blob: 0596f27340ccf0daf1df7a9b011f11457b501c1f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
Thibaut Varene8ffaeaf2006-05-03 17:27:35 -060014 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/system.h>
71#include <asm/processor.h> /* for boot_cpu_data */
72
73static DEFINE_SPINLOCK(pdc_lock);
74static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
76
77#ifdef __LP64__
78#define WIDE_FIRMWARE 0x1
79#define NARROW_FIRMWARE 0x2
80
81/* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
Helge Deller8039de12006-01-10 20:35:03 -050083int parisc_narrow_firmware __read_mostly = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -070084#endif
85
Grant Grundler675ec7a2005-10-21 22:51:40 -040086/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
Linus Torvalds1da177e2005-04-16 15:20:36 -070089 *
Grant Grundler675ec7a2005-10-21 22:51:40 -040090 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
Linus Torvalds1da177e2005-04-16 15:20:36 -070095 */
96
97#ifdef __LP64__
98long real64_call(unsigned long function, ...);
99#endif
100long real32_call(unsigned long function, ...);
101
102#ifdef __LP64__
103# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105#else
106# define MEM_PDC (unsigned long)PAGE0->mem_pdc
107# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108#endif
109
110
111/**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118static unsigned long f_extend(unsigned long address)
119{
120#ifdef __LP64__
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128#endif
129 return address;
130}
131
132/**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140static void convert_to_wide(unsigned long *addr)
141{
142#ifdef __LP64__
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150#endif
151}
152
153/**
154 * set_firmware_width - Determine if the firmware is wide or narrow.
155 *
156 * This function must be called before any pdc_* function that uses the convert_to_wide
157 * function.
158 */
159void __init set_firmware_width(void)
160{
161#ifdef __LP64__
162 int retval;
163
164 spin_lock_irq(&pdc_lock);
165 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
166 convert_to_wide(pdc_result);
167 if(pdc_result[0] != NARROW_FIRMWARE)
168 parisc_narrow_firmware = 0;
169 spin_unlock_irq(&pdc_lock);
170#endif
171}
172
173/**
174 * pdc_emergency_unlock - Unlock the linux pdc lock
175 *
176 * This call unlocks the linux pdc lock in case we need some PDC functions
177 * (like pdc_add_valid) during kernel stack dump.
178 */
179void pdc_emergency_unlock(void)
180{
181 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
182 if (spin_is_locked(&pdc_lock))
183 spin_unlock(&pdc_lock);
184}
185
186
187/**
188 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
189 * @address: Address to be verified.
190 *
191 * This PDC call attempts to read from the specified address and verifies
192 * if the address is valid.
193 *
194 * The return value is PDC_OK (0) in case accessing this address is valid.
195 */
196int pdc_add_valid(unsigned long address)
197{
198 int retval;
199
200 spin_lock_irq(&pdc_lock);
201 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
202 spin_unlock_irq(&pdc_lock);
203
204 return retval;
205}
206EXPORT_SYMBOL(pdc_add_valid);
207
208/**
209 * pdc_chassis_info - Return chassis information.
210 * @result: The return buffer.
211 * @chassis_info: The memory buffer address.
212 * @len: The size of the memory buffer address.
213 *
214 * An HVERSION dependent call for returning the chassis information.
215 */
216int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
217{
218 int retval;
219
220 spin_lock_irq(&pdc_lock);
221 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
222 memcpy(&pdc_result2, led_info, len);
223 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
224 __pa(pdc_result), __pa(pdc_result2), len);
225 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
226 memcpy(led_info, pdc_result2, len);
227 spin_unlock_irq(&pdc_lock);
228
229 return retval;
230}
231
232/**
233 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
234 * @retval: -1 on error, 0 on success. Other value are PDC errors
235 *
236 * Must be correctly formatted or expect system crash
237 */
238#ifdef __LP64__
239int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
240{
241 int retval = 0;
242
243 if (!is_pdc_pat())
244 return -1;
245
246 spin_lock_irq(&pdc_lock);
247 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
248 spin_unlock_irq(&pdc_lock);
249
250 return retval;
251}
252#endif
253
254/**
Thibaut Varene8ffaeaf2006-05-03 17:27:35 -0600255 * pdc_chassis_disp - Updates chassis code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256 * @retval: -1 on error, 0 on success
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257 */
258int pdc_chassis_disp(unsigned long disp)
259{
260 int retval = 0;
261
262 spin_lock_irq(&pdc_lock);
263 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
264 spin_unlock_irq(&pdc_lock);
265
266 return retval;
267}
268
269/**
Thibaut Varene8ffaeaf2006-05-03 17:27:35 -0600270 * pdc_chassis_warn - Fetches chassis warnings
271 * @retval: -1 on error, 0 on success
272 */
273int pdc_chassis_warn(unsigned long *warn)
274{
275 int retval = 0;
276
277 spin_lock_irq(&pdc_lock);
278 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
279 *warn = pdc_result[0];
280 spin_unlock_irq(&pdc_lock);
281
282 return retval;
283}
284
285/**
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
287 * @pdc_coproc_info: Return buffer address.
