blob: f5a204b46655eed8decc52d0f2423ed3f2f90c24 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070055#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
Eric Dumazet5517d862007-05-08 00:32:57 -070057#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070058#include <asm/unistd.h>
59
60/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080061 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
70/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
Ingo Molnar6aa645e2007-07-09 18:51:58 +020094#define NICE_0_LOAD SCHED_LOAD_SCALE
95#define NICE_0_SHIFT SCHED_LOAD_SHIFT
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097/*
98 * These are the 'tuning knobs' of the scheduler:
99 *
100 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
101 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
102 * Timeslices get refilled after they expire.
103 */
104#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
105#define DEF_TIMESLICE (100 * HZ / 1000)
106#define ON_RUNQUEUE_WEIGHT 30
107#define CHILD_PENALTY 95
108#define PARENT_PENALTY 100
109#define EXIT_WEIGHT 3
110#define PRIO_BONUS_RATIO 25
111#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
112#define INTERACTIVE_DELTA 2
113#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
114#define STARVATION_LIMIT (MAX_SLEEP_AVG)
115#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
116
117/*
118 * If a task is 'interactive' then we reinsert it in the active
119 * array after it has expired its current timeslice. (it will not
120 * continue to run immediately, it will still roundrobin with
121 * other interactive tasks.)
122 *
123 * This part scales the interactivity limit depending on niceness.
124 *
125 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
126 * Here are a few examples of different nice levels:
127 *
128 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
129 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
130 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
131 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
132 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
133 *
134 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
135 * priority range a task can explore, a value of '1' means the
136 * task is rated interactive.)
137 *
138 * Ie. nice +19 tasks can never get 'interactive' enough to be
139 * reinserted into the active array. And only heavily CPU-hog nice -20
140 * tasks will be expired. Default nice 0 tasks are somewhere between,
141 * it takes some effort for them to get interactive, but it's not
142 * too hard.
143 */
144
145#define CURRENT_BONUS(p) \
146 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
147 MAX_SLEEP_AVG)
148
149#define GRANULARITY (10 * HZ / 1000 ? : 1)
150
151#ifdef CONFIG_SMP
152#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
154 num_online_cpus())
155#else
156#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
157 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
158#endif
159
160#define SCALE(v1,v1_max,v2_max) \
161 (v1) * (v2_max) / (v1_max)
162
163#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800164 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
165 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166
167#define TASK_INTERACTIVE(p) \
168 ((p)->prio <= (p)->static_prio - DELTA(p))
169
170#define INTERACTIVE_SLEEP(p) \
171 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
172 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
173
174#define TASK_PREEMPTS_CURR(p, rq) \
Andrew Mortond5f9f942007-05-08 20:27:06 -0700175 ((p)->prio < (rq)->curr->prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700178 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179
Peter Williams2dd73a42006-06-27 02:54:34 -0700180static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181{
Peter Williams2dd73a42006-06-27 02:54:34 -0700182 if (static_prio < NICE_TO_PRIO(0))
183 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700185 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
Peter Williams2dd73a42006-06-27 02:54:34 -0700187
Eric Dumazet5517d862007-05-08 00:32:57 -0700188#ifdef CONFIG_SMP
189/*
190 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
191 * Since cpu_power is a 'constant', we can use a reciprocal divide.
192 */
193static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
194{
195 return reciprocal_divide(load, sg->reciprocal_cpu_power);
196}
197
198/*
199 * Each time a sched group cpu_power is changed,
200 * we must compute its reciprocal value
201 */
202static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
203{
204 sg->__cpu_power += val;
205 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
206}
207#endif
208
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700209/*
210 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
211 * to time slice values: [800ms ... 100ms ... 5ms]
212 *
213 * The higher a thread's priority, the bigger timeslices
214 * it gets during one round of execution. But even the lowest
215 * priority thread gets MIN_TIMESLICE worth of execution time.
216 */
217
Ingo Molnar36c8b582006-07-03 00:25:41 -0700218static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700219{
220 return static_prio_timeslice(p->static_prio);
221}
222
Ingo Molnare05606d2007-07-09 18:51:59 +0200223static inline int rt_policy(int policy)
224{
225 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
226 return 1;
227 return 0;
228}
229
230static inline int task_has_rt_policy(struct task_struct *p)
231{
232 return rt_policy(p->policy);
233}
234
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200236 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200238struct rt_prio_array {
239 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
240 struct list_head queue[MAX_RT_PRIO];
241};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200243struct load_stat {
244 struct load_weight load;
245 u64 load_update_start, load_update_last;
246 unsigned long delta_fair, delta_exec, delta_stat;
247};
248
249/* CFS-related fields in a runqueue */
250struct cfs_rq {
251 struct load_weight load;
252 unsigned long nr_running;
253
254 s64 fair_clock;
255 u64 exec_clock;
256 s64 wait_runtime;
257 u64 sleeper_bonus;
258 unsigned long wait_runtime_overruns, wait_runtime_underruns;
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262 struct rb_node *rb_load_balance_curr;
263#ifdef CONFIG_FAIR_GROUP_SCHED
264 /* 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr;
268 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
269
270 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
271 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
272 * (like users, containers etc.)
273 *
274 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
275 * list is used during load balance.
276 */
277 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
278#endif
279};
280
281/* Real-Time classes' related field in a runqueue: */
282struct rt_rq {
283 struct rt_prio_array active;
284 int rt_load_balance_idx;
285 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
286};
287
288/*
289 * The prio-array type of the old scheduler:
290 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291struct prio_array {
292 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700293 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294 struct list_head queue[MAX_PRIO];
295};
296
297/*
298 * This is the main, per-CPU runqueue data structure.
299 *
300 * Locking rule: those places that want to lock multiple runqueues
301 * (such as the load balancing or the thread migration code), lock
302 * acquire operations must be ordered by ascending &runqueue.
303 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700304struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200305 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700306
307 /*
308 * nr_running and cpu_load should be in the same cacheline because
309 * remote CPUs use both these fields when doing load calculation.
310 */
311 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700312 unsigned long raw_weighted_load;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200313 #define CPU_LOAD_IDX_MAX 5
314 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700315 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700316#ifdef CONFIG_NO_HZ
317 unsigned char in_nohz_recently;
318#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200319 struct load_stat ls; /* capture load from *all* tasks on this cpu */
320 unsigned long nr_load_updates;
321 u64 nr_switches;
322
323 struct cfs_rq cfs;
324#ifdef CONFIG_FAIR_GROUP_SCHED
325 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700326#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200327 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328
329 /*
330 * This is part of a global counter where only the total sum
331 * over all CPUs matters. A task can increase this counter on
332 * one CPU and if it got migrated afterwards it may decrease
333 * it on another CPU. Always updated under the runqueue lock:
334 */
335 unsigned long nr_uninterruptible;
336
337 unsigned long expired_timestamp;
Mike Galbraithb18ec802006-12-10 02:20:31 -0800338 unsigned long long most_recent_timestamp;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200339
Ingo Molnar36c8b582006-07-03 00:25:41 -0700340 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800341 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700342 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200343
Ingo Molnar70b97a72006-07-03 00:25:42 -0700344 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700345 int best_expired_prio;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200346
347 u64 clock, prev_clock_raw;
348 s64 clock_max_delta;
349
350 unsigned int clock_warps, clock_overflows;
351 unsigned int clock_unstable_events;
352
353 struct sched_class *load_balance_class;
354
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355 atomic_t nr_iowait;
356
357#ifdef CONFIG_SMP
358 struct sched_domain *sd;
359
360 /* For active balancing */
361 int active_balance;
362 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700363 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364
Ingo Molnar36c8b582006-07-03 00:25:41 -0700365 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366 struct list_head migration_queue;
367#endif
368
369#ifdef CONFIG_SCHEDSTATS
370 /* latency stats */
371 struct sched_info rq_sched_info;
372
373 /* sys_sched_yield() stats */
374 unsigned long yld_exp_empty;
375 unsigned long yld_act_empty;
376 unsigned long yld_both_empty;
377 unsigned long yld_cnt;
378
379 /* schedule() stats */
380 unsigned long sched_switch;
381 unsigned long sched_cnt;
382 unsigned long sched_goidle;
383
384 /* try_to_wake_up() stats */
385 unsigned long ttwu_cnt;
386 unsigned long ttwu_local;
387#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700388 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700389};
390
Siddha, Suresh Bc3396622007-05-08 00:33:09 -0700391static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700392static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700394static inline int cpu_of(struct rq *rq)
395{
396#ifdef CONFIG_SMP
397 return rq->cpu;
398#else
399 return 0;
400#endif
401}
402
Nick Piggin674311d2005-06-25 14:57:27 -0700403/*
Ingo Molnar20d315d2007-07-09 18:51:58 +0200404 * Per-runqueue clock, as finegrained as the platform can give us:
405 */
406static unsigned long long __rq_clock(struct rq *rq)
407{
408 u64 prev_raw = rq->prev_clock_raw;
409 u64 now = sched_clock();
410 s64 delta = now - prev_raw;
411 u64 clock = rq->clock;
412
413 /*
414 * Protect against sched_clock() occasionally going backwards:
415 */
416 if (unlikely(delta < 0)) {
417 clock++;
418 rq->clock_warps++;
419 } else {
420 /*
421 * Catch too large forward jumps too:
422 */
423 if (unlikely(delta > 2*TICK_NSEC)) {
424 clock++;
425 rq->clock_overflows++;
426 } else {
427 if (unlikely(delta > rq->clock_max_delta))
428 rq->clock_max_delta = delta;
429 clock += delta;
430 }
431 }
432
433 rq->prev_clock_raw = now;
434 rq->clock = clock;
435
436 return clock;
437}
438
439static inline unsigned long long rq_clock(struct rq *rq)
440{
441 int this_cpu = smp_processor_id();
442
443 if (this_cpu == cpu_of(rq))
444 return __rq_clock(rq);
445
446 return rq->clock;
447}
448
449/*
Nick Piggin674311d2005-06-25 14:57:27 -0700450 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700451 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700452 *
453 * The domain tree of any CPU may only be accessed from within
454 * preempt-disabled sections.
455 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700456#define for_each_domain(cpu, __sd) \
457 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458
459#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
460#define this_rq() (&__get_cpu_var(runqueues))
461#define task_rq(p) cpu_rq(task_cpu(p))
462#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
463
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200464#ifdef CONFIG_FAIR_GROUP_SCHED
465/* Change a task's ->cfs_rq if it moves across CPUs */
466static inline void set_task_cfs_rq(struct task_struct *p)
467{
468 p->se.cfs_rq = &task_rq(p)->cfs;
469}
470#else
471static inline void set_task_cfs_rq(struct task_struct *p)
472{
473}
474#endif
475
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700477# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700479#ifndef finish_arch_switch
480# define finish_arch_switch(prev) do { } while (0)
481#endif
482
483#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700484static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700485{
486 return rq->curr == p;
487}
488
Ingo Molnar70b97a72006-07-03 00:25:42 -0700489static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700490{
491}
492
Ingo Molnar70b97a72006-07-03 00:25:42 -0700493static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700494{
Ingo Molnarda04c032005-09-13 11:17:59 +0200495#ifdef CONFIG_DEBUG_SPINLOCK
496 /* this is a valid case when another task releases the spinlock */
497 rq->lock.owner = current;
498#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700499 /*
500 * If we are tracking spinlock dependencies then we have to
501 * fix up the runqueue lock - which gets 'carried over' from
502 * prev into current:
503 */
504 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
505
Nick Piggin4866cde2005-06-25 14:57:23 -0700506 spin_unlock_irq(&rq->lock);
507}
508
509#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700510static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700511{
512#ifdef CONFIG_SMP
513 return p->oncpu;
514#else
515 return rq->curr == p;
516#endif
517}
518
Ingo Molnar70b97a72006-07-03 00:25:42 -0700519static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700520{
521#ifdef CONFIG_SMP
522 /*
523 * We can optimise this out completely for !SMP, because the
524 * SMP rebalancing from interrupt is the only thing that cares
525 * here.
526 */
527 next->oncpu = 1;
528#endif
529#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
530 spin_unlock_irq(&rq->lock);
531#else
532 spin_unlock(&rq->lock);
533#endif
534}
535
Ingo Molnar70b97a72006-07-03 00:25:42 -0700536static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700537{
538#ifdef CONFIG_SMP
539 /*
540 * After ->oncpu is cleared, the task can be moved to a different CPU.
541 * We must ensure this doesn't happen until the switch is completely
542 * finished.
543 */
544 smp_wmb();
545 prev->oncpu = 0;
546#endif
547#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 local_irq_enable();
549#endif
550}
551#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552
553/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700554 * __task_rq_lock - lock the runqueue a given task resides on.
555 * Must be called interrupts disabled.
556 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700557static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700558 __acquires(rq->lock)
559{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700560 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700561
562repeat_lock_task:
563 rq = task_rq(p);
564 spin_lock(&rq->lock);
565 if (unlikely(rq != task_rq(p))) {
566 spin_unlock(&rq->lock);
567 goto repeat_lock_task;
568 }
569 return rq;
570}
571
572/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700573 * task_rq_lock - lock the runqueue a given task resides on and disable
574 * interrupts. Note the ordering: we can safely lookup the task_rq without
575 * explicitly disabling preemption.
576 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700577static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578 __acquires(rq->lock)
579{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700580 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581
582repeat_lock_task:
583 local_irq_save(*flags);
584 rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (unlikely(rq != task_rq(p))) {
587 spin_unlock_irqrestore(&rq->lock, *flags);
588 goto repeat_lock_task;
589 }
590 return rq;
591}
592
Ingo Molnar70b97a72006-07-03 00:25:42 -0700593static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700594 __releases(rq->lock)
595{
596 spin_unlock(&rq->lock);
597}
598
Ingo Molnar70b97a72006-07-03 00:25:42 -0700599static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600 __releases(rq->lock)
601{
602 spin_unlock_irqrestore(&rq->lock, *flags);
603}
604
Linus Torvalds1da177e2005-04-16 15:20:36 -0700605/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800606 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700608static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609 __acquires(rq->lock)
610{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700611 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612
613 local_irq_disable();
614 rq = this_rq();
615 spin_lock(&rq->lock);
616
617 return rq;
618}
619
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200620/*
621 * resched_task - mark a task 'to be rescheduled now'.
622 *
623 * On UP this means the setting of the need_resched flag, on SMP it
624 * might also involve a cross-CPU call to trigger the scheduler on
625 * the target CPU.
626 */
627#ifdef CONFIG_SMP
628
629#ifndef tsk_is_polling
630#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
631#endif
632
633static void resched_task(struct task_struct *p)
634{
635 int cpu;
636
637 assert_spin_locked(&task_rq(p)->lock);
638
639 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
640 return;
641
642 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
643
644 cpu = task_cpu(p);
645 if (cpu == smp_processor_id())
646 return;
647
648 /* NEED_RESCHED must be visible before we test polling */
649 smp_mb();
650 if (!tsk_is_polling(p))
651 smp_send_reschedule(cpu);
652}
653
654static void resched_cpu(int cpu)
655{
656 struct rq *rq = cpu_rq(cpu);
657 unsigned long flags;
658
659 if (!spin_trylock_irqsave(&rq->lock, flags))
660 return;
661 resched_task(cpu_curr(cpu));
662 spin_unlock_irqrestore(&rq->lock, flags);
663}
664#else
665static inline void resched_task(struct task_struct *p)
666{
667 assert_spin_locked(&task_rq(p)->lock);
668 set_tsk_need_resched(p);
669}
670#endif
671
Ingo Molnar425e0962007-07-09 18:51:58 +0200672#include "sched_stats.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200674static u64 div64_likely32(u64 divident, unsigned long divisor)
675{
676#if BITS_PER_LONG == 32
677 if (likely(divident <= 0xffffffffULL))
678 return (u32)divident / divisor;
679 do_div(divident, divisor);
680
681 return divident;
682#else
683 return divident / divisor;
684#endif
685}
686
687#if BITS_PER_LONG == 32
688# define WMULT_CONST (~0UL)
689#else
690# define WMULT_CONST (1UL << 32)
691#endif
692
693#define WMULT_SHIFT 32
694
695static inline unsigned long
696calc_delta_mine(unsigned long delta_exec, unsigned long weight,
697 struct load_weight *lw)
698{
699 u64 tmp;
700
701 if (unlikely(!lw->inv_weight))
702 lw->inv_weight = WMULT_CONST / lw->weight;
703
704 tmp = (u64)delta_exec * weight;
705 /*
706 * Check whether we'd overflow the 64-bit multiplication:
707 */
708 if (unlikely(tmp > WMULT_CONST)) {
709 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
710 >> (WMULT_SHIFT/2);
711 } else {
712 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
713 }
714
715 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
716}
717
718static inline unsigned long
719calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
720{
721 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
722}
723
724static void update_load_add(struct load_weight *lw, unsigned long inc)
725{
726 lw->weight += inc;
727 lw->inv_weight = 0;
728}
729
730static void update_load_sub(struct load_weight *lw, unsigned long dec)
731{
732 lw->weight -= dec;
733 lw->inv_weight = 0;
734}
735
736static void __update_curr_load(struct rq *rq, struct load_stat *ls)
737{
738 if (rq->curr != rq->idle && ls->load.weight) {
739 ls->delta_exec += ls->delta_stat;
740 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
741 ls->delta_stat = 0;
742 }
743}
744
745/*
746 * Update delta_exec, delta_fair fields for rq.
747 *
748 * delta_fair clock advances at a rate inversely proportional to
749 * total load (rq->ls.load.weight) on the runqueue, while
750 * delta_exec advances at the same rate as wall-clock (provided
751 * cpu is not idle).
752 *
753 * delta_exec / delta_fair is a measure of the (smoothened) load on this
754 * runqueue over any given interval. This (smoothened) load is used
755 * during load balance.
756 *
757 * This function is called /before/ updating rq->ls.load
758 * and when switching tasks.
759 */
760static void update_curr_load(struct rq *rq, u64 now)
761{
762 struct load_stat *ls = &rq->ls;
763 u64 start;
764
765 start = ls->load_update_start;
766 ls->load_update_start = now;
767 ls->delta_stat += now - start;
768 /*
769 * Stagger updates to ls->delta_fair. Very frequent updates
770 * can be expensive.
771 */
772 if (ls->delta_stat >= sysctl_sched_stat_granularity)
773 __update_curr_load(rq, ls);
774}
775
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700777 * To aid in avoiding the subversion of "niceness" due to uneven distribution
778 * of tasks with abnormal "nice" values across CPUs the contribution that
779 * each task makes to its run queue's load is weighted according to its
780 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
781 * scaled version of the new time slice allocation that they receive on time
782 * slice expiry etc.
783 */
784
785/*
786 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
787 * If static_prio_timeslice() is ever changed to break this assumption then
788 * this code will need modification
789 */
790#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
791#define LOAD_WEIGHT(lp) \
792 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
793#define PRIO_TO_LOAD_WEIGHT(prio) \
794 LOAD_WEIGHT(static_prio_timeslice(prio))
795#define RTPRIO_TO_LOAD_WEIGHT(rp) \
796 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
797
Ingo Molnar36c8b582006-07-03 00:25:41 -0700798static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700799inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700800{
801 rq->raw_weighted_load += p->load_weight;
802}
803
Ingo Molnar36c8b582006-07-03 00:25:41 -0700804static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700805dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700806{
807 rq->raw_weighted_load -= p->load_weight;
808}
809
Ingo Molnar70b97a72006-07-03 00:25:42 -0700810static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700811{
812 rq->nr_running++;
813 inc_raw_weighted_load(rq, p);
814}
815
Ingo Molnar70b97a72006-07-03 00:25:42 -0700816static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700817{
818 rq->nr_running--;
819 dec_raw_weighted_load(rq, p);
820}
821
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200822static void set_load_weight(struct task_struct *p)
823{
824 if (task_has_rt_policy(p)) {
825#ifdef CONFIG_SMP
826 if (p == task_rq(p)->migration_thread)
827 /*
828 * The migration thread does the actual balancing.
829 * Giving its load any weight will skew balancing
830 * adversely.
831 */
832 p->load_weight = 0;
833 else
834#endif
835 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
836 } else
837 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
838}
839
Peter Williams2dd73a42006-06-27 02:54:34 -0700840/*
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200841 * Adding/removing a task to/from a priority array:
842 */
843static void dequeue_task(struct task_struct *p, struct prio_array *array)
844{
845 array->nr_active--;
846 list_del(&p->run_list);
847 if (list_empty(array->queue + p->prio))
848 __clear_bit(p->prio, array->bitmap);
849}
850
851static void enqueue_task(struct task_struct *p, struct prio_array *array)
852{
853 sched_info_queued(p);
854 list_add_tail(&p->run_list, array->queue + p->prio);
855 __set_bit(p->prio, array->bitmap);
856 array->nr_active++;
857 p->array = array;
858}
859
860/*
861 * Put task to the end of the run list without the overhead of dequeue
862 * followed by enqueue.
863 */
864static void requeue_task(struct task_struct *p, struct prio_array *array)
865{
866 list_move_tail(&p->run_list, array->queue + p->prio);
867}
868
869static inline void
870enqueue_task_head(struct task_struct *p, struct prio_array *array)
871{
872 list_add(&p->run_list, array->queue + p->prio);
873 __set_bit(p->prio, array->bitmap);
874 array->nr_active++;
875 p->array = array;
876}
877
878/*
Ingo Molnar14531182007-07-09 18:51:59 +0200879 * __normal_prio - return the priority that is based on the static
880 * priority but is modified by bonuses/penalties.
881 *
882 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
883 * into the -5 ... 0 ... +5 bonus/penalty range.
884 *
885 * We use 25% of the full 0...39 priority range so that:
886 *
887 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
888 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
889 *
890 * Both properties are important to certain workloads.
891 */
892
893static inline int __normal_prio(struct task_struct *p)
894{
895 int bonus, prio;
896
Ingo Molnarf3479f12007-07-09 18:51:59 +0200897 bonus = 0;
Ingo Molnar14531182007-07-09 18:51:59 +0200898
899 prio = p->static_prio - bonus;
900 if (prio < MAX_RT_PRIO)
901 prio = MAX_RT_PRIO;
902 if (prio > MAX_PRIO-1)
903 prio = MAX_PRIO-1;
904 return prio;
905}
906
907/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700908 * Calculate the expected normal priority: i.e. priority
909 * without taking RT-inheritance into account. Might be
910 * boosted by interactivity modifiers. Changes upon fork,
911 * setprio syscalls, and whenever the interactivity
912 * estimator recalculates.
