take ref). */
2080 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002081
Linus Torvalds1da177e2005-04-16 15:20:36 -07002082 get_task_struct(mt);
2083 task_rq_unlock(rq, &flags);
2084 wake_up_process(mt);
2085 put_task_struct(mt);
2086 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002087
Linus Torvalds1da177e2005-04-16 15:20:36 -07002088 return;
2089 }
2090out:
2091 task_rq_unlock(rq, &flags);
2092}
2093
2094/*
Nick Piggin476d1392005-06-25 14:57:29 -07002095 * sched_exec - execve() is a valuable balancing opportunity, because at
2096 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097 */
2098void sched_exec(void)
2099{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002100 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002101 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002103 if (new_cpu != this_cpu)
2104 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002105}
2106
2107/*
2108 * pull_task - move a task from a remote runqueue to the local runqueue.
2109 * Both runqueues must be locked.
2110 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002111static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2112 struct task_struct *p, struct rq *this_rq,
2113 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114{
2115 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002116 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002117 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002118 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002119 enqueue_task(p, this_array);
Mike Galbraithb18ec802006-12-10 02:20:31 -08002120 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2121 + this_rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122 /*
2123 * Note that idle threads have a prio of MAX_PRIO, for this test
2124 * to be always true for them.
2125 */
2126 if (TASK_PREEMPTS_CURR(p, this_rq))
2127 resched_task(this_rq->curr);
2128}
2129
2130/*
2131 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2132 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002133static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002134int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002135 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002136 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002137{
2138 /*
2139 * We do not migrate tasks that are:
2140 * 1) running (obviously), or
2141 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2142 * 3) are cache-hot on their current CPU.
2143 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002144 if (!cpu_isset(this_cpu, p->cpus_allowed))
2145 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002146 *all_pinned = 0;
2147
2148 if (task_running(rq, p))
2149 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002150
2151 /*
2152 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002153 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002154 * 2) too many balance attempts have failed.
2155 */
2156
Mike Galbraithb18ec802006-12-10 02:20:31 -08002157 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2158#ifdef CONFIG_SCHEDSTATS
2159 if (task_hot(p, rq->most_recent_timestamp, sd))
2160 schedstat_inc(sd, lb_hot_gained[idle]);
2161#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162 return 1;
Mike Galbraithb18ec802006-12-10 02:20:31 -08002163 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164
Mike Galbraithb18ec802006-12-10 02:20:31 -08002165 if (task_hot(p, rq->most_recent_timestamp, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002166 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 return 1;
2168}
2169
Peter Williams615052d2006-06-27 02:54:37 -07002170#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002171
Linus Torvalds1da177e2005-04-16 15:20:36 -07002172/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002173 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2174 * load from busiest to this_rq, as part of a balancing operation within
2175 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002176 *
2177 * Called with both runqueues locked.
2178 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002179static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002180 unsigned long max_nr_move, unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002181 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002182 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002183{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002184 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2185 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002186 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002188 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002189 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002190
Peter Williams2dd73a42006-06-27 02:54:34 -07002191 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002192 goto out;
2193
Peter Williams2dd73a42006-06-27 02:54:34 -07002194 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002195 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002196 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002197 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002198 /*
2199 * Enable handling of the case where there is more than one task
2200 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002201 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002202 * and therefore it's safe to override the skip (based on load) of
2203 * any task we find with that prio.
2204 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002205 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002206
Linus Torvalds1da177e2005-04-16 15:20:36 -07002207 /*
2208 * We first consider expired tasks. Those will likely not be
2209 * executed in the near future, and they are most likely to
2210 * be cache-cold, thus switching CPUs has the least effect
2211 * on them.
2212 */
2213 if (busiest->expired->nr_active) {
2214 array = busiest->expired;
2215 dst_array = this_rq->expired;
2216 } else {
2217 array = busiest->active;
2218 dst_array = this_rq->active;
2219 }
2220
2221new_array:
2222 /* Start searching at priority 0: */
2223 idx = 0;
2224skip_bitmap:
2225 if (!idx)
2226 idx = sched_find_first_bit(array->bitmap);
2227 else
2228 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2229 if (idx >= MAX_PRIO) {
2230 if (array == busiest->expired && busiest->active->nr_active) {
2231 array = busiest->active;
2232 dst_array = this_rq->active;
2233 goto new_array;
2234 }
2235 goto out;
2236 }
2237
2238 head = array->queue + idx;
2239 curr = head->prev;
2240skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002241 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002242
2243 curr = curr->prev;
2244
Peter Williams50ddd962006-06-27 02:54:36 -07002245 /*
2246 * To help distribute high priority tasks accross CPUs we don't
2247 * skip a task if it will be the highest priority task (i.e. smallest
2248 * prio value) on its new queue regardless of its load weight
2249 */
Peter Williams615052d2006-06-27 02:54:37 -07002250 skip_for_load = tmp->load_weight > rem_load_move;
2251 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002252 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002253 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002254 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002255
2256 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002257 if (curr != head)
2258 goto skip_queue;
2259 idx++;
2260 goto skip_bitmap;
2261 }
2262
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2264 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002265 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002266
Peter Williams2dd73a42006-06-27 02:54:34 -07002267 /*
2268 * We only want to steal up to the prescribed number of tasks
2269 * and the prescribed amount of weighted load.
2270 */
2271 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002272 if (idx < this_best_prio)
2273 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 if (curr != head)
2275 goto skip_queue;
2276 idx++;
2277 goto skip_bitmap;
2278 }
2279out:
2280 /*
2281 * Right now, this is the only place pull_task() is called,
2282 * so we can safely collect pull_task() stats here rather than
2283 * inside pull_task().
2284 */
2285 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002286
2287 if (all_pinned)
2288 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002289 return pulled;
2290}
2291
2292/*
2293 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002294 * domain. It calculates and returns the amount of weighted load which
2295 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002296 */
2297static struct sched_group *
2298find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002299 unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002300 cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002301{
2302 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2303 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002304 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002305 unsigned long busiest_load_per_task, busiest_nr_running;
2306 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002307 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002308#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2309 int power_savings_balance = 1;
2310 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2311 unsigned long min_nr_running = ULONG_MAX;
2312 struct sched_group *group_min = NULL, *group_leader = NULL;
2313#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002314
2315 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002316 busiest_load_per_task = busiest_nr_running = 0;
2317 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002318 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002319 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002320 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002321 load_idx = sd->newidle_idx;
2322 else
2323 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002324
2325 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002326 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002327 int local_group;
2328 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002329 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002330 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002331
2332 local_group = cpu_isset(this_cpu, group->cpumask);
2333
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002334 if (local_group)
2335 balance_cpu = first_cpu(group->cpumask);
2336
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002338 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002339
2340 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002341 struct rq *rq;
2342
2343 if (!cpu_isset(i, *cpus))
2344 continue;
2345
2346 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002347
Nick Piggin5969fe02005-09-10 00:26:19 -07002348 if (*sd_idle && !idle_cpu(i))
2349 *sd_idle = 0;
2350
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002352 if (local_group) {
2353 if (idle_cpu(i) && !first_idle_cpu) {
2354 first_idle_cpu = 1;
2355 balance_cpu = i;
2356 }
2357
Nick Piggina2000572006-02-10 01:51:02 -08002358 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002359 } else
Nick Piggina2000572006-02-10 01:51:02 -08002360 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002361
2362 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002363 sum_nr_running += rq->nr_running;
2364 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002365 }
2366
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002367 /*
2368 * First idle cpu or the first cpu(busiest) in this sched group
2369 * is eligible for doing load balancing at this and above
2370 * domains.
2371 */
2372 if (local_group && balance_cpu != this_cpu && balance) {
2373 *balance = 0;
2374 goto ret;
2375 }
2376
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002378 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379
2380 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002381 avg_load = sg_div_cpu_power(group,
2382 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002383
Eric Dumazet5517d862007-05-08 00:32:57 -07002384 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002385
Linus Torvalds1da177e2005-04-16 15:20:36 -07002386 if (local_group) {
2387 this_load = avg_load;
2388 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002389 this_nr_running = sum_nr_running;
2390 this_load_per_task = sum_weighted_load;
2391 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002392 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002393 max_load = avg_load;
2394 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002395 busiest_nr_running = sum_nr_running;
2396 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002397 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002398
2399#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2400 /*
2401 * Busy processors will not participate in power savings
2402 * balance.
2403 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002404 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002405 goto group_next;
2406
2407 /*
2408 * If the local group is idle or completely loaded
2409 * no need to do power savings balance at this domain
2410 */
2411 if (local_group && (this_nr_running >= group_capacity ||
2412 !this_nr_running))
2413 power_savings_balance = 0;
2414
2415 /*
2416 * If a group is already running at full capacity or idle,
2417 * don't include that group in power savings calculations
2418 */
2419 if (!power_savings_balance || sum_nr_running >= group_capacity
2420 || !sum_nr_running)
2421 goto group_next;
2422
2423 /*
2424 * Calculate the group which has the least non-idle load.
2425 * This is the group from where we need to pick up the load
2426 * for saving power
2427 */
2428 if ((sum_nr_running < min_nr_running) ||
2429 (sum_nr_running == min_nr_running &&
2430 first_cpu(group->cpumask) <
2431 first_cpu(group_min->cpumask))) {
2432 group_min = group;
2433 min_nr_running = sum_nr_running;
2434 min_load_per_task = sum_weighted_load /
2435 sum_nr_running;
2436 }
2437
2438 /*
2439 * Calculate the group which is almost near its
2440 * capacity but still has some space to pick up some load
2441 * from other group and save more power
2442 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002443 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002444 if (sum_nr_running > leader_nr_running ||
2445 (sum_nr_running == leader_nr_running &&
2446 first_cpu(group->cpumask) >
2447 first_cpu(group_leader->cpumask))) {
2448 group_leader = group;
2449 leader_nr_running = sum_nr_running;
2450 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002451 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002452group_next:
2453#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002454 group = group->next;
2455 } while (group != sd->groups);
2456
Peter Williams2dd73a42006-06-27 02:54:34 -07002457 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458 goto out_balanced;
2459
2460 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2461
2462 if (this_load >= avg_load ||
2463 100*max_load <= sd->imbalance_pct*this_load)
2464 goto out_balanced;
2465
Peter Williams2dd73a42006-06-27 02:54:34 -07002466 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002467 /*
2468 * We're trying to get all the cpus to the average_load, so we don't
2469 * want to push ourselves above the average load, nor do we wish to
2470 * reduce the max loaded cpu below the average load, as either of these
2471 * actions would just result in more rebalancing later, and ping-pong
2472 * tasks around. Thus we look for the minimum possible imbalance.
2473 * Negative imbalances (*we* are more loaded than anyone else) will
2474 * be counted as no imbalance for these purposes -- we can't fix that
2475 * by pulling tasks to us. Be careful of negative numbers as they'll
2476 * appear as very large values with unsigned longs.
2477 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002478 if (max_load <= busiest_load_per_task)
2479 goto out_balanced;
2480
2481 /*
2482 * In the presence of smp nice balancing, certain scenarios can have
2483 * max load less than avg load(as we skip the groups at or below
2484 * its cpu_power, while calculating max_load..)
2485 */
2486 if (max_load < avg_load) {
2487 *imbalance = 0;
2488 goto small_imbalance;
2489 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002490
2491 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002492 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002493
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002495 *imbalance = min(max_pull * busiest->__cpu_power,
2496 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497 / SCHED_LOAD_SCALE;
2498
Peter Williams2dd73a42006-06-27 02:54:34 -07002499 /*
2500 * if *imbalance is less than the average load per runnable task
2501 * there is no gaurantee that any tasks will be moved so we'll have
2502 * a think about bumping its value to force at least one task to be
2503 * moved
2504 */
2505 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002506 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002507 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002508
Peter Williams2dd73a42006-06-27 02:54:34 -07002509small_imbalance:
2510 pwr_move = pwr_now = 0;
2511 imbn = 2;
2512 if (this_nr_running) {
2513 this_load_per_task /= this_nr_running;
2514 if (busiest_load_per_task > this_load_per_task)
2515 imbn = 1;
2516 } else
2517 this_load_per_task = SCHED_LOAD_SCALE;
2518
2519 if (max_load - this_load >= busiest_load_per_task * imbn) {
2520 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002521 return busiest;
2522 }
2523
2524 /*
2525 * OK, we don't have enough imbalance to justify moving tasks,
2526 * however we may be able to increase total CPU power used by
2527 * moving them.
2528 */
2529
Eric Dumazet5517d862007-05-08 00:32:57 -07002530 pwr_now += busiest->__cpu_power *
2531 min(busiest_load_per_task, max_load);
2532 pwr_now += this->__cpu_power *
2533 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534 pwr_now /= SCHED_LOAD_SCALE;
2535
2536 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002537 tmp = sg_div_cpu_power(busiest,
2538 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002539 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002540 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002541 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002542
2543 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002544 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002545 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002546 tmp = sg_div_cpu_power(this,
2547 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002548 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002549 tmp = sg_div_cpu_power(this,
2550 busiest_load_per_task * SCHED_LOAD_SCALE);
2551 pwr_move += this->__cpu_power *
2552 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002553 pwr_move /= SCHED_LOAD_SCALE;
2554
2555 /* Move if we gain throughput */
2556 if (pwr_move <= pwr_now)
2557 goto out_balanced;
2558
Peter Williams2dd73a42006-06-27 02:54:34 -07002559 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560 }
2561
Linus Torvalds1da177e2005-04-16 15:20:36 -07002562 return busiest;
2563
2564out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002565#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002566 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002567 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002568
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002569 if (this == group_leader && group_leader != group_min) {
2570 *imbalance = min_load_per_task;
2571 return group_min;
2572 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002573#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002574ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002575 *imbalance = 0;
2576 return NULL;
2577}
2578
2579/*
2580 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2581 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002582static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002583find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002584 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002585{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002586 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002587 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588 int i;
2589
2590 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002591
2592 if (!cpu_isset(i, *cpus))
2593 continue;
2594
Ingo Molnar48f24c42006-07-03 00:25:40 -07002595 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002596
Ingo Molnar48f24c42006-07-03 00:25:40 -07002597 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002598 continue;
2599
Ingo Molnar48f24c42006-07-03 00:25:40 -07002600 if (rq->raw_weighted_load > max_load) {
2601 max_load = rq->raw_weighted_load;
2602 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002603 }
2604 }
2605
2606 return busiest;
2607}
2608
2609/*
Nick Piggin77391d72005-06-25 14:57:30 -07002610 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2611 * so long as it is large enough.
2612 */
2613#define MAX_PINNED_INTERVAL 512
2614
Ingo Molnar48f24c42006-07-03 00:25:40 -07002615static inline unsigned long minus_1_or_zero(unsigned long n)
2616{
2617 return n > 0 ? n - 1 : 0;
2618}
2619
Nick Piggin77391d72005-06-25 14:57:30 -07002620/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2622 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002624static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002625 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002626 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002627{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002628 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002629 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002630 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002631 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002632 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002633 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002634
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002635 /*
2636 * When power savings policy is enabled for the parent domain, idle
2637 * sibling can pick up load irrespective of busy siblings. In this case,
2638 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002639 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002640 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002641 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002642 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002643 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002644
Linus Torvalds1da177e2005-04-16 15:20:36 -07002645 schedstat_inc(sd, lb_cnt[idle]);
2646
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002647redo:
2648 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002649 &cpus, balance);
2650
Chen, Kenneth W06066712006-12-10 02:20:35 -08002651 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002652 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002653
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654 if (!group) {
2655 schedstat_inc(sd, lb_nobusyg[idle]);
2656 goto out_balanced;
2657 }
2658
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002659 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002660 if (!busiest) {
2661 schedstat_inc(sd, lb_nobusyq[idle]);
2662 goto out_balanced;
2663 }
2664
Nick Piggindb935db2005-06-25 14:57:11 -07002665 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002666
2667 schedstat_add(sd, lb_imbalance[idle], imbalance);
2668
2669 nr_moved = 0;
2670 if (busiest->nr_running > 1) {
2671 /*
2672 * Attempt to move tasks. If find_busiest_group has found
2673 * an imbalance but busiest->nr_running <= 1, the group is
2674 * still unbalanced. nr_moved simply stays zero, so it is
2675 * correctly treated as an imbalance.