288 *
289 * This PDC call returns the presence and status of all the coprocessors
290 * attached to the processor.
291 */
292int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
293{
294 int retval;
295
296 spin_lock_irq(&pdc_lock);
297 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
298 convert_to_wide(pdc_result);
299 pdc_coproc_info->ccr_functional = pdc_result[0];
300 pdc_coproc_info->ccr_present = pdc_result[1];
301 pdc_coproc_info->revision = pdc_result[17];
302 pdc_coproc_info->model = pdc_result[18];
303 spin_unlock_irq(&pdc_lock);
304
305 return retval;
306}
307
308/**
309 * pdc_iodc_read - Read data from the modules IODC.
310 * @actcnt: The actual number of bytes.
311 * @hpa: The HPA of the module for the iodc read.
312 * @index: The iodc entry point.
313 * @iodc_data: A buffer memory for the iodc options.
314 * @iodc_data_size: Size of the memory buffer.
315 *
316 * This PDC call reads from the IODC of the module specified by the hpa
317 * argument.
318 */
319int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
320 void *iodc_data, unsigned int iodc_data_size)
321{
322 int retval;
323
324 spin_lock_irq(&pdc_lock);
325 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
326 index, __pa(pdc_result2), iodc_data_size);
327 convert_to_wide(pdc_result);
328 *actcnt = pdc_result[0];
329 memcpy(iodc_data, pdc_result2, iodc_data_size);
330 spin_unlock_irq(&pdc_lock);
331
332 return retval;
333}
334EXPORT_SYMBOL(pdc_iodc_read);
335
336/**
337 * pdc_system_map_find_mods - Locate unarchitected modules.
338 * @pdc_mod_info: Return buffer address.
339 * @mod_path: pointer to dev path structure.
340 * @mod_index: fixed address module index.
341 *
342 * To locate and identify modules which reside at fixed I/O addresses, which
343 * do not self-identify via architected bus walks.
344 */
345int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
346 struct pdc_module_path *mod_path, long mod_index)
347{
348 int retval;
349
350 spin_lock_irq(&pdc_lock);
351 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
352 __pa(pdc_result2), mod_index);
353 convert_to_wide(pdc_result);
354 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
355 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
356 spin_unlock_irq(&pdc_lock);
357
358 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
359 return retval;
360}
361
362/**
363 * pdc_system_map_find_addrs - Retrieve additional address ranges.
364 * @pdc_addr_info: Return buffer address.
365 * @mod_index: Fixed address module index.
366 * @addr_index: Address range index.
367 *
368 * Retrieve additional information about subsequent address ranges for modules
369 * with multiple address ranges.
370 */
371int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
372 long mod_index, long addr_index)
373{
374 int retval;
375
376 spin_lock_irq(&pdc_lock);
377 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
378 mod_index, addr_index);
379 convert_to_wide(pdc_result);
380 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
381 spin_unlock_irq(&pdc_lock);
382
383 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
384 return retval;
385}
386
387/**
388 * pdc_model_info - Return model information about the processor.
389 * @model: The return buffer.
390 *
391 * Returns the version numbers, identifiers, and capabilities from the processor module.
392 */
393int pdc_model_info(struct pdc_model *model)
394{
395 int retval;
396
397 spin_lock_irq(&pdc_lock);
398 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
399 convert_to_wide(pdc_result);
400 memcpy(model, pdc_result, sizeof(*model));
401 spin_unlock_irq(&pdc_lock);
402
403 return retval;
404}
405
406/**
407 * pdc_model_sysmodel - Get the system model name.
408 * @name: A char array of at least 81 characters.