913 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700914static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700915{
916 int prio;
917
Ingo Molnare05606d2007-07-09 18:51:59 +0200918 if (task_has_rt_policy(p))
Ingo Molnarb29739f2006-06-27 02:54:51 -0700919 prio = MAX_RT_PRIO-1 - p->rt_priority;
920 else
921 prio = __normal_prio(p);
922 return prio;
923}
924
925/*
926 * Calculate the current priority, i.e. the priority
927 * taken into account by the scheduler. This value might
928 * be boosted by RT tasks, or might be boosted by
929 * interactivity modifiers. Will be RT if the task got
930 * RT-boosted. If not then it returns p->normal_prio.
931 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700932static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700933{
934 p->normal_prio = normal_prio(p);
935 /*
936 * If we are RT tasks or we were boosted to RT priority,
937 * keep the priority unchanged. Otherwise, update priority
938 * to the normal priority:
939 */
940 if (!rt_prio(p->prio))
941 return p->normal_prio;
942 return p->prio;
943}
944
945/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946 * __activate_task - move a task to the runqueue.
947 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700948static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700949{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700950 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800951
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700952 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800953 target = rq->expired;
954 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700955 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956}
957
958/*
959 * __activate_idle_task - move idle task to the _front_ of runqueue.
960 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700961static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700962{
963 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700964 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965}
966
Ingo Molnarb29739f2006-06-27 02:54:51 -0700967/*
968 * Recalculate p->normal_prio and p->prio after having slept,
969 * updating the sleep-average too:
970 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700971static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972{
Chen Shanga3464a12005-06-25 14:57:31 -0700973 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700974}
975
976/*
977 * activate_task - move a task to the runqueue and do priority recalculation
978 *
979 * Update all the scheduling statistics stuff. (sleep average
980 * calculation, priority modifiers, etc.)
981 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700982static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983{
984 unsigned long long now;
985
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800986 if (rt_task(p))
987 goto out;
988
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989 now = sched_clock();
990#ifdef CONFIG_SMP
991 if (!local) {
992 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700993 struct rq *this_rq = this_rq();
Mike Galbraithb18ec802006-12-10 02:20:31 -0800994 now = (now - this_rq->most_recent_timestamp)
995 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996 }
997#endif
998
Ingo Molnarece8a682006-12-06 20:37:24 -0800999 /*
1000 * Sleep time is in units of nanosecs, so shift by 20 to get a
1001 * milliseconds-range estimation of the amount of time that the task
1002 * spent sleeping:
1003 */
1004 if (unlikely(prof_on == SLEEP_PROFILING)) {
1005 if (p->state == TASK_UNINTERRUPTIBLE)
1006 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1007 (now - p->timestamp) >> 20);
1008 }
1009
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001010 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011 p->timestamp = now;
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001012out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001013 __activate_task(p, rq);
1014}
1015
1016/*
1017 * deactivate_task - remove a task from the runqueue.
1018 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001019static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001020{
Peter Williams2dd73a42006-06-27 02:54:34 -07001021 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022 dequeue_task(p, p->array);
1023 p->array = NULL;
1024}
1025
Linus Torvalds1da177e2005-04-16 15:20:36 -07001026/**
1027 * task_curr - is this task currently executing on a CPU?
1028 * @p: the task in question.
1029 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001030inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001031{
1032 return cpu_curr(task_cpu(p)) == p;
1033}
1034
Peter Williams2dd73a42006-06-27 02:54:34 -07001035/* Used instead of source_load when we know the type == 0 */
1036unsigned long weighted_cpuload(const int cpu)
1037{
1038 return cpu_rq(cpu)->raw_weighted_load;
1039}
1040
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +02001042
1043void set_task_cpu(struct task_struct *p, unsigned int cpu)
1044{
1045 task_thread_info(p)->cpu = cpu;
1046}
1047
Ingo Molnar70b97a72006-07-03 00:25:42 -07001048struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001049 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050
Ingo Molnar36c8b582006-07-03 00:25:41 -07001051 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052 int dest_cpu;
1053
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001055};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056
1057/*
1058 * The task's runqueue lock must be held.
1059 * Returns true if you have to wait for migration thread.
1060 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001061static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001062migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001064 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065
1066 /*
1067 * If the task is not on a runqueue (and not running), then
1068 * it is sufficient to simply update the task's cpu field.
1069 */
1070 if (!p->array && !task_running(rq, p)) {
1071 set_task_cpu(p, dest_cpu);
1072 return 0;
1073 }
1074
1075 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076 req->task = p;
1077 req->dest_cpu = dest_cpu;
1078 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001079
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080 return 1;
1081}
1082
1083/*
1084 * wait_task_inactive - wait for a thread to unschedule.
1085 *
1086 * The caller must ensure that the task *will* unschedule sometime soon,
1087 * else this function might spin for a *long* time. This function can't
1088 * be called with interrupts off, or it may introduce deadlock with
1089 * smp_call_function() if an IPI is sent by the same process we are
1090 * waiting to become inactive.
1091 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001092void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093{
1094 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001095 struct rq *rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001096 struct prio_array *array;
1097 int running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098
1099repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001100 /*
1101 * We do the initial early heuristics without holding
1102 * any task-queue locks at all. We'll only try to get
1103 * the runqueue lock when things look like they will
1104 * work out!
1105 */
1106 rq = task_rq(p);
1107
1108 /*
1109 * If the task is actively running on another CPU
1110 * still, just relax and busy-wait without holding
1111 * any locks.
1112 *
1113 * NOTE! Since we don't hold any locks, it's not
1114 * even sure that "rq" stays as the right runqueue!
1115 * But we don't care, since "task_running()" will
1116 * return false if the runqueue has changed and p
1117 * is actually now running somewhere else!
1118 */
1119 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001121
1122 /*
1123 * Ok, time to look more closely! We need the rq
1124 * lock now, to be *sure*. If we're wrong, we'll
1125 * just go back and repeat.
1126 */
1127 rq = task_rq_lock(p, &flags);
1128 running = task_running(rq, p);
1129 array = p->array;
1130 task_rq_unlock(rq, &flags);
1131
1132 /*
1133 * Was it really running after all now that we
1134 * checked with the proper locks actually held?
1135 *
1136 * Oops. Go back and try again..
1137 */
1138 if (unlikely(running)) {
1139 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140 goto repeat;
1141 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001142
1143 /*
1144 * It's not enough that it's not actively running,
1145 * it must be off the runqueue _entirely_, and not
1146 * preempted!
1147 *
1148 * So if it wa still runnable (but just not actively
1149 * running right now), it's preempted, and we should
1150 * yield - it could be a while.
1151 */
1152 if (unlikely(array)) {
1153 yield();
1154 goto repeat;
1155 }
1156
1157 /*
1158 * Ahh, all good. It wasn't running, and it wasn't
1159 * runnable, which means that it will never become
1160 * running in the future either. We're all done!
1161 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162}
1163
1164/***
1165 * kick_process - kick a running thread to enter/exit the kernel
1166 * @p: the to-be-kicked thread
1167 *
1168 * Cause a process which is running on another CPU to enter
1169 * kernel-mode, without any delay. (to get signals handled.)
1170 *
1171 * NOTE: this function doesnt have to take the runqueue lock,
1172 * because all it wants to ensure is that the remote task enters
1173 * the kernel. If the IPI races and the task has been migrated
1174 * to another CPU then no harm is done and the purpose has been
1175 * achieved as well.
1176 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001177void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178{
1179 int cpu;
1180
1181 preempt_disable();
1182 cpu = task_cpu(p);
1183 if ((cpu != smp_processor_id()) && task_curr(p))
1184 smp_send_reschedule(cpu);
1185 preempt_enable();
1186}
1187
1188/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001189 * Return a low guess at the load of a migration-source cpu weighted
1190 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001191 *
1192 * We want to under-estimate the load of migration sources, to
1193 * balance conservatively.
1194 */
Con Kolivasb9104722005-11-08 21:38:55 -08001195static inline unsigned long source_load(int cpu, int type)
1196{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001197 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001198
Peter Williams2dd73a42006-06-27 02:54:34 -07001199 if (type == 0)
1200 return rq->raw_weighted_load;
1201
1202 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001203}
1204
1205/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001206 * Return a high guess at the load of a migration-target cpu weighted
1207 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001208 */
Con Kolivasb9104722005-11-08 21:38:55 -08001209static inline unsigned long target_load(int cpu, int type)
1210{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001211 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001212
Peter Williams2dd73a42006-06-27 02:54:34 -07001213 if (type == 0)
1214 return rq->raw_weighted_load;
1215
1216 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1217}
1218
1219/*
1220 * Return the average load per task on the cpu's run queue
1221 */
1222static inline unsigned long cpu_avg_load_per_task(int cpu)
1223{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001224 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001225 unsigned long n = rq->nr_running;
1226
Ingo Molnar48f24c42006-07-03 00:25:40 -07001227 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001228}
1229
Nick Piggin147cbb42005-06-25 14:57:19 -07001230/*
1231 * find_idlest_group finds and returns the least busy CPU group within the
1232 * domain.
1233 */
1234static struct sched_group *
1235find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1236{
1237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1238 unsigned long min_load = ULONG_MAX, this_load = 0;
1239 int load_idx = sd->forkexec_idx;
1240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1241
1242 do {
1243 unsigned long load, avg_load;
1244 int local_group;
1245 int i;
1246
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001247 /* Skip over this group if it has no CPUs allowed */
1248 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1249 goto nextgroup;
1250
Nick Piggin147cbb42005-06-25 14:57:19 -07001251 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001252
1253 /* Tally up the load of all CPUs in the group */
1254 avg_load = 0;
1255
1256 for_each_cpu_mask(i, group->cpumask) {
1257 /* Bias balancing toward cpus of our domain */
1258 if (local_group)
1259 load = source_load(i, load_idx);
1260 else
1261 load = target_load(i, load_idx);
1262
1263 avg_load += load;
1264 }
1265
1266 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001267 avg_load = sg_div_cpu_power(group,
1268 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001269
1270 if (local_group) {
1271 this_load = avg_load;
1272 this = group;
1273 } else if (avg_load < min_load) {
1274 min_load = avg_load;
1275 idlest = group;
1276 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001277nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001278 group = group->next;
1279 } while (group != sd->groups);
1280
1281 if (!idlest || 100*this_load < imbalance*min_load)
1282 return NULL;
1283 return idlest;
1284}
1285
1286/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001288 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001289static int
1290find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001291{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001292 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001293 unsigned long load, min_load = ULONG_MAX;
1294 int idlest = -1;
1295 int i;
1296
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001297 /* Traverse only the allowed CPUs */
1298 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1299
1300 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001301 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001302
1303 if (load < min_load || (load == min_load && i == this_cpu)) {
1304 min_load = load;
1305 idlest = i;
1306 }
1307 }
1308
1309 return idlest;
1310}
1311
Nick Piggin476d1392005-06-25 14:57:29 -07001312/*
1313 * sched_balance_self: balance the current task (running on cpu) in domains
1314 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1315 * SD_BALANCE_EXEC.
1316 *
1317 * Balance, ie. select the least loaded group.
1318 *
1319 * Returns the target CPU number, or the same CPU if no balancing is needed.
1320 *
1321 * preempt must be disabled.
1322 */
1323static int sched_balance_self(int cpu, int flag)
1324{
1325 struct task_struct *t = current;
1326 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001327
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001328 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001329 /*
1330 * If power savings logic is enabled for a domain, stop there.
1331 */
1332 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1333 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001334 if (tmp->flags & flag)
1335 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001336 }
Nick Piggin476d1392005-06-25 14:57:29 -07001337
1338 while (sd) {
1339 cpumask_t span;
1340 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001341 int new_cpu, weight;
1342
1343 if (!(sd->flags & flag)) {
1344 sd = sd->child;
1345 continue;
1346 }
Nick Piggin476d1392005-06-25 14:57:29 -07001347
1348 span = sd->span;
1349 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001350 if (!group) {
1351 sd = sd->child;
1352 continue;
1353 }
Nick Piggin476d1392005-06-25 14:57:29 -07001354
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001355 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001356 if (new_cpu == -1 || new_cpu == cpu) {
1357 /* Now try balancing at a lower domain level of cpu */
1358 sd = sd->child;
1359 continue;
1360 }
Nick Piggin476d1392005-06-25 14:57:29 -07001361
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001362 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001363 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001364 sd = NULL;
1365 weight = cpus_weight(span);
1366 for_each_domain(cpu, tmp) {
1367 if (weight <= cpus_weight(tmp->span))
1368 break;
1369 if (tmp->flags & flag)
1370 sd = tmp;
1371 }
1372 /* while loop will break here if sd == NULL */
1373 }
1374
1375 return cpu;
1376}
1377
1378#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379
1380/*
1381 * wake_idle() will wake a task on an idle cpu if task->cpu is
1382 * not idle and an idle cpu is available. The span of cpus to
1383 * search starts with cpus closest then further out as needed,
1384 * so we always favor a closer, idle cpu.
1385 *
1386 * Returns the CPU we should wake onto.
1387 */
1388#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001389static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390{
1391 cpumask_t tmp;
1392 struct sched_domain *sd;
1393 int i;
1394
Siddha, Suresh B49531982007-05-08 00:33:01 -07001395 /*
1396 * If it is idle, then it is the best cpu to run this task.
1397 *
1398 * This cpu is also the best, if it has more than one task already.
1399 * Siblings must be also busy(in most cases) as they didn't already
1400 * pickup the extra load from this cpu and hence we need not check
1401 * sibling runqueue info. This will avoid the checks and cache miss
1402 * penalities associated with that.
1403 */
1404 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001405 return cpu;
1406
1407 for_each_domain(cpu, sd) {
1408 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001409 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001410 for_each_cpu_mask(i, tmp) {
1411 if (idle_cpu(i))
1412 return i;
1413 }
1414 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001415 else
1416 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001417 }
1418 return cpu;
1419}
1420#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001421static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422{
1423 return cpu;
1424}
1425#endif
1426
1427/***
1428 * try_to_wake_up - wake up a thread
1429 * @p: the to-be-woken-up thread
1430 * @state: the mask of task states that can be woken
1431 * @sync: do a synchronous wakeup?
1432 *
1433 * Put it on the run-queue if it's not already there. The "current"
1434 * thread is always on the run-queue (except when the actual
1435 * re-schedule is in progress), and as such you're allowed to do
1436 * the simpler "current->state = TASK_RUNNING" to mark yourself
1437 * runnable without the overhead of this.
1438 *
1439 * returns failure only if the task is already active.
1440 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001441static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442{
1443 int cpu, this_cpu, success = 0;
1444 unsigned long flags;
1445 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001446 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001448 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001449 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450 int new_cpu;
1451#endif
1452
1453 rq = task_rq_lock(p, &flags);
1454 old_state = p->state;
1455 if (!(old_state & state))
1456 goto out;
1457
1458 if (p->array)
1459 goto out_running;
1460
1461 cpu = task_cpu(p);
1462 this_cpu = smp_processor_id();
1463
1464#ifdef CONFIG_SMP
1465 if (unlikely(task_running(rq, p)))
1466 goto out_activate;
1467
Nick Piggin78979862005-06-25 14:57:13 -07001468 new_cpu = cpu;
1469
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470 schedstat_inc(rq, ttwu_cnt);
1471 if (cpu == this_cpu) {
1472 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001473 goto out_set_cpu;
1474 }
1475
1476 for_each_domain(this_cpu, sd) {
1477 if (cpu_isset(cpu, sd->span)) {
1478 schedstat_inc(sd, ttwu_wake_remote);
1479 this_sd = sd;
1480 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001481 }
1482 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001483
Nick Piggin78979862005-06-25 14:57:13 -07001484 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001485 goto out_set_cpu;
1486
Linus Torvalds1da177e2005-04-16 15:20:36 -07001487 /*
Nick Piggin78979862005-06-25 14:57:13 -07001488 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001489 */
Nick Piggin78979862005-06-25 14:57:13 -07001490 if (this_sd) {
1491 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001493
Nick Piggina3f21bc2005-06-25 14:57:15 -07001494 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1495
Nick Piggin78979862005-06-25 14:57:13 -07001496 load = source_load(cpu, idx);
1497 this_load = target_load(this_cpu, idx);
1498
Nick Piggin78979862005-06-25 14:57:13 -07001499 new_cpu = this_cpu; /* Wake to this CPU if we can */
1500
Nick Piggina3f21bc2005-06-25 14:57:15 -07001501 if (this_sd->flags & SD_WAKE_AFFINE) {
1502 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001503 unsigned long tl_per_task;
1504
1505 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001506
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001508 * If sync wakeup then subtract the (maximum possible)
1509 * effect of the currently running task from the load
1510 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001511 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001512 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001513 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001514
1515 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001516 tl + target_load(cpu, idx) <= tl_per_task) ||
1517 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001518 /*
1519 * This domain has SD_WAKE_AFFINE and
1520 * p is cache cold in this domain, and
1521 * there is no bad imbalance.
1522 */
1523 schedstat_inc(this_sd, ttwu_move_affine);
1524 goto out_set_cpu;
1525 }
1526 }
1527
1528 /*
1529 * Start passive balancing when half the imbalance_pct
1530 * limit is reached.
1531 */
1532 if (this_sd->flags & SD_WAKE_BALANCE) {
1533 if (imbalance*this_load <= 100*load) {
1534 schedstat_inc(this_sd, ttwu_move_balance);
1535 goto out_set_cpu;
1536 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537 }
1538 }
1539
1540 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1541out_set_cpu:
1542 new_cpu = wake_idle(new_cpu, p);
1543 if (new_cpu != cpu) {
1544 set_task_cpu(p, new_cpu);
1545 task_rq_unlock(rq, &flags);
1546 /* might preempt at this point */
1547 rq = task_rq_lock(p, &flags);
1548 old_state = p->state;
1549 if (!(old_state & state))
1550 goto out;
1551 if (p->array)
1552 goto out_running;
1553
1554 this_cpu = smp_processor_id();
1555 cpu = task_cpu(p);
1556 }
1557
1558out_activate:
1559#endif /* CONFIG_SMP */
Ingo Molnarf2ac58e2007-07-09 18:51:59 +02001560 if (old_state == TASK_UNINTERRUPTIBLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001561 rq->nr_uninterruptible--;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001562
1563 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001564 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565 * Sync wakeups (i.e. those types of wakeups where the waker
1566 * has indicated that it will leave the CPU in short order)
1567 * don't trigger a preemption, if the woken up task will run on
1568 * this cpu. (in this case the 'I will reschedule' promise of
1569 * the waker guarantees that the freshly woken up task is going
1570 * to be considered on this CPU.)
1571 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572 if (!sync || cpu != this_cpu) {
1573 if (TASK_PREEMPTS_CURR(p, rq))
1574 resched_task(rq->curr);
1575 }
1576 success = 1;
1577
1578out_running:
1579 p->state = TASK_RUNNING;
1580out:
1581 task_rq_unlock(rq, &flags);
1582
1583 return success;
1584}
1585
Ingo Molnar36c8b582006-07-03 00:25:41 -07001586int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587{
1588 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1589 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1590}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001591EXPORT_SYMBOL(wake_up_process);
1592
Ingo Molnar36c8b582006-07-03 00:25:41 -07001593int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001594{
1595 return try_to_wake_up(p, state, 0);
1596}
1597
Peter Williamsbc947632006-12-19 12:48:50 +10001598static void task_running_tick(struct rq *rq, struct task_struct *p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001599/*
1600 * Perform scheduler related setup for a newly forked process p.
1601 * p is forked by current.
1602 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001603void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001604{
Nick Piggin476d1392005-06-25 14:57:29 -07001605 int cpu = get_cpu();
1606
1607#ifdef CONFIG_SMP
1608 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1609#endif
1610 set_task_cpu(p, cpu);
1611
Linus Torvalds1da177e2005-04-16 15:20:36 -07001612 /*
1613 * We mark the process as running here, but have not actually
1614 * inserted it onto the runqueue yet. This guarantees that
1615 * nobody will actually run it, and a signal or other external
1616 * event cannot wake it up and insert it on the runqueue either.
1617 */
1618 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001619
1620 /*
1621 * Make sure we do not leak PI boosting priority to the child:
1622 */
1623 p->prio = current->normal_prio;
1624
Linus Torvalds1da177e2005-04-16 15:20:36 -07001625 INIT_LIST_HEAD(&p->run_list);
1626 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001627#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1628 if (unlikely(sched_info_on()))
1629 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001630#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001631#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001632 p->oncpu = 0;
1633#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001634#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001635 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001636 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637#endif
1638 /*
1639 * Share the timeslice between parent and child, thus the
1640 * total amount of pending timeslices in the system doesn't change,
1641 * resulting in more scheduling fairness.
1642 */
1643 local_irq_disable();
1644 p->time_slice = (current->time_slice + 1) >> 1;
1645 /*
1646 * The remainder of the first timeslice might be recovered by
1647 * the parent if the child exits early enough.
1648 */
1649 p->first_time_slice = 1;
1650 current->time_slice >>= 1;
1651 p->timestamp = sched_clock();
1652 if (unlikely(!current->time_slice)) {
1653 /*
1654 * This case is rare, it happens when the parent has only
1655 * a single jiffy left from its timeslice. Taking the
1656 * runqueue lock is not a problem.
1657 */
1658 current->time_slice = 1;
Peter Williamsbc947632006-12-19 12:48:50 +10001659 task_running_tick(cpu_rq(cpu), current);
Nick Piggin476d1392005-06-25 14:57:29 -07001660 }
1661 local_irq_enable();
1662 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663}
1664
1665/*
1666 * wake_up_new_task - wake up a newly created task for the first time.
1667 *
1668 * This function will do some initial scheduler statistics housekeeping
1669 * that must be done for every newly created context, then puts the task
1670 * on the runqueue and wakes it.
1671 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001672void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001673{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001674 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675 unsigned long flags;
1676 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677
1678 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001680 this_cpu = smp_processor_id();
1681 cpu = task_cpu(p);
1682
Linus Torvalds1da177e2005-04-16 15:20:36 -07001683 /*
1684 * We decrease the sleep average of forking parents
1685 * and children as well, to keep max-interactive tasks
1686 * from forking tasks that are max-interactive. The parent
1687 * (current) is done further down, under its lock.
1688 */
1689 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1690 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1691
1692 p->prio = effective_prio(p);
1693
1694 if (likely(cpu == this_cpu)) {
1695 if (!(clone_flags & CLONE_VM)) {
1696 /*
1697 * The VM isn't cloned, so we're in a good position to
1698 * do child-runs-first in anticipation of an exec. This
1699 * usually avoids a lot of COW overhead.