2676 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002677 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002678 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002680 minus_1_or_zero(busiest->nr_running),
2681 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002682 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002683 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002684
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002685 /*
2686 * some other cpu did the load balance for us.
2687 */
2688 if (nr_moved && this_cpu != smp_processor_id())
2689 resched_cpu(this_cpu);
2690
Nick Piggin81026792005-06-25 14:57:07 -07002691 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002692 if (unlikely(all_pinned)) {
2693 cpu_clear(cpu_of(busiest), cpus);
2694 if (!cpus_empty(cpus))
2695 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002696 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002697 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002698 }
Nick Piggin81026792005-06-25 14:57:07 -07002699
Linus Torvalds1da177e2005-04-16 15:20:36 -07002700 if (!nr_moved) {
2701 schedstat_inc(sd, lb_failed[idle]);
2702 sd->nr_balance_failed++;
2703
2704 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002706 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002707
2708 /* don't kick the migration_thread, if the curr
2709 * task on busiest cpu can't be moved to this_cpu
2710 */
2711 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002712 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002713 all_pinned = 1;
2714 goto out_one_pinned;
2715 }
2716
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717 if (!busiest->active_balance) {
2718 busiest->active_balance = 1;
2719 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002720 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002722 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002723 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002724 wake_up_process(busiest->migration_thread);
2725
2726 /*
2727 * We've kicked active balancing, reset the failure
2728 * counter.
2729 */
Nick Piggin39507452005-06-25 14:57:09 -07002730 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731 }
Nick Piggin81026792005-06-25 14:57:07 -07002732 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 sd->nr_balance_failed = 0;
2734
Nick Piggin81026792005-06-25 14:57:07 -07002735 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736 /* We were unbalanced, so reset the balancing interval */
2737 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002738 } else {
2739 /*
2740 * If we've begun active balancing, start to back off. This
2741 * case may not be covered by the all_pinned logic if there
2742 * is only 1 task on the busy runqueue (because we don't call
2743 * move_tasks).
2744 */
2745 if (sd->balance_interval < sd->max_interval)
2746 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002747 }
2748
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002749 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002750 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002751 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 return nr_moved;
2753
2754out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755 schedstat_inc(sd, lb_balanced[idle]);
2756
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002757 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002758
2759out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002760 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002761 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2762 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763 sd->balance_interval *= 2;
2764
Ingo Molnar48f24c42006-07-03 00:25:40 -07002765 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002766 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002767 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768 return 0;
2769}
2770
2771/*
2772 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2773 * tasks if there is an imbalance.
2774 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002775 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002776 * this_rq is locked.
2777 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002778static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002779load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780{
2781 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002782 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002783 unsigned long imbalance;
2784 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002785 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002786 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002787
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002788 /*
2789 * When power savings policy is enabled for the parent domain, idle
2790 * sibling can pick up load irrespective of busy siblings. In this case,
2791 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002792 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002793 */
2794 if (sd->flags & SD_SHARE_CPUPOWER &&
2795 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002796 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002797
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002798 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002799redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002800 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002801 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002802 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002803 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002804 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002805 }
2806
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002807 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002808 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002809 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002810 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002811 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812 }
2813
Nick Piggindb935db2005-06-25 14:57:11 -07002814 BUG_ON(busiest == this_rq);
2815
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002816 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002817
2818 nr_moved = 0;
2819 if (busiest->nr_running > 1) {
2820 /* Attempt to move tasks */
2821 double_lock_balance(this_rq, busiest);
2822 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002823 minus_1_or_zero(busiest->nr_running),
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002824 imbalance, sd, CPU_NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002825 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002826
2827 if (!nr_moved) {
2828 cpu_clear(cpu_of(busiest), cpus);
2829 if (!cpus_empty(cpus))
2830 goto redo;
2831 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002832 }
2833
Nick Piggin5969fe02005-09-10 00:26:19 -07002834 if (!nr_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002835 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002836 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2837 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002838 return -1;
2839 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002840 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841
Linus Torvalds1da177e2005-04-16 15:20:36 -07002842 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002843
2844out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002845 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002846 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002847 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002848 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002849 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002850
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002851 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002852}
2853
2854/*
2855 * idle_balance is called by schedule() if this_cpu is about to become
2856 * idle. Attempts to pull tasks from other CPUs.
2857 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002858static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002859{
2860 struct sched_domain *sd;
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002861 int pulled_task = 0;
2862 unsigned long next_balance = jiffies + 60 * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863
2864 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002865 unsigned long interval;
2866
2867 if (!(sd->flags & SD_LOAD_BALANCE))
2868 continue;
2869
2870 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002871 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002872 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002873 this_rq, sd);
2874
2875 interval = msecs_to_jiffies(sd->balance_interval);
2876 if (time_after(next_balance, sd->last_balance + interval))
2877 next_balance = sd->last_balance + interval;
2878 if (pulled_task)
2879 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002881 if (!pulled_task)
2882 /*
2883 * We are going idle. next_balance may be set based on
2884 * a busy processor. So reset next_balance.
2885 */
2886 this_rq->next_balance = next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002887}
2888
2889/*
2890 * active_load_balance is run by migration threads. It pushes running tasks
2891 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2892 * running on each physical CPU where possible, and avoids physical /
2893 * logical imbalances.
2894 *
2895 * Called with busiest_rq locked.
2896 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002897static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002898{
Nick Piggin39507452005-06-25 14:57:09 -07002899 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002900 struct sched_domain *sd;
2901 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002902
Ingo Molnar48f24c42006-07-03 00:25:40 -07002903 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002904 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002905 return;
2906
2907 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908
2909 /*
Nick Piggin39507452005-06-25 14:57:09 -07002910 * This condition is "impossible", if it occurs
2911 * we need to fix it. Originally reported by
2912 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913 */
Nick Piggin39507452005-06-25 14:57:09 -07002914 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002915
Nick Piggin39507452005-06-25 14:57:09 -07002916 /* move a task from busiest_rq to target_rq */
2917 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918
Nick Piggin39507452005-06-25 14:57:09 -07002919 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002920 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002921 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002922 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002923 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002924 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002925
Ingo Molnar48f24c42006-07-03 00:25:40 -07002926 if (likely(sd)) {
2927 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002928
Ingo Molnar48f24c42006-07-03 00:25:40 -07002929 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002930 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002931 NULL))
2932 schedstat_inc(sd, alb_pushed);
2933 else
2934 schedstat_inc(sd, alb_failed);
2935 }
Nick Piggin39507452005-06-25 14:57:09 -07002936 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002937}
2938
Christoph Lameter7835b982006-12-10 02:20:22 -08002939static void update_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002940{
Christoph Lameter7835b982006-12-10 02:20:22 -08002941 unsigned long this_load;
Nick Pigginff916912007-02-12 00:53:51 -08002942 unsigned int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943
Peter Williams2dd73a42006-06-27 02:54:34 -07002944 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002945
2946 /* Update our load: */
Nick Pigginff916912007-02-12 00:53:51 -08002947 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002948 unsigned long old_load, new_load;
2949
Nick Pigginff916912007-02-12 00:53:51 -08002950 /* scale is effectively 1 << i now, and >> i divides by scale */
2951
Nick Piggin78979862005-06-25 14:57:13 -07002952 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07002953 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07002954 /*
2955 * Round up the averaging division if load is increasing. This
2956 * prevents us from getting stuck on 9 if the load is 10, for
2957 * example.
2958 */
2959 if (new_load > old_load)
2960 new_load += scale-1;
Nick Pigginff916912007-02-12 00:53:51 -08002961 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
Nick Piggin78979862005-06-25 14:57:13 -07002962 }
Christoph Lameter7835b982006-12-10 02:20:22 -08002963}
2964
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002965#ifdef CONFIG_NO_HZ
2966static struct {
2967 atomic_t load_balancer;
2968 cpumask_t cpu_mask;
2969} nohz ____cacheline_aligned = {
2970 .load_balancer = ATOMIC_INIT(-1),
2971 .cpu_mask = CPU_MASK_NONE,
2972};
2973
Christoph Lameter7835b982006-12-10 02:20:22 -08002974/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002975 * This routine will try to nominate the ilb (idle load balancing)
2976 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2977 * load balancing on behalf of all those cpus. If all the cpus in the system
2978 * go into this tickless mode, then there will be no ilb owner (as there is
2979 * no need for one) and all the cpus will sleep till the next wakeup event
2980 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002981 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002982 * For the ilb owner, tick is not stopped. And this tick will be used
2983 * for idle load balancing. ilb owner will still be part of
2984 * nohz.cpu_mask..
2985 *
2986 * While stopping the tick, this cpu will become the ilb owner if there
2987 * is no other owner. And will be the owner till that cpu becomes busy
2988 * or if all cpus in the system stop their ticks at which point
2989 * there is no need for ilb owner.
2990 *
2991 * When the ilb owner becomes busy, it nominates another owner, during the
2992 * next busy scheduler_tick()
2993 */
2994int select_nohz_load_balancer(int stop_tick)
2995{
2996 int cpu = smp_processor_id();
2997
2998 if (stop_tick) {
2999 cpu_set(cpu, nohz.cpu_mask);
3000 cpu_rq(cpu)->in_nohz_recently = 1;
3001
3002 /*
3003 * If we are going offline and still the leader, give up!
3004 */
3005 if (cpu_is_offline(cpu) &&
3006 atomic_read(&nohz.load_balancer) == cpu) {
3007 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3008 BUG();
3009 return 0;
3010 }
3011
3012 /* time for ilb owner also to sleep */
3013 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3014 if (atomic_read(&nohz.load_balancer) == cpu)
3015 atomic_set(&nohz.load_balancer, -1);
3016 return 0;
3017 }
3018
3019 if (atomic_read(&nohz.load_balancer) == -1) {
3020 /* make me the ilb owner */
3021 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3022 return 1;
3023 } else if (atomic_read(&nohz.load_balancer) == cpu)
3024 return 1;
3025 } else {
3026 if (!cpu_isset(cpu, nohz.cpu_mask))
3027 return 0;
3028
3029 cpu_clear(cpu, nohz.cpu_mask);
3030
3031 if (atomic_read(&nohz.load_balancer) == cpu)
3032 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3033 BUG();
3034 }
3035 return 0;
3036}
3037#endif
3038
3039static DEFINE_SPINLOCK(balancing);
3040
3041/*
Christoph Lameter7835b982006-12-10 02:20:22 -08003042 * It checks each scheduling domain to see if it is due to be balanced,
3043 * and initiates a balancing operation if so.
3044 *
3045 * Balancing parameters are set up in arch_init_sched_domains.
3046 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003047static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003048{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003049 int balance = 1;
3050 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003051 unsigned long interval;
3052 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003053 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003054 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003055
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003056 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003057 if (!(sd->flags & SD_LOAD_BALANCE))
3058 continue;
3059
3060 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003061 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003062 interval *= sd->busy_factor;
3063
3064 /* scale ms to jiffies */
3065 interval = msecs_to_jiffies(interval);
3066 if (unlikely(!interval))
3067 interval = 1;
3068
Christoph Lameter08c183f2006-12-10 02:20:29 -08003069 if (sd->flags & SD_SERIALIZE) {
3070 if (!spin_trylock(&balancing))
3071 goto out;
3072 }
3073
Christoph Lameterc9819f42006-12-10 02:20:25 -08003074 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003075 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003076 /*
3077 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003078 * longer idle, or one of our SMT siblings is
3079 * not idle.
3080 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003081 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003082 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003083 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003084 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003085 if (sd->flags & SD_SERIALIZE)
3086 spin_unlock(&balancing);
3087out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003088 if (time_after(next_balance, sd->last_balance + interval))
3089 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003090
3091 /*
3092 * Stop the load balance at this level. There is another
3093 * CPU in our sched group which is doing load balancing more
3094 * actively.
3095 */
3096 if (!balance)
3097 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003098 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003099 rq->next_balance = next_balance;
3100}
3101
3102/*
3103 * run_rebalance_domains is triggered when needed from the scheduler tick.
3104 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3105 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3106 */
3107static void run_rebalance_domains(struct softirq_action *h)
3108{
3109 int local_cpu = smp_processor_id();
3110 struct rq *local_rq = cpu_rq(local_cpu);
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003111 enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003112
3113 rebalance_domains(local_cpu, idle);
3114
3115#ifdef CONFIG_NO_HZ
3116 /*
3117 * If this cpu is the owner for idle load balancing, then do the
3118 * balancing on behalf of the other idle cpus whose ticks are
3119 * stopped.
3120 */
3121 if (local_rq->idle_at_tick &&
3122 atomic_read(&nohz.load_balancer) == local_cpu) {
3123 cpumask_t cpus = nohz.cpu_mask;
3124 struct rq *rq;
3125 int balance_cpu;
3126
3127 cpu_clear(local_cpu, cpus);
3128 for_each_cpu_mask(balance_cpu, cpus) {
3129 /*
3130 * If this cpu gets work to do, stop the load balancing
3131 * work being done for other cpus. Next load
3132 * balancing owner will pick it up.
3133 */
3134 if (need_resched())
3135 break;
3136
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003137 rebalance_domains(balance_cpu, CPU_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003138
3139 rq = cpu_rq(balance_cpu);
3140 if (time_after(local_rq->next_balance, rq->next_balance))
3141 local_rq->next_balance = rq->next_balance;
3142 }
3143 }
3144#endif
3145}
3146
3147/*
3148 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3149 *
3150 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3151 * idle load balancing owner or decide to stop the periodic load balancing,
3152 * if the whole system is idle.
3153 */
3154static inline void trigger_load_balance(int cpu)
3155{
3156 struct rq *rq = cpu_rq(cpu);
3157#ifdef CONFIG_NO_HZ
3158 /*
3159 * If we were in the nohz mode recently and busy at the current
3160 * scheduler tick, then check if we need to nominate new idle
3161 * load balancer.
3162 */
3163 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3164 rq->in_nohz_recently = 0;
3165
3166 if (atomic_read(&nohz.load_balancer) == cpu) {
3167 cpu_clear(cpu, nohz.cpu_mask);
3168 atomic_set(&nohz.load_balancer, -1);
3169 }
3170
3171 if (atomic_read(&nohz.load_balancer) == -1) {
3172 /*
3173 * simple selection for now: Nominate the
3174 * first cpu in the nohz list to be the next
3175 * ilb owner.
3176 *
3177 * TBD: Traverse the sched domains and nominate
3178 * the nearest cpu in the nohz.cpu_mask.
3179 */
3180 int ilb = first_cpu(nohz.cpu_mask);
3181
3182 if (ilb != NR_CPUS)
3183 resched_cpu(ilb);
3184 }
3185 }
3186
3187 /*
3188 * If this cpu is idle and doing idle load balancing for all the
3189 * cpus with ticks stopped, is it time for that to stop?