1700 */
1701 if (unlikely(!current->array))
1702 __activate_task(p, rq);
1703 else {
1704 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001705 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001706 list_add_tail(&p->run_list, &current->run_list);
1707 p->array = current->array;
1708 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001709 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001710 }
1711 set_need_resched();
1712 } else
1713 /* Run child last */
1714 __activate_task(p, rq);
1715 /*
1716 * We skip the following code due to cpu == this_cpu
1717 *
1718 * task_rq_unlock(rq, &flags);
1719 * this_rq = task_rq_lock(current, &flags);
1720 */
1721 this_rq = rq;
1722 } else {
1723 this_rq = cpu_rq(this_cpu);
1724
1725 /*
1726 * Not the local CPU - must adjust timestamp. This should
1727 * get optimised away in the !CONFIG_SMP case.
1728 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08001729 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1730 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731 __activate_task(p, rq);
1732 if (TASK_PREEMPTS_CURR(p, rq))
1733 resched_task(rq->curr);
1734
1735 /*
1736 * Parent and child are on different CPUs, now get the
1737 * parent runqueue to update the parent's ->sleep_avg:
1738 */
1739 task_rq_unlock(rq, &flags);
1740 this_rq = task_rq_lock(current, &flags);
1741 }
1742 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1743 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1744 task_rq_unlock(this_rq, &flags);
1745}
1746
Linus Torvalds1da177e2005-04-16 15:20:36 -07001747/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001748 * prepare_task_switch - prepare to switch tasks
1749 * @rq: the runqueue preparing to switch
1750 * @next: the task we are going to switch to.
1751 *
1752 * This is called with the rq lock held and interrupts off. It must
1753 * be paired with a subsequent finish_task_switch after the context
1754 * switch.
1755 *
1756 * prepare_task_switch sets up locking and calls architecture specific
1757 * hooks.
1758 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001759static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001760{
1761 prepare_lock_switch(rq, next);
1762 prepare_arch_switch(next);
1763}
1764
1765/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001767 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001768 * @prev: the thread we just switched away from.
1769 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001770 * finish_task_switch must be called after the context switch, paired
1771 * with a prepare_task_switch call before the context switch.
1772 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1773 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 *
1775 * Note that we may have delayed dropping an mm in context_switch(). If
1776 * so, we finish that here outside of the runqueue lock. (Doing it
1777 * with the lock held can cause deadlocks; see schedule() for
1778 * details.)
1779 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001780static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781 __releases(rq->lock)
1782{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001784 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785
1786 rq->prev_mm = NULL;
1787
1788 /*
1789 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001790 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001791 * schedule one last time. The schedule call will never return, and
1792 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001793 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794 * still held, otherwise prev could be scheduled on another cpu, die
1795 * there before we look at prev->state, and then the reference would
1796 * be dropped twice.
1797 * Manfred Spraul <manfred@colorfullife.com>
1798 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001799 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001800 finish_arch_switch(prev);
1801 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 if (mm)
1803 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001804 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001805 /*
1806 * Remove function-return probe instances associated with this
1807 * task and put them back on the free list.
1808 */
1809 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001811 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812}
1813
1814/**
1815 * schedule_tail - first thing a freshly forked thread must call.
1816 * @prev: the thread we just switched away from.
1817 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001818asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819 __releases(rq->lock)
1820{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001821 struct rq *rq = this_rq();
1822
Nick Piggin4866cde2005-06-25 14:57:23 -07001823 finish_task_switch(rq, prev);
1824#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1825 /* In this case, finish_task_switch does not reenable preemption */
1826 preempt_enable();
1827#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001828 if (current->set_child_tid)
1829 put_user(current->pid, current->set_child_tid);
1830}
1831
1832/*
1833 * context_switch - switch to the new MM and the new
1834 * thread's register state.
1835 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001836static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001837context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001838 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839{
1840 struct mm_struct *mm = next->mm;
1841 struct mm_struct *oldmm = prev->active_mm;
1842
Zachary Amsden9226d122007-02-13 13:26:21 +01001843 /*
1844 * For paravirt, this is coupled with an exit in switch_to to
1845 * combine the page table reload and the switch backend into
1846 * one hypercall.
1847 */
1848 arch_enter_lazy_cpu_mode();
1849
Nick Pigginbeed33a2006-10-11 01:21:52 -07001850 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 next->active_mm = oldmm;
1852 atomic_inc(&oldmm->mm_count);
1853 enter_lazy_tlb(oldmm, next);
1854 } else
1855 switch_mm(oldmm, mm, next);
1856
Nick Pigginbeed33a2006-10-11 01:21:52 -07001857 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001858 prev->active_mm = NULL;
1859 WARN_ON(rq->prev_mm);
1860 rq->prev_mm = oldmm;
1861 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001862 /*
1863 * Since the runqueue lock will be released by the next
1864 * task (which is an invalid locking op but in the case
1865 * of the scheduler it's an obvious special-case), so we
1866 * do an early lockdep release here:
1867 */
1868#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001869 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001870#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871
1872 /* Here we just switch the register state and the stack. */
1873 switch_to(prev, next, prev);
1874
1875 return prev;
1876}
1877
1878/*
1879 * nr_running, nr_uninterruptible and nr_context_switches:
1880 *
1881 * externally visible scheduler statistics: current number of runnable
1882 * threads, current number of uninterruptible-sleeping threads, total
1883 * number of context switches performed since bootup.
1884 */
1885unsigned long nr_running(void)
1886{
1887 unsigned long i, sum = 0;
1888
1889 for_each_online_cpu(i)
1890 sum += cpu_rq(i)->nr_running;
1891
1892 return sum;
1893}
1894
1895unsigned long nr_uninterruptible(void)
1896{
1897 unsigned long i, sum = 0;
1898
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001899 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900 sum += cpu_rq(i)->nr_uninterruptible;
1901
1902 /*
1903 * Since we read the counters lockless, it might be slightly
1904 * inaccurate. Do not allow it to go below zero though:
1905 */
1906 if (unlikely((long)sum < 0))
1907 sum = 0;
1908
1909 return sum;
1910}
1911
1912unsigned long long nr_context_switches(void)
1913{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001914 int i;
1915 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001916
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001917 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 sum += cpu_rq(i)->nr_switches;
1919
1920 return sum;
1921}
1922
1923unsigned long nr_iowait(void)
1924{
1925 unsigned long i, sum = 0;
1926
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001927 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001928 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1929
1930 return sum;
1931}
1932
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001933unsigned long nr_active(void)
1934{
1935 unsigned long i, running = 0, uninterruptible = 0;
1936
1937 for_each_online_cpu(i) {
1938 running += cpu_rq(i)->nr_running;
1939 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1940 }
1941
1942 if (unlikely((long)uninterruptible < 0))
1943 uninterruptible = 0;
1944
1945 return running + uninterruptible;
1946}
1947
Linus Torvalds1da177e2005-04-16 15:20:36 -07001948#ifdef CONFIG_SMP
1949
1950/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07001951 * Is this task likely cache-hot:
1952 */
1953static inline int
1954task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1955{
1956 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1957}
1958
1959/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960 * double_rq_lock - safely lock two runqueues
1961 *
1962 * Note this does not disable interrupts like task_rq_lock,
1963 * you need to do so manually before calling.
1964 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001965static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001966 __acquires(rq1->lock)
1967 __acquires(rq2->lock)
1968{
Kirill Korotaev054b9102006-12-10 02:20:11 -08001969 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001970 if (rq1 == rq2) {
1971 spin_lock(&rq1->lock);
1972 __acquire(rq2->lock); /* Fake it out ;) */
1973 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001974 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001975 spin_lock(&rq1->lock);
1976 spin_lock(&rq2->lock);
1977 } else {
1978 spin_lock(&rq2->lock);
1979 spin_lock(&rq1->lock);
1980 }
1981 }
1982}
1983
1984/*
1985 * double_rq_unlock - safely unlock two runqueues
1986 *
1987 * Note this does not restore interrupts like task_rq_unlock,
1988 * you need to do so manually after calling.
1989 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001990static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 __releases(rq1->lock)
1992 __releases(rq2->lock)
1993{
1994 spin_unlock(&rq1->lock);
1995 if (rq1 != rq2)
1996 spin_unlock(&rq2->lock);
1997 else
1998 __release(rq2->lock);
1999}
2000
2001/*
2002 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2003 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002004static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005 __releases(this_rq->lock)
2006 __acquires(busiest->lock)
2007 __acquires(this_rq->lock)
2008{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002009 if (unlikely(!irqs_disabled())) {
2010 /* printk() doesn't work good under rq->lock */
2011 spin_unlock(&this_rq->lock);
2012 BUG_ON(1);
2013 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002014 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002015 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 spin_unlock(&this_rq->lock);
2017 spin_lock(&busiest->lock);
2018 spin_lock(&this_rq->lock);
2019 } else
2020 spin_lock(&busiest->lock);
2021 }
2022}
2023
2024/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002025 * If dest_cpu is allowed for this process, migrate the task to it.
2026 * This is accomplished by forcing the cpu_allowed mask to only
2027 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2028 * the cpu_allowed mask is restored.
2029 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002030static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002031{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002032 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002033 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002034 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002035
2036 rq = task_rq_lock(p, &flags);
2037 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2038 || unlikely(cpu_is_offline(dest_cpu)))
2039 goto out;
2040
2041 /* force the process onto the specified CPU */
2042 if (migrate_task(p, dest_cpu, &req)) {
2043 /* Need to wait for migration thread (might exit: take ref). */
2044 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002045
Linus Torvalds1da177e2005-04-16 15:20:36 -07002046 get_task_struct(mt);
2047 task_rq_unlock(rq, &flags);
2048 wake_up_process(mt);
2049 put_task_struct(mt);
2050 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002051
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 return;
2053 }
2054out:
2055 task_rq_unlock(rq, &flags);
2056}
2057
2058/*
Nick Piggin476d1392005-06-25 14:57:29 -07002059 * sched_exec - execve() is a valuable balancing opportunity, because at
2060 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061 */
2062void sched_exec(void)
2063{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002064 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002065 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002067 if (new_cpu != this_cpu)
2068 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002069}
2070
2071/*
2072 * pull_task - move a task from a remote runqueue to the local runqueue.
2073 * Both runqueues must be locked.
2074 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002075static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2076 struct task_struct *p, struct rq *this_rq,
2077 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002078{
2079 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002080 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002081 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002082 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002083 enqueue_task(p, this_array);
Mike Galbraithb18ec802006-12-10 02:20:31 -08002084 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2085 + this_rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086 /*
2087 * Note that idle threads have a prio of MAX_PRIO, for this test
2088 * to be always true for them.
2089 */
2090 if (TASK_PREEMPTS_CURR(p, this_rq))
2091 resched_task(this_rq->curr);
2092}
2093
2094/*
2095 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2096 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002097static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002098int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002099 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002100 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101{
2102 /*
2103 * We do not migrate tasks that are:
2104 * 1) running (obviously), or
2105 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2106 * 3) are cache-hot on their current CPU.
2107 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108 if (!cpu_isset(this_cpu, p->cpus_allowed))
2109 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002110 *all_pinned = 0;
2111
2112 if (task_running(rq, p))
2113 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114
2115 /*
2116 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002117 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002118 * 2) too many balance attempts have failed.
2119 */
2120
Mike Galbraithb18ec802006-12-10 02:20:31 -08002121 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2122#ifdef CONFIG_SCHEDSTATS
2123 if (task_hot(p, rq->most_recent_timestamp, sd))
2124 schedstat_inc(sd, lb_hot_gained[idle]);
2125#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126 return 1;
Mike Galbraithb18ec802006-12-10 02:20:31 -08002127 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002128
Mike Galbraithb18ec802006-12-10 02:20:31 -08002129 if (task_hot(p, rq->most_recent_timestamp, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002130 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131 return 1;
2132}
2133
Peter Williams615052d2006-06-27 02:54:37 -07002134#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002135
Linus Torvalds1da177e2005-04-16 15:20:36 -07002136/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002137 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2138 * load from busiest to this_rq, as part of a balancing operation within
2139 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002140 *
2141 * Called with both runqueues locked.
2142 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002143static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002144 unsigned long max_nr_move, unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002145 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002146 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002147{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002148 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2149 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002150 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002152 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002153 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002154
Peter Williams2dd73a42006-06-27 02:54:34 -07002155 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156 goto out;
2157
Peter Williams2dd73a42006-06-27 02:54:34 -07002158 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002159 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002160 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002161 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002162 /*
2163 * Enable handling of the case where there is more than one task
2164 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002165 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002166 * and therefore it's safe to override the skip (based on load) of
2167 * any task we find with that prio.
2168 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002169 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002170
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171 /*
2172 * We first consider expired tasks. Those will likely not be
2173 * executed in the near future, and they are most likely to
2174 * be cache-cold, thus switching CPUs has the least effect
2175 * on them.
2176 */
2177 if (busiest->expired->nr_active) {
2178 array = busiest->expired;
2179 dst_array = this_rq->expired;
2180 } else {
2181 array = busiest->active;
2182 dst_array = this_rq->active;
2183 }
2184
2185new_array:
2186 /* Start searching at priority 0: */
2187 idx = 0;
2188skip_bitmap:
2189 if (!idx)
2190 idx = sched_find_first_bit(array->bitmap);
2191 else
2192 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2193 if (idx >= MAX_PRIO) {
2194 if (array == busiest->expired && busiest->active->nr_active) {
2195 array = busiest->active;
2196 dst_array = this_rq->active;
2197 goto new_array;
2198 }
2199 goto out;
2200 }
2201
2202 head = array->queue + idx;
2203 curr = head->prev;
2204skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002205 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002206
2207 curr = curr->prev;
2208
Peter Williams50ddd962006-06-27 02:54:36 -07002209 /*
2210 * To help distribute high priority tasks accross CPUs we don't
2211 * skip a task if it will be the highest priority task (i.e. smallest
2212 * prio value) on its new queue regardless of its load weight
2213 */
Peter Williams615052d2006-06-27 02:54:37 -07002214 skip_for_load = tmp->load_weight > rem_load_move;
2215 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002216 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002217 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002218 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002219
2220 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221 if (curr != head)
2222 goto skip_queue;
2223 idx++;
2224 goto skip_bitmap;
2225 }
2226
Linus Torvalds1da177e2005-04-16 15:20:36 -07002227 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2228 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002229 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002230
Peter Williams2dd73a42006-06-27 02:54:34 -07002231 /*
2232 * We only want to steal up to the prescribed number of tasks
2233 * and the prescribed amount of weighted load.
2234 */
2235 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002236 if (idx < this_best_prio)
2237 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002238 if (curr != head)
2239 goto skip_queue;
2240 idx++;
2241 goto skip_bitmap;
2242 }
2243out:
2244 /*
2245 * Right now, this is the only place pull_task() is called,
2246 * so we can safely collect pull_task() stats here rather than
2247 * inside pull_task().
2248 */
2249 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002250
2251 if (all_pinned)
2252 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253 return pulled;
2254}
2255
2256/*
2257 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002258 * domain. It calculates and returns the amount of weighted load which
2259 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002260 */
2261static struct sched_group *
2262find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002263 unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002264 cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265{
2266 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2267 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002268 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002269 unsigned long busiest_load_per_task, busiest_nr_running;
2270 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002271 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002272#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2273 int power_savings_balance = 1;
2274 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2275 unsigned long min_nr_running = ULONG_MAX;
2276 struct sched_group *group_min = NULL, *group_leader = NULL;
2277#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278
2279 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002280 busiest_load_per_task = busiest_nr_running = 0;
2281 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002282 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002283 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002284 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002285 load_idx = sd->newidle_idx;
2286 else
2287 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288
2289 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002290 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291 int local_group;
2292 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002293 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002294 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002295
2296 local_group = cpu_isset(this_cpu, group->cpumask);
2297
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002298 if (local_group)
2299 balance_cpu = first_cpu(group->cpumask);
2300
Linus Torvalds1da177e2005-04-16 15:20:36 -07002301 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002302 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002303
2304 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002305 struct rq *rq;
2306
2307 if (!cpu_isset(i, *cpus))
2308 continue;
2309
2310 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002311
Nick Piggin5969fe02005-09-10 00:26:19 -07002312 if (*sd_idle && !idle_cpu(i))
2313 *sd_idle = 0;
2314
Linus Torvalds1da177e2005-04-16 15:20:36 -07002315 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002316 if (local_group) {
2317 if (idle_cpu(i) && !first_idle_cpu) {
2318 first_idle_cpu = 1;
2319 balance_cpu = i;
2320 }
2321
Nick Piggina2000572006-02-10 01:51:02 -08002322 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002323 } else
Nick Piggina2000572006-02-10 01:51:02 -08002324 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002325
2326 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002327 sum_nr_running += rq->nr_running;
2328 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329 }
2330
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002331 /*
2332 * First idle cpu or the first cpu(busiest) in this sched group
2333 * is eligible for doing load balancing at this and above
2334 * domains.
2335 */
2336 if (local_group && balance_cpu != this_cpu && balance) {
2337 *balance = 0;
2338 goto ret;
2339 }
2340
Linus Torvalds1da177e2005-04-16 15:20:36 -07002341 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002342 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343
2344 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002345 avg_load = sg_div_cpu_power(group,
2346 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002347
Eric Dumazet5517d862007-05-08 00:32:57 -07002348 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002349
Linus Torvalds1da177e2005-04-16 15:20:36 -07002350 if (local_group) {
2351 this_load = avg_load;
2352 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002353 this_nr_running = sum_nr_running;
2354 this_load_per_task = sum_weighted_load;
2355 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002356 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357 max_load = avg_load;
2358 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002359 busiest_nr_running = sum_nr_running;
2360 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002361 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002362
2363#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2364 /*
2365 * Busy processors will not participate in power savings
2366 * balance.
2367 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002368 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002369 goto group_next;
2370
2371 /*
2372 * If the local group is idle or completely loaded
2373 * no need to do power savings balance at this domain
2374 */
2375 if (local_group && (this_nr_running >= group_capacity ||
2376 !this_nr_running))
2377 power_savings_balance = 0;
2378
2379 /*
2380 * If a group is already running at full capacity or idle,
2381 * don't include that group in power savings calculations
2382 */
2383 if (!power_savings_balance || sum_nr_running >= group_capacity
2384 || !sum_nr_running)
2385 goto group_next;
2386
2387 /*
2388 * Calculate the group which has the least non-idle load.
2389 * This is the group from where we need to pick up the load
2390 * for saving power
2391 */
2392 if ((sum_nr_running < min_nr_running) ||
2393 (sum_nr_running == min_nr_running &&
2394 first_cpu(group->cpumask) <
2395 first_cpu(group_min->cpumask))) {
2396 group_min = group;
2397 min_nr_running = sum_nr_running;
2398 min_load_per_task = sum_weighted_load /
2399 sum_nr_running;
2400 }
2401
2402 /*
2403 * Calculate the group which is almost near its
2404 * capacity but still has some space to pick up some load
2405 * from other group and save more power
2406 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002407 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002408 if (sum_nr_running > leader_nr_running ||
2409 (sum_nr_running == leader_nr_running &&
2410 first_cpu(group->cpumask) >
2411 first_cpu(group_leader->cpumask))) {
2412 group_leader = group;
2413 leader_nr_running = sum_nr_running;
2414 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002415 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002416group_next:
2417#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418 group = group->next;
2419 } while (group != sd->groups);
2420
Peter Williams2dd73a42006-06-27 02:54:34 -07002421 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002422 goto out_balanced;
2423
2424 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2425
2426 if (this_load >= avg_load ||
2427 100*max_load <= sd->imbalance_pct*this_load)
2428 goto out_balanced;
2429
Peter Williams2dd73a42006-06-27 02:54:34 -07002430 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431 /*
2432 * We're trying to get all the cpus to the average_load, so we don't
2433 * want to push ourselves above the average load, nor do we wish to
2434 * reduce the max loaded cpu below the average load, as either of these
2435 * actions would just result in more rebalancing later, and ping-pong
2436 * tasks around. Thus we look for the minimum possible imbalance.
2437 * Negative imbalances (*we* are more loaded than anyone else) will
2438 * be counted as no imbalance for these purposes -- we can't fix that
2439 * by pulling tasks to us. Be careful of negative numbers as they'll
2440 * appear as very large values with unsigned longs.
2441 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002442 if (max_load <= busiest_load_per_task)
2443 goto out_balanced;
2444
2445 /*
2446 * In the presence of smp nice balancing, certain scenarios can have
2447 * max load less than avg load(as we skip the groups at or below
2448 * its cpu_power, while calculating max_load..)
2449 */
2450 if (max_load < avg_load) {
2451 *imbalance = 0;
2452 goto small_imbalance;
2453 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002454
2455 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002456 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002457
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002459 *imbalance = min(max_pull * busiest->__cpu_power,
2460 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002461 / SCHED_LOAD_SCALE;
2462
Peter Williams2dd73a42006-06-27 02:54:34 -07002463 /*
2464 * if *imbalance is less than the average load per runnable task
2465 * there is no gaurantee that any tasks will be moved so we'll have
2466 * a think about bumping its value to force at least one task to be
2467 * moved
2468 */
2469 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002470 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002471 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002472
Peter Williams2dd73a42006-06-27 02:54:34 -07002473small_imbalance:
2474 pwr_move = pwr_now = 0;
2475 imbn = 2;
2476 if (this_nr_running) {
2477 this_load_per_task /= this_nr_running;
2478 if (busiest_load_per_task > this_load_per_task)
2479 imbn = 1;
2480 } else
2481 this_load_per_task = SCHED_LOAD_SCALE;
2482
2483 if (max_load - this_load >= busiest_load_per_task * imbn) {
2484 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002485 return busiest;
2486 }
2487
2488 /*
2489 * OK, we don't have enough imbalance to justify moving tasks,
2490 * however we may be able to increase total CPU power used by
2491 * moving them.