3190 */
3191 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3192 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3193 resched_cpu(cpu);
3194 return;
3195 }
3196
3197 /*
3198 * If this cpu is idle and the idle load balancing is done by
3199 * someone else, then no need raise the SCHED_SOFTIRQ
3200 */
3201 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3202 cpu_isset(cpu, nohz.cpu_mask))
3203 return;
3204#endif
3205 if (time_after_eq(jiffies, rq->next_balance))
3206 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003207}
3208#else
3209/*
3210 * on UP we do not need to balance between CPUs:
3211 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003212static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003213{
3214}
3215#endif
3216
Linus Torvalds1da177e2005-04-16 15:20:36 -07003217DEFINE_PER_CPU(struct kernel_stat, kstat);
3218
3219EXPORT_PER_CPU_SYMBOL(kstat);
3220
3221/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003222 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3223 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003224 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003225unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003226{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003227 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003228 u64 ns, delta_exec;
3229 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003230
Ingo Molnar41b86e92007-07-09 18:51:58 +02003231 rq = task_rq_lock(p, &flags);
3232 ns = p->se.sum_exec_runtime;
3233 if (rq->curr == p) {
3234 delta_exec = rq_clock(rq) - p->se.exec_start;
3235 if ((s64)delta_exec > 0)
3236 ns += delta_exec;
3237 }
3238 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003239
Linus Torvalds1da177e2005-04-16 15:20:36 -07003240 return ns;
3241}
3242
3243/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003244 * We place interactive tasks back into the active array, if possible.
3245 *
3246 * To guarantee that this does not starve expired tasks we ignore the
3247 * interactivity of a task if the first expired task had to wait more
3248 * than a 'reasonable' amount of time. This deadline timeout is
3249 * load-dependent, as the frequency of array switched decreases with
3250 * increasing number of running tasks. We also ignore the interactivity
3251 * if a better static_prio task has expired:
3252 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003253static inline int expired_starving(struct rq *rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003254{
3255 if (rq->curr->static_prio > rq->best_expired_prio)
3256 return 1;
3257 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3258 return 0;
3259 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3260 return 1;
3261 return 0;
3262}
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003263
3264/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003265 * Account user cpu time to a process.
3266 * @p: the process that the cpu time gets accounted to
3267 * @hardirq_offset: the offset to subtract from hardirq_count()
3268 * @cputime: the cpu time spent in user space since the last update
3269 */
3270void account_user_time(struct task_struct *p, cputime_t cputime)
3271{
3272 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3273 cputime64_t tmp;
3274
3275 p->utime = cputime_add(p->utime, cputime);
3276
3277 /* Add user time to cpustat. */
3278 tmp = cputime_to_cputime64(cputime);
3279 if (TASK_NICE(p) > 0)
3280 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3281 else
3282 cpustat->user = cputime64_add(cpustat->user, tmp);
3283}
3284
3285/*
3286 * Account system cpu time to a process.
3287 * @p: the process that the cpu time gets accounted to
3288 * @hardirq_offset: the offset to subtract from hardirq_count()
3289 * @cputime: the cpu time spent in kernel space since the last update
3290 */
3291void account_system_time(struct task_struct *p, int hardirq_offset,
3292 cputime_t cputime)
3293{
3294 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003295 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003296 cputime64_t tmp;
3297
3298 p->stime = cputime_add(p->stime, cputime);
3299
3300 /* Add system time to cpustat. */
3301 tmp = cputime_to_cputime64(cputime);
3302 if (hardirq_count() - hardirq_offset)
3303 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3304 else if (softirq_count())
3305 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3306 else if (p != rq->idle)
3307 cpustat->system = cputime64_add(cpustat->system, tmp);
3308 else if (atomic_read(&rq->nr_iowait) > 0)
3309 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3310 else
3311 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3312 /* Account for system time used */
3313 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003314}
3315
3316/*
3317 * Account for involuntary wait time.
3318 * @p: the process from which the cpu time has been stolen
3319 * @steal: the cpu time spent in involuntary wait
3320 */
3321void account_steal_time(struct task_struct *p, cputime_t steal)
3322{
3323 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3324 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003325 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003326
3327 if (p == rq->idle) {
3328 p->stime = cputime_add(p->stime, steal);
3329 if (atomic_read(&rq->nr_iowait) > 0)
3330 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3331 else
3332 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3333 } else
3334 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3335}
3336
Christoph Lameter7835b982006-12-10 02:20:22 -08003337static void task_running_tick(struct rq *rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003338{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003339 if (p->array != rq->active) {
Christoph Lameter7835b982006-12-10 02:20:22 -08003340 /* Task has expired but was not scheduled yet */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003341 set_tsk_need_resched(p);
Christoph Lameter7835b982006-12-10 02:20:22 -08003342 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003343 }
3344 spin_lock(&rq->lock);
3345 /*
3346 * The task was running during this tick - update the
3347 * time slice counter. Note: we do not update a thread's
3348 * priority until it either goes to sleep or uses up its
3349 * timeslice. This makes it possible for interactive tasks
3350 * to use up their timeslices at their highest priority levels.
3351 */
3352 if (rt_task(p)) {
3353 /*
3354 * RR tasks need a special form of timeslice management.
3355 * FIFO tasks have no timeslices.
3356 */
3357 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3358 p->time_slice = task_timeslice(p);
3359 p->first_time_slice = 0;
3360 set_tsk_need_resched(p);
3361
3362 /* put it at the end of the queue: */
3363 requeue_task(p, rq->active);
3364 }
3365 goto out_unlock;
3366 }
3367 if (!--p->time_slice) {
3368 dequeue_task(p, rq->active);
3369 set_tsk_need_resched(p);
3370 p->prio = effective_prio(p);
3371 p->time_slice = task_timeslice(p);
3372 p->first_time_slice = 0;
3373
3374 if (!rq->expired_timestamp)
3375 rq->expired_timestamp = jiffies;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003376 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003377 enqueue_task(p, rq->expired);
3378 if (p->static_prio < rq->best_expired_prio)
3379 rq->best_expired_prio = p->static_prio;
3380 } else
3381 enqueue_task(p, rq->active);
3382 } else {
3383 /*
3384 * Prevent a too long timeslice allowing a task to monopolize
3385 * the CPU. We do this by splitting up the timeslice into
3386 * smaller pieces.
3387 *
3388 * Note: this does not mean the task's timeslices expire or
3389 * get lost in any way, they just might be preempted by
3390 * another task of equal priority. (one with higher
3391 * priority would have preempted this task already.) We
3392 * requeue this task to the end of the list on this priority
3393 * level, which is in essence a round-robin of tasks with
3394 * equal priority.
3395 *
3396 * This only applies to tasks in the interactive
3397 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3398 */
3399 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3400 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3401 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3402 (p->array == rq->active)) {
3403
3404 requeue_task(p, rq->active);
3405 set_tsk_need_resched(p);
3406 }
3407 }
3408out_unlock:
3409 spin_unlock(&rq->lock);
Christoph Lameter7835b982006-12-10 02:20:22 -08003410}
3411
3412/*
3413 * This function gets called by the timer code, with HZ frequency.
3414 * We call it with interrupts disabled.
3415 *
3416 * It also gets called by the fork code, when changing the parent's
3417 * timeslices.
3418 */
3419void scheduler_tick(void)
3420{
Christoph Lameter7835b982006-12-10 02:20:22 -08003421 struct task_struct *p = current;
3422 int cpu = smp_processor_id();
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003423 int idle_at_tick = idle_cpu(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003424 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003425
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003426 if (!idle_at_tick)
Christoph Lameter7835b982006-12-10 02:20:22 -08003427 task_running_tick(rq, p);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003428#ifdef CONFIG_SMP
Christoph Lameter7835b982006-12-10 02:20:22 -08003429 update_load(rq);
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003430 rq->idle_at_tick = idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003431 trigger_load_balance(cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003432#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003433}
3434
Linus Torvalds1da177e2005-04-16 15:20:36 -07003435#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3436
3437void fastcall add_preempt_count(int val)
3438{
3439 /*
3440 * Underflow?
3441 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003442 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3443 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003444 preempt_count() += val;
3445 /*
3446 * Spinlock count overflowing soon?
3447 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003448 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3449 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003450}
3451EXPORT_SYMBOL(add_preempt_count);
3452
3453void fastcall sub_preempt_count(int val)
3454{
3455 /*
3456 * Underflow?
3457 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003458 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3459 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003460 /*
3461 * Is the spinlock portion underflowing?
3462 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003463 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3464 !(preempt_count() & PREEMPT_MASK)))
3465 return;
3466
Linus Torvalds1da177e2005-04-16 15:20:36 -07003467 preempt_count() -= val;
3468}
3469EXPORT_SYMBOL(sub_preempt_count);
3470
3471#endif
3472
3473/*
3474 * schedule() is the main scheduler function.
3475 */
3476asmlinkage void __sched schedule(void)
3477{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003478 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003479 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480 struct list_head *queue;
3481 unsigned long long now;
3482 unsigned long run_time;
Ingo Molnarf2ac58e2007-07-09 18:51:59 +02003483 int cpu, idx;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003484 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003485 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003486
3487 /*
3488 * Test if we are atomic. Since do_exit() needs to call into
3489 * schedule() atomically, we ignore that path for now.
3490 * Otherwise, whine if we are scheduling when we should not be.
3491 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003492 if (unlikely(in_atomic() && !current->exit_state)) {
3493 printk(KERN_ERR "BUG: scheduling while atomic: "
3494 "%s/0x%08x/%d\n",
3495 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003496 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08003497 if (irqs_disabled())
3498 print_irqtrace_events(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003499 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500 }
3501 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3502
3503need_resched:
3504 preempt_disable();
3505 prev = current;
3506 release_kernel_lock(prev);
3507need_resched_nonpreemptible:
3508 rq = this_rq();
3509
3510 /*
3511 * The idle thread is not allowed to schedule!
3512 * Remove this check after it has been exercised a bit.
3513 */
3514 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3515 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3516 dump_stack();
3517 }
3518
3519 schedstat_inc(rq, sched_cnt);
3520 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003521 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003522 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003523 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003524 run_time = 0;
3525 } else
3526 run_time = NS_MAX_SLEEP_AVG;
3527
3528 /*
3529 * Tasks charged proportionately less run_time at high sleep_avg to
3530 * delay them losing their interactive status
3531 */
3532 run_time /= (CURRENT_BONUS(prev) ? : 1);
3533
3534 spin_lock_irq(&rq->lock);
3535
Linus Torvalds1da177e2005-04-16 15:20:36 -07003536 switch_count = &prev->nivcsw;
3537 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3538 switch_count = &prev->nvcsw;
3539 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3540 unlikely(signal_pending(prev))))
3541 prev->state = TASK_RUNNING;
3542 else {
3543 if (prev->state == TASK_UNINTERRUPTIBLE)
3544 rq->nr_uninterruptible++;
3545 deactivate_task(prev, rq);
3546 }
3547 }
3548
3549 cpu = smp_processor_id();
3550 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551 idle_balance(cpu, rq);
3552 if (!rq->nr_running) {
3553 next = rq->idle;
3554 rq->expired_timestamp = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555 goto switch_tasks;
3556 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557 }
3558
3559 array = rq->active;
3560 if (unlikely(!array->nr_active)) {
3561 /*
3562 * Switch the active and expired arrays.
3563 */
3564 schedstat_inc(rq, sched_switch);
3565 rq->active = rq->expired;
3566 rq->expired = array;
3567 array = rq->active;
3568 rq->expired_timestamp = 0;
3569 rq->best_expired_prio = MAX_PRIO;
3570 }
3571
3572 idx = sched_find_first_bit(array->bitmap);
3573 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003574 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003575
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576switch_tasks:
3577 if (next == rq->idle)
3578 schedstat_inc(rq, sched_goidle);
3579 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003580 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003581 clear_tsk_need_resched(prev);
3582 rcu_qsctr_inc(task_cpu(prev));
3583
Linus Torvalds1da177e2005-04-16 15:20:36 -07003584 prev->sleep_avg -= run_time;
3585 if ((long)prev->sleep_avg <= 0)
3586 prev->sleep_avg = 0;
3587 prev->timestamp = prev->last_ran = now;
3588
3589 sched_info_switch(prev, next);
3590 if (likely(prev != next)) {
Thomas Gleixnerc1e16aa2007-02-28 20:12:19 -08003591 next->timestamp = next->last_ran = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003592 rq->nr_switches++;
3593 rq->curr = next;
3594 ++*switch_count;
3595
Nick Piggin4866cde2005-06-25 14:57:23 -07003596 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003597 prev = context_switch(rq, prev, next);
3598 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003599 /*
3600 * this_rq must be evaluated again because prev may have moved
3601 * CPUs since it called schedule(), thus the 'rq' on its stack
3602 * frame will be invalid.
3603 */
3604 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003605 } else
3606 spin_unlock_irq(&rq->lock);
3607
3608 prev = current;
3609 if (unlikely(reacquire_kernel_lock(prev) < 0))
3610 goto need_resched_nonpreemptible;
3611 preempt_enable_no_resched();
3612 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3613 goto need_resched;
3614}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003615EXPORT_SYMBOL(schedule);
3616
3617#ifdef CONFIG_PREEMPT
3618/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003619 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003620 * off of preempt_enable. Kernel preemptions off return from interrupt
3621 * occur there and call schedule directly.
3622 */
3623asmlinkage void __sched preempt_schedule(void)
3624{
3625 struct thread_info *ti = current_thread_info();
3626#ifdef CONFIG_PREEMPT_BKL
3627 struct task_struct *task = current;
3628 int saved_lock_depth;
3629#endif
3630 /*
3631 * If there is a non-zero preempt_count or interrupts are disabled,
3632 * we do not want to preempt the current task. Just return..
3633 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003634 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003635 return;
3636
3637need_resched:
3638 add_preempt_count(PREEMPT_ACTIVE);
3639 /*
3640 * We keep the big kernel semaphore locked, but we
3641 * clear ->lock_depth so that schedule() doesnt
3642 * auto-release the semaphore:
3643 */
3644#ifdef CONFIG_PREEMPT_BKL
3645 saved_lock_depth = task->lock_depth;
3646 task->lock_depth = -1;
3647#endif
3648 schedule();
3649#ifdef CONFIG_PREEMPT_BKL
3650 task->lock_depth = saved_lock_depth;
3651#endif
3652 sub_preempt_count(PREEMPT_ACTIVE);
3653
3654 /* we could miss a preemption opportunity between schedule and now */
3655 barrier();
3656 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3657 goto need_resched;
3658}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003659EXPORT_SYMBOL(preempt_schedule);
3660
3661/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003662 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003663 * off of irq context.
3664 * Note, that this is called and return with irqs disabled. This will
3665 * protect us against recursive calling from irq.
3666 */
3667asmlinkage void __sched preempt_schedule_irq(void)
3668{
3669 struct thread_info *ti = current_thread_info();
3670#ifdef CONFIG_PREEMPT_BKL
3671 struct task_struct *task = current;
3672 int saved_lock_depth;
3673#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003674 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675 BUG_ON(ti->preempt_count || !irqs_disabled());
3676
3677need_resched:
3678 add_preempt_count(PREEMPT_ACTIVE);
3679 /*
3680 * We keep the big kernel semaphore locked, but we
3681 * clear ->lock_depth so that schedule() doesnt
3682 * auto-release the semaphore:
3683 */
3684#ifdef CONFIG_PREEMPT_BKL
3685 saved_lock_depth = task->lock_depth;
3686 task->lock_depth = -1;
3687#endif
3688 local_irq_enable();
3689 schedule();
3690 local_irq_disable();
3691#ifdef CONFIG_PREEMPT_BKL
3692 task->lock_depth = saved_lock_depth;
3693#endif
3694 sub_preempt_count(PREEMPT_ACTIVE);
3695
3696 /* we could miss a preemption opportunity between schedule and now */
3697 barrier();
3698 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3699 goto need_resched;
3700}
3701
3702#endif /* CONFIG_PREEMPT */
3703
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003704int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3705 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003706{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003707 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003708}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003709EXPORT_SYMBOL(default_wake_function);
3710
3711/*
3712 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3713 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3714 * number) then we wake all the non-exclusive tasks and one exclusive task.
3715 *
3716 * There are circumstances in which we can try to wake a task which has already
3717 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3718 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3719 */
3720static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3721 int nr_exclusive, int sync, void *key)
3722{
3723 struct list_head *tmp, *next;
3724
3725 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003726 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3727 unsigned flags = curr->flags;
3728
Linus Torvalds1da177e2005-04-16 15:20:36 -07003729 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003730 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003731 break;
3732 }
3733}
3734
3735/**
3736 * __wake_up - wake up threads blocked on a waitqueue.