2492 */
2493
Eric Dumazet5517d862007-05-08 00:32:57 -07002494 pwr_now += busiest->__cpu_power *
2495 min(busiest_load_per_task, max_load);
2496 pwr_now += this->__cpu_power *
2497 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002498 pwr_now /= SCHED_LOAD_SCALE;
2499
2500 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002501 tmp = sg_div_cpu_power(busiest,
2502 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002503 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002504 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002505 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002506
2507 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002508 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002509 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002510 tmp = sg_div_cpu_power(this,
2511 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002512 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002513 tmp = sg_div_cpu_power(this,
2514 busiest_load_per_task * SCHED_LOAD_SCALE);
2515 pwr_move += this->__cpu_power *
2516 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002517 pwr_move /= SCHED_LOAD_SCALE;
2518
2519 /* Move if we gain throughput */
2520 if (pwr_move <= pwr_now)
2521 goto out_balanced;
2522
Peter Williams2dd73a42006-06-27 02:54:34 -07002523 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524 }
2525
Linus Torvalds1da177e2005-04-16 15:20:36 -07002526 return busiest;
2527
2528out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002529#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002530 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002531 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002532
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002533 if (this == group_leader && group_leader != group_min) {
2534 *imbalance = min_load_per_task;
2535 return group_min;
2536 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002537#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002538ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002539 *imbalance = 0;
2540 return NULL;
2541}
2542
2543/*
2544 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2545 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002546static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002547find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002548 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002549{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002550 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002551 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002552 int i;
2553
2554 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002555
2556 if (!cpu_isset(i, *cpus))
2557 continue;
2558
Ingo Molnar48f24c42006-07-03 00:25:40 -07002559 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560
Ingo Molnar48f24c42006-07-03 00:25:40 -07002561 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002562 continue;
2563
Ingo Molnar48f24c42006-07-03 00:25:40 -07002564 if (rq->raw_weighted_load > max_load) {
2565 max_load = rq->raw_weighted_load;
2566 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002567 }
2568 }
2569
2570 return busiest;
2571}
2572
2573/*
Nick Piggin77391d72005-06-25 14:57:30 -07002574 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2575 * so long as it is large enough.
2576 */
2577#define MAX_PINNED_INTERVAL 512
2578
Ingo Molnar48f24c42006-07-03 00:25:40 -07002579static inline unsigned long minus_1_or_zero(unsigned long n)
2580{
2581 return n > 0 ? n - 1 : 0;
2582}
2583
Nick Piggin77391d72005-06-25 14:57:30 -07002584/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002585 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2586 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002587 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002588static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002589 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002590 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002591{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002592 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002594 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002595 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002596 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002597 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002598
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002599 /*
2600 * When power savings policy is enabled for the parent domain, idle
2601 * sibling can pick up load irrespective of busy siblings. In this case,
2602 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002603 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002604 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002605 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002606 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002607 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608
Linus Torvalds1da177e2005-04-16 15:20:36 -07002609 schedstat_inc(sd, lb_cnt[idle]);
2610
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002611redo:
2612 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002613 &cpus, balance);
2614
Chen, Kenneth W06066712006-12-10 02:20:35 -08002615 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002616 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002617
Linus Torvalds1da177e2005-04-16 15:20:36 -07002618 if (!group) {
2619 schedstat_inc(sd, lb_nobusyg[idle]);
2620 goto out_balanced;
2621 }
2622
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002623 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002624 if (!busiest) {
2625 schedstat_inc(sd, lb_nobusyq[idle]);
2626 goto out_balanced;
2627 }
2628
Nick Piggindb935db2005-06-25 14:57:11 -07002629 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002630
2631 schedstat_add(sd, lb_imbalance[idle], imbalance);
2632
2633 nr_moved = 0;
2634 if (busiest->nr_running > 1) {
2635 /*
2636 * Attempt to move tasks. If find_busiest_group has found
2637 * an imbalance but busiest->nr_running <= 1, the group is
2638 * still unbalanced. nr_moved simply stays zero, so it is
2639 * correctly treated as an imbalance.
2640 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002641 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002642 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002643 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002644 minus_1_or_zero(busiest->nr_running),
2645 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002646 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002647 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002648
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002649 /*
2650 * some other cpu did the load balance for us.
2651 */
2652 if (nr_moved && this_cpu != smp_processor_id())
2653 resched_cpu(this_cpu);
2654
Nick Piggin81026792005-06-25 14:57:07 -07002655 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002656 if (unlikely(all_pinned)) {
2657 cpu_clear(cpu_of(busiest), cpus);
2658 if (!cpus_empty(cpus))
2659 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002660 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002661 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002662 }
Nick Piggin81026792005-06-25 14:57:07 -07002663
Linus Torvalds1da177e2005-04-16 15:20:36 -07002664 if (!nr_moved) {
2665 schedstat_inc(sd, lb_failed[idle]);
2666 sd->nr_balance_failed++;
2667
2668 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002669
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002670 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002671
2672 /* don't kick the migration_thread, if the curr
2673 * task on busiest cpu can't be moved to this_cpu
2674 */
2675 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002676 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002677 all_pinned = 1;
2678 goto out_one_pinned;
2679 }
2680
Linus Torvalds1da177e2005-04-16 15:20:36 -07002681 if (!busiest->active_balance) {
2682 busiest->active_balance = 1;
2683 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002684 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002686 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002687 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002688 wake_up_process(busiest->migration_thread);
2689
2690 /*
2691 * We've kicked active balancing, reset the failure
2692 * counter.
2693 */
Nick Piggin39507452005-06-25 14:57:09 -07002694 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002695 }
Nick Piggin81026792005-06-25 14:57:07 -07002696 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002697 sd->nr_balance_failed = 0;
2698
Nick Piggin81026792005-06-25 14:57:07 -07002699 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002700 /* We were unbalanced, so reset the balancing interval */
2701 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002702 } else {
2703 /*
2704 * If we've begun active balancing, start to back off. This
2705 * case may not be covered by the all_pinned logic if there
2706 * is only 1 task on the busy runqueue (because we don't call
2707 * move_tasks).
2708 */
2709 if (sd->balance_interval < sd->max_interval)
2710 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 }
2712
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002713 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002714 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002715 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 return nr_moved;
2717
2718out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719 schedstat_inc(sd, lb_balanced[idle]);
2720
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002721 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002722
2723out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002724 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002725 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2726 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002727 sd->balance_interval *= 2;
2728
Ingo Molnar48f24c42006-07-03 00:25:40 -07002729 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002730 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002731 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002732 return 0;
2733}
2734
2735/*
2736 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2737 * tasks if there is an imbalance.
2738 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002739 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002740 * this_rq is locked.
2741 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002742static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002743load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002744{
2745 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002746 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002747 unsigned long imbalance;
2748 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002749 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002750 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002751
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002752 /*
2753 * When power savings policy is enabled for the parent domain, idle
2754 * sibling can pick up load irrespective of busy siblings. In this case,
2755 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002756 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002757 */
2758 if (sd->flags & SD_SHARE_CPUPOWER &&
2759 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002760 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002762 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002763redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002764 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002765 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002767 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002768 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002769 }
2770
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002771 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002772 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002773 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002774 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002775 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002776 }
2777
Nick Piggindb935db2005-06-25 14:57:11 -07002778 BUG_ON(busiest == this_rq);
2779
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002780 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002781
2782 nr_moved = 0;
2783 if (busiest->nr_running > 1) {
2784 /* Attempt to move tasks */
2785 double_lock_balance(this_rq, busiest);
2786 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002787 minus_1_or_zero(busiest->nr_running),
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002788 imbalance, sd, CPU_NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002789 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002790
2791 if (!nr_moved) {
2792 cpu_clear(cpu_of(busiest), cpus);
2793 if (!cpus_empty(cpus))
2794 goto redo;
2795 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002796 }
2797
Nick Piggin5969fe02005-09-10 00:26:19 -07002798 if (!nr_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002799 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002800 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2801 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002802 return -1;
2803 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002804 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002805
Linus Torvalds1da177e2005-04-16 15:20:36 -07002806 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002807
2808out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002809 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002810 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002811 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002812 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002813 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002814
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002815 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002816}
2817
2818/*
2819 * idle_balance is called by schedule() if this_cpu is about to become
2820 * idle. Attempts to pull tasks from other CPUs.
2821 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002822static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002823{
2824 struct sched_domain *sd;
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002825 int pulled_task = 0;
2826 unsigned long next_balance = jiffies + 60 * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002827
2828 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002829 unsigned long interval;
2830
2831 if (!(sd->flags & SD_LOAD_BALANCE))
2832 continue;
2833
2834 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002835 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002836 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002837 this_rq, sd);
2838
2839 interval = msecs_to_jiffies(sd->balance_interval);
2840 if (time_after(next_balance, sd->last_balance + interval))
2841 next_balance = sd->last_balance + interval;
2842 if (pulled_task)
2843 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002844 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002845 if (!pulled_task)
2846 /*
2847 * We are going idle. next_balance may be set based on
2848 * a busy processor. So reset next_balance.
2849 */
2850 this_rq->next_balance = next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002851}
2852
2853/*
2854 * active_load_balance is run by migration threads. It pushes running tasks
2855 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2856 * running on each physical CPU where possible, and avoids physical /
2857 * logical imbalances.
2858 *
2859 * Called with busiest_rq locked.
2860 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002861static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002862{
Nick Piggin39507452005-06-25 14:57:09 -07002863 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002864 struct sched_domain *sd;
2865 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002866
Ingo Molnar48f24c42006-07-03 00:25:40 -07002867 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002868 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002869 return;
2870
2871 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872
2873 /*
Nick Piggin39507452005-06-25 14:57:09 -07002874 * This condition is "impossible", if it occurs
2875 * we need to fix it. Originally reported by
2876 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877 */
Nick Piggin39507452005-06-25 14:57:09 -07002878 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002879
Nick Piggin39507452005-06-25 14:57:09 -07002880 /* move a task from busiest_rq to target_rq */
2881 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002882
Nick Piggin39507452005-06-25 14:57:09 -07002883 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002884 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002885 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002886 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002887 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002888 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002889
Ingo Molnar48f24c42006-07-03 00:25:40 -07002890 if (likely(sd)) {
2891 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002892
Ingo Molnar48f24c42006-07-03 00:25:40 -07002893 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002894 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002895 NULL))
2896 schedstat_inc(sd, alb_pushed);
2897 else
2898 schedstat_inc(sd, alb_failed);
2899 }
Nick Piggin39507452005-06-25 14:57:09 -07002900 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002901}
2902
Christoph Lameter7835b982006-12-10 02:20:22 -08002903static void update_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002904{
Christoph Lameter7835b982006-12-10 02:20:22 -08002905 unsigned long this_load;
Nick Pigginff916912007-02-12 00:53:51 -08002906 unsigned int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002907
Peter Williams2dd73a42006-06-27 02:54:34 -07002908 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002909
2910 /* Update our load: */
Nick Pigginff916912007-02-12 00:53:51 -08002911 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002912 unsigned long old_load, new_load;
2913
Nick Pigginff916912007-02-12 00:53:51 -08002914 /* scale is effectively 1 << i now, and >> i divides by scale */
2915
Nick Piggin78979862005-06-25 14:57:13 -07002916 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07002917 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07002918 /*
2919 * Round up the averaging division if load is increasing. This
2920 * prevents us from getting stuck on 9 if the load is 10, for
2921 * example.
2922 */
2923 if (new_load > old_load)
2924 new_load += scale-1;
Nick Pigginff916912007-02-12 00:53:51 -08002925 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
Nick Piggin78979862005-06-25 14:57:13 -07002926 }
Christoph Lameter7835b982006-12-10 02:20:22 -08002927}
2928
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002929#ifdef CONFIG_NO_HZ
2930static struct {
2931 atomic_t load_balancer;
2932 cpumask_t cpu_mask;
2933} nohz ____cacheline_aligned = {
2934 .load_balancer = ATOMIC_INIT(-1),
2935 .cpu_mask = CPU_MASK_NONE,
2936};
2937
Christoph Lameter7835b982006-12-10 02:20:22 -08002938/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002939 * This routine will try to nominate the ilb (idle load balancing)
2940 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2941 * load balancing on behalf of all those cpus. If all the cpus in the system
2942 * go into this tickless mode, then there will be no ilb owner (as there is
2943 * no need for one) and all the cpus will sleep till the next wakeup event
2944 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002945 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002946 * For the ilb owner, tick is not stopped. And this tick will be used
2947 * for idle load balancing. ilb owner will still be part of
2948 * nohz.cpu_mask..
2949 *
2950 * While stopping the tick, this cpu will become the ilb owner if there
2951 * is no other owner. And will be the owner till that cpu becomes busy
2952 * or if all cpus in the system stop their ticks at which point
2953 * there is no need for ilb owner.
2954 *
2955 * When the ilb owner becomes busy, it nominates another owner, during the
2956 * next busy scheduler_tick()
2957 */
2958int select_nohz_load_balancer(int stop_tick)
2959{
2960 int cpu = smp_processor_id();
2961
2962 if (stop_tick) {
2963 cpu_set(cpu, nohz.cpu_mask);
2964 cpu_rq(cpu)->in_nohz_recently = 1;
2965
2966 /*
2967 * If we are going offline and still the leader, give up!
2968 */
2969 if (cpu_is_offline(cpu) &&
2970 atomic_read(&nohz.load_balancer) == cpu) {
2971 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2972 BUG();
2973 return 0;
2974 }
2975
2976 /* time for ilb owner also to sleep */
2977 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2978 if (atomic_read(&nohz.load_balancer) == cpu)
2979 atomic_set(&nohz.load_balancer, -1);
2980 return 0;
2981 }
2982
2983 if (atomic_read(&nohz.load_balancer) == -1) {
2984 /* make me the ilb owner */
2985 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2986 return 1;
2987 } else if (atomic_read(&nohz.load_balancer) == cpu)
2988 return 1;
2989 } else {
2990 if (!cpu_isset(cpu, nohz.cpu_mask))
2991 return 0;
2992
2993 cpu_clear(cpu, nohz.cpu_mask);
2994
2995 if (atomic_read(&nohz.load_balancer) == cpu)
2996 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2997 BUG();
2998 }
2999 return 0;
3000}
3001#endif
3002
3003static DEFINE_SPINLOCK(balancing);
3004
3005/*
Christoph Lameter7835b982006-12-10 02:20:22 -08003006 * It checks each scheduling domain to see if it is due to be balanced,
3007 * and initiates a balancing operation if so.
3008 *
3009 * Balancing parameters are set up in arch_init_sched_domains.
3010 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003011static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003012{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003013 int balance = 1;
3014 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003015 unsigned long interval;
3016 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003017 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003018 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003019
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003020 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003021 if (!(sd->flags & SD_LOAD_BALANCE))
3022 continue;
3023
3024 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003025 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003026 interval *= sd->busy_factor;
3027
3028 /* scale ms to jiffies */
3029 interval = msecs_to_jiffies(interval);
3030 if (unlikely(!interval))
3031 interval = 1;
3032
Christoph Lameter08c183f2006-12-10 02:20:29 -08003033 if (sd->flags & SD_SERIALIZE) {
3034 if (!spin_trylock(&balancing))
3035 goto out;
3036 }
3037
Christoph Lameterc9819f42006-12-10 02:20:25 -08003038 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003039 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003040 /*
3041 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003042 * longer idle, or one of our SMT siblings is
3043 * not idle.
3044 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003045 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003046 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003047 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003048 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003049 if (sd->flags & SD_SERIALIZE)
3050 spin_unlock(&balancing);
3051out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003052 if (time_after(next_balance, sd->last_balance + interval))
3053 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003054
3055 /*
3056 * Stop the load balance at this level. There is another
3057 * CPU in our sched group which is doing load balancing more
3058 * actively.
3059 */
3060 if (!balance)
3061 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003062 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003063 rq->next_balance = next_balance;
3064}
3065
3066/*
3067 * run_rebalance_domains is triggered when needed from the scheduler tick.
3068 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3069 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3070 */
3071static void run_rebalance_domains(struct softirq_action *h)
3072{
3073 int local_cpu = smp_processor_id();
3074 struct rq *local_rq = cpu_rq(local_cpu);
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003075 enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003076
3077 rebalance_domains(local_cpu, idle);
3078
3079#ifdef CONFIG_NO_HZ
3080 /*
3081 * If this cpu is the owner for idle load balancing, then do the
3082 * balancing on behalf of the other idle cpus whose ticks are
3083 * stopped.
3084 */
3085 if (local_rq->idle_at_tick &&
3086 atomic_read(&nohz.load_balancer) == local_cpu) {
3087 cpumask_t cpus = nohz.cpu_mask;
3088 struct rq *rq;
3089 int balance_cpu;
3090
3091 cpu_clear(local_cpu, cpus);
3092 for_each_cpu_mask(balance_cpu, cpus) {
3093 /*
3094 * If this cpu gets work to do, stop the load balancing
3095 * work being done for other cpus. Next load
3096 * balancing owner will pick it up.
3097 */
3098 if (need_resched())
3099 break;
3100
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003101 rebalance_domains(balance_cpu, CPU_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003102
3103 rq = cpu_rq(balance_cpu);
3104 if (time_after(local_rq->next_balance, rq->next_balance))
3105 local_rq->next_balance = rq->next_balance;
3106 }
3107 }
3108#endif
3109}
3110
3111/*
3112 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3113 *
3114 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3115 * idle load balancing owner or decide to stop the periodic load balancing,
3116 * if the whole system is idle.
3117 */
3118static inline void trigger_load_balance(int cpu)
3119{
3120 struct rq *rq = cpu_rq(cpu);
3121#ifdef CONFIG_NO_HZ
3122 /*
3123 * If we were in the nohz mode recently and busy at the current
3124 * scheduler tick, then check if we need to nominate new idle
3125 * load balancer.
3126 */
3127 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3128 rq->in_nohz_recently = 0;
3129
3130 if (atomic_read(&nohz.load_balancer) == cpu) {
3131 cpu_clear(cpu, nohz.cpu_mask);
3132 atomic_set(&nohz.load_balancer, -1);
3133 }
3134
3135 if (atomic_read(&nohz.load_balancer) == -1) {
3136 /*
3137 * simple selection for now: Nominate the
3138 * first cpu in the nohz list to be the next
3139 * ilb owner.
3140 *
3141 * TBD: Traverse the sched domains and nominate
3142 * the nearest cpu in the nohz.cpu_mask.
3143 */
3144 int ilb = first_cpu(nohz.cpu_mask);
3145
3146 if (ilb != NR_CPUS)
3147 resched_cpu(ilb);
3148 }
3149 }
3150
3151 /*
3152 * If this cpu is idle and doing idle load balancing for all the
3153 * cpus with ticks stopped, is it time for that to stop?
3154 */
3155 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3156 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3157 resched_cpu(cpu);
3158 return;
3159 }
3160
3161 /*
3162 * If this cpu is idle and the idle load balancing is done by
3163 * someone else, then no need raise the SCHED_SOFTIRQ
3164 */
3165 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3166 cpu_isset(cpu, nohz.cpu_mask))
3167 return;
3168#endif
3169 if (time_after_eq(jiffies, rq->next_balance))
3170 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003171}
3172#else
3173/*
3174 * on UP we do not need to balance between CPUs:
3175 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003176static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003177{
3178}
3179#endif
3180
Linus Torvalds1da177e2005-04-16 15:20:36 -07003181DEFINE_PER_CPU(struct kernel_stat, kstat);
3182
3183EXPORT_PER_CPU_SYMBOL(kstat);
3184
3185/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003186 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3187 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003188 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003189unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003190{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003191 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003192 u64 ns, delta_exec;
3193 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003194
Ingo Molnar41b86e92007-07-09 18:51:58 +02003195 rq = task_rq_lock(p, &flags);
3196 ns = p->se.sum_exec_runtime;
3197 if (rq->curr == p) {
3198 delta_exec = rq_clock(rq) - p->se.exec_start;
3199 if ((s64)delta_exec > 0)
3200 ns += delta_exec;
3201 }
3202 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003203
Linus Torvalds1da177e2005-04-16 15:20:36 -07003204 return ns;
3205}
3206
3207/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003208 * Account user cpu time to a process.
3209 * @p: the process that the cpu time gets accounted to
3210 * @hardirq_offset: the offset to subtract from hardirq_count()
3211 * @cputime: the cpu time spent in user space since the last update
3212 */
3213void account_user_time(struct task_struct *p, cputime_t cputime)
3214{
3215 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3216 cputime64_t tmp;
3217
3218 p->utime = cputime_add(p->utime, cputime);
3219
3220 /* Add user time to cpustat. */
3221 tmp = cputime_to_cputime64(cputime);
3222 if (TASK_NICE(p) > 0)
3223 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3224 else
3225 cpustat->user = cputime64_add(cpustat->user, tmp);
3226}
3227
3228/*
3229 * Account system cpu time to a process.
3230 * @p: the process that the cpu time gets accounted to
3231 * @hardirq_offset: the offset to subtract from hardirq_count()
3232 * @cputime: the cpu time spent in kernel space since the last update
3233 */
3234void account_system_time(struct task_struct *p, int hardirq_offset,
3235 cputime_t cputime)
3236{
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003238 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003239 cputime64_t tmp;
3240
3241 p->stime = cputime_add(p->stime, cputime);
3242
3243 /* Add system time to cpustat. */
3244 tmp = cputime_to_cputime64(cputime);
3245 if (hardirq_count() - hardirq_offset)
3246 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3247 else if (softirq_count())
3248 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3249 else if (p != rq->idle)
3250 cpustat->system = cputime64_add(cpustat->system, tmp);
3251 else if (atomic_read(&rq->nr_iowait) > 0)
3252 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3253 else
3254 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3255 /* Account for system time used */
3256 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003257}
3258
3259/*
3260 * Account for involuntary wait time.
3261 * @p: the process from which the cpu time has been stolen
3262 * @steal: the cpu time spent in involuntary wait
3263 */
3264void account_steal_time(struct task_struct *p, cputime_t steal)
3265{
3266 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3267 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003268 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003269
3270 if (p == rq->idle) {
3271 p->stime = cputime_add(p->stime, steal);
3272 if (atomic_read(&rq->nr_iowait) > 0)
3273 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3274 else
3275 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3276 } else
3277 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3278}
3279
Christoph Lameter7835b982006-12-10 02:20:22 -08003280static void task_running_tick(struct rq *rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003281{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003282 if (p->array != rq->active) {
Christoph Lameter7835b982006-12-10 02:20:22 -08003283 /* Task has expired but was not scheduled yet */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003284 set_tsk_need_resched(p);
Christoph Lameter7835b982006-12-10 02:20:22 -08003285 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003286 }
3287 spin_lock(&rq->lock);
3288 /*
3289 * The task was running during this tick - update the
3290 * time slice counter. Note: we do not update a thread's
3291 * priority until it either goes to sleep or uses up its
3292 * timeslice. This makes it possible for interactive tasks
3293 * to use up their timeslices at their highest priority levels.
3294 */
3295 if (rt_task(p)) {
3296 /*
3297 * RR tasks need a special form of timeslice management.
3298 * FIFO tasks have no timeslices.
3299 */
3300 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3301 p->time_slice = task_timeslice(p);
3302 p->first_time_slice = 0;
3303 set_tsk_need_resched(p);
3304
3305 /* put it at the end of the queue: */
3306 requeue_task(p, rq->active);
3307 }
3308 goto out_unlock;
3309 }
3310 if (!--p->time_slice) {
3311 dequeue_task(p, rq->active);
3312 set_tsk_need_resched(p);
3313 p->prio = effective_prio(p);
3314 p->time_slice = task_timeslice(p);
3315 p->first_time_slice = 0;
3316
3317 if (!rq->expired_timestamp)
3318 rq->expired_timestamp = jiffies;
Ingo Molnarc18a1732007-07-09 18:51:59 +02003319 if (!TASK_INTERACTIVE(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003320 enqueue_task(p, rq->expired);
3321 if (p->static_prio < rq->best_expired_prio)
3322 rq->best_expired_prio = p->static_prio;
3323 } else
3324 enqueue_task(p, rq->active);
3325 } else {
3326 /*
3327 * Prevent a too long timeslice allowing a task to monopolize
3328 * the CPU. We do this by splitting up the timeslice into
3329 * smaller pieces.
3330 *
3331 * Note: this does not mean the task's timeslices expire or
3332 * get lost in any way, they just might be preempted by
3333 * another task of equal priority. (one with higher
3334 * priority would have preempted this task already.) We
3335 * requeue this task to the end of the list on this priority
3336 * level, which is in essence a round-robin of tasks with
3337 * equal priority.
3338 *
3339 * This only applies to tasks in the interactive
3340 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3341 */
3342 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3343 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3344 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3345 (p->array == rq->active)) {
3346
3347 requeue_task(p, rq->active);
3348 set_tsk_need_resched(p);
3349 }
3350 }
3351out_unlock:
3352 spin_unlock(&rq->lock);
Christoph Lameter7835b982006-12-10 02:20:22 -08003353}
3354
3355/*
3356 * This function gets called by the timer code, with HZ frequency.
3357 * We call it with interrupts disabled.
3358 *
3359 * It also gets called by the fork code, when changing the parent's
3360 * timeslices.
3361 */
3362void scheduler_tick(void)
3363{
Christoph Lameter7835b982006-12-10 02:20:22 -08003364 struct task_struct *p = current;
3365 int cpu = smp_processor_id();
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003366 int idle_at_tick = idle_cpu(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003367 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003368
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003369 if (!idle_at_tick)
Christoph Lameter7835b982006-12-10 02:20:22 -08003370 task_running_tick(rq, p);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003371#ifdef CONFIG_SMP
Christoph Lameter7835b982006-12-10 02:20:22 -08003372 update_load(rq);
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003373 rq->idle_at_tick = idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003374 trigger_load_balance(cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003375#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003376}
3377
Linus Torvalds1da177e2005-04-16 15:20:36 -07003378#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3379
3380void fastcall add_preempt_count(int val)
3381{
3382 /*
3383 * Underflow?
3384 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003385 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3386 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387 preempt_count() += val;
3388 /*
3389 * Spinlock count overflowing soon?
3390 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003391 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3392 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003393}
3394EXPORT_SYMBOL(add_preempt_count);
3395
3396void fastcall sub_preempt_count(int val)
3397{
3398 /*
3399 * Underflow?
3400 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003401 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3402 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003403 /*
3404 * Is the spinlock portion underflowing?
3405 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003406 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3407 !(preempt_count() & PREEMPT_MASK)))
3408 return;
3409
Linus Torvalds1da177e2005-04-16 15:20:36 -07003410 preempt_count() -= val;
3411}
3412EXPORT_SYMBOL(sub_preempt_count);
3413
3414#endif
3415
3416/*
3417 * schedule() is the main scheduler function.
3418 */
3419asmlinkage void __sched schedule(void)
3420{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003421 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003422 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003423 struct list_head *queue;
3424 unsigned long long now;
3425 unsigned long run_time;
Ingo Molnarf2ac58e2007-07-09 18:51:59 +02003426 int cpu, idx;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003427 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003428 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003429
3430 /*
3431 * Test if we are atomic. Since do_exit() needs to call into
3432 * schedule() atomically, we ignore that path for now.
3433 * Otherwise, whine if we are scheduling when we should not be.
3434 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003435 if (unlikely(in_atomic() && !current->exit_state)) {
3436 printk(KERN_ERR "BUG: scheduling while atomic: "
3437 "%s/0x%08x/%d\n",
3438 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003439 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08003440 if (irqs_disabled())
3441 print_irqtrace_events(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003442 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443 }
3444 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3445
3446need_resched:
3447 preempt_disable();
3448 prev = current;
3449 release_kernel_lock(prev);
3450need_resched_nonpreemptible:
3451 rq = this_rq();
3452
3453 /*
3454 * The idle thread is not allowed to schedule!
3455 * Remove this check after it has been exercised a bit.
3456 */
3457 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3458 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3459 dump_stack();
3460 }
3461
3462 schedstat_inc(rq, sched_cnt);
3463 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003464 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003465 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003466 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003467 run_time = 0;
3468 } else
3469 run_time = NS_MAX_SLEEP_AVG;
3470
3471 /*
3472 * Tasks charged proportionately less run_time at high sleep_avg to
3473 * delay them losing their interactive status
3474 */
3475 run_time /= (CURRENT_BONUS(prev) ? : 1);
3476
3477 spin_lock_irq(&rq->lock);
3478
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479 switch_count = &prev->nivcsw;
3480 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3481 switch_count = &prev->nvcsw;
3482 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3483 unlikely(signal_pending(prev))))
3484 prev->state = TASK_RUNNING;
3485 else {
3486 if (prev->state == TASK_UNINTERRUPTIBLE)
3487 rq->nr_uninterruptible++;
3488 deactivate_task(prev, rq);
3489 }
3490 }
3491
3492 cpu = smp_processor_id();
3493 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003494 idle_balance(cpu, rq);
3495 if (!rq->nr_running) {
3496 next = rq->idle;
3497 rq->expired_timestamp = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498 goto switch_tasks;
3499 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500 }
3501
3502 array = rq->active;
3503 if (unlikely(!array->nr_active)) {
3504 /*
3505 * Switch the active and expired arrays.
3506 */
3507 schedstat_inc(rq, sched_switch);
3508 rq->active = rq->expired;
3509 rq->expired = array;
3510 array = rq->active;
3511 rq->expired_timestamp = 0;
3512 rq->best_expired_prio = MAX_PRIO;
3513 }
3514
3515 idx = sched_find_first_bit(array->bitmap);
3516 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003517 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518
Linus Torvalds1da177e2005-04-16 15:20:36 -07003519switch_tasks:
3520 if (next == rq->idle)
3521 schedstat_inc(rq, sched_goidle);
3522 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003523 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003524 clear_tsk_need_resched(prev);
3525 rcu_qsctr_inc(task_cpu(prev));
3526
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527 prev->timestamp = prev->last_ran = now;
3528
3529 sched_info_switch(prev, next);
3530 if (likely(prev != next)) {
Thomas Gleixnerc1e16aa2007-02-28 20:12:19 -08003531 next->timestamp = next->last_ran = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 rq->nr_switches++;
3533 rq->curr = next;
3534 ++*switch_count;
3535
Nick Piggin4866cde2005-06-25 14:57:23 -07003536 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537 prev = context_switch(rq, prev, next);
3538 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003539 /*
3540 * this_rq must be evaluated again because prev may have moved
3541 * CPUs since it called schedule(), thus the 'rq' on its stack
3542 * frame will be invalid.
3543 */
3544 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003545 } else
3546 spin_unlock_irq(&rq->lock);
3547
3548 prev = current;
3549 if (unlikely(reacquire_kernel_lock(prev) < 0))
3550 goto need_resched_nonpreemptible;
3551 preempt_enable_no_resched();
3552 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3553 goto need_resched;
3554}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555EXPORT_SYMBOL(schedule);
3556
3557#ifdef CONFIG_PREEMPT
3558/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003559 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003560 * off of preempt_enable. Kernel preemptions off return from interrupt
3561 * occur there and call schedule directly.
3562 */
3563asmlinkage void __sched preempt_schedule(void)
3564{
3565 struct thread_info *ti = current_thread_info();
3566#ifdef CONFIG_PREEMPT_BKL
3567 struct task_struct *task = current;
3568 int saved_lock_depth;
3569#endif
3570 /*
3571 * If there is a non-zero preempt_count or interrupts are disabled,
3572 * we do not want to preempt the current task. Just return..
3573 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003574 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003575 return;
3576
3577need_resched:
3578 add_preempt_count(PREEMPT_ACTIVE);
3579 /*
3580 * We keep the big kernel semaphore locked, but we
3581 * clear ->lock_depth so that schedule() doesnt
3582 * auto-release the semaphore:
3583 */
3584#ifdef CONFIG_PREEMPT_BKL
3585 saved_lock_depth = task->lock_depth;
3586 task->lock_depth = -1;
3587#endif
3588 schedule();
3589#ifdef CONFIG_PREEMPT_BKL
3590 task->lock_depth = saved_lock_depth;
3591#endif
3592 sub_preempt_count(PREEMPT_ACTIVE);
3593
3594 /* we could miss a preemption opportunity between schedule and now */
3595 barrier();
3596 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3597 goto need_resched;
3598}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003599EXPORT_SYMBOL(preempt_schedule);
3600
3601/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003602 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603 * off of irq context.
3604 * Note, that this is called and return with irqs disabled. This will
3605 * protect us against recursive calling from irq.
3606 */
3607asmlinkage void __sched preempt_schedule_irq(void)
3608{
3609 struct thread_info *ti = current_thread_info();
3610#ifdef CONFIG_PREEMPT_BKL
3611 struct task_struct *task = current;
3612 int saved_lock_depth;
3613#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003614 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003615 BUG_ON(ti->preempt_count || !irqs_disabled());
3616
3617need_resched:
3618 add_preempt_count(PREEMPT_ACTIVE);
3619 /*
3620 * We keep the big kernel semaphore locked, but we
3621 * clear ->lock_depth so that schedule() doesnt
3622 * auto-release the semaphore:
3623 */
3624#ifdef CONFIG_PREEMPT_BKL
3625 saved_lock_depth = task->lock_depth;
3626 task->lock_depth = -1;
3627#endif
3628 local_irq_enable();
3629 schedule();
3630 local_irq_disable();
3631#ifdef CONFIG_PREEMPT_BKL
3632 task->lock_depth = saved_lock_depth;
3633#endif
3634 sub_preempt_count(PREEMPT_ACTIVE);
3635
3636 /* we could miss a preemption opportunity between schedule and now */
3637 barrier();
3638 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3639 goto need_resched;
3640}
3641
3642#endif /* CONFIG_PREEMPT */
3643
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003644int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3645 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003646{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003647 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003648}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003649EXPORT_SYMBOL(default_wake_function);
3650
3651/*
3652 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3653 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3654 * number) then we wake all the non-exclusive tasks and one exclusive task.
3655 *
3656 * There are circumstances in which we can try to wake a task which has already
3657 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3658 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3659 */
3660static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3661 int nr_exclusive, int sync, void *key)
3662{
3663 struct list_head *tmp, *next;
3664
3665 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003666 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3667 unsigned flags = curr->flags;
3668
Linus Torvalds1da177e2005-04-16 15:20:36 -07003669 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003670 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003671 break;
3672 }
3673}
3674
3675/**
3676 * __wake_up - wake up threads blocked on a waitqueue.
3677 * @q: the waitqueue
3678 * @mode: which threads
3679 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003680 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003681 */
3682void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003683 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003684{
3685 unsigned long flags;
3686
3687 spin_lock_irqsave(&q->lock, flags);
3688 __wake_up_common(q, mode, nr_exclusive, 0, key);
3689 spin_unlock_irqrestore(&q->lock, flags);
3690}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003691EXPORT_SYMBOL(__wake_up);
3692
3693/*
3694 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3695 */
3696void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3697{
3698 __wake_up_common(q, mode, 1, 0, NULL);
3699}
3700
3701/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003702 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003703 * @q: the waitqueue
3704 * @mode: which threads
3705 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3706 *
3707 * The sync wakeup differs that the waker knows that it will schedule
3708 * away soon, so while the target thread will be woken up, it will not
3709 * be migrated to another CPU - ie. the two threads are 'synchronized'
3710 * with each other. This can prevent needless bouncing between CPUs.
3711 *
3712 * On UP it can prevent extra preemption.
3713 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003714void fastcall
3715__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003716{
3717 unsigned long flags;
3718 int sync = 1;
3719
3720 if (unlikely(!q))
3721 return;
3722
3723 if (unlikely(!nr_exclusive))
3724 sync = 0;
3725
3726 spin_lock_irqsave(&q->lock, flags);
3727 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3728 spin_unlock_irqrestore(&q->lock, flags);
3729}
3730EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3731
3732void fastcall complete(struct completion *x)
3733{
3734 unsigned long flags;
3735
3736 spin_lock_irqsave(&x->wait.lock, flags);
3737 x->done++;
3738 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3739 1, 0, NULL);
3740 spin_unlock_irqrestore(&x->wait.lock, flags);
3741}
3742EXPORT_SYMBOL(complete);
3743
3744void fastcall complete_all(struct completion *x)
3745{
3746 unsigned long flags;
3747
3748 spin_lock_irqsave(&x->wait.lock, flags);
3749 x->done += UINT_MAX/2;
3750 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3751 0, 0, NULL);
3752 spin_unlock_irqrestore(&x->wait.lock, flags);
3753}
3754EXPORT_SYMBOL(complete_all);
3755
3756void fastcall __sched wait_for_completion(struct completion *x)
3757{
3758 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003759
Linus Torvalds1da177e2005-04-16 15:20:36 -07003760 spin_lock_irq(&x->wait.lock);
3761 if (!x->done) {
3762 DECLARE_WAITQUEUE(wait, current);
3763
3764 wait.flags |= WQ_FLAG_EXCLUSIVE;
3765 __add_wait_queue_tail(&x->wait, &wait);
3766 do {
3767 __set_current_state(TASK_UNINTERRUPTIBLE);
3768 spin_unlock_irq(&x->wait.lock);
3769 schedule();
3770 spin_lock_irq(&x->wait.lock);
3771 } while (!x->done);
3772 __remove_wait_queue(&x->wait, &wait);
3773 }
3774 x->done--;
3775 spin_unlock_irq(&x->wait.lock);
3776}
3777EXPORT_SYMBOL(wait_for_completion);
3778
3779unsigned long fastcall __sched
3780wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3781{
3782 might_sleep();
3783
3784 spin_lock_irq(&x->wait.lock);
3785 if (!x->done) {
3786 DECLARE_WAITQUEUE(wait, current);
3787
3788 wait.flags |= WQ_FLAG_EXCLUSIVE;
3789 __add_wait_queue_tail(&x->wait, &wait);
3790 do {
3791 __set_current_state(TASK_UNINTERRUPTIBLE);
3792 spin_unlock_irq(&x->wait.lock);
3793 timeout = schedule_timeout(timeout);
3794 spin_lock_irq(&x->wait.lock);
3795 if (!timeout) {
3796 __remove_wait_queue(&x->wait, &wait);
3797 goto out;
3798 }
3799 } while (!x->done);
3800 __remove_wait_queue(&x->wait, &wait);
3801 }
3802 x->done--;
3803out:
3804 spin_unlock_irq(&x->wait.lock);
3805 return timeout;
3806}
3807EXPORT_SYMBOL(wait_for_completion_timeout);
3808
3809int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3810{
3811 int ret = 0;
3812
3813 might_sleep();
3814
3815 spin_lock_irq(&x->wait.lock);
3816 if (!x->done) {
3817 DECLARE_WAITQUEUE(wait, current);
3818
3819 wait.flags |= WQ_FLAG_EXCLUSIVE;
3820 __add_wait_queue_tail(&x->wait, &wait);
3821 do {
3822 if (signal_pending(current)) {
3823 ret = -ERESTARTSYS;
3824 __remove_wait_queue(&x->wait, &wait);
3825 goto out;
3826 }
3827 __set_current_state(TASK_INTERRUPTIBLE);
3828 spin_unlock_irq(&x->wait.lock);
3829 schedule();
3830 spin_lock_irq(&x->wait.lock);
3831 } while (!x->done);
3832 __remove_wait_queue(&x->wait, &wait);
3833 }
3834 x->done--;
3835out:
3836 spin_unlock_irq(&x->wait.lock);
3837
3838 return ret;
3839}
3840EXPORT_SYMBOL(wait_for_completion_interruptible);
3841
3842unsigned long fastcall __sched
3843wait_for_completion_interruptible_timeout(struct completion *x,
3844 unsigned long timeout)
3845{
3846 might_sleep();
3847
3848 spin_lock_irq(&x->wait.lock);
3849 if (!x->done) {
3850 DECLARE_WAITQUEUE(wait, current);
3851
3852 wait.flags |= WQ_FLAG_EXCLUSIVE;
3853 __add_wait_queue_tail(&x->wait, &wait);
3854 do {
3855 if (signal_pending(current)) {
3856 timeout = -ERESTARTSYS;
3857 __remove_wait_queue(&x->wait, &wait);
3858 goto out;
3859 }
3860 __set_current_state(TASK_INTERRUPTIBLE);
3861 spin_unlock_irq(&x->wait.lock);
3862 timeout = schedule_timeout(timeout);
3863 spin_lock_irq(&x->wait.lock);
3864 if (!timeout) {
3865 __remove_wait_queue(&x->wait, &wait);
3866 goto out;
3867 }
3868 } while (!x->done);
3869 __remove_wait_queue(&x->wait, &wait);
3870 }
3871 x->done--;
3872out:
3873 spin_unlock_irq(&x->wait.lock);
3874 return timeout;
3875}
3876EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3877
3878
3879#define SLEEP_ON_VAR \
3880 unsigned long flags; \
3881 wait_queue_t wait; \
3882 init_waitqueue_entry(&wait, current);
3883
3884#define SLEEP_ON_HEAD \
3885 spin_lock_irqsave(&q->lock,flags); \
3886 __add_wait_queue(q, &wait); \
3887 spin_unlock(&q->lock);
3888
3889#define SLEEP_ON_TAIL \
3890 spin_lock_irq(&q->lock); \
3891 __remove_wait_queue(q, &wait); \
3892 spin_unlock_irqrestore(&q->lock, flags);
3893
3894void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3895{
3896 SLEEP_ON_VAR
3897
3898 current->state = TASK_INTERRUPTIBLE;
3899
3900 SLEEP_ON_HEAD
3901 schedule();
3902 SLEEP_ON_TAIL
3903}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003904EXPORT_SYMBOL(interruptible_sleep_on);
3905
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003906long fastcall __sched
3907interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003908{
3909 SLEEP_ON_VAR
3910
3911 current->state = TASK_INTERRUPTIBLE;
3912
3913 SLEEP_ON_HEAD
3914 timeout = schedule_timeout(timeout);
3915 SLEEP_ON_TAIL
3916
3917 return timeout;
3918}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003919EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3920
3921void fastcall __sched sleep_on(wait_queue_head_t *q)
3922{
3923 SLEEP_ON_VAR
3924
3925 current->state = TASK_UNINTERRUPTIBLE;
3926
3927 SLEEP_ON_HEAD
3928 schedule();
3929 SLEEP_ON_TAIL
3930}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003931EXPORT_SYMBOL(sleep_on);
3932
3933long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3934{
3935 SLEEP_ON_VAR
3936
3937 current->state = TASK_UNINTERRUPTIBLE;
3938
3939 SLEEP_ON_HEAD
3940 timeout = schedule_timeout(timeout);
3941 SLEEP_ON_TAIL
3942
3943 return timeout;
3944}
3945
3946EXPORT_SYMBOL(sleep_on_timeout);
3947
Ingo Molnarb29739f2006-06-27 02:54:51 -07003948#ifdef CONFIG_RT_MUTEXES
3949
3950/*
3951 * rt_mutex_setprio - set the current priority of a task
3952 * @p: task
3953 * @prio: prio value (kernel-internal form)
3954 *
3955 * This function changes the 'effective' priority of a task. It does
3956 * not touch ->normal_prio like __setscheduler().
3957 *
3958 * Used by the rt_mutex code to implement priority inheritance logic.
3959 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003960void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003961{
Ingo Molnar70b97a72006-07-03 00:25:42 -07003962 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003963 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003964 struct rq *rq;
Andrew Mortond5f9f942007-05-08 20:27:06 -07003965 int oldprio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003966
3967 BUG_ON(prio < 0 || prio > MAX_PRIO);
3968
3969 rq = task_rq_lock(p, &flags);
3970
Andrew Mortond5f9f942007-05-08 20:27:06 -07003971 oldprio = p->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003972 array = p->array;
3973 if (array)
3974 dequeue_task(p, array);
3975 p->prio = prio;
3976
3977 if (array) {
3978 /*
3979 * If changing to an RT priority then queue it
3980 * in the active array!
3981 */
3982 if (rt_task(p))
3983 array = rq->active;
3984 enqueue_task(p, array);
3985 /*
3986 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07003987 * our priority decreased, or if we are not currently running on
3988 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07003989 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003990 if (task_running(rq, p)) {
3991 if (p->prio > oldprio)
3992 resched_task(rq->curr);
3993 } else if (TASK_PREEMPTS_CURR(p, rq))
Ingo Molnarb29739f2006-06-27 02:54:51 -07003994 resched_task(rq->curr);
3995 }
3996 task_rq_unlock(rq, &flags);
3997}
3998
3999#endif
4000
Ingo Molnar36c8b582006-07-03 00:25:41 -07004001void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004002{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004003 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004004 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004005 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004006 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004007
4008 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4009 return;
4010 /*
4011 * We have to be careful, if called from sys_setpriority(),
4012 * the task might be in the middle of scheduling on another CPU.