3737 * @q: the waitqueue
3738 * @mode: which threads
3739 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003740 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003741 */
3742void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003743 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003744{
3745 unsigned long flags;
3746
3747 spin_lock_irqsave(&q->lock, flags);
3748 __wake_up_common(q, mode, nr_exclusive, 0, key);
3749 spin_unlock_irqrestore(&q->lock, flags);
3750}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003751EXPORT_SYMBOL(__wake_up);
3752
3753/*
3754 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3755 */
3756void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3757{
3758 __wake_up_common(q, mode, 1, 0, NULL);
3759}
3760
3761/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003762 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003763 * @q: the waitqueue
3764 * @mode: which threads
3765 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3766 *
3767 * The sync wakeup differs that the waker knows that it will schedule
3768 * away soon, so while the target thread will be woken up, it will not
3769 * be migrated to another CPU - ie. the two threads are 'synchronized'
3770 * with each other. This can prevent needless bouncing between CPUs.
3771 *
3772 * On UP it can prevent extra preemption.
3773 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003774void fastcall
3775__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003776{
3777 unsigned long flags;
3778 int sync = 1;
3779
3780 if (unlikely(!q))
3781 return;
3782
3783 if (unlikely(!nr_exclusive))
3784 sync = 0;
3785
3786 spin_lock_irqsave(&q->lock, flags);
3787 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3788 spin_unlock_irqrestore(&q->lock, flags);
3789}
3790EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3791
3792void fastcall complete(struct completion *x)
3793{
3794 unsigned long flags;
3795
3796 spin_lock_irqsave(&x->wait.lock, flags);
3797 x->done++;
3798 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3799 1, 0, NULL);
3800 spin_unlock_irqrestore(&x->wait.lock, flags);
3801}
3802EXPORT_SYMBOL(complete);
3803
3804void fastcall complete_all(struct completion *x)
3805{
3806 unsigned long flags;
3807
3808 spin_lock_irqsave(&x->wait.lock, flags);
3809 x->done += UINT_MAX/2;
3810 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3811 0, 0, NULL);
3812 spin_unlock_irqrestore(&x->wait.lock, flags);
3813}
3814EXPORT_SYMBOL(complete_all);
3815
3816void fastcall __sched wait_for_completion(struct completion *x)
3817{
3818 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003819
Linus Torvalds1da177e2005-04-16 15:20:36 -07003820 spin_lock_irq(&x->wait.lock);
3821 if (!x->done) {
3822 DECLARE_WAITQUEUE(wait, current);
3823
3824 wait.flags |= WQ_FLAG_EXCLUSIVE;
3825 __add_wait_queue_tail(&x->wait, &wait);
3826 do {
3827 __set_current_state(TASK_UNINTERRUPTIBLE);
3828 spin_unlock_irq(&x->wait.lock);
3829 schedule();
3830 spin_lock_irq(&x->wait.lock);
3831 } while (!x->done);
3832 __remove_wait_queue(&x->wait, &wait);
3833 }
3834 x->done--;
3835 spin_unlock_irq(&x->wait.lock);
3836}
3837EXPORT_SYMBOL(wait_for_completion);
3838
3839unsigned long fastcall __sched
3840wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3841{
3842 might_sleep();
3843
3844 spin_lock_irq(&x->wait.lock);
3845 if (!x->done) {
3846 DECLARE_WAITQUEUE(wait, current);
3847
3848 wait.flags |= WQ_FLAG_EXCLUSIVE;
3849 __add_wait_queue_tail(&x->wait, &wait);
3850 do {
3851 __set_current_state(TASK_UNINTERRUPTIBLE);
3852 spin_unlock_irq(&x->wait.lock);
3853 timeout = schedule_timeout(timeout);
3854 spin_lock_irq(&x->wait.lock);
3855 if (!timeout) {
3856 __remove_wait_queue(&x->wait, &wait);
3857 goto out;
3858 }
3859 } while (!x->done);
3860 __remove_wait_queue(&x->wait, &wait);
3861 }
3862 x->done--;
3863out:
3864 spin_unlock_irq(&x->wait.lock);
3865 return timeout;
3866}
3867EXPORT_SYMBOL(wait_for_completion_timeout);
3868
3869int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3870{
3871 int ret = 0;
3872
3873 might_sleep();
3874
3875 spin_lock_irq(&x->wait.lock);
3876 if (!x->done) {
3877 DECLARE_WAITQUEUE(wait, current);
3878
3879 wait.flags |= WQ_FLAG_EXCLUSIVE;
3880 __add_wait_queue_tail(&x->wait, &wait);
3881 do {
3882 if (signal_pending(current)) {
3883 ret = -ERESTARTSYS;
3884 __remove_wait_queue(&x->wait, &wait);
3885 goto out;
3886 }
3887 __set_current_state(TASK_INTERRUPTIBLE);
3888 spin_unlock_irq(&x->wait.lock);
3889 schedule();
3890 spin_lock_irq(&x->wait.lock);
3891 } while (!x->done);
3892 __remove_wait_queue(&x->wait, &wait);
3893 }
3894 x->done--;
3895out:
3896 spin_unlock_irq(&x->wait.lock);
3897
3898 return ret;
3899}
3900EXPORT_SYMBOL(wait_for_completion_interruptible);
3901
3902unsigned long fastcall __sched
3903wait_for_completion_interruptible_timeout(struct completion *x,
3904 unsigned long timeout)
3905{
3906 might_sleep();
3907
3908 spin_lock_irq(&x->wait.lock);
3909 if (!x->done) {
3910 DECLARE_WAITQUEUE(wait, current);
3911
3912 wait.flags |= WQ_FLAG_EXCLUSIVE;
3913 __add_wait_queue_tail(&x->wait, &wait);
3914 do {
3915 if (signal_pending(current)) {
3916 timeout = -ERESTARTSYS;
3917 __remove_wait_queue(&x->wait, &wait);
3918 goto out;
3919 }
3920 __set_current_state(TASK_INTERRUPTIBLE);
3921 spin_unlock_irq(&x->wait.lock);
3922 timeout = schedule_timeout(timeout);
3923 spin_lock_irq(&x->wait.lock);
3924 if (!timeout) {
3925 __remove_wait_queue(&x->wait, &wait);
3926 goto out;
3927 }
3928 } while (!x->done);
3929 __remove_wait_queue(&x->wait, &wait);
3930 }
3931 x->done--;
3932out:
3933 spin_unlock_irq(&x->wait.lock);
3934 return timeout;
3935}
3936EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3937
3938
3939#define SLEEP_ON_VAR \
3940 unsigned long flags; \
3941 wait_queue_t wait; \
3942 init_waitqueue_entry(&wait, current);
3943
3944#define SLEEP_ON_HEAD \
3945 spin_lock_irqsave(&q->lock,flags); \
3946 __add_wait_queue(q, &wait); \
3947 spin_unlock(&q->lock);
3948
3949#define SLEEP_ON_TAIL \
3950 spin_lock_irq(&q->lock); \
3951 __remove_wait_queue(q, &wait); \
3952 spin_unlock_irqrestore(&q->lock, flags);
3953
3954void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3955{
3956 SLEEP_ON_VAR
3957
3958 current->state = TASK_INTERRUPTIBLE;
3959
3960 SLEEP_ON_HEAD
3961 schedule();
3962 SLEEP_ON_TAIL
3963}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003964EXPORT_SYMBOL(interruptible_sleep_on);
3965
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003966long fastcall __sched
3967interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003968{
3969 SLEEP_ON_VAR
3970
3971 current->state = TASK_INTERRUPTIBLE;
3972
3973 SLEEP_ON_HEAD
3974 timeout = schedule_timeout(timeout);
3975 SLEEP_ON_TAIL
3976
3977 return timeout;
3978}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003979EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3980
3981void fastcall __sched sleep_on(wait_queue_head_t *q)
3982{
3983 SLEEP_ON_VAR
3984
3985 current->state = TASK_UNINTERRUPTIBLE;
3986
3987 SLEEP_ON_HEAD
3988 schedule();
3989 SLEEP_ON_TAIL
3990}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003991EXPORT_SYMBOL(sleep_on);
3992
3993long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3994{
3995 SLEEP_ON_VAR
3996
3997 current->state = TASK_UNINTERRUPTIBLE;
3998
3999 SLEEP_ON_HEAD
4000 timeout = schedule_timeout(timeout);
4001 SLEEP_ON_TAIL
4002
4003 return timeout;
4004}
4005
4006EXPORT_SYMBOL(sleep_on_timeout);
4007
Ingo Molnarb29739f2006-06-27 02:54:51 -07004008#ifdef CONFIG_RT_MUTEXES
4009
4010/*
4011 * rt_mutex_setprio - set the current priority of a task
4012 * @p: task
4013 * @prio: prio value (kernel-internal form)
4014 *
4015 * This function changes the 'effective' priority of a task. It does
4016 * not touch ->normal_prio like __setscheduler().
4017 *
4018 * Used by the rt_mutex code to implement priority inheritance logic.
4019 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004020void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07004021{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004022 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004023 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004024 struct rq *rq;
Andrew Mortond5f9f942007-05-08 20:27:06 -07004025 int oldprio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004026
4027 BUG_ON(prio < 0 || prio > MAX_PRIO);
4028
4029 rq = task_rq_lock(p, &flags);
4030
Andrew Mortond5f9f942007-05-08 20:27:06 -07004031 oldprio = p->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004032 array = p->array;
4033 if (array)
4034 dequeue_task(p, array);
4035 p->prio = prio;
4036
4037 if (array) {
4038 /*
4039 * If changing to an RT priority then queue it
4040 * in the active array!
4041 */
4042 if (rt_task(p))
4043 array = rq->active;
4044 enqueue_task(p, array);
4045 /*
4046 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004047 * our priority decreased, or if we are not currently running on
4048 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07004049 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004050 if (task_running(rq, p)) {
4051 if (p->prio > oldprio)
4052 resched_task(rq->curr);
4053 } else if (TASK_PREEMPTS_CURR(p, rq))
Ingo Molnarb29739f2006-06-27 02:54:51 -07004054 resched_task(rq->curr);
4055 }
4056 task_rq_unlock(rq, &flags);
4057}
4058
4059#endif
4060
Ingo Molnar36c8b582006-07-03 00:25:41 -07004061void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004062{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004063 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004064 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004065 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004066 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004067
4068 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4069 return;
4070 /*
4071 * We have to be careful, if called from sys_setpriority(),
4072 * the task might be in the middle of scheduling on another CPU.
4073 */
4074 rq = task_rq_lock(p, &flags);
4075 /*
4076 * The RT priorities are set via sched_setscheduler(), but we still
4077 * allow the 'normal' nice value to be set - but as expected
4078 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08004079 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004080 */
Ingo Molnare05606d2007-07-09 18:51:59 +02004081 if (task_has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004082 p->static_prio = NICE_TO_PRIO(nice);
4083 goto out_unlock;
4084 }
4085 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07004086 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004087 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004088 dec_raw_weighted_load(rq, p);
4089 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004090
Linus Torvalds1da177e2005-04-16 15:20:36 -07004091 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004092 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004093 old_prio = p->prio;
4094 p->prio = effective_prio(p);
4095 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004096
4097 if (array) {
4098 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004099 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004101 * If the task increased its priority or is running and
4102 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004103 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004104 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004105 resched_task(rq->curr);
4106 }
4107out_unlock:
4108 task_rq_unlock(rq, &flags);
4109}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004110EXPORT_SYMBOL(set_user_nice);
4111
Matt Mackalle43379f2005-05-01 08:59:00 -07004112/*
4113 * can_nice - check if a task can reduce its nice value
4114 * @p: task
4115 * @nice: nice value
4116 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004117int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004118{
Matt Mackall024f4742005-08-18 11:24:19 -07004119 /* convert nice value [19,-20] to rlimit style value [1,40] */
4120 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004121
Matt Mackalle43379f2005-05-01 08:59:00 -07004122 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4123 capable(CAP_SYS_NICE));
4124}
4125
Linus Torvalds1da177e2005-04-16 15:20:36 -07004126#ifdef __ARCH_WANT_SYS_NICE
4127
4128/*
4129 * sys_nice - change the priority of the current process.
4130 * @increment: priority increment
4131 *
4132 * sys_setpriority is a more generic, but much slower function that
4133 * does similar things.
4134 */
4135asmlinkage long sys_nice(int increment)
4136{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004137 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004138
4139 /*
4140 * Setpriority might change our priority at the same moment.
4141 * We don't have to worry. Conceptually one call occurs first
4142 * and we have a single winner.
4143 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004144 if (increment < -40)
4145 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004146 if (increment > 40)
4147 increment = 40;
4148
4149 nice = PRIO_TO_NICE(current->static_prio) + increment;
4150 if (nice < -20)
4151 nice = -20;
4152 if (nice > 19)
4153 nice = 19;
4154
Matt Mackalle43379f2005-05-01 08:59:00 -07004155 if (increment < 0 && !can_nice(current, nice))
4156 return -EPERM;
4157
Linus Torvalds1da177e2005-04-16 15:20:36 -07004158 retval = security_task_setnice(current, nice);
4159 if (retval)
4160 return retval;
4161
4162 set_user_nice(current, nice);
4163 return 0;
4164}
4165
4166#endif
4167
4168/**
4169 * task_prio - return the priority value of a given task.
4170 * @p: the task in question.
4171 *
4172 * This is the priority value as seen by users in /proc.
4173 * RT tasks are offset by -200. Normal tasks are centered
4174 * around 0, value goes from -16 to +15.
4175 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004176int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004177{
4178 return p->prio - MAX_RT_PRIO;
4179}
4180
4181/**
4182 * task_nice - return the nice value of a given task.
4183 * @p: the task in question.
4184 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004185int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004186{
4187 return TASK_NICE(p);
4188}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004189EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004190
4191/**
4192 * idle_cpu - is a given cpu idle currently?
4193 * @cpu: the processor in question.
4194 */
4195int idle_cpu(int cpu)
4196{
4197 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4198}
4199
Linus Torvalds1da177e2005-04-16 15:20:36 -07004200/**
4201 * idle_task - return the idle task for a given cpu.
4202 * @cpu: the processor in question.
4203 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004204struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004205{
4206 return cpu_rq(cpu)->idle;
4207}
4208
4209/**
4210 * find_process_by_pid - find a process with a matching PID value.
4211 * @pid: the pid in question.
4212 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004213static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004214{
4215 return pid ? find_task_by_pid(pid) : current;
4216}
4217
4218/* Actually do priority change: must hold rq lock. */
4219static void __setscheduler(struct task_struct *p, int policy, int prio)
4220{
4221 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004222
Linus Torvalds1da177e2005-04-16 15:20:36 -07004223 p->policy = policy;
4224 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004225 p->normal_prio = normal_prio(p);
4226 /* we are holding p->pi_lock already */
4227 p->prio = rt_mutex_getprio(p);
4228 /*
4229 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4230 */
4231 if (policy == SCHED_BATCH)
4232 p->sleep_avg = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07004233 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004234}
4235
4236/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004237 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004238 * @p: the task in question.
4239 * @policy: new policy.