4013 */
4014 rq = task_rq_lock(p, &flags);
4015 /*
4016 * The RT priorities are set via sched_setscheduler(), but we still
4017 * allow the 'normal' nice value to be set - but as expected
4018 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08004019 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004020 */
Ingo Molnare05606d2007-07-09 18:51:59 +02004021 if (task_has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004022 p->static_prio = NICE_TO_PRIO(nice);
4023 goto out_unlock;
4024 }
4025 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07004026 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004027 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004028 dec_raw_weighted_load(rq, p);
4029 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004030
Linus Torvalds1da177e2005-04-16 15:20:36 -07004031 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004032 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004033 old_prio = p->prio;
4034 p->prio = effective_prio(p);
4035 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004036
4037 if (array) {
4038 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004039 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004040 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004041 * If the task increased its priority or is running and
4042 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004043 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004044 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004045 resched_task(rq->curr);
4046 }
4047out_unlock:
4048 task_rq_unlock(rq, &flags);
4049}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004050EXPORT_SYMBOL(set_user_nice);
4051
Matt Mackalle43379f2005-05-01 08:59:00 -07004052/*
4053 * can_nice - check if a task can reduce its nice value
4054 * @p: task
4055 * @nice: nice value
4056 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004057int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004058{
Matt Mackall024f4742005-08-18 11:24:19 -07004059 /* convert nice value [19,-20] to rlimit style value [1,40] */
4060 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004061
Matt Mackalle43379f2005-05-01 08:59:00 -07004062 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4063 capable(CAP_SYS_NICE));
4064}
4065
Linus Torvalds1da177e2005-04-16 15:20:36 -07004066#ifdef __ARCH_WANT_SYS_NICE
4067
4068/*
4069 * sys_nice - change the priority of the current process.
4070 * @increment: priority increment
4071 *
4072 * sys_setpriority is a more generic, but much slower function that
4073 * does similar things.
4074 */
4075asmlinkage long sys_nice(int increment)
4076{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004077 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004078
4079 /*
4080 * Setpriority might change our priority at the same moment.
4081 * We don't have to worry. Conceptually one call occurs first
4082 * and we have a single winner.
4083 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004084 if (increment < -40)
4085 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004086 if (increment > 40)
4087 increment = 40;
4088
4089 nice = PRIO_TO_NICE(current->static_prio) + increment;
4090 if (nice < -20)
4091 nice = -20;
4092 if (nice > 19)
4093 nice = 19;
4094
Matt Mackalle43379f2005-05-01 08:59:00 -07004095 if (increment < 0 && !can_nice(current, nice))
4096 return -EPERM;
4097
Linus Torvalds1da177e2005-04-16 15:20:36 -07004098 retval = security_task_setnice(current, nice);
4099 if (retval)
4100 return retval;
4101
4102 set_user_nice(current, nice);
4103 return 0;
4104}
4105
4106#endif
4107
4108/**
4109 * task_prio - return the priority value of a given task.
4110 * @p: the task in question.
4111 *
4112 * This is the priority value as seen by users in /proc.
4113 * RT tasks are offset by -200. Normal tasks are centered
4114 * around 0, value goes from -16 to +15.
4115 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004116int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004117{
4118 return p->prio - MAX_RT_PRIO;
4119}
4120
4121/**
4122 * task_nice - return the nice value of a given task.
4123 * @p: the task in question.
4124 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004125int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004126{
4127 return TASK_NICE(p);
4128}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004129EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004130
4131/**
4132 * idle_cpu - is a given cpu idle currently?
4133 * @cpu: the processor in question.
4134 */
4135int idle_cpu(int cpu)
4136{
4137 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4138}
4139
Linus Torvalds1da177e2005-04-16 15:20:36 -07004140/**
4141 * idle_task - return the idle task for a given cpu.
4142 * @cpu: the processor in question.
4143 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004144struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004145{
4146 return cpu_rq(cpu)->idle;
4147}
4148
4149/**
4150 * find_process_by_pid - find a process with a matching PID value.
4151 * @pid: the pid in question.
4152 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004153static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004154{
4155 return pid ? find_task_by_pid(pid) : current;
4156}
4157
4158/* Actually do priority change: must hold rq lock. */
4159static void __setscheduler(struct task_struct *p, int policy, int prio)
4160{
4161 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004162
Linus Torvalds1da177e2005-04-16 15:20:36 -07004163 p->policy = policy;
4164 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004165 p->normal_prio = normal_prio(p);
4166 /* we are holding p->pi_lock already */
4167 p->prio = rt_mutex_getprio(p);
Peter Williams2dd73a42006-06-27 02:54:34 -07004168 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004169}
4170
4171/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004172 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004173 * @p: the task in question.
4174 * @policy: new policy.
4175 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004176 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004177 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004179int sched_setscheduler(struct task_struct *p, int policy,
4180 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004181{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004182 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004183 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004184 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004185 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004186
Steven Rostedt66e53932006-06-27 02:54:44 -07004187 /* may grab non-irq protected spin_locks */
4188 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004189recheck:
4190 /* double check policy once rq lock held */
4191 if (policy < 0)
4192 policy = oldpolicy = p->policy;
4193 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004194 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4195 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004196 /*
4197 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004198 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4199 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004200 */
4201 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004202 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004203 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004204 return -EINVAL;
Ingo Molnare05606d2007-07-09 18:51:59 +02004205 if (rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004206 return -EINVAL;
4207
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004208 /*
4209 * Allow unprivileged RT tasks to decrease priority:
4210 */
4211 if (!capable(CAP_SYS_NICE)) {
Ingo Molnare05606d2007-07-09 18:51:59 +02004212 if (rt_policy(policy)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004213 unsigned long rlim_rtprio;
4214 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004215
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004216 if (!lock_task_sighand(p, &flags))
4217 return -ESRCH;
4218 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4219 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004220
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004221 /* can't set/change the rt policy */
4222 if (policy != p->policy && !rlim_rtprio)
4223 return -EPERM;
4224
4225 /* can't increase priority */
4226 if (param->sched_priority > p->rt_priority &&
4227 param->sched_priority > rlim_rtprio)
4228 return -EPERM;
4229 }
4230
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004231 /* can't change other user's priorities */
4232 if ((current->euid != p->euid) &&
4233 (current->euid != p->uid))
4234 return -EPERM;
4235 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004236
4237 retval = security_task_setscheduler(p, policy, param);
4238 if (retval)
4239 return retval;
4240 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004241 * make sure no PI-waiters arrive (or leave) while we are
4242 * changing the priority of the task:
4243 */
4244 spin_lock_irqsave(&p->pi_lock, flags);
4245 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004246 * To be able to change p->policy safely, the apropriate
4247 * runqueue lock must be held.
4248 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004249 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004250 /* recheck policy now with rq lock held */
4251 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4252 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004253 __task_rq_unlock(rq);
4254 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004255 goto recheck;
4256 }
4257 array = p->array;
4258 if (array)
4259 deactivate_task(p, rq);
4260 oldprio = p->prio;
4261 __setscheduler(p, policy, param->sched_priority);
4262 if (array) {
4263 __activate_task(p, rq);
4264 /*
4265 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004266 * our priority decreased, or if we are not currently running on
4267 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004268 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004269 if (task_running(rq, p)) {
4270 if (p->prio > oldprio)
4271 resched_task(rq->curr);
4272 } else if (TASK_PREEMPTS_CURR(p, rq))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004273 resched_task(rq->curr);
4274 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004275 __task_rq_unlock(rq);
4276 spin_unlock_irqrestore(&p->pi_lock, flags);
4277
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004278 rt_mutex_adjust_pi(p);
4279
Linus Torvalds1da177e2005-04-16 15:20:36 -07004280 return 0;
4281}
4282EXPORT_SYMBOL_GPL(sched_setscheduler);
4283
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004284static int
4285do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004286{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004287 struct sched_param lparam;
4288 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004289 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004290
4291 if (!param || pid < 0)
4292 return -EINVAL;
4293 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4294 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004295
4296 rcu_read_lock();
4297 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004298 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004299 if (p != NULL)
4300 retval = sched_setscheduler(p, policy, &lparam);
4301 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004302
Linus Torvalds1da177e2005-04-16 15:20:36 -07004303 return retval;
4304}
4305
4306/**
4307 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4308 * @pid: the pid in question.
4309 * @policy: new policy.
4310 * @param: structure containing the new RT priority.
4311 */
4312asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4313 struct sched_param __user *param)
4314{
Jason Baronc21761f2006-01-18 17:43:03 -08004315 /* negative values for policy are not valid */
4316 if (policy < 0)
4317 return -EINVAL;
4318
Linus Torvalds1da177e2005-04-16 15:20:36 -07004319 return do_sched_setscheduler(pid, policy, param);
4320}
4321
4322/**
4323 * sys_sched_setparam - set/change the RT priority of a thread
4324 * @pid: the pid in question.
4325 * @param: structure containing the new RT priority.
4326 */
4327asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4328{
4329 return do_sched_setscheduler(pid, -1, param);
4330}
4331
4332/**
4333 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4334 * @pid: the pid in question.
4335 */
4336asmlinkage long sys_sched_getscheduler(pid_t pid)
4337{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004338 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004339 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004340
4341 if (pid < 0)
4342 goto out_nounlock;
4343
4344 retval = -ESRCH;
4345 read_lock(&tasklist_lock);
4346 p = find_process_by_pid(pid);
4347 if (p) {
4348 retval = security_task_getscheduler(p);
4349 if (!retval)
4350 retval = p->policy;
4351 }
4352 read_unlock(&tasklist_lock);
4353
4354out_nounlock:
4355 return retval;
4356}
4357
4358/**
4359 * sys_sched_getscheduler - get the RT priority of a thread
4360 * @pid: the pid in question.
4361 * @param: structure containing the RT priority.
4362 */
4363asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4364{
4365 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004366 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004367 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004368
4369 if (!param || pid < 0)
4370 goto out_nounlock;
4371
4372 read_lock(&tasklist_lock);
4373 p = find_process_by_pid(pid);
4374 retval = -ESRCH;
4375 if (!p)
4376 goto out_unlock;
4377
4378 retval = security_task_getscheduler(p);
4379 if (retval)
4380 goto out_unlock;
4381
4382 lp.sched_priority = p->rt_priority;
4383 read_unlock(&tasklist_lock);
4384
4385 /*
4386 * This one might sleep, we cannot do it with a spinlock held ...
4387 */
4388 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4389
4390out_nounlock:
4391 return retval;
4392
4393out_unlock:
4394 read_unlock(&tasklist_lock);
4395 return retval;
4396}
4397
4398long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4399{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004400 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004401 struct task_struct *p;
4402 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004403
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004404 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004405 read_lock(&tasklist_lock);
4406
4407 p = find_process_by_pid(pid);
4408 if (!p) {
4409 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004410 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004411 return -ESRCH;
4412 }
4413
4414 /*
4415 * It is not safe to call set_cpus_allowed with the
4416 * tasklist_lock held. We will bump the task_struct's
4417 * usage count and then drop tasklist_lock.
4418 */
4419 get_task_struct(p);
4420 read_unlock(&tasklist_lock);
4421
4422 retval = -EPERM;
4423 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4424 !capable(CAP_SYS_NICE))
4425 goto out_unlock;
4426
David Quigleye7834f82006-06-23 02:03:59 -07004427 retval = security_task_setscheduler(p, 0, NULL);
4428 if (retval)
4429 goto out_unlock;
4430
Linus Torvalds1da177e2005-04-16 15:20:36 -07004431 cpus_allowed = cpuset_cpus_allowed(p);
4432 cpus_and(new_mask, new_mask, cpus_allowed);
4433 retval = set_cpus_allowed(p, new_mask);
4434
4435out_unlock:
4436 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004437 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004438 return retval;
4439}
4440
4441static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4442 cpumask_t *new_mask)
4443{
4444 if (len < sizeof(cpumask_t)) {
4445 memset(new_mask, 0, sizeof(cpumask_t));
4446 } else if (len > sizeof(cpumask_t)) {
4447 len = sizeof(cpumask_t);
4448 }
4449 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4450}
4451
4452/**
4453 * sys_sched_setaffinity - set the cpu affinity of a process
4454 * @pid: pid of the process
4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456 * @user_mask_ptr: user-space pointer to the new cpu mask
4457 */
4458asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4459 unsigned long __user *user_mask_ptr)
4460{
4461 cpumask_t new_mask;
4462 int retval;
4463
4464 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4465 if (retval)
4466 return retval;
4467
4468 return sched_setaffinity(pid, new_mask);
4469}
4470
4471/*
4472 * Represents all cpu's present in the system
4473 * In systems capable of hotplug, this map could dynamically grow
4474 * as new cpu's are detected in the system via any platform specific
4475 * method, such as ACPI for e.g.
4476 */
4477
Andi Kleen4cef0c62006-01-11 22:44:57 +01004478cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004479EXPORT_SYMBOL(cpu_present_map);
4480
4481#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004482cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004483EXPORT_SYMBOL(cpu_online_map);
4484
Andi Kleen4cef0c62006-01-11 22:44:57 +01004485cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004486EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004487#endif
4488
4489long sched_getaffinity(pid_t pid, cpumask_t *mask)
4490{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004491 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004492 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004493
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004494 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004495 read_lock(&tasklist_lock);
4496
4497 retval = -ESRCH;
4498 p = find_process_by_pid(pid);
4499 if (!p)
4500 goto out_unlock;
4501
David Quigleye7834f82006-06-23 02:03:59 -07004502 retval = security_task_getscheduler(p);
4503 if (retval)
4504 goto out_unlock;
4505
Jack Steiner2f7016d2006-02-01 03:05:18 -08004506 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004507
4508out_unlock:
4509 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004510 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004511 if (retval)
4512 return retval;
4513
4514 return 0;
4515}
4516
4517/**
4518 * sys_sched_getaffinity - get the cpu affinity of a process
4519 * @pid: pid of the process
4520 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4521 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4522 */
4523asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4524 unsigned long __user *user_mask_ptr)
4525{
4526 int ret;
4527 cpumask_t mask;
4528
4529 if (len < sizeof(cpumask_t))
4530 return -EINVAL;
4531
4532 ret = sched_getaffinity(pid, &mask);
4533 if (ret < 0)
4534 return ret;
4535
4536 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4537 return -EFAULT;
4538
4539 return sizeof(cpumask_t);
4540}
4541
4542/**
4543 * sys_sched_yield - yield the current processor to other threads.
4544 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004545 * This function yields the current CPU by moving the calling thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004546 * to the expired array. If there are no other threads running on this
4547 * CPU then this function will return.
4548 */
4549asmlinkage long sys_sched_yield(void)
4550{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004551 struct rq *rq = this_rq_lock();
4552 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004553
4554 schedstat_inc(rq, yld_cnt);
4555 /*
4556 * We implement yielding by moving the task into the expired
4557 * queue.
4558 *
4559 * (special rule: RT tasks will just roundrobin in the active
4560 * array.)
4561 */
4562 if (rt_task(current))
4563 target = rq->active;
4564
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004565 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004566 schedstat_inc(rq, yld_act_empty);
4567 if (!rq->expired->nr_active)
4568 schedstat_inc(rq, yld_both_empty);
4569 } else if (!rq->expired->nr_active)
4570 schedstat_inc(rq, yld_exp_empty);
4571
4572 if (array != target) {
4573 dequeue_task(current, array);
4574 enqueue_task(current, target);
4575 } else
4576 /*
4577 * requeue_task is cheaper so perform that if possible.
4578 */
4579 requeue_task(current, array);
4580
4581 /*
4582 * Since we are going to call schedule() anyway, there's
4583 * no need to preempt or enable interrupts:
4584 */
4585 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004586 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004587 _raw_spin_unlock(&rq->lock);
4588 preempt_enable_no_resched();
4589
4590 schedule();
4591
4592 return 0;
4593}
4594
Andrew Mortone7b38402006-06-30 01:56:00 -07004595static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004596{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004597#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4598 __might_sleep(__FILE__, __LINE__);
4599#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004600 /*
4601 * The BKS might be reacquired before we have dropped
4602 * PREEMPT_ACTIVE, which could trigger a second
4603 * cond_resched() call.
4604 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004605 do {
4606 add_preempt_count(PREEMPT_ACTIVE);
4607 schedule();
4608 sub_preempt_count(PREEMPT_ACTIVE);
4609 } while (need_resched());
4610}
4611
4612int __sched cond_resched(void)
4613{
Ingo Molnar94142322006-12-29 16:48:13 -08004614 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4615 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004616 __cond_resched();
4617 return 1;
4618 }
4619 return 0;
4620}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004621EXPORT_SYMBOL(cond_resched);
4622
4623/*
4624 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4625 * call schedule, and on return reacquire the lock.
4626 *
4627 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4628 * operations here to prevent schedule() from being called twice (once via
4629 * spin_unlock(), once by hand).
4630 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004631int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004632{
Jan Kara6df3cec2005-06-13 15:52:32 -07004633 int ret = 0;
4634
Linus Torvalds1da177e2005-04-16 15:20:36 -07004635 if (need_lockbreak(lock)) {
4636 spin_unlock(lock);
4637 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004638 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004639 spin_lock(lock);
4640 }
Ingo Molnar94142322006-12-29 16:48:13 -08004641 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004642 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004643 _raw_spin_unlock(lock);
4644 preempt_enable_no_resched();
4645 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004646 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004647 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004648 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004649 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004650}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004651EXPORT_SYMBOL(cond_resched_lock);
4652
4653int __sched cond_resched_softirq(void)
4654{
4655 BUG_ON(!in_softirq());
4656
Ingo Molnar94142322006-12-29 16:48:13 -08004657 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d82562007-05-23 13:58:18 -07004658 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004659 __cond_resched();
4660 local_bh_disable();
4661 return 1;
4662 }
4663 return 0;
4664}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004665EXPORT_SYMBOL(cond_resched_softirq);
4666
Linus Torvalds1da177e2005-04-16 15:20:36 -07004667/**
4668 * yield - yield the current processor to other threads.
4669 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004670 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004671 * thread runnable and calls sys_sched_yield().
4672 */
4673void __sched yield(void)
4674{
4675 set_current_state(TASK_RUNNING);
4676 sys_sched_yield();
4677}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004678EXPORT_SYMBOL(yield);
4679
4680/*
4681 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4682 * that process accounting knows that this is a task in IO wait state.
4683 *
4684 * But don't do that if it is a deliberate, throttling IO wait (this task
4685 * has set its backing_dev_info: the queue against which it should throttle)
4686 */
4687void __sched io_schedule(void)
4688{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004689 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004690
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004691 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004692 atomic_inc(&rq->nr_iowait);
4693 schedule();
4694 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004695 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004696}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004697EXPORT_SYMBOL(io_schedule);
4698
4699long __sched io_schedule_timeout(long timeout)
4700{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004701 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004702 long ret;
4703
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004704 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004705 atomic_inc(&rq->nr_iowait);
4706 ret = schedule_timeout(timeout);
4707 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004708 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004709 return ret;
4710}
4711
4712/**
4713 * sys_sched_get_priority_max - return maximum RT priority.
4714 * @policy: scheduling class.
4715 *
4716 * this syscall returns the maximum rt_priority that can be used
4717 * by a given scheduling class.
4718 */
4719asmlinkage long sys_sched_get_priority_max(int policy)
4720{
4721 int ret = -EINVAL;
4722
4723 switch (policy) {
4724 case SCHED_FIFO:
4725 case SCHED_RR:
4726 ret = MAX_USER_RT_PRIO-1;
4727 break;
4728 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004729 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004730 ret = 0;
4731 break;
4732 }
4733 return ret;
4734}
4735
4736/**
4737 * sys_sched_get_priority_min - return minimum RT priority.
4738 * @policy: scheduling class.
4739 *
4740 * this syscall returns the minimum rt_priority that can be used
4741 * by a given scheduling class.
4742 */
4743asmlinkage long sys_sched_get_priority_min(int policy)
4744{
4745 int ret = -EINVAL;
4746
4747 switch (policy) {
4748 case SCHED_FIFO:
4749 case SCHED_RR:
4750 ret = 1;
4751 break;
4752 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004753 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004754 ret = 0;
4755 }
4756 return ret;
4757}
4758
4759/**
4760 * sys_sched_rr_get_interval - return the default timeslice of a process.
4761 * @pid: pid of the process.
4762 * @interval: userspace pointer to the timeslice value.
4763 *
4764 * this syscall writes the default timeslice value of a given process
4765 * into the user-space timespec buffer. A value of '0' means infinity.
4766 */
4767asmlinkage
4768long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4769{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004770 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004771 int retval = -EINVAL;
4772 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004773
4774 if (pid < 0)
4775 goto out_nounlock;
4776
4777 retval = -ESRCH;
4778 read_lock(&tasklist_lock);
4779 p = find_process_by_pid(pid);
4780 if (!p)
4781 goto out_unlock;
4782
4783 retval = security_task_getscheduler(p);
4784 if (retval)
4785 goto out_unlock;
4786
Peter Williamsb78709c2006-06-26 16:58:00 +10004787 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004788 0 : task_timeslice(p), &t);
4789 read_unlock(&tasklist_lock);
4790 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4791out_nounlock:
4792 return retval;
4793out_unlock:
4794 read_unlock(&tasklist_lock);
4795 return retval;
4796}
4797
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004798static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004799
4800static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004801{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004802 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004803 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004804
Linus Torvalds1da177e2005-04-16 15:20:36 -07004805 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004806 printk("%-13.13s %c", p->comm,
4807 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004808#if (BITS_PER_LONG == 32)
4809 if (state == TASK_RUNNING)
4810 printk(" running ");
4811 else
4812 printk(" %08lX ", thread_saved_pc(p));
4813#else
4814 if (state == TASK_RUNNING)
4815 printk(" running task ");
4816 else
4817 printk(" %016lx ", thread_saved_pc(p));
4818#endif
4819#ifdef CONFIG_DEBUG_STACK_USAGE
4820 {
Al Viro10ebffd2005-11-13 16:06:56 -08004821 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004822 while (!*n)
4823 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004824 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004825 }
4826#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02004827 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004828 if (!p->mm)
4829 printk(" (L-TLB)\n");
4830 else
4831 printk(" (NOTLB)\n");
4832
4833 if (state != TASK_RUNNING)
4834 show_stack(p, NULL);
4835}
4836
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004837void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004838{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004839 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004840
4841#if (BITS_PER_LONG == 32)
4842 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004843 " free sibling\n");
4844 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004845#else
4846 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004847 " free sibling\n");
4848 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004849#endif
4850 read_lock(&tasklist_lock);
4851 do_each_thread(g, p) {
4852 /*
4853 * reset the NMI-timeout, listing all files on a slow
4854 * console might take alot of time:
4855 */
4856 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004857 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004858 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004859 } while_each_thread(g, p);
4860
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004861 touch_all_softlockup_watchdogs();
4862
Linus Torvalds1da177e2005-04-16 15:20:36 -07004863 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004864 /*
4865 * Only show locks if all tasks are dumped:
4866 */
4867 if (state_filter == -1)
4868 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004869}
4870
Ingo Molnar1df21052007-07-09 18:51:58 +02004871void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4872{
4873 /* nothing yet */
4874}
4875
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004876/**
4877 * init_idle - set up an idle thread for a given CPU
4878 * @idle: task in question
4879 * @cpu: cpu the idle task belongs to
4880 *
4881 * NOTE: this function does not set the idle thread's NEED_RESCHED
4882 * flag, to make booting more robust.
4883 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004884void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004885{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004886 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004887 unsigned long flags;
4888
Ingo Molnar81c29a82006-03-07 21:55:27 -08004889 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004890 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004891 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004892 idle->state = TASK_RUNNING;
4893 idle->cpus_allowed = cpumask_of_cpu(cpu);
4894 set_task_cpu(idle, cpu);
4895
4896 spin_lock_irqsave(&rq->lock, flags);
4897 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004898#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4899 idle->oncpu = 1;
4900#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004901 spin_unlock_irqrestore(&rq->lock, flags);
4902
4903 /* Set the preempt count _outside_ the spinlocks! */
4904#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004905 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004906#else
Al Viroa1261f52005-11-13 16:06:55 -08004907 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004908#endif
4909}
4910
4911/*
4912 * In a system that switches off the HZ timer nohz_cpu_mask
4913 * indicates which cpus entered this state. This is used
4914 * in the rcu update to wait only for active cpus. For system
4915 * which do not switch off the HZ timer nohz_cpu_mask should
4916 * always be CPU_MASK_NONE.
4917 */
4918cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4919
4920#ifdef CONFIG_SMP
4921/*
4922 * This is how migration works:
4923 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004924 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004925 * runqueue and wake up that CPU's migration thread.
4926 * 2) we down() the locked semaphore => thread blocks.
4927 * 3) migration thread wakes up (implicitly it forces the migrated
4928 * thread off the CPU)
4929 * 4) it gets the migration request and checks whether the migrated
4930 * task is still in the wrong runqueue.
4931 * 5) if it's in the wrong runqueue then the migration thread removes
4932 * it and puts it into the right queue.
4933 * 6) migration thread up()s the semaphore.
4934 * 7) we wake up and the migration is done.
4935 */
4936
4937/*
4938 * Change a given task's CPU affinity. Migrate the thread to a
4939 * proper CPU and schedule it away if the CPU it's executing on
4940 * is removed from the allowed bitmask.
4941 *
4942 * NOTE: the caller must have a valid reference to the task, the
4943 * task must not exit() & deallocate itself prematurely. The
4944 * call is not atomic; no spinlocks may be held.
4945 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004946int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004947{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004948 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004949 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004950 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004951 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004952
4953 rq = task_rq_lock(p, &flags);
4954 if (!cpus_intersects(new_mask, cpu_online_map)) {
4955 ret = -EINVAL;
4956 goto out;
4957 }
4958
4959 p->cpus_allowed = new_mask;
4960 /* Can the task run on the task's current CPU? If so, we're done */
4961 if (cpu_isset(task_cpu(p), new_mask))
4962 goto out;
4963
4964 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4965 /* Need help from migration thread: drop lock and wait. */
4966 task_rq_unlock(rq, &flags);
4967 wake_up_process(rq->migration_thread);
4968 wait_for_completion(&req.done);
4969 tlb_migrate_finish(p->mm);
4970 return 0;
4971 }
4972out:
4973 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004974
Linus Torvalds1da177e2005-04-16 15:20:36 -07004975 return ret;
4976}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004977EXPORT_SYMBOL_GPL(set_cpus_allowed);
4978
4979/*
4980 * Move (not current) task off this cpu, onto dest cpu. We're doing
4981 * this because either it can't run here any more (set_cpus_allowed()
4982 * away from this CPU, or CPU going down), or because we're
4983 * attempting to rebalance this task on exec (sched_exec).
4984 *
4985 * So we race with normal scheduler movements, but that's OK, as long
4986 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07004987 *
4988 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004989 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07004990static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004991{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004992 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07004993 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004994
4995 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07004996 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004997
4998 rq_src = cpu_rq(src_cpu);
4999 rq_dest = cpu_rq(dest_cpu);
5000
5001 double_rq_lock(rq_src, rq_dest);
5002 /* Already moved. */
5003 if (task_cpu(p) != src_cpu)
5004 goto out;
5005 /* Affinity changed (again). */
5006 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5007 goto out;
5008
5009 set_task_cpu(p, dest_cpu);
5010 if (p->array) {
5011 /*
5012 * Sync timestamp with rq_dest's before activating.
5013 * The same thing could be achieved by doing this step
5014 * afterwards, and pretending it was a local activate.
5015 * This way is cleaner and logically correct.
5016 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08005017 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5018 + rq_dest->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005019 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07005020 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005021 if (TASK_PREEMPTS_CURR(p, rq_dest))
5022 resched_task(rq_dest->curr);
5023 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005024 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005025out:
5026 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005027 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005028}
5029
5030/*
5031 * migration_thread - this is a highprio system thread that performs
5032 * thread migration by bumping thread off CPU then 'pushing' onto
5033 * another runqueue.
5034 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005035static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005036{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005037 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005038 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005039
5040 rq = cpu_rq(cpu);
5041 BUG_ON(rq->migration_thread != current);
5042
5043 set_current_state(TASK_INTERRUPTIBLE);
5044 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005045 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005046 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005047
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005048 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005049
5050 spin_lock_irq(&rq->lock);
5051
5052 if (cpu_is_offline(cpu)) {
5053 spin_unlock_irq(&rq->lock);
5054 goto wait_to_die;
5055 }
5056
5057 if (rq->active_balance) {
5058 active_load_balance(rq, cpu);
5059 rq->active_balance = 0;
5060 }
5061
5062 head = &rq->migration_queue;
5063
5064 if (list_empty(head)) {
5065 spin_unlock_irq(&rq->lock);
5066 schedule();
5067 set_current_state(TASK_INTERRUPTIBLE);
5068 continue;
5069 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005070 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005071 list_del_init(head->next);
5072
Nick Piggin674311d2005-06-25 14:57:27 -07005073 spin_unlock(&rq->lock);
5074 __migrate_task(req->task, cpu, req->dest_cpu);
5075 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005076
5077 complete(&req->done);
5078 }
5079 __set_current_state(TASK_RUNNING);
5080 return 0;
5081
5082wait_to_die:
5083 /* Wait for kthread_stop */
5084 set_current_state(TASK_INTERRUPTIBLE);
5085 while (!kthread_should_stop()) {
5086 schedule();
5087 set_current_state(TASK_INTERRUPTIBLE);
5088 }
5089 __set_current_state(TASK_RUNNING);
5090 return 0;
5091}
5092
5093#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005094/*
5095 * Figure out where task on dead CPU should go, use force if neccessary.
5096 * NOTE: interrupts should be disabled by the caller
5097 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005098static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005099{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005100 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005101 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005102 struct rq *rq;
5103 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005104
Kirill Korotaevefc30812006-06-27 02:54:32 -07005105restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005106 /* On same node? */
5107 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005108 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005109 dest_cpu = any_online_cpu(mask);
5110
5111 /* On any allowed CPU? */
5112 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005113 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005114
5115 /* No more Mr. Nice Guy. */
5116 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005117 rq = task_rq_lock(p, &flags);
5118 cpus_setall(p->cpus_allowed);
5119 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005120 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005121
5122 /*
5123 * Don't tell them about moving exiting tasks or
5124 * kernel threads (both mm NULL), since they never
5125 * leave kernel.
5126 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005127 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005128 printk(KERN_INFO "process %d (%s) no "
5129 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005130 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005131 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005132 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005133 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005134}
5135
5136/*
5137 * While a dead CPU has no uninterruptible tasks queued at this point,
5138 * it might still have a nonzero ->nr_uninterruptible counter, because
5139 * for performance reasons the counter is not stricly tracking tasks to
5140 * their home CPUs. So we just add the counter to another CPU's counter,
5141 * to keep the global sum constant after CPU-down:
5142 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005143static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005144{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005145 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005146 unsigned long flags;
5147
5148 local_irq_save(flags);
5149 double_rq_lock(rq_src, rq_dest);
5150 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5151 rq_src->nr_uninterruptible = 0;
5152 double_rq_unlock(rq_src, rq_dest);
5153 local_irq_restore(flags);
5154}
5155
5156/* Run through task list and migrate tasks from the dead cpu. */
5157static void migrate_live_tasks(int src_cpu)
5158{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005159 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005160
5161 write_lock_irq(&tasklist_lock);
5162
Ingo Molnar48f24c42006-07-03 00:25:40 -07005163 do_each_thread(t, p) {
5164 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005165 continue;
5166
Ingo Molnar48f24c42006-07-03 00:25:40 -07005167 if (task_cpu(p) == src_cpu)
5168 move_task_off_dead_cpu(src_cpu, p);
5169 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005170
5171 write_unlock_irq(&tasklist_lock);
5172}
5173
5174/* Schedules idle task to be the next runnable task on current CPU.
5175 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005176 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005177 */
5178void sched_idle_next(void)
5179{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005180 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005181 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005182 struct task_struct *p = rq->idle;
5183 unsigned long flags;
5184
5185 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005186 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187
Ingo Molnar48f24c42006-07-03 00:25:40 -07005188 /*
5189 * Strictly not necessary since rest of the CPUs are stopped by now
5190 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005191 */
5192 spin_lock_irqsave(&rq->lock, flags);
5193
5194 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005195
5196 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005197 __activate_idle_task(p, rq);
5198
5199 spin_unlock_irqrestore(&rq->lock, flags);
5200}
5201
Ingo Molnar48f24c42006-07-03 00:25:40 -07005202/*
5203 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005204 * offline.
5205 */
5206void idle_task_exit(void)
5207{
5208 struct mm_struct *mm = current->active_mm;
5209
5210 BUG_ON(cpu_online(smp_processor_id()));
5211
5212 if (mm != &init_mm)
5213 switch_mm(mm, &init_mm, current);
5214 mmdrop(mm);
5215}
5216
Kirill Korotaev054b9102006-12-10 02:20:11 -08005217/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005218static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005219{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005220 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005221
5222 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005223 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005224
5225 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005226 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005227
Ingo Molnar48f24c42006-07-03 00:25:40 -07005228 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005229
5230 /*
5231 * Drop lock around migration; if someone else moves it,
5232 * that's OK. No task can be added to this CPU, so iteration is
5233 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005234 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005235 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005236 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005237 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005238 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005239
Ingo Molnar48f24c42006-07-03 00:25:40 -07005240 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005241}
5242
5243/* release_task() removes task from tasklist, so we won't find dead tasks. */
5244static void migrate_dead_tasks(unsigned int dead_cpu)
5245{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005246 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005247 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005248
5249 for (arr = 0; arr < 2; arr++) {
5250 for (i = 0; i < MAX_PRIO; i++) {
5251 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005252
Linus Torvalds1da177e2005-04-16 15:20:36 -07005253 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005254 migrate_dead(dead_cpu, list_entry(list->next,
5255 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005256 }
5257 }
5258}
5259#endif /* CONFIG_HOTPLUG_CPU */
5260
5261/*
5262 * migration_call - callback that gets triggered when a CPU is added.
5263 * Here we can start up the necessary migration thread for the new CPU.
5264 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005265static int __cpuinit
5266migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005267{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005268 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005269 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005270 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005271 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005272
5273 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005274 case CPU_LOCK_ACQUIRE:
5275 mutex_lock(&sched_hotcpu_mutex);
5276 break;
5277
Linus Torvalds1da177e2005-04-16 15:20:36 -07005278 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005279 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005280 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5281 if (IS_ERR(p))
5282 return NOTIFY_BAD;
5283 p->flags |= PF_NOFREEZE;
5284 kthread_bind(p, cpu);
5285 /* Must be high prio: stop_machine expects to yield to it. */
5286 rq = task_rq_lock(p, &flags);
5287 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5288 task_rq_unlock(rq, &flags);
5289 cpu_rq(cpu)->migration_thread = p;
5290 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005291
Linus Torvalds1da177e2005-04-16 15:20:36 -07005292 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005293 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005294 /* Strictly unneccessary, as first user will wake it. */
5295 wake_up_process(cpu_rq(cpu)->migration_thread);
5296 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005297
Linus Torvalds1da177e2005-04-16 15:20:36 -07005298#ifdef CONFIG_HOTPLUG_CPU
5299 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005300 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005301 if (!cpu_rq(cpu)->migration_thread)
5302 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005303 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005304 kthread_bind(cpu_rq(cpu)->migration_thread,
5305 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005306 kthread_stop(cpu_rq(cpu)->migration_thread);
5307 cpu_rq(cpu)->migration_thread = NULL;
5308 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005309
Linus Torvalds1da177e2005-04-16 15:20:36 -07005310 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005311 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005312 migrate_live_tasks(cpu);
5313 rq = cpu_rq(cpu);
5314 kthread_stop(rq->migration_thread);
5315 rq->migration_thread = NULL;
5316 /* Idle task back to normal (off runqueue, low prio) */
5317 rq = task_rq_lock(rq->idle, &flags);
5318 deactivate_task(rq->idle, rq);
5319 rq->idle->static_prio = MAX_PRIO;
5320 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5321 migrate_dead_tasks(cpu);
5322 task_rq_unlock(rq, &flags);
5323 migrate_nr_uninterruptible(rq);
5324 BUG_ON(rq->nr_running != 0);
5325
5326 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005327 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005328 * the requestors. */
5329 spin_lock_irq(&rq->lock);
5330 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005331 struct migration_req *req;
5332
Linus Torvalds1da177e2005-04-16 15:20:36 -07005333 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005334 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005335 list_del_init(&req->list);
5336 complete(&req->done);
5337 }
5338 spin_unlock_irq(&rq->lock);
5339 break;
5340#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005341 case CPU_LOCK_RELEASE:
5342 mutex_unlock(&sched_hotcpu_mutex);
5343 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005344 }
5345 return NOTIFY_OK;
5346}
5347
5348/* Register at highest priority so that task migration (migrate_all_tasks)
5349 * happens before everything else.
5350 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005351static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005352 .notifier_call = migration_call,
5353 .priority = 10
5354};
5355
5356int __init migration_init(void)
5357{
5358 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005359 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005360
5361 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005362 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5363 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005364 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5365 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005366
Linus Torvalds1da177e2005-04-16 15:20:36 -07005367 return 0;
5368}
5369#endif
5370
5371#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005372
5373/* Number of possible processor ids */
5374int nr_cpu_ids __read_mostly = NR_CPUS;
5375EXPORT_SYMBOL(nr_cpu_ids);
5376
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005377#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005378#ifdef SCHED_DOMAIN_DEBUG
5379static void sched_domain_debug(struct sched_domain *sd, int cpu)
5380{
5381 int level = 0;
5382
Nick Piggin41c7ce92005-06-25 14:57:24 -07005383 if (!sd) {
5384 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5385 return;
5386 }
5387
Linus Torvalds1da177e2005-04-16 15:20:36 -07005388 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5389
5390 do {
5391 int i;
5392 char str[NR_CPUS];
5393 struct sched_group *group = sd->groups;
5394 cpumask_t groupmask;
5395
5396 cpumask_scnprintf(str, NR_CPUS, sd->span);
5397 cpus_clear(groupmask);
5398
5399 printk(KERN_DEBUG);
5400 for (i = 0; i < level + 1; i++)
5401 printk(" ");
5402 printk("domain %d: ", level);
5403
5404 if (!(sd->flags & SD_LOAD_BALANCE)) {
5405 printk("does not load-balance\n");
5406 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005407 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5408 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005409 break;
5410 }
5411
5412 printk("span %s\n", str);
5413
5414 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005415 printk(KERN_ERR "ERROR: domain->span does not contain "
5416 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005417 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005418 printk(KERN_ERR "ERROR: domain->groups does not contain"
5419 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005420
5421 printk(KERN_DEBUG);
5422 for (i = 0; i < level + 2; i++)
5423 printk(" ");
5424 printk("groups:");
5425 do {
5426 if (!group) {
5427 printk("\n");
5428 printk(KERN_ERR "ERROR: group is NULL\n");
5429 break;
5430 }
5431
Eric Dumazet5517d862007-05-08 00:32:57 -07005432 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005433 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005434 printk(KERN_ERR "ERROR: domain->cpu_power not "
5435 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005436 }
5437
5438 if (!cpus_weight(group->cpumask)) {
5439 printk("\n");
5440 printk(KERN_ERR "ERROR: empty group\n");
5441 }
5442
5443 if (cpus_intersects(groupmask, group->cpumask)) {
5444 printk("\n");
5445 printk(KERN_ERR "ERROR: repeated CPUs\n");
5446 }
5447
5448 cpus_or(groupmask, groupmask, group->cpumask);
5449
5450 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5451 printk(" %s", str);
5452
5453 group = group->next;
5454 } while (group != sd->groups);
5455 printk("\n");
5456
5457 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005458 printk(KERN_ERR "ERROR: groups don't span "
5459 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005460
5461 level++;
5462 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005463 if (!sd)
5464 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005465
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005466 if (!cpus_subset(groupmask, sd->span))
5467 printk(KERN_ERR "ERROR: parent span is not a superset "
5468 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005469
5470 } while (sd);
5471}
5472#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005473# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005474#endif
5475
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005476static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005477{
5478 if (cpus_weight(sd->span) == 1)
5479 return 1;
5480
5481 /* Following flags need at least 2 groups */
5482 if (sd->flags & (SD_LOAD_BALANCE |
5483 SD_BALANCE_NEWIDLE |
5484 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005485 SD_BALANCE_EXEC |
5486 SD_SHARE_CPUPOWER |
5487 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005488 if (sd->groups != sd->groups->next)
5489 return 0;
5490 }
5491
5492 /* Following flags don't use groups */
5493 if (sd->flags & (SD_WAKE_IDLE |
5494 SD_WAKE_AFFINE |
5495 SD_WAKE_BALANCE))
5496 return 0;
5497
5498 return 1;
5499}
5500
Ingo Molnar48f24c42006-07-03 00:25:40 -07005501static int
5502sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005503{
5504 unsigned long cflags = sd->flags, pflags = parent->flags;
5505
5506 if (sd_degenerate(parent))
5507 return 1;
5508
5509 if (!cpus_equal(sd->span, parent->span))
5510 return 0;
5511
5512 /* Does parent contain flags not in child? */
5513 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5514 if (cflags & SD_WAKE_AFFINE)
5515 pflags &= ~SD_WAKE_BALANCE;
5516 /* Flags needing groups don't count if only 1 group in parent */
5517 if (parent->groups == parent->groups->next) {
5518 pflags &= ~(SD_LOAD_BALANCE |
5519 SD_BALANCE_NEWIDLE |
5520 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005521 SD_BALANCE_EXEC |
5522 SD_SHARE_CPUPOWER |
5523 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005524 }
5525 if (~cflags & pflags)
5526 return 0;
5527
5528 return 1;
5529}
5530
Linus Torvalds1da177e2005-04-16 15:20:36 -07005531/*
5532 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5533 * hold the hotplug lock.
5534 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005535static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005536{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005537 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005538 struct sched_domain *tmp;
5539
5540 /* Remove the sched domains which do not contribute to scheduling. */
5541 for (tmp = sd; tmp; tmp = tmp->parent) {
5542 struct sched_domain *parent = tmp->parent;
5543 if (!parent)
5544 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005545 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005546 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005547 if (parent->parent)
5548 parent->parent->child = tmp;
5549 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005550 }
5551
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005552 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005553 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005554 if (sd)
5555 sd->child = NULL;
5556 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005557
5558 sched_domain_debug(sd, cpu);
5559
Nick Piggin674311d2005-06-25 14:57:27 -07005560 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005561}
5562
5563/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005564static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005565
5566/* Setup the mask of cpus configured for isolated domains */
5567static int __init isolated_cpu_setup(char *str)
5568{
5569 int ints[NR_CPUS], i;
5570
5571 str = get_options(str, ARRAY_SIZE(ints), ints);
5572 cpus_clear(cpu_isolated_map);
5573 for (i = 1; i <= ints[0]; i++)
5574 if (ints[i] < NR_CPUS)
5575 cpu_set(ints[i], cpu_isolated_map);
5576 return 1;
5577}
5578
5579__setup ("isolcpus=", isolated_cpu_setup);
5580
5581/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005582 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5583 * to a function which identifies what group(along with sched group) a CPU
5584 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5585 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005586 *
5587 * init_sched_build_groups will build a circular linked list of the groups
5588 * covered by the given span, and will set each group's ->cpumask correctly,
5589 * and ->cpu_power to 0.
5590 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005591static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005592init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5593 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5594 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005595{
5596 struct sched_group *first = NULL, *last = NULL;
5597 cpumask_t covered = CPU_MASK_NONE;
5598 int i;
5599
5600 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005601 struct sched_group *sg;
5602 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005603 int j;
5604
5605 if (cpu_isset(i, covered))
5606 continue;
5607
5608 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005609 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005610
5611 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005612 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005613 continue;
5614
5615 cpu_set(j, covered);
5616 cpu_set(j, sg->cpumask);
5617 }
5618 if (!first)
5619 first = sg;
5620 if (last)
5621 last->next = sg;
5622 last = sg;
5623 }
5624 last->next = first;
5625}
5626
John Hawkes9c1cfda2005-09-06 15:18:14 -07005627#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005628
John Hawkes9c1cfda2005-09-06 15:18:14 -07005629#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005630
John Hawkes9c1cfda2005-09-06 15:18:14 -07005631/**
5632 * find_next_best_node - find the next node to include in a sched_domain
5633 * @node: node whose sched_domain we're building
5634 * @used_nodes: nodes already in the sched_domain
5635 *
5636 * Find the next node to include in a given scheduling domain. Simply
5637 * finds the closest node not already in the @used_nodes map.
5638 *
5639 * Should use nodemask_t.
5640 */
5641static int find_next_best_node(int node, unsigned long *used_nodes)
5642{
5643 int i, n, val, min_val, best_node = 0;
5644
5645 min_val = INT_MAX;
5646
5647 for (i = 0; i < MAX_NUMNODES; i++) {
5648 /* Start at @node */
5649 n = (node + i) % MAX_NUMNODES;
5650
5651 if (!nr_cpus_node(n))
5652 continue;
5653
5654 /* Skip already used nodes */
5655 if (test_bit(n, used_nodes))
5656 continue;
5657
5658 /* Simple min distance search */
5659 val = node_distance(node, n);
5660
5661 if (val < min_val) {
5662 min_val = val;
5663 best_node = n;
5664 }
5665 }
5666
5667 set_bit(best_node, used_nodes);
5668 return best_node;
5669}
5670
5671/**
5672 * sched_domain_node_span - get a cpumask for a node's sched_domain
5673 * @node: node whose cpumask we're constructing
5674 * @size: number of nodes to include in this span
5675 *
5676 * Given a node, construct a good cpumask for its sched_domain to span. It
5677 * should be one that prevents unnecessary balancing, but also spreads tasks
5678 * out optimally.