4240 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004241 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004242 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004243 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004244int sched_setscheduler(struct task_struct *p, int policy,
4245 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004246{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004247 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004248 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004249 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004250 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004251
Steven Rostedt66e53932006-06-27 02:54:44 -07004252 /* may grab non-irq protected spin_locks */
4253 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004254recheck:
4255 /* double check policy once rq lock held */
4256 if (policy < 0)
4257 policy = oldpolicy = p->policy;
4258 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004259 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4260 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004261 /*
4262 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004263 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4264 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004265 */
4266 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004267 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004268 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004269 return -EINVAL;
Ingo Molnare05606d2007-07-09 18:51:59 +02004270 if (rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004271 return -EINVAL;
4272
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004273 /*
4274 * Allow unprivileged RT tasks to decrease priority:
4275 */
4276 if (!capable(CAP_SYS_NICE)) {
Ingo Molnare05606d2007-07-09 18:51:59 +02004277 if (rt_policy(policy)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004278 unsigned long rlim_rtprio;
4279 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004280
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004281 if (!lock_task_sighand(p, &flags))
4282 return -ESRCH;
4283 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4284 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004285
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004286 /* can't set/change the rt policy */
4287 if (policy != p->policy && !rlim_rtprio)
4288 return -EPERM;
4289
4290 /* can't increase priority */
4291 if (param->sched_priority > p->rt_priority &&
4292 param->sched_priority > rlim_rtprio)
4293 return -EPERM;
4294 }
4295
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004296 /* can't change other user's priorities */
4297 if ((current->euid != p->euid) &&
4298 (current->euid != p->uid))
4299 return -EPERM;
4300 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004301
4302 retval = security_task_setscheduler(p, policy, param);
4303 if (retval)
4304 return retval;
4305 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004306 * make sure no PI-waiters arrive (or leave) while we are
4307 * changing the priority of the task:
4308 */
4309 spin_lock_irqsave(&p->pi_lock, flags);
4310 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004311 * To be able to change p->policy safely, the apropriate
4312 * runqueue lock must be held.
4313 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004314 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004315 /* recheck policy now with rq lock held */
4316 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4317 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004318 __task_rq_unlock(rq);
4319 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004320 goto recheck;
4321 }
4322 array = p->array;
4323 if (array)
4324 deactivate_task(p, rq);
4325 oldprio = p->prio;
4326 __setscheduler(p, policy, param->sched_priority);
4327 if (array) {
4328 __activate_task(p, rq);
4329 /*
4330 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004331 * our priority decreased, or if we are not currently running on
4332 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004333 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004334 if (task_running(rq, p)) {
4335 if (p->prio > oldprio)
4336 resched_task(rq->curr);
4337 } else if (TASK_PREEMPTS_CURR(p, rq))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004338 resched_task(rq->curr);
4339 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004340 __task_rq_unlock(rq);
4341 spin_unlock_irqrestore(&p->pi_lock, flags);
4342
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004343 rt_mutex_adjust_pi(p);
4344
Linus Torvalds1da177e2005-04-16 15:20:36 -07004345 return 0;
4346}
4347EXPORT_SYMBOL_GPL(sched_setscheduler);
4348
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004349static int
4350do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004351{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004352 struct sched_param lparam;
4353 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004354 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004355
4356 if (!param || pid < 0)
4357 return -EINVAL;
4358 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4359 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004360
4361 rcu_read_lock();
4362 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004363 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004364 if (p != NULL)
4365 retval = sched_setscheduler(p, policy, &lparam);
4366 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004367
Linus Torvalds1da177e2005-04-16 15:20:36 -07004368 return retval;
4369}
4370
4371/**
4372 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4373 * @pid: the pid in question.
4374 * @policy: new policy.
4375 * @param: structure containing the new RT priority.
4376 */
4377asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4378 struct sched_param __user *param)
4379{
Jason Baronc21761f2006-01-18 17:43:03 -08004380 /* negative values for policy are not valid */
4381 if (policy < 0)
4382 return -EINVAL;
4383
Linus Torvalds1da177e2005-04-16 15:20:36 -07004384 return do_sched_setscheduler(pid, policy, param);
4385}
4386
4387/**
4388 * sys_sched_setparam - set/change the RT priority of a thread
4389 * @pid: the pid in question.
4390 * @param: structure containing the new RT priority.
4391 */
4392asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4393{
4394 return do_sched_setscheduler(pid, -1, param);
4395}
4396
4397/**
4398 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4399 * @pid: the pid in question.
4400 */
4401asmlinkage long sys_sched_getscheduler(pid_t pid)
4402{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004403 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004404 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004405
4406 if (pid < 0)
4407 goto out_nounlock;
4408
4409 retval = -ESRCH;
4410 read_lock(&tasklist_lock);
4411 p = find_process_by_pid(pid);
4412 if (p) {
4413 retval = security_task_getscheduler(p);
4414 if (!retval)
4415 retval = p->policy;
4416 }
4417 read_unlock(&tasklist_lock);
4418
4419out_nounlock:
4420 return retval;
4421}
4422
4423/**
4424 * sys_sched_getscheduler - get the RT priority of a thread
4425 * @pid: the pid in question.
4426 * @param: structure containing the RT priority.
4427 */
4428asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4429{
4430 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004431 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004432 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004433
4434 if (!param || pid < 0)
4435 goto out_nounlock;
4436
4437 read_lock(&tasklist_lock);
4438 p = find_process_by_pid(pid);
4439 retval = -ESRCH;
4440 if (!p)
4441 goto out_unlock;
4442
4443 retval = security_task_getscheduler(p);
4444 if (retval)
4445 goto out_unlock;
4446
4447 lp.sched_priority = p->rt_priority;
4448 read_unlock(&tasklist_lock);
4449
4450 /*
4451 * This one might sleep, we cannot do it with a spinlock held ...
4452 */
4453 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4454
4455out_nounlock:
4456 return retval;
4457
4458out_unlock:
4459 read_unlock(&tasklist_lock);
4460 return retval;
4461}
4462
4463long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4464{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004465 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004466 struct task_struct *p;
4467 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004468
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004469 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004470 read_lock(&tasklist_lock);
4471
4472 p = find_process_by_pid(pid);
4473 if (!p) {
4474 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004475 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004476 return -ESRCH;
4477 }
4478
4479 /*
4480 * It is not safe to call set_cpus_allowed with the
4481 * tasklist_lock held. We will bump the task_struct's
4482 * usage count and then drop tasklist_lock.
4483 */
4484 get_task_struct(p);
4485 read_unlock(&tasklist_lock);
4486
4487 retval = -EPERM;
4488 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4489 !capable(CAP_SYS_NICE))
4490 goto out_unlock;
4491
David Quigleye7834f82006-06-23 02:03:59 -07004492 retval = security_task_setscheduler(p, 0, NULL);
4493 if (retval)
4494 goto out_unlock;
4495
Linus Torvalds1da177e2005-04-16 15:20:36 -07004496 cpus_allowed = cpuset_cpus_allowed(p);
4497 cpus_and(new_mask, new_mask, cpus_allowed);
4498 retval = set_cpus_allowed(p, new_mask);
4499
4500out_unlock:
4501 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004502 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004503 return retval;
4504}
4505
4506static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4507 cpumask_t *new_mask)
4508{
4509 if (len < sizeof(cpumask_t)) {
4510 memset(new_mask, 0, sizeof(cpumask_t));
4511 } else if (len > sizeof(cpumask_t)) {
4512 len = sizeof(cpumask_t);
4513 }
4514 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4515}
4516
4517/**
4518 * sys_sched_setaffinity - set the cpu affinity of a process
4519 * @pid: pid of the process
4520 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4521 * @user_mask_ptr: user-space pointer to the new cpu mask
4522 */
4523asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4524 unsigned long __user *user_mask_ptr)
4525{
4526 cpumask_t new_mask;
4527 int retval;
4528
4529 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4530 if (retval)
4531 return retval;
4532
4533 return sched_setaffinity(pid, new_mask);
4534}
4535
4536/*
4537 * Represents all cpu's present in the system
4538 * In systems capable of hotplug, this map could dynamically grow
4539 * as new cpu's are detected in the system via any platform specific
4540 * method, such as ACPI for e.g.
4541 */
4542
Andi Kleen4cef0c62006-01-11 22:44:57 +01004543cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004544EXPORT_SYMBOL(cpu_present_map);
4545
4546#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004547cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004548EXPORT_SYMBOL(cpu_online_map);
4549
Andi Kleen4cef0c62006-01-11 22:44:57 +01004550cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004551EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004552#endif
4553
4554long sched_getaffinity(pid_t pid, cpumask_t *mask)
4555{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004556 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004557 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004558
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004559 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004560 read_lock(&tasklist_lock);
4561
4562 retval = -ESRCH;
4563 p = find_process_by_pid(pid);
4564 if (!p)
4565 goto out_unlock;
4566
David Quigleye7834f82006-06-23 02:03:59 -07004567 retval = security_task_getscheduler(p);
4568 if (retval)
4569 goto out_unlock;
4570
Jack Steiner2f7016d2006-02-01 03:05:18 -08004571 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004572
4573out_unlock:
4574 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004575 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004576 if (retval)
4577 return retval;
4578
4579 return 0;
4580}
4581
4582/**
4583 * sys_sched_getaffinity - get the cpu affinity of a process
4584 * @pid: pid of the process
4585 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4586 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4587 */
4588asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4589 unsigned long __user *user_mask_ptr)
4590{
4591 int ret;
4592 cpumask_t mask;
4593
4594 if (len < sizeof(cpumask_t))
4595 return -EINVAL;
4596
4597 ret = sched_getaffinity(pid, &mask);
4598 if (ret < 0)
4599 return ret;
4600
4601 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4602 return -EFAULT;
4603
4604 return sizeof(cpumask_t);
4605}
4606
4607/**
4608 * sys_sched_yield - yield the current processor to other threads.
4609 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004610 * This function yields the current CPU by moving the calling thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004611 * to the expired array. If there are no other threads running on this
4612 * CPU then this function will return.
4613 */
4614asmlinkage long sys_sched_yield(void)
4615{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004616 struct rq *rq = this_rq_lock();
4617 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004618
4619 schedstat_inc(rq, yld_cnt);
4620 /*
4621 * We implement yielding by moving the task into the expired
4622 * queue.
4623 *
4624 * (special rule: RT tasks will just roundrobin in the active
4625 * array.)
4626 */
4627 if (rt_task(current))
4628 target = rq->active;
4629
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004630 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004631 schedstat_inc(rq, yld_act_empty);
4632 if (!rq->expired->nr_active)
4633 schedstat_inc(rq, yld_both_empty);
4634 } else if (!rq->expired->nr_active)
4635 schedstat_inc(rq, yld_exp_empty);
4636
4637 if (array != target) {
4638 dequeue_task(current, array);
4639 enqueue_task(current, target);
4640 } else
4641 /*
4642 * requeue_task is cheaper so perform that if possible.
4643 */
4644 requeue_task(current, array);
4645
4646 /*
4647 * Since we are going to call schedule() anyway, there's
4648 * no need to preempt or enable interrupts:
4649 */
4650 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004651 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004652 _raw_spin_unlock(&rq->lock);
4653 preempt_enable_no_resched();
4654
4655 schedule();
4656
4657 return 0;
4658}
4659
Andrew Mortone7b38402006-06-30 01:56:00 -07004660static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004661{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004662#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4663 __might_sleep(__FILE__, __LINE__);
4664#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004665 /*
4666 * The BKS might be reacquired before we have dropped
4667 * PREEMPT_ACTIVE, which could trigger a second
4668 * cond_resched() call.
4669 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004670 do {
4671 add_preempt_count(PREEMPT_ACTIVE);
4672 schedule();
4673 sub_preempt_count(PREEMPT_ACTIVE);
4674 } while (need_resched());
4675}
4676
4677int __sched cond_resched(void)
4678{
Ingo Molnar94142322006-12-29 16:48:13 -08004679 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4680 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004681 __cond_resched();
4682 return 1;
4683 }
4684 return 0;
4685}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004686EXPORT_SYMBOL(cond_resched);
4687
4688/*
4689 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4690 * call schedule, and on return reacquire the lock.
4691 *
4692 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4693 * operations here to prevent schedule() from being called twice (once via
4694 * spin_unlock(), once by hand).
4695 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004696int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004697{
Jan Kara6df3cec2005-06-13 15:52:32 -07004698 int ret = 0;
4699
Linus Torvalds1da177e2005-04-16 15:20:36 -07004700 if (need_lockbreak(lock)) {
4701 spin_unlock(lock);
4702 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004703 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004704 spin_lock(lock);
4705 }
Ingo Molnar94142322006-12-29 16:48:13 -08004706 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004707 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004708 _raw_spin_unlock(lock);
4709 preempt_enable_no_resched();
4710 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004711 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004712 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004713 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004714 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004715}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004716EXPORT_SYMBOL(cond_resched_lock);
4717
4718int __sched cond_resched_softirq(void)
4719{
4720 BUG_ON(!in_softirq());
4721
Ingo Molnar94142322006-12-29 16:48:13 -08004722 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d82562007-05-23 13:58:18 -07004723 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004724 __cond_resched();
4725 local_bh_disable();
4726 return 1;
4727 }
4728 return 0;
4729}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004730EXPORT_SYMBOL(cond_resched_softirq);
4731
Linus Torvalds1da177e2005-04-16 15:20:36 -07004732/**
4733 * yield - yield the current processor to other threads.
4734 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004735 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004736 * thread runnable and calls sys_sched_yield().
4737 */
4738void __sched yield(void)
4739{
4740 set_current_state(TASK_RUNNING);
4741 sys_sched_yield();
4742}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004743EXPORT_SYMBOL(yield);
4744
4745/*
4746 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4747 * that process accounting knows that this is a task in IO wait state.
4748 *
4749 * But don't do that if it is a deliberate, throttling IO wait (this task
4750 * has set its backing_dev_info: the queue against which it should throttle)
4751 */
4752void __sched io_schedule(void)
4753{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004754 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004755
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004756 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004757 atomic_inc(&rq->nr_iowait);
4758 schedule();
4759 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004760 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004761}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004762EXPORT_SYMBOL(io_schedule);
4763
4764long __sched io_schedule_timeout(long timeout)
4765{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004766 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004767 long ret;
4768
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004769 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004770 atomic_inc(&rq->nr_iowait);
4771 ret = schedule_timeout(timeout);
4772 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004773 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004774 return ret;
4775}
4776
4777/**
4778 * sys_sched_get_priority_max - return maximum RT priority.
4779 * @policy: scheduling class.
4780 *
4781 * this syscall returns the maximum rt_priority that can be used
4782 * by a given scheduling class.
4783 */
4784asmlinkage long sys_sched_get_priority_max(int policy)
4785{
4786 int ret = -EINVAL;
4787
4788 switch (policy) {
4789 case SCHED_FIFO:
4790 case SCHED_RR:
4791 ret = MAX_USER_RT_PRIO-1;
4792 break;
4793 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004794 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004795 ret = 0;
4796 break;
4797 }
4798 return ret;
4799}
4800
4801/**
4802 * sys_sched_get_priority_min - return minimum RT priority.
4803 * @policy: scheduling class.
4804 *
4805 * this syscall returns the minimum rt_priority that can be used
4806 * by a given scheduling class.
4807 */
4808asmlinkage long sys_sched_get_priority_min(int policy)
4809{
4810 int ret = -EINVAL;
4811
4812 switch (policy) {
4813 case SCHED_FIFO:
4814 case SCHED_RR:
4815 ret = 1;
4816 break;
4817 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004818 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004819 ret = 0;
4820 }
4821 return ret;
4822}
4823
4824/**
4825 * sys_sched_rr_get_interval - return the default timeslice of a process.
4826 * @pid: pid of the process.
4827 * @interval: userspace pointer to the timeslice value.
4828 *
4829 * this syscall writes the default timeslice value of a given process
4830 * into the user-space timespec buffer. A value of '0' means infinity.