5679 */
5680static cpumask_t sched_domain_node_span(int node)
5681{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005682 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005683 cpumask_t span, nodemask;
5684 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005685
5686 cpus_clear(span);
5687 bitmap_zero(used_nodes, MAX_NUMNODES);
5688
5689 nodemask = node_to_cpumask(node);
5690 cpus_or(span, span, nodemask);
5691 set_bit(node, used_nodes);
5692
5693 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5694 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005695
John Hawkes9c1cfda2005-09-06 15:18:14 -07005696 nodemask = node_to_cpumask(next_node);
5697 cpus_or(span, span, nodemask);
5698 }
5699
5700 return span;
5701}
5702#endif
5703
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005704int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005705
John Hawkes9c1cfda2005-09-06 15:18:14 -07005706/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005707 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005708 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005709#ifdef CONFIG_SCHED_SMT
5710static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005711static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005712
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005713static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5714 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005715{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005716 if (sg)
5717 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005718 return cpu;
5719}
5720#endif
5721
Ingo Molnar48f24c42006-07-03 00:25:40 -07005722/*
5723 * multi-core sched-domains:
5724 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005725#ifdef CONFIG_SCHED_MC
5726static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005727static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005728#endif
5729
5730#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005731static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5732 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005733{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005734 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005735 cpumask_t mask = cpu_sibling_map[cpu];
5736 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005737 group = first_cpu(mask);
5738 if (sg)
5739 *sg = &per_cpu(sched_group_core, group);
5740 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005741}
5742#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005743static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5744 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005745{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005746 if (sg)
5747 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005748 return cpu;
5749}
5750#endif
5751
Linus Torvalds1da177e2005-04-16 15:20:36 -07005752static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005753static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005754
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005755static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5756 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005757{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005758 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005759#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005760 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005761 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005762 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005763#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005764 cpumask_t mask = cpu_sibling_map[cpu];
5765 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005766 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005767#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005768 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005769#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005770 if (sg)
5771 *sg = &per_cpu(sched_group_phys, group);
5772 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005773}
5774
5775#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005776/*
5777 * The init_sched_build_groups can't handle what we want to do with node
5778 * groups, so roll our own. Now each node has its own list of groups which
5779 * gets dynamically allocated.
5780 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005781static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005782static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005783
5784static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005785static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005786
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005787static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5788 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005789{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005790 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5791 int group;
5792
5793 cpus_and(nodemask, nodemask, *cpu_map);
5794 group = first_cpu(nodemask);
5795
5796 if (sg)
5797 *sg = &per_cpu(sched_group_allnodes, group);
5798 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005799}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005800
Siddha, Suresh B08069032006-03-27 01:15:23 -08005801static void init_numa_sched_groups_power(struct sched_group *group_head)
5802{
5803 struct sched_group *sg = group_head;
5804 int j;
5805
5806 if (!sg)
5807 return;
5808next_sg:
5809 for_each_cpu_mask(j, sg->cpumask) {
5810 struct sched_domain *sd;
5811
5812 sd = &per_cpu(phys_domains, j);
5813 if (j != first_cpu(sd->groups->cpumask)) {
5814 /*
5815 * Only add "power" once for each
5816 * physical package.
5817 */
5818 continue;
5819 }
5820
Eric Dumazet5517d862007-05-08 00:32:57 -07005821 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005822 }
5823 sg = sg->next;
5824 if (sg != group_head)
5825 goto next_sg;
5826}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005827#endif
5828
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005829#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005830/* Free memory allocated for various sched_group structures */
5831static void free_sched_groups(const cpumask_t *cpu_map)
5832{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005833 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005834
5835 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005836 struct sched_group **sched_group_nodes
5837 = sched_group_nodes_bycpu[cpu];
5838
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005839 if (!sched_group_nodes)
5840 continue;
5841
5842 for (i = 0; i < MAX_NUMNODES; i++) {
5843 cpumask_t nodemask = node_to_cpumask(i);
5844 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5845
5846 cpus_and(nodemask, nodemask, *cpu_map);
5847 if (cpus_empty(nodemask))
5848 continue;
5849
5850 if (sg == NULL)
5851 continue;
5852 sg = sg->next;
5853next_sg:
5854 oldsg = sg;
5855 sg = sg->next;
5856 kfree(oldsg);
5857 if (oldsg != sched_group_nodes[i])
5858 goto next_sg;
5859 }
5860 kfree(sched_group_nodes);
5861 sched_group_nodes_bycpu[cpu] = NULL;
5862 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005863}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005864#else
5865static void free_sched_groups(const cpumask_t *cpu_map)
5866{
5867}
5868#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005869
Linus Torvalds1da177e2005-04-16 15:20:36 -07005870/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005871 * Initialize sched groups cpu_power.
5872 *
5873 * cpu_power indicates the capacity of sched group, which is used while
5874 * distributing the load between different sched groups in a sched domain.
5875 * Typically cpu_power for all the groups in a sched domain will be same unless
5876 * there are asymmetries in the topology. If there are asymmetries, group
5877 * having more cpu_power will pickup more load compared to the group having
5878 * less cpu_power.
5879 *
5880 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5881 * the maximum number of tasks a group can handle in the presence of other idle
5882 * or lightly loaded groups in the same sched domain.
5883 */
5884static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5885{
5886 struct sched_domain *child;
5887 struct sched_group *group;
5888
5889 WARN_ON(!sd || !sd->groups);
5890
5891 if (cpu != first_cpu(sd->groups->cpumask))
5892 return;
5893
5894 child = sd->child;
5895
Eric Dumazet5517d862007-05-08 00:32:57 -07005896 sd->groups->__cpu_power = 0;
5897
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005898 /*
5899 * For perf policy, if the groups in child domain share resources
5900 * (for example cores sharing some portions of the cache hierarchy
5901 * or SMT), then set this domain groups cpu_power such that each group
5902 * can handle only one task, when there are other idle groups in the
5903 * same sched domain.
5904 */
5905 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5906 (child->flags &
5907 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07005908 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005909 return;
5910 }
5911
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005912 /*
5913 * add cpu_power of each child group to this groups cpu_power
5914 */
5915 group = child->groups;
5916 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07005917 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005918 group = group->next;
5919 } while (group != child->groups);
5920}
5921
5922/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005923 * Build sched domains for a given set of cpus and attach the sched domains
5924 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005925 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005926static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005927{
5928 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005929 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07005930#ifdef CONFIG_NUMA
5931 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005932 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07005933
5934 /*
5935 * Allocate the per-node list of sched groups
5936 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005937 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07005938 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07005939 if (!sched_group_nodes) {
5940 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005941 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07005942 }
5943 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5944#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005945
5946 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005947 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005948 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005949 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005950 struct sched_domain *sd = NULL, *p;
5951 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5952
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005953 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005954
5955#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07005956 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005957 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5958 sd = &per_cpu(allnodes_domains, i);
5959 *sd = SD_ALLNODES_INIT;
5960 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005961 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005962 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005963 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005964 } else
5965 p = NULL;
5966
Linus Torvalds1da177e2005-04-16 15:20:36 -07005967 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005968 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005969 sd->span = sched_domain_node_span(cpu_to_node(i));
5970 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005971 if (p)
5972 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005973 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005974#endif
5975
5976 p = sd;
5977 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005978 *sd = SD_CPU_INIT;
5979 sd->span = nodemask;
5980 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005981 if (p)
5982 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005983 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005984
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005985#ifdef CONFIG_SCHED_MC
5986 p = sd;
5987 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005988 *sd = SD_MC_INIT;
5989 sd->span = cpu_coregroup_map(i);
5990 cpus_and(sd->span, sd->span, *cpu_map);
5991 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005992 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005993 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005994#endif
5995
Linus Torvalds1da177e2005-04-16 15:20:36 -07005996#ifdef CONFIG_SCHED_SMT
5997 p = sd;
5998 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005999 *sd = SD_SIBLING_INIT;
6000 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006001 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006002 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006003 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006004 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006005#endif
6006 }
6007
6008#ifdef CONFIG_SCHED_SMT
6009 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006010 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006011 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006012 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006013 if (i != first_cpu(this_sibling_map))
6014 continue;
6015
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006016 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006017 }
6018#endif
6019
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006020#ifdef CONFIG_SCHED_MC
6021 /* Set up multi-core groups */
6022 for_each_cpu_mask(i, *cpu_map) {
6023 cpumask_t this_core_map = cpu_coregroup_map(i);
6024 cpus_and(this_core_map, this_core_map, *cpu_map);
6025 if (i != first_cpu(this_core_map))
6026 continue;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006027 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006028 }
6029#endif
6030
6031
Linus Torvalds1da177e2005-04-16 15:20:36 -07006032 /* Set up physical groups */
6033 for (i = 0; i < MAX_NUMNODES; i++) {
6034 cpumask_t nodemask = node_to_cpumask(i);
6035
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006036 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006037 if (cpus_empty(nodemask))
6038 continue;
6039
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006040 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006041 }
6042
6043#ifdef CONFIG_NUMA
6044 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006045 if (sd_allnodes)
6046 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006047
6048 for (i = 0; i < MAX_NUMNODES; i++) {
6049 /* Set up node groups */
6050 struct sched_group *sg, *prev;
6051 cpumask_t nodemask = node_to_cpumask(i);
6052 cpumask_t domainspan;
6053 cpumask_t covered = CPU_MASK_NONE;
6054 int j;
6055
6056 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006057 if (cpus_empty(nodemask)) {
6058 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006059 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006060 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006061
6062 domainspan = sched_domain_node_span(i);
6063 cpus_and(domainspan, domainspan, *cpu_map);
6064
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006065 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006066 if (!sg) {
6067 printk(KERN_WARNING "Can not alloc domain group for "
6068 "node %d\n", i);
6069 goto error;
6070 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006071 sched_group_nodes[i] = sg;
6072 for_each_cpu_mask(j, nodemask) {
6073 struct sched_domain *sd;
6074 sd = &per_cpu(node_domains, j);
6075 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006076 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006077 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006078 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006079 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006080 cpus_or(covered, covered, nodemask);
6081 prev = sg;
6082
6083 for (j = 0; j < MAX_NUMNODES; j++) {
6084 cpumask_t tmp, notcovered;
6085 int n = (i + j) % MAX_NUMNODES;
6086
6087 cpus_complement(notcovered, covered);
6088 cpus_and(tmp, notcovered, *cpu_map);
6089 cpus_and(tmp, tmp, domainspan);
6090 if (cpus_empty(tmp))
6091 break;
6092
6093 nodemask = node_to_cpumask(n);
6094 cpus_and(tmp, tmp, nodemask);
6095 if (cpus_empty(tmp))
6096 continue;
6097
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006098 sg = kmalloc_node(sizeof(struct sched_group),
6099 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006100 if (!sg) {
6101 printk(KERN_WARNING
6102 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006103 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006104 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006105 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006106 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006107 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006108 cpus_or(covered, covered, tmp);
6109 prev->next = sg;
6110 prev = sg;
6111 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006112 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006113#endif
6114
6115 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006116#ifdef CONFIG_SCHED_SMT
6117 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006118 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006119 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006120 }
6121#endif
6122#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006123 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006124 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006125 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006126 }
6127#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006128
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006129 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006130 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006131 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006132 }
6133
John Hawkes9c1cfda2005-09-06 15:18:14 -07006134#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006135 for (i = 0; i < MAX_NUMNODES; i++)
6136 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006137
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006138 if (sd_allnodes) {
6139 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006140
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006141 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006142 init_numa_sched_groups_power(sg);
6143 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006144#endif
6145
Linus Torvalds1da177e2005-04-16 15:20:36 -07006146 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006147 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006148 struct sched_domain *sd;
6149#ifdef CONFIG_SCHED_SMT
6150 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006151#elif defined(CONFIG_SCHED_MC)
6152 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006153#else
6154 sd = &per_cpu(phys_domains, i);
6155#endif
6156 cpu_attach_domain(sd, i);
6157 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006158
6159 return 0;
6160
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006161#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006162error:
6163 free_sched_groups(cpu_map);
6164 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006165#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006166}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006167/*
6168 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6169 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006170static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006171{
6172 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006173 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006174
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006175 /*
6176 * Setup mask for cpus without special case scheduling requirements.
6177 * For now this just excludes isolated cpus, but could be used to
6178 * exclude other special cases in the future.
6179 */
6180 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6181
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006182 err = build_sched_domains(&cpu_default_map);
6183
6184 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006185}
6186
6187static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006188{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006189 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006190}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006191
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006192/*
6193 * Detach sched domains from a group of cpus specified in cpu_map
6194 * These cpus will now be attached to the NULL domain
6195 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006196static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006197{
6198 int i;
6199
6200 for_each_cpu_mask(i, *cpu_map)
6201 cpu_attach_domain(NULL, i);
6202 synchronize_sched();
6203 arch_destroy_sched_domains(cpu_map);
6204}
6205
6206/*
6207 * Partition sched domains as specified by the cpumasks below.
6208 * This attaches all cpus from the cpumasks to the NULL domain,
6209 * waits for a RCU quiescent period, recalculates sched
6210 * domain information and then attaches them back to the
6211 * correct sched domains
6212 * Call with hotplug lock held
6213 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006214int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006215{
6216 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006217 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006218
6219 cpus_and(*partition1, *partition1, cpu_online_map);
6220 cpus_and(*partition2, *partition2, cpu_online_map);
6221 cpus_or(change_map, *partition1, *partition2);
6222
6223 /* Detach sched domains from all of the affected cpus */
6224 detach_destroy_domains(&change_map);
6225 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006226 err = build_sched_domains(partition1);
6227 if (!err && !cpus_empty(*partition2))
6228 err = build_sched_domains(partition2);
6229
6230 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006231}
6232
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006233#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6234int arch_reinit_sched_domains(void)
6235{
6236 int err;
6237
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006238 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006239 detach_destroy_domains(&cpu_online_map);
6240 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006241 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006242
6243 return err;
6244}
6245
6246static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6247{
6248 int ret;
6249
6250 if (buf[0] != '0' && buf[0] != '1')
6251 return -EINVAL;
6252
6253 if (smt)
6254 sched_smt_power_savings = (buf[0] == '1');
6255 else
6256 sched_mc_power_savings = (buf[0] == '1');
6257
6258 ret = arch_reinit_sched_domains();
6259
6260 return ret ? ret : count;
6261}
6262
6263int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6264{
6265 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006266
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006267#ifdef CONFIG_SCHED_SMT
6268 if (smt_capable())
6269 err = sysfs_create_file(&cls->kset.kobj,
6270 &attr_sched_smt_power_savings.attr);
6271#endif
6272#ifdef CONFIG_SCHED_MC
6273 if (!err && mc_capable())
6274 err = sysfs_create_file(&cls->kset.kobj,
6275 &attr_sched_mc_power_savings.attr);
6276#endif
6277 return err;
6278}
6279#endif
6280
6281#ifdef CONFIG_SCHED_MC
6282static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6283{
6284 return sprintf(page, "%u\n", sched_mc_power_savings);
6285}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006286static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6287 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006288{
6289 return sched_power_savings_store(buf, count, 0);
6290}
6291SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6292 sched_mc_power_savings_store);
6293#endif
6294
6295#ifdef CONFIG_SCHED_SMT
6296static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6297{
6298 return sprintf(page, "%u\n", sched_smt_power_savings);
6299}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006300static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6301 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006302{
6303 return sched_power_savings_store(buf, count, 1);
6304}
6305SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6306 sched_smt_power_savings_store);
6307#endif
6308
Linus Torvalds1da177e2005-04-16 15:20:36 -07006309/*
6310 * Force a reinitialization of the sched domains hierarchy. The domains
6311 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006312 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006313 * which will prevent rebalancing while the sched domains are recalculated.
6314 */
6315static int update_sched_domains(struct notifier_block *nfb,
6316 unsigned long action, void *hcpu)
6317{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006318 switch (action) {
6319 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006320 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006321 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006322 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006323 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006324 return NOTIFY_OK;
6325
6326 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006327 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006328 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006329 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006330 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006331 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006332 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006333 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006334 /*
6335 * Fall through and re-initialise the domains.
6336 */
6337 break;
6338 default:
6339 return NOTIFY_DONE;
6340 }
6341
6342 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006343 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006344
6345 return NOTIFY_OK;
6346}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006347
6348void __init sched_init_smp(void)
6349{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006350 cpumask_t non_isolated_cpus;
6351
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006352 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006353 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006354 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006355 if (cpus_empty(non_isolated_cpus))
6356 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006357 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006358 /* XXX: Theoretical race here - CPU may be hotplugged now */
6359 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006360
6361 /* Move init over to a non-isolated CPU */
6362 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6363 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006364}
6365#else
6366void __init sched_init_smp(void)
6367{
6368}
6369#endif /* CONFIG_SMP */
6370
6371int in_sched_functions(unsigned long addr)
6372{
6373 /* Linker adds these: start and end of __sched functions */
6374 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006375
Linus Torvalds1da177e2005-04-16 15:20:36 -07006376 return in_lock_functions(addr) ||
6377 (addr >= (unsigned long)__sched_text_start
6378 && addr < (unsigned long)__sched_text_end);
6379}
6380
6381void __init sched_init(void)
6382{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006383 int i, j, k;
Christoph Lameter476f3532007-05-06 14:48:58 -07006384 int highest_cpu = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006385
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006386 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006387 struct prio_array *array;
6388 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006389
6390 rq = cpu_rq(i);
6391 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006392 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006393 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006394 rq->active = rq->arrays;
6395 rq->expired = rq->arrays + 1;
6396 rq->best_expired_prio = MAX_PRIO;
6397
6398#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006399 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006400 for (j = 1; j < 3; j++)
6401 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006402 rq->active_balance = 0;
6403 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006404 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006405 rq->migration_thread = NULL;
6406 INIT_LIST_HEAD(&rq->migration_queue);
6407#endif
6408 atomic_set(&rq->nr_iowait, 0);
6409
6410 for (j = 0; j < 2; j++) {
6411 array = rq->arrays + j;
6412 for (k = 0; k < MAX_PRIO; k++) {
6413 INIT_LIST_HEAD(array->queue + k);
6414 __clear_bit(k, array->bitmap);
6415 }
6416 // delimiter for bitsearch
6417 __set_bit(MAX_PRIO, array->bitmap);
6418 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006419 highest_cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006420 }
6421
Peter Williams2dd73a42006-06-27 02:54:34 -07006422 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006423
Christoph Lameterc9819f42006-12-10 02:20:25 -08006424#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006425 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006426 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6427#endif
6428
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006429#ifdef CONFIG_RT_MUTEXES
6430 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6431#endif
6432
Linus Torvalds1da177e2005-04-16 15:20:36 -07006433 /*
6434 * The boot idle thread does lazy MMU switching as well:
6435 */
6436 atomic_inc(&init_mm.mm_count);
6437 enter_lazy_tlb(&init_mm, current);
6438
6439 /*
6440 * Make us the idle thread. Technically, schedule() should not be
6441 * called from this thread, however somewhere below it might be,
6442 * but because we are the idle thread, we just pick up running again
6443 * when this runqueue becomes "idle".
6444 */
6445 init_idle(current, smp_processor_id());
6446}
6447
6448#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6449void __might_sleep(char *file, int line)
6450{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006451#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006452 static unsigned long prev_jiffy; /* ratelimiting */
6453
6454 if ((in_atomic() || irqs_disabled()) &&
6455 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6456 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6457 return;
6458 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006459 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006460 " context at %s:%d\n", file, line);
6461 printk("in_atomic():%d, irqs_disabled():%d\n",
6462 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006463 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006464 if (irqs_disabled())
6465 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006466 dump_stack();
6467 }
6468#endif
6469}
6470EXPORT_SYMBOL(__might_sleep);
6471#endif
6472
6473#ifdef CONFIG_MAGIC_SYSRQ
6474void normalize_rt_tasks(void)
6475{
Ingo Molnar70b97a72006-07-03 00:25:42 -07006476 struct prio_array *array;
Ingo Molnara0f98a12007-06-17 18:37:45 +02006477 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006478 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006479 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006480
6481 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006482
6483 do_each_thread(g, p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006484 if (!rt_task(p))
6485 continue;
6486
Ingo Molnarb29739f2006-06-27 02:54:51 -07006487 spin_lock_irqsave(&p->pi_lock, flags);
6488 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006489
6490 array = p->array;
6491 if (array)
6492 deactivate_task(p, task_rq(p));
6493 __setscheduler(p, SCHED_NORMAL, 0);
6494 if (array) {
6495 __activate_task(p, task_rq(p));
6496 resched_task(rq->curr);
6497 }
6498
Ingo Molnarb29739f2006-06-27 02:54:51 -07006499 __task_rq_unlock(rq);
6500 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006501 } while_each_thread(g, p);
6502
Linus Torvalds1da177e2005-04-16 15:20:36 -07006503 read_unlock_irq(&tasklist_lock);
6504}
6505
6506#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006507
6508#ifdef CONFIG_IA64
6509/*
6510 * These functions are only useful for the IA64 MCA handling.
6511 *
6512 * They can only be called when the whole system has been
6513 * stopped - every CPU needs to be quiescent, and no scheduling
6514 * activity can take place. Using them for anything else would
6515 * be a serious bug, and as a result, they aren't even visible
6516 * under any other configuration.
6517 */
6518
6519/**
6520 * curr_task - return the current task for a given cpu.
6521 * @cpu: the processor in question.
6522 *
6523 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6524 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006525struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006526{
6527 return cpu_curr(cpu);
6528}
6529
6530/**
6531 * set_curr_task - set the current task for a given cpu.
6532 * @cpu: the processor in question.
6533 * @p: the task pointer to set.
6534 *
6535 * Description: This function must only be used when non-maskable interrupts
6536 * are serviced on a separate stack. It allows the architecture to switch the
6537 * notion of the current task on a cpu in a non-blocking manner. This function
6538 * must be called with all CPU's synchronized, and interrupts disabled, the
6539 * and caller must save the original value of the current task (see
6540 * curr_task() above) and restore that value before reenabling interrupts and
6541 * re-starting the system.
6542 *
6543 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6544 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006545void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006546{
6547 cpu_curr(cpu) = p;
6548}
6549
6550#endif