4831 */
4832asmlinkage
4833long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4834{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004835 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004836 int retval = -EINVAL;
4837 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004838
4839 if (pid < 0)
4840 goto out_nounlock;
4841
4842 retval = -ESRCH;
4843 read_lock(&tasklist_lock);
4844 p = find_process_by_pid(pid);
4845 if (!p)
4846 goto out_unlock;
4847
4848 retval = security_task_getscheduler(p);
4849 if (retval)
4850 goto out_unlock;
4851
Peter Williamsb78709c2006-06-26 16:58:00 +10004852 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004853 0 : task_timeslice(p), &t);
4854 read_unlock(&tasklist_lock);
4855 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4856out_nounlock:
4857 return retval;
4858out_unlock:
4859 read_unlock(&tasklist_lock);
4860 return retval;
4861}
4862
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004863static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004864
4865static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004866{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004867 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004868 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004869
Linus Torvalds1da177e2005-04-16 15:20:36 -07004870 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004871 printk("%-13.13s %c", p->comm,
4872 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004873#if (BITS_PER_LONG == 32)
4874 if (state == TASK_RUNNING)
4875 printk(" running ");
4876 else
4877 printk(" %08lX ", thread_saved_pc(p));
4878#else
4879 if (state == TASK_RUNNING)
4880 printk(" running task ");
4881 else
4882 printk(" %016lx ", thread_saved_pc(p));
4883#endif
4884#ifdef CONFIG_DEBUG_STACK_USAGE
4885 {
Al Viro10ebffd2005-11-13 16:06:56 -08004886 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004887 while (!*n)
4888 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004889 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004890 }
4891#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02004892 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004893 if (!p->mm)
4894 printk(" (L-TLB)\n");
4895 else
4896 printk(" (NOTLB)\n");
4897
4898 if (state != TASK_RUNNING)
4899 show_stack(p, NULL);
4900}
4901
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004902void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004903{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004904 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004905
4906#if (BITS_PER_LONG == 32)
4907 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004908 " free sibling\n");
4909 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004910#else
4911 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004912 " free sibling\n");
4913 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004914#endif
4915 read_lock(&tasklist_lock);
4916 do_each_thread(g, p) {
4917 /*
4918 * reset the NMI-timeout, listing all files on a slow
4919 * console might take alot of time:
4920 */
4921 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004922 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004923 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004924 } while_each_thread(g, p);
4925
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004926 touch_all_softlockup_watchdogs();
4927
Linus Torvalds1da177e2005-04-16 15:20:36 -07004928 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004929 /*
4930 * Only show locks if all tasks are dumped:
4931 */
4932 if (state_filter == -1)
4933 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004934}
4935
Ingo Molnar1df21052007-07-09 18:51:58 +02004936void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4937{
4938 /* nothing yet */
4939}
4940
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004941/**
4942 * init_idle - set up an idle thread for a given CPU
4943 * @idle: task in question
4944 * @cpu: cpu the idle task belongs to
4945 *
4946 * NOTE: this function does not set the idle thread's NEED_RESCHED
4947 * flag, to make booting more robust.
4948 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004949void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004950{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004951 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004952 unsigned long flags;
4953
Ingo Molnar81c29a82006-03-07 21:55:27 -08004954 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004955 idle->sleep_avg = 0;
4956 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004957 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004958 idle->state = TASK_RUNNING;
4959 idle->cpus_allowed = cpumask_of_cpu(cpu);
4960 set_task_cpu(idle, cpu);
4961
4962 spin_lock_irqsave(&rq->lock, flags);
4963 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004964#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4965 idle->oncpu = 1;
4966#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004967 spin_unlock_irqrestore(&rq->lock, flags);
4968
4969 /* Set the preempt count _outside_ the spinlocks! */
4970#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004971 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004972#else
Al Viroa1261f52005-11-13 16:06:55 -08004973 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004974#endif
4975}
4976
4977/*
4978 * In a system that switches off the HZ timer nohz_cpu_mask
4979 * indicates which cpus entered this state. This is used
4980 * in the rcu update to wait only for active cpus. For system
4981 * which do not switch off the HZ timer nohz_cpu_mask should
4982 * always be CPU_MASK_NONE.
4983 */
4984cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4985
4986#ifdef CONFIG_SMP
4987/*
4988 * This is how migration works:
4989 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004990 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004991 * runqueue and wake up that CPU's migration thread.
4992 * 2) we down() the locked semaphore => thread blocks.
4993 * 3) migration thread wakes up (implicitly it forces the migrated
4994 * thread off the CPU)
4995 * 4) it gets the migration request and checks whether the migrated
4996 * task is still in the wrong runqueue.
4997 * 5) if it's in the wrong runqueue then the migration thread removes
4998 * it and puts it into the right queue.
4999 * 6) migration thread up()s the semaphore.
5000 * 7) we wake up and the migration is done.
5001 */
5002
5003/*
5004 * Change a given task's CPU affinity. Migrate the thread to a
5005 * proper CPU and schedule it away if the CPU it's executing on
5006 * is removed from the allowed bitmask.
5007 *
5008 * NOTE: the caller must have a valid reference to the task, the
5009 * task must not exit() & deallocate itself prematurely. The
5010 * call is not atomic; no spinlocks may be held.
5011 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005012int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005013{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005014 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005015 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005016 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005017 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005018
5019 rq = task_rq_lock(p, &flags);
5020 if (!cpus_intersects(new_mask, cpu_online_map)) {
5021 ret = -EINVAL;
5022 goto out;
5023 }
5024
5025 p->cpus_allowed = new_mask;
5026 /* Can the task run on the task's current CPU? If so, we're done */
5027 if (cpu_isset(task_cpu(p), new_mask))
5028 goto out;
5029
5030 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5031 /* Need help from migration thread: drop lock and wait. */
5032 task_rq_unlock(rq, &flags);
5033 wake_up_process(rq->migration_thread);
5034 wait_for_completion(&req.done);
5035 tlb_migrate_finish(p->mm);
5036 return 0;
5037 }
5038out:
5039 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005040
Linus Torvalds1da177e2005-04-16 15:20:36 -07005041 return ret;
5042}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005043EXPORT_SYMBOL_GPL(set_cpus_allowed);
5044
5045/*
5046 * Move (not current) task off this cpu, onto dest cpu. We're doing
5047 * this because either it can't run here any more (set_cpus_allowed()
5048 * away from this CPU, or CPU going down), or because we're
5049 * attempting to rebalance this task on exec (sched_exec).
5050 *
5051 * So we race with normal scheduler movements, but that's OK, as long
5052 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07005053 *
5054 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005055 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07005056static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005057{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005058 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07005059 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005060
5061 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005062 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005063
5064 rq_src = cpu_rq(src_cpu);
5065 rq_dest = cpu_rq(dest_cpu);
5066
5067 double_rq_lock(rq_src, rq_dest);
5068 /* Already moved. */
5069 if (task_cpu(p) != src_cpu)
5070 goto out;
5071 /* Affinity changed (again). */
5072 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5073 goto out;
5074
5075 set_task_cpu(p, dest_cpu);
5076 if (p->array) {
5077 /*
5078 * Sync timestamp with rq_dest's before activating.
5079 * The same thing could be achieved by doing this step
5080 * afterwards, and pretending it was a local activate.
5081 * This way is cleaner and logically correct.
5082 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08005083 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5084 + rq_dest->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005085 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07005086 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005087 if (TASK_PREEMPTS_CURR(p, rq_dest))
5088 resched_task(rq_dest->curr);
5089 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005090 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005091out:
5092 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005093 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005094}
5095
5096/*
5097 * migration_thread - this is a highprio system thread that performs
5098 * thread migration by bumping thread off CPU then 'pushing' onto
5099 * another runqueue.
5100 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005101static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005102{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005103 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005104 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005105
5106 rq = cpu_rq(cpu);
5107 BUG_ON(rq->migration_thread != current);
5108
5109 set_current_state(TASK_INTERRUPTIBLE);
5110 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005111 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005112 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005113
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005114 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005115
5116 spin_lock_irq(&rq->lock);
5117
5118 if (cpu_is_offline(cpu)) {
5119 spin_unlock_irq(&rq->lock);
5120 goto wait_to_die;
5121 }
5122
5123 if (rq->active_balance) {
5124 active_load_balance(rq, cpu);
5125 rq->active_balance = 0;
5126 }
5127
5128 head = &rq->migration_queue;
5129
5130 if (list_empty(head)) {
5131 spin_unlock_irq(&rq->lock);
5132 schedule();
5133 set_current_state(TASK_INTERRUPTIBLE);
5134 continue;
5135 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005136 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005137 list_del_init(head->next);
5138
Nick Piggin674311d2005-06-25 14:57:27 -07005139 spin_unlock(&rq->lock);
5140 __migrate_task(req->task, cpu, req->dest_cpu);
5141 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005142
5143 complete(&req->done);
5144 }
5145 __set_current_state(TASK_RUNNING);
5146 return 0;
5147
5148wait_to_die:
5149 /* Wait for kthread_stop */
5150 set_current_state(TASK_INTERRUPTIBLE);
5151 while (!kthread_should_stop()) {
5152 schedule();
5153 set_current_state(TASK_INTERRUPTIBLE);
5154 }
5155 __set_current_state(TASK_RUNNING);
5156 return 0;
5157}
5158
5159#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005160/*
5161 * Figure out where task on dead CPU should go, use force if neccessary.
5162 * NOTE: interrupts should be disabled by the caller
5163 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005164static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005165{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005166 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005167 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005168 struct rq *rq;
5169 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005170
Kirill Korotaevefc30812006-06-27 02:54:32 -07005171restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005172 /* On same node? */
5173 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005174 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005175 dest_cpu = any_online_cpu(mask);
5176
5177 /* On any allowed CPU? */
5178 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005179 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005180
5181 /* No more Mr. Nice Guy. */
5182 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005183 rq = task_rq_lock(p, &flags);
5184 cpus_setall(p->cpus_allowed);
5185 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005186 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187
5188 /*
5189 * Don't tell them about moving exiting tasks or
5190 * kernel threads (both mm NULL), since they never
5191 * leave kernel.
5192 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005193 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005194 printk(KERN_INFO "process %d (%s) no "
5195 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005196 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005197 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005198 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005199 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005200}
5201
5202/*
5203 * While a dead CPU has no uninterruptible tasks queued at this point,
5204 * it might still have a nonzero ->nr_uninterruptible counter, because
5205 * for performance reasons the counter is not stricly tracking tasks to
5206 * their home CPUs. So we just add the counter to another CPU's counter,
5207 * to keep the global sum constant after CPU-down:
5208 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005209static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005210{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005211 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005212 unsigned long flags;
5213
5214 local_irq_save(flags);
5215 double_rq_lock(rq_src, rq_dest);
5216 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5217 rq_src->nr_uninterruptible = 0;
5218 double_rq_unlock(rq_src, rq_dest);
5219 local_irq_restore(flags);
5220}
5221
5222/* Run through task list and migrate tasks from the dead cpu. */
5223static void migrate_live_tasks(int src_cpu)
5224{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005225 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005226
5227 write_lock_irq(&tasklist_lock);
5228
Ingo Molnar48f24c42006-07-03 00:25:40 -07005229 do_each_thread(t, p) {
5230 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005231 continue;
5232
Ingo Molnar48f24c42006-07-03 00:25:40 -07005233 if (task_cpu(p) == src_cpu)
5234 move_task_off_dead_cpu(src_cpu, p);
5235 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005236
5237 write_unlock_irq(&tasklist_lock);
5238}
5239
5240/* Schedules idle task to be the next runnable task on current CPU.
5241 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005242 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005243 */
5244void sched_idle_next(void)
5245{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005246 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005247 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005248 struct task_struct *p = rq->idle;
5249 unsigned long flags;
5250
5251 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005252 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005253
Ingo Molnar48f24c42006-07-03 00:25:40 -07005254 /*
5255 * Strictly not necessary since rest of the CPUs are stopped by now
5256 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005257 */
5258 spin_lock_irqsave(&rq->lock, flags);
5259
5260 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005261
5262 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005263 __activate_idle_task(p, rq);
5264
5265 spin_unlock_irqrestore(&rq->lock, flags);
5266}
5267
Ingo Molnar48f24c42006-07-03 00:25:40 -07005268/*
5269 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005270 * offline.
5271 */
5272void idle_task_exit(void)
5273{
5274 struct mm_struct *mm = current->active_mm;
5275
5276 BUG_ON(cpu_online(smp_processor_id()));
5277
5278 if (mm != &init_mm)
5279 switch_mm(mm, &init_mm, current);
5280 mmdrop(mm);
5281}
5282
Kirill Korotaev054b9102006-12-10 02:20:11 -08005283/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005284static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005285{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005286 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005287
5288 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005289 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005290
5291 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005292 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005293
Ingo Molnar48f24c42006-07-03 00:25:40 -07005294 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005295
5296 /*
5297 * Drop lock around migration; if someone else moves it,
5298 * that's OK. No task can be added to this CPU, so iteration is
5299 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005300 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005301 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005302 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005303 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005304 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005305
Ingo Molnar48f24c42006-07-03 00:25:40 -07005306 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005307}
5308
5309/* release_task() removes task from tasklist, so we won't find dead tasks. */
5310static void migrate_dead_tasks(unsigned int dead_cpu)
5311{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005312 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005313 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005314
5315 for (arr = 0; arr < 2; arr++) {
5316 for (i = 0; i < MAX_PRIO; i++) {
5317 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005318
Linus Torvalds1da177e2005-04-16 15:20:36 -07005319 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005320 migrate_dead(dead_cpu, list_entry(list->next,
5321 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005322 }
5323 }
5324}
5325#endif /* CONFIG_HOTPLUG_CPU */
5326
5327/*
5328 * migration_call - callback that gets triggered when a CPU is added.
5329 * Here we can start up the necessary migration thread for the new CPU.
5330 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005331static int __cpuinit
5332migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005333{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005334 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005335 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005336 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005337 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005338
5339 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005340 case CPU_LOCK_ACQUIRE:
5341 mutex_lock(&sched_hotcpu_mutex);
5342 break;
5343
Linus Torvalds1da177e2005-04-16 15:20:36 -07005344 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005345 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005346 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5347 if (IS_ERR(p))
5348 return NOTIFY_BAD;
5349 p->flags |= PF_NOFREEZE;
5350 kthread_bind(p, cpu);
5351 /* Must be high prio: stop_machine expects to yield to it. */
5352 rq = task_rq_lock(p, &flags);
5353 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5354 task_rq_unlock(rq, &flags);
5355 cpu_rq(cpu)->migration_thread = p;
5356 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005357
Linus Torvalds1da177e2005-04-16 15:20:36 -07005358 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005359 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005360 /* Strictly unneccessary, as first user will wake it. */
5361 wake_up_process(cpu_rq(cpu)->migration_thread);
5362 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005363
Linus Torvalds1da177e2005-04-16 15:20:36 -07005364#ifdef CONFIG_HOTPLUG_CPU
5365 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005366 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005367 if (!cpu_rq(cpu)->migration_thread)
5368 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005369 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005370 kthread_bind(cpu_rq(cpu)->migration_thread,
5371 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005372 kthread_stop(cpu_rq(cpu)->migration_thread);
5373 cpu_rq(cpu)->migration_thread = NULL;
5374 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005375
Linus Torvalds1da177e2005-04-16 15:20:36 -07005376 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005377 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005378 migrate_live_tasks(cpu);
5379 rq = cpu_rq(cpu);
5380 kthread_stop(rq->migration_thread);
5381 rq->migration_thread = NULL;
5382 /* Idle task back to normal (off runqueue, low prio) */
5383 rq = task_rq_lock(rq->idle, &flags);
5384 deactivate_task(rq->idle, rq);
5385 rq->idle->static_prio = MAX_PRIO;
5386 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5387 migrate_dead_tasks(cpu);
5388 task_rq_unlock(rq, &flags);
5389 migrate_nr_uninterruptible(rq);
5390 BUG_ON(rq->nr_running != 0);
5391
5392 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005393 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005394 * the requestors. */
5395 spin_lock_irq(&rq->lock);
5396 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005397 struct migration_req *req;
5398
Linus Torvalds1da177e2005-04-16 15:20:36 -07005399 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005400 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005401 list_del_init(&req->list);
5402 complete(&req->done);
5403 }
5404 spin_unlock_irq(&rq->lock);
5405 break;
5406#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005407 case CPU_LOCK_RELEASE:
5408 mutex_unlock(&sched_hotcpu_mutex);
5409 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005410 }
5411 return NOTIFY_OK;
5412}
5413
5414/* Register at highest priority so that task migration (migrate_all_tasks)
5415 * happens before everything else.
5416 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005417static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005418 .notifier_call = migration_call,
5419 .priority = 10
5420};
5421
5422int __init migration_init(void)
5423{
5424 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005425 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005426
5427 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005428 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5429 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005430 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5431 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005432
Linus Torvalds1da177e2005-04-16 15:20:36 -07005433 return 0;
5434}
5435#endif
5436
5437#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005438
5439/* Number of possible processor ids */
5440int nr_cpu_ids __read_mostly = NR_CPUS;
5441EXPORT_SYMBOL(nr_cpu_ids);
5442
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005443#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005444#ifdef SCHED_DOMAIN_DEBUG
5445static void sched_domain_debug(struct sched_domain *sd, int cpu)
5446{
5447 int level = 0;
5448
Nick Piggin41c7ce92005-06-25 14:57:24 -07005449 if (!sd) {
5450 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5451 return;
5452 }
5453
Linus Torvalds1da177e2005-04-16 15:20:36 -07005454 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5455
5456 do {
5457 int i;
5458 char str[NR_CPUS];
5459 struct sched_group *group = sd->groups;
5460 cpumask_t groupmask;
5461
5462 cpumask_scnprintf(str, NR_CPUS, sd->span);
5463 cpus_clear(groupmask);
5464
5465 printk(KERN_DEBUG);
5466 for (i = 0; i < level + 1; i++)
5467 printk(" ");
5468 printk("domain %d: ", level);
5469
5470 if (!(sd->flags & SD_LOAD_BALANCE)) {
5471 printk("does not load-balance\n");
5472 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005473 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5474 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005475 break;
5476 }
5477
5478 printk("span %s\n", str);
5479
5480 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005481 printk(KERN_ERR "ERROR: domain->span does not contain "
5482 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005483 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005484 printk(KERN_ERR "ERROR: domain->groups does not contain"
5485 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005486
5487 printk(KERN_DEBUG);
5488 for (i = 0; i < level + 2; i++)
5489 printk(" ");
5490 printk("groups:");
5491 do {
5492 if (!group) {
5493 printk("\n");
5494 printk(KERN_ERR "ERROR: group is NULL\n");
5495 break;
5496 }
5497
Eric Dumazet5517d862007-05-08 00:32:57 -07005498 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005499 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005500 printk(KERN_ERR "ERROR: domain->cpu_power not "
5501 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005502 }
5503
5504 if (!cpus_weight(group->cpumask)) {
5505 printk("\n");
5506 printk(KERN_ERR "ERROR: empty group\n");
5507 }
5508
5509 if (cpus_intersects(groupmask, group->cpumask)) {
5510 printk("\n");
5511 printk(KERN_ERR "ERROR: repeated CPUs\n");
5512 }
5513
5514 cpus_or(groupmask, groupmask, group->cpumask);
5515
5516 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5517 printk(" %s", str);
5518
5519 group = group->next;
5520 } while (group != sd->groups);
5521 printk("\n");
5522
5523 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005524 printk(KERN_ERR "ERROR: groups don't span "
5525 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005526
5527 level++;
5528 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005529 if (!sd)
5530 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005531
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005532 if (!cpus_subset(groupmask, sd->span))
5533 printk(KERN_ERR "ERROR: parent span is not a superset "
5534 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005535
5536 } while (sd);
5537}
5538#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005539# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005540#endif
5541
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005542static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005543{
5544 if (cpus_weight(sd->span) == 1)
5545 return 1;
5546
5547 /* Following flags need at least 2 groups */
5548 if (sd->flags & (SD_LOAD_BALANCE |
5549 SD_BALANCE_NEWIDLE |
5550 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005551 SD_BALANCE_EXEC |
5552 SD_SHARE_CPUPOWER |
5553 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005554 if (sd->groups != sd->groups->next)
5555 return 0;
5556 }
5557
5558 /* Following flags don't use groups */
5559 if (sd->flags & (SD_WAKE_IDLE |
5560 SD_WAKE_AFFINE |
5561 SD_WAKE_BALANCE))
5562 return 0;
5563
5564 return 1;
5565}
5566
Ingo Molnar48f24c42006-07-03 00:25:40 -07005567static int
5568sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005569{
5570 unsigned long cflags = sd->flags, pflags = parent->flags;
5571
5572 if (sd_degenerate(parent))
5573 return 1;
5574
5575 if (!cpus_equal(sd->span, parent->span))
5576 return 0;
5577
5578 /* Does parent contain flags not in child? */
5579 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5580 if (cflags & SD_WAKE_AFFINE)
5581 pflags &= ~SD_WAKE_BALANCE;
5582 /* Flags needing groups don't count if only 1 group in parent */
5583 if (parent->groups == parent->groups->next) {
5584 pflags &= ~(SD_LOAD_BALANCE |
5585 SD_BALANCE_NEWIDLE |
5586 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005587 SD_BALANCE_EXEC |
5588 SD_SHARE_CPUPOWER |
5589 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005590 }
5591 if (~cflags & pflags)
5592 return 0;
5593
5594 return 1;
5595}
5596
Linus Torvalds1da177e2005-04-16 15:20:36 -07005597/*
5598 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5599 * hold the hotplug lock.
5600 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005601static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005602{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005603 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005604 struct sched_domain *tmp;
5605
5606 /* Remove the sched domains which do not contribute to scheduling. */
5607 for (tmp = sd; tmp; tmp = tmp->parent) {
5608 struct sched_domain *parent = tmp->parent;
5609 if (!parent)
5610 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005611 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005612 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005613 if (parent->parent)
5614 parent->parent->child = tmp;
5615 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005616 }
5617
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005618 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005619 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005620 if (sd)
5621 sd->child = NULL;
5622 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005623
5624 sched_domain_debug(sd, cpu);
5625
Nick Piggin674311d2005-06-25 14:57:27 -07005626 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005627}
5628
5629/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005630static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005631
5632/* Setup the mask of cpus configured for isolated domains */
5633static int __init isolated_cpu_setup(char *str)
5634{
5635 int ints[NR_CPUS], i;
5636
5637 str = get_options(str, ARRAY_SIZE(ints), ints);
5638 cpus_clear(cpu_isolated_map);
5639 for (i = 1; i <= ints[0]; i++)
5640 if (ints[i] < NR_CPUS)
5641 cpu_set(ints[i], cpu_isolated_map);
5642 return 1;
5643}
5644
5645__setup ("isolcpus=", isolated_cpu_setup);
5646
5647/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005648 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5649 * to a function which identifies what group(along with sched group) a CPU
5650 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5651 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005652 *
5653 * init_sched_build_groups will build a circular linked list of the groups
5654 * covered by the given span, and will set each group's ->cpumask correctly,
5655 * and ->cpu_power to 0.
5656 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005657static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005658init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5659 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5660 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005661{
5662 struct sched_group *first = NULL, *last = NULL;
5663 cpumask_t covered = CPU_MASK_NONE;
5664 int i;
5665
5666 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005667 struct sched_group *sg;
5668 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005669 int j;
5670
5671 if (cpu_isset(i, covered))
5672 continue;
5673
5674 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005675 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005676
5677 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005678 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005679 continue;
5680
5681 cpu_set(j, covered);
5682 cpu_set(j, sg->cpumask);
5683 }
5684 if (!first)
5685 first = sg;
5686 if (last)
5687 last->next = sg;
5688 last = sg;
5689 }
5690 last->next = first;
5691}
5692
John Hawkes9c1cfda2005-09-06 15:18:14 -07005693#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005694
John Hawkes9c1cfda2005-09-06 15:18:14 -07005695#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005696
John Hawkes9c1cfda2005-09-06 15:18:14 -07005697/**
5698 * find_next_best_node - find the next node to include in a sched_domain
5699 * @node: node whose sched_domain we're building
5700 * @used_nodes: nodes already in the sched_domain
5701 *
5702 * Find the next node to include in a given scheduling domain. Simply
5703 * finds the closest node not already in the @used_nodes map.
5704 *
5705 * Should use nodemask_t.
5706 */
5707static int find_next_best_node(int node, unsigned long *used_nodes)
5708{
5709 int i, n, val, min_val, best_node = 0;
5710
5711 min_val = INT_MAX;
5712
5713 for (i = 0; i < MAX_NUMNODES; i++) {
5714 /* Start at @node */
5715 n = (node + i) % MAX_NUMNODES;
5716
5717 if (!nr_cpus_node(n))
5718 continue;
5719
5720 /* Skip already used nodes */
5721 if (test_bit(n, used_nodes))
5722 continue;
5723
5724 /* Simple min distance search */
5725 val = node_distance(node, n);
5726
5727 if (val < min_val) {
5728 min_val = val;
5729 best_node = n;
5730 }
5731 }
5732
5733 set_bit(best_node, used_nodes);
5734 return best_node;
5735}
5736
5737/**
5738 * sched_domain_node_span - get a cpumask for a node's sched_domain
5739 * @node: node whose cpumask we're constructing
5740 * @size: number of nodes to include in this span
5741 *
5742 * Given a node, construct a good cpumask for its sched_domain to span. It
5743 * should be one that prevents unnecessary balancing, but also spreads tasks
5744 * out optimally.
5745 */
5746static cpumask_t sched_domain_node_span(int node)
5747{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005748 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005749 cpumask_t span, nodemask;
5750 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005751
5752 cpus_clear(span);
5753 bitmap_zero(used_nodes, MAX_NUMNODES);
5754
5755 nodemask = node_to_cpumask(node);
5756 cpus_or(span, span, nodemask);
5757 set_bit(node, used_nodes);
5758
5759 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5760 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005761
John Hawkes9c1cfda2005-09-06 15:18:14 -07005762 nodemask = node_to_cpumask(next_node);
5763 cpus_or(span, span, nodemask);
5764 }
5765
5766 return span;
5767}
5768#endif
5769
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005770int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005771
John Hawkes9c1cfda2005-09-06 15:18:14 -07005772/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005773 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005774 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005775#ifdef CONFIG_SCHED_SMT
5776static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005777static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005778
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005779static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5780 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005781{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005782 if (sg)
5783 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005784 return cpu;
5785}
5786#endif
5787
Ingo Molnar48f24c42006-07-03 00:25:40 -07005788/*
5789 * multi-core sched-domains:
5790 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005791#ifdef CONFIG_SCHED_MC
5792static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005793static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005794#endif
5795
5796#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005797static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5798 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005799{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005800 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005801 cpumask_t mask = cpu_sibling_map[cpu];
5802 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005803 group = first_cpu(mask);
5804 if (sg)
5805 *sg = &per_cpu(sched_group_core, group);
5806 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005807}
5808#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005809static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5810 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005811{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005812 if (sg)
5813 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005814 return cpu;
5815}
5816#endif
5817
Linus Torvalds1da177e2005-04-16 15:20:36 -07005818static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005819static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005820
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005821static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5822 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005823{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005824 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005825#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005826 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005827 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005828 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005829#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005830 cpumask_t mask = cpu_sibling_map[cpu];
5831 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005832 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005833#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005834 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005835#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005836 if (sg)
5837 *sg = &per_cpu(sched_group_phys, group);
5838 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005839}
5840
5841#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005842/*
5843 * The init_sched_build_groups can't handle what we want to do with node
5844 * groups, so roll our own. Now each node has its own list of groups which
5845 * gets dynamically allocated.
5846 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005847static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005848static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005849
5850static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005851static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005852
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005853static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5854 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005855{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005856 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5857 int group;
5858
5859 cpus_and(nodemask, nodemask, *cpu_map);
5860 group = first_cpu(nodemask);
5861
5862 if (sg)
5863 *sg = &per_cpu(sched_group_allnodes, group);
5864 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005865}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005866
Siddha, Suresh B08069032006-03-27 01:15:23 -08005867static void init_numa_sched_groups_power(struct sched_group *group_head)
5868{
5869 struct sched_group *sg = group_head;
5870 int j;
5871
5872 if (!sg)
5873 return;
5874next_sg:
5875 for_each_cpu_mask(j, sg->cpumask) {
5876 struct sched_domain *sd;
5877
5878 sd = &per_cpu(phys_domains, j);
5879 if (j != first_cpu(sd->groups->cpumask)) {
5880 /*
5881 * Only add "power" once for each
5882 * physical package.
5883 */
5884 continue;
5885 }
5886
Eric Dumazet5517d862007-05-08 00:32:57 -07005887 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005888 }
5889 sg = sg->next;
5890 if (sg != group_head)
5891 goto next_sg;
5892}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005893#endif
5894
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005895#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005896/* Free memory allocated for various sched_group structures */
5897static void free_sched_groups(const cpumask_t *cpu_map)
5898{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005899 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005900
5901 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005902 struct sched_group **sched_group_nodes
5903 = sched_group_nodes_bycpu[cpu];
5904
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005905 if (!sched_group_nodes)
5906 continue;
5907
5908 for (i = 0; i < MAX_NUMNODES; i++) {
5909 cpumask_t nodemask = node_to_cpumask(i);
5910 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5911
5912 cpus_and(nodemask, nodemask, *cpu_map);
5913 if (cpus_empty(nodemask))
5914 continue;
5915
5916 if (sg == NULL)
5917 continue;
5918 sg = sg->next;
5919next_sg:
5920 oldsg = sg;
5921 sg = sg->next;
5922 kfree(oldsg);
5923 if (oldsg != sched_group_nodes[i])
5924 goto next_sg;
5925 }
5926 kfree(sched_group_nodes);
5927 sched_group_nodes_bycpu[cpu] = NULL;
5928 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005929}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005930#else
5931static void free_sched_groups(const cpumask_t *cpu_map)
5932{
5933}
5934#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005935
Linus Torvalds1da177e2005-04-16 15:20:36 -07005936/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005937 * Initialize sched groups cpu_power.
5938 *
5939 * cpu_power indicates the capacity of sched group, which is used while
5940 * distributing the load between different sched groups in a sched domain.
5941 * Typically cpu_power for all the groups in a sched domain will be same unless
5942 * there are asymmetries in the topology. If there are asymmetries, group
5943 * having more cpu_power will pickup more load compared to the group having
5944 * less cpu_power.
5945 *
5946 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5947 * the maximum number of tasks a group can handle in the presence of other idle
5948 * or lightly loaded groups in the same sched domain.
5949 */
5950static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5951{
5952 struct sched_domain *child;
5953 struct sched_group *group;
5954
5955 WARN_ON(!sd || !sd->groups);
5956
5957 if (cpu != first_cpu(sd->groups->cpumask))
5958 return;
5959
5960 child = sd->child;
5961
Eric Dumazet5517d862007-05-08 00:32:57 -07005962 sd->groups->__cpu_power = 0;
5963
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005964 /*
5965 * For perf policy, if the groups in child domain share resources
5966 * (for example cores sharing some portions of the cache hierarchy
5967 * or SMT), then set this domain groups cpu_power such that each group
5968 * can handle only one task, when there are other idle groups in the
5969 * same sched domain.
5970 */
5971 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5972 (child->flags &
5973 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07005974 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005975 return;
5976 }
5977
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005978 /*
5979 * add cpu_power of each child group to this groups cpu_power
5980 */
5981 group = child->groups;
5982 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07005983 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005984 group = group->next;
5985 } while (group != child->groups);
5986}
5987
5988/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005989 * Build sched domains for a given set of cpus and attach the sched domains
5990 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005991 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005992static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005993{
5994 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005995 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07005996#ifdef CONFIG_NUMA
5997 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005998 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07005999
6000 /*
6001 * Allocate the per-node list of sched groups
6002 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006003 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006004 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006005 if (!sched_group_nodes) {
6006 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006007 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006008 }
6009 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6010#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006011
6012 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006013 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006014 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006015 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006016 struct sched_domain *sd = NULL, *p;
6017 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6018
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006019 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006020
6021#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07006022 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07006023 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6024 sd = &per_cpu(allnodes_domains, i);
6025 *sd = SD_ALLNODES_INIT;
6026 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006027 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006028 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006029 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006030 } else
6031 p = NULL;
6032
Linus Torvalds1da177e2005-04-16 15:20:36 -07006033 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006034 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006035 sd->span = sched_domain_node_span(cpu_to_node(i));
6036 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006037 if (p)
6038 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006039 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006040#endif
6041
6042 p = sd;
6043 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006044 *sd = SD_CPU_INIT;
6045 sd->span = nodemask;
6046 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006047 if (p)
6048 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006049 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006050
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006051#ifdef CONFIG_SCHED_MC
6052 p = sd;
6053 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006054 *sd = SD_MC_INIT;
6055 sd->span = cpu_coregroup_map(i);
6056 cpus_and(sd->span, sd->span, *cpu_map);
6057 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006058 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006059 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006060#endif
6061
Linus Torvalds1da177e2005-04-16 15:20:36 -07006062#ifdef CONFIG_SCHED_SMT
6063 p = sd;
6064 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006065 *sd = SD_SIBLING_INIT;
6066 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006067 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006068 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006069 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006070 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006071#endif
6072 }
6073
6074#ifdef CONFIG_SCHED_SMT
6075 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006076 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006077 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006078 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006079 if (i != first_cpu(this_sibling_map))
6080 continue;
6081
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006082 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006083 }
6084#endif
6085
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006086#ifdef CONFIG_SCHED_MC
6087 /* Set up multi-core groups */
6088 for_each_cpu_mask(i, *cpu_map) {
6089 cpumask_t this_core_map = cpu_coregroup_map(i);
6090 cpus_and(this_core_map, this_core_map, *cpu_map);
6091 if (i != first_cpu(this_core_map))
6092 continue;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006093 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006094 }
6095#endif
6096
6097
Linus Torvalds1da177e2005-04-16 15:20:36 -07006098 /* Set up physical groups */
6099 for (i = 0; i < MAX_NUMNODES; i++) {
6100 cpumask_t nodemask = node_to_cpumask(i);
6101
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006102 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006103 if (cpus_empty(nodemask))
6104 continue;
6105
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006106 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006107 }
6108
6109#ifdef CONFIG_NUMA
6110 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006111 if (sd_allnodes)
6112 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006113
6114 for (i = 0; i < MAX_NUMNODES; i++) {
6115 /* Set up node groups */
6116 struct sched_group *sg, *prev;
6117 cpumask_t nodemask = node_to_cpumask(i);
6118 cpumask_t domainspan;
6119 cpumask_t covered = CPU_MASK_NONE;
6120 int j;
6121
6122 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006123 if (cpus_empty(nodemask)) {
6124 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006125 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006126 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006127
6128 domainspan = sched_domain_node_span(i);
6129 cpus_and(domainspan, domainspan, *cpu_map);
6130
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006131 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006132 if (!sg) {
6133 printk(KERN_WARNING "Can not alloc domain group for "
6134 "node %d\n", i);
6135 goto error;
6136 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006137 sched_group_nodes[i] = sg;
6138 for_each_cpu_mask(j, nodemask) {
6139 struct sched_domain *sd;
6140 sd = &per_cpu(node_domains, j);
6141 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006142 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006143 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006144 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006145 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006146 cpus_or(covered, covered, nodemask);
6147 prev = sg;
6148
6149 for (j = 0; j < MAX_NUMNODES; j++) {
6150 cpumask_t tmp, notcovered;
6151 int n = (i + j) % MAX_NUMNODES;
6152
6153 cpus_complement(notcovered, covered);
6154 cpus_and(tmp, notcovered, *cpu_map);
6155 cpus_and(tmp, tmp, domainspan);
6156 if (cpus_empty(tmp))
6157 break;
6158
6159 nodemask = node_to_cpumask(n);
6160 cpus_and(tmp, tmp, nodemask);
6161 if (cpus_empty(tmp))
6162 continue;
6163
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006164 sg = kmalloc_node(sizeof(struct sched_group),
6165 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006166 if (!sg) {
6167 printk(KERN_WARNING
6168 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006169 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006170 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006171 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006172 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006173 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006174 cpus_or(covered, covered, tmp);
6175 prev->next = sg;
6176 prev = sg;
6177 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006178 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006179#endif
6180
6181 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006182#ifdef CONFIG_SCHED_SMT
6183 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006184 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006185 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006186 }
6187#endif
6188#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006189 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006190 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006191 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006192 }
6193#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006194
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006195 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006196 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006197 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006198 }
6199
John Hawkes9c1cfda2005-09-06 15:18:14 -07006200#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006201 for (i = 0; i < MAX_NUMNODES; i++)
6202 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006203
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006204 if (sd_allnodes) {
6205 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006206
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006207 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006208 init_numa_sched_groups_power(sg);
6209 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006210#endif
6211
Linus Torvalds1da177e2005-04-16 15:20:36 -07006212 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006213 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006214 struct sched_domain *sd;
6215#ifdef CONFIG_SCHED_SMT
6216 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006217#elif defined(CONFIG_SCHED_MC)
6218 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006219#else
6220 sd = &per_cpu(phys_domains, i);
6221#endif
6222 cpu_attach_domain(sd, i);
6223 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006224
6225 return 0;
6226
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006227#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006228error:
6229 free_sched_groups(cpu_map);
6230 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006231#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006232}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006233/*
6234 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6235 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006236static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006237{
6238 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006239 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006240
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006241 /*
6242 * Setup mask for cpus without special case scheduling requirements.
6243 * For now this just excludes isolated cpus, but could be used to
6244 * exclude other special cases in the future.
6245 */
6246 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6247
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006248 err = build_sched_domains(&cpu_default_map);
6249
6250 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006251}
6252
6253static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006254{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006255 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006256}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006257
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006258/*
6259 * Detach sched domains from a group of cpus specified in cpu_map
6260 * These cpus will now be attached to the NULL domain
6261 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006262static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006263{
6264 int i;
6265
6266 for_each_cpu_mask(i, *cpu_map)
6267 cpu_attach_domain(NULL, i);
6268 synchronize_sched();
6269 arch_destroy_sched_domains(cpu_map);
6270}
6271
6272/*
6273 * Partition sched domains as specified by the cpumasks below.
6274 * This attaches all cpus from the cpumasks to the NULL domain,
6275 * waits for a RCU quiescent period, recalculates sched
6276 * domain information and then attaches them back to the
6277 * correct sched domains
6278 * Call with hotplug lock held
6279 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006280int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006281{
6282 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006283 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006284
6285 cpus_and(*partition1, *partition1, cpu_online_map);
6286 cpus_and(*partition2, *partition2, cpu_online_map);
6287 cpus_or(change_map, *partition1, *partition2);
6288
6289 /* Detach sched domains from all of the affected cpus */
6290 detach_destroy_domains(&change_map);
6291 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006292 err = build_sched_domains(partition1);
6293 if (!err && !cpus_empty(*partition2))
6294 err = build_sched_domains(partition2);
6295
6296 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006297}
6298
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006299#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6300int arch_reinit_sched_domains(void)
6301{
6302 int err;
6303
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006304 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006305 detach_destroy_domains(&cpu_online_map);
6306 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006307 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006308
6309 return err;
6310}
6311
6312static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6313{
6314 int ret;
6315
6316 if (buf[0] != '0' && buf[0] != '1')
6317 return -EINVAL;
6318
6319 if (smt)
6320 sched_smt_power_savings = (buf[0] == '1');
6321 else
6322 sched_mc_power_savings = (buf[0] == '1');
6323
6324 ret = arch_reinit_sched_domains();
6325
6326 return ret ? ret : count;
6327}
6328
6329int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6330{
6331 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006332
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006333#ifdef CONFIG_SCHED_SMT
6334 if (smt_capable())
6335 err = sysfs_create_file(&cls->kset.kobj,
6336 &attr_sched_smt_power_savings.attr);
6337#endif
6338#ifdef CONFIG_SCHED_MC
6339 if (!err && mc_capable())
6340 err = sysfs_create_file(&cls->kset.kobj,
6341 &attr_sched_mc_power_savings.attr);
6342#endif
6343 return err;
6344}
6345#endif
6346
6347#ifdef CONFIG_SCHED_MC
6348static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6349{
6350 return sprintf(page, "%u\n", sched_mc_power_savings);
6351}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006352static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6353 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006354{
6355 return sched_power_savings_store(buf, count, 0);
6356}
6357SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6358 sched_mc_power_savings_store);
6359#endif
6360
6361#ifdef CONFIG_SCHED_SMT
6362static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6363{
6364 return sprintf(page, "%u\n", sched_smt_power_savings);
6365}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006366static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6367 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006368{
6369 return sched_power_savings_store(buf, count, 1);
6370}
6371SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6372 sched_smt_power_savings_store);
6373#endif
6374
Linus Torvalds1da177e2005-04-16 15:20:36 -07006375/*
6376 * Force a reinitialization of the sched domains hierarchy. The domains
6377 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006378 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006379 * which will prevent rebalancing while the sched domains are recalculated.
6380 */
6381static int update_sched_domains(struct notifier_block *nfb,
6382 unsigned long action, void *hcpu)
6383{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006384 switch (action) {
6385 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006386 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006387 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006388 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006389 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006390 return NOTIFY_OK;
6391
6392 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006393 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006394 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006395 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006396 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006397 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006398 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006399 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006400 /*
6401 * Fall through and re-initialise the domains.
6402 */
6403 break;
6404 default:
6405 return NOTIFY_DONE;
6406 }
6407
6408 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006409 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006410
6411 return NOTIFY_OK;
6412}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006413
6414void __init sched_init_smp(void)
6415{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006416 cpumask_t non_isolated_cpus;
6417
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006418 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006419 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006420 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006421 if (cpus_empty(non_isolated_cpus))
6422 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006423 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006424 /* XXX: Theoretical race here - CPU may be hotplugged now */
6425 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006426
6427 /* Move init over to a non-isolated CPU */
6428 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6429 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006430}
6431#else
6432void __init sched_init_smp(void)
6433{
6434}
6435#endif /* CONFIG_SMP */
6436
6437int in_sched_functions(unsigned long addr)
6438{
6439 /* Linker adds these: start and end of __sched functions */
6440 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006441
Linus Torvalds1da177e2005-04-16 15:20:36 -07006442 return in_lock_functions(addr) ||
6443 (addr >= (unsigned long)__sched_text_start
6444 && addr < (unsigned long)__sched_text_end);
6445}
6446
6447void __init sched_init(void)
6448{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006449 int i, j, k;
Christoph Lameter476f3532007-05-06 14:48:58 -07006450 int highest_cpu = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006451
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006452 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006453 struct prio_array *array;
6454 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006455
6456 rq = cpu_rq(i);
6457 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006458 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006459 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006460 rq->active = rq->arrays;
6461 rq->expired = rq->arrays + 1;
6462 rq->best_expired_prio = MAX_PRIO;
6463
6464#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006465 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006466 for (j = 1; j < 3; j++)
6467 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006468 rq->active_balance = 0;
6469 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006470 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006471 rq->migration_thread = NULL;
6472 INIT_LIST_HEAD(&rq->migration_queue);
6473#endif
6474 atomic_set(&rq->nr_iowait, 0);
6475
6476 for (j = 0; j < 2; j++) {
6477 array = rq->arrays + j;
6478 for (k = 0; k < MAX_PRIO; k++) {
6479 INIT_LIST_HEAD(array->queue + k);
6480 __clear_bit(k, array->bitmap);
6481 }
6482 // delimiter for bitsearch
6483 __set_bit(MAX_PRIO, array->bitmap);
6484 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006485 highest_cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006486 }
6487
Peter Williams2dd73a42006-06-27 02:54:34 -07006488 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006489
Christoph Lameterc9819f42006-12-10 02:20:25 -08006490#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006491 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006492 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6493#endif
6494
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006495#ifdef CONFIG_RT_MUTEXES
6496 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6497#endif
6498
Linus Torvalds1da177e2005-04-16 15:20:36 -07006499 /*
6500 * The boot idle thread does lazy MMU switching as well:
6501 */
6502 atomic_inc(&init_mm.mm_count);
6503 enter_lazy_tlb(&init_mm, current);
6504
6505 /*
6506 * Make us the idle thread. Technically, schedule() should not be
6507 * called from this thread, however somewhere below it might be,
6508 * but because we are the idle thread, we just pick up running again
6509 * when this runqueue becomes "idle".
6510 */
6511 init_idle(current, smp_processor_id());
6512}
6513
6514#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6515void __might_sleep(char *file, int line)
6516{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006517#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006518 static unsigned long prev_jiffy; /* ratelimiting */
6519
6520 if ((in_atomic() || irqs_disabled()) &&
6521 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6522 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6523 return;
6524 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006525 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006526 " context at %s:%d\n", file, line);
6527 printk("in_atomic():%d, irqs_disabled():%d\n",
6528 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006529 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006530 if (irqs_disabled())
6531 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006532 dump_stack();
6533 }
6534#endif
6535}
6536EXPORT_SYMBOL(__might_sleep);
6537#endif
6538
6539#ifdef CONFIG_MAGIC_SYSRQ
6540void normalize_rt_tasks(void)
6541{
Ingo Molnar70b97a72006-07-03 00:25:42 -07006542 struct prio_array *array;
Ingo Molnara0f98a12007-06-17 18:37:45 +02006543 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006544 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006545 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006546
6547 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006548
6549 do_each_thread(g, p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006550 if (!rt_task(p))
6551 continue;
6552
Ingo Molnarb29739f2006-06-27 02:54:51 -07006553 spin_lock_irqsave(&p->pi_lock, flags);
6554 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006555
6556 array = p->array;
6557 if (array)
6558 deactivate_task(p, task_rq(p));
6559 __setscheduler(p, SCHED_NORMAL, 0);
6560 if (array) {
6561 __activate_task(p, task_rq(p));
6562 resched_task(rq->curr);
6563 }
6564
Ingo Molnarb29739f2006-06-27 02:54:51 -07006565 __task_rq_unlock(rq);
6566 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006567 } while_each_thread(g, p);
6568
Linus Torvalds1da177e2005-04-16 15:20:36 -07006569 read_unlock_irq(&tasklist_lock);
6570}
6571
6572#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006573
6574#ifdef CONFIG_IA64
6575/*
6576 * These functions are only useful for the IA64 MCA handling.
6577 *
6578 * They can only be called when the whole system has been
6579 * stopped - every CPU needs to be quiescent, and no scheduling
6580 * activity can take place. Using them for anything else would
6581 * be a serious bug, and as a result, they aren't even visible
6582 * under any other configuration.
6583 */
6584
6585/**
6586 * curr_task - return the current task for a given cpu.
6587 * @cpu: the processor in question.
6588 *
6589 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6590 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006591struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006592{
6593 return cpu_curr(cpu);
6594}
6595
6596/**
6597 * set_curr_task - set the current task for a given cpu.
6598 * @cpu: the processor in question.
6599 * @p: the task pointer to set.
6600 *
6601 * Description: This function must only be used when non-maskable interrupts
6602 * are serviced on a separate stack. It allows the architecture to switch the
6603 * notion of the current task on a cpu in a non-blocking manner. This function
6604 * must be called with all CPU's synchronized, and interrupts disabled, the
6605 * and caller must save the original value of the current task (see
6606 * curr_task() above) and restore that value before reenabling interrupts and
6607 * re-starting the system.
6608 *
6609 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6610 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006611void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006612{
6613 cpu_curr(cpu) = p;
6614}
6615
6616#endif