409 *
410 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L)
411 */
412int pdc_model_sysmodel(char *name)
413{
414 int retval;
415
416 spin_lock_irq(&pdc_lock);
417 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
418 OS_ID_HPUX, __pa(name));
419 convert_to_wide(pdc_result);
420
421 if (retval == PDC_OK) {
422 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
423 } else {
424 name[0] = 0;
425 }
426 spin_unlock_irq(&pdc_lock);
427
428 return retval;
429}
430
431/**
432 * pdc_model_versions - Identify the version number of each processor.
433 * @cpu_id: The return buffer.
434 * @id: The id of the processor to check.
435 *
436 * Returns the version number for each processor component.
437 *
438 * This comment was here before, but I do not know what it means :( -RB
439 * id: 0 = cpu revision, 1 = boot-rom-version
440 */
441int pdc_model_versions(unsigned long *versions, int id)
442{
443 int retval;
444
445 spin_lock_irq(&pdc_lock);
446 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
447 convert_to_wide(pdc_result);
448 *versions = pdc_result[0];
449 spin_unlock_irq(&pdc_lock);
450
451 return retval;
452}
453
454/**
455 * pdc_model_cpuid - Returns the CPU_ID.
456 * @cpu_id: The return buffer.
457 *
458 * Returns the CPU_ID value which uniquely identifies the cpu portion of
459 * the processor module.
460 */
461int pdc_model_cpuid(unsigned long *cpu_id)
462{
463 int retval;
464
465 spin_lock_irq(&pdc_lock);
466 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
467 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
468 convert_to_wide(pdc_result);
469 *cpu_id = pdc_result[0];
470 spin_unlock_irq(&pdc_lock);
471
472 return retval;
473}
474
475/**
476 * pdc_model_capabilities - Returns the platform capabilities.
477 * @capabilities: The return buffer.
478 *
479 * Returns information about platform support for 32- and/or 64-bit
480 * OSes, IO-PDIR coherency, and virtual aliasing.
481 */
482int pdc_model_capabilities(unsigned long *capabilities)
483{
484 int retval;
485
486 spin_lock_irq(&pdc_lock);
487 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
488 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
489 convert_to_wide(pdc_result);
490 *capabilities = pdc_result[0];
491 spin_unlock_irq(&pdc_lock);
492
493 return retval;
494}
495
496/**
497 * pdc_cache_info - Return cache and TLB information.
498 * @cache_info: The return buffer.
499 *
500 * Returns information about the processor's cache and TLB.
501 */
502int pdc_cache_info(struct pdc_cache_info *cache_info)
503{
504 int retval;
505
506 spin_lock_irq(&pdc_lock);
507 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
508 convert_to_wide(pdc_result);
509 memcpy(cache_info, pdc_result, sizeof(*cache_info));
510 spin_unlock_irq(&pdc_lock);
511
512 return retval;
513}
514
515#ifndef CONFIG_PA20
516/**
517 * pdc_btlb_info - Return block TLB information.
518 * @btlb: The return buffer.
519 *
520 * Returns information about the hardware Block TLB.
521 */
522int pdc_btlb_info(struct pdc_btlb_info *btlb)
523{
524 int retval;
525
526 spin_lock_irq(&pdc_lock);
527 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
528 memcpy(btlb, pdc_result, sizeof(*btlb));
529 spin_unlock_irq(&pdc_lock);
530
531 if(retval < 0) {
532 btlb->max_size = 0;
533 }
534 return retval;
535}
536
537/**
538 * pdc_mem_map_hpa - Find fixed module information.
539 * @address: The return buffer
540 * @mod_path: pointer to dev path structure.
541 *
542 * This call was developed for S700 workstations to allow the kernel to find
543 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
544 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
545 * call.
546 *
547 * This call is supported by all existing S700 workstations (up to Gecko).
548 */
549int pdc_mem_map_hpa(struct pdc_memory_map *address,
550 struct pdc_module_path *mod_path)
551{
552 int retval;
553
554 spin_lock_irq(&pdc_lock);
555 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
556 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
557 __pa(pdc_result2));
558 memcpy(address, pdc_result, sizeof(*address));
559 spin_unlock_irq(&pdc_lock);
560
561 return retval;
562}
563#endif /* !CONFIG_PA20 */
564
565/**
566 * pdc_lan_station_id - Get the LAN address.
567 * @lan_addr: The return buffer.
568 * @hpa: The network device HPA.
569 *
570 * Get the LAN station address when it is not directly available from the LAN hardware.
571 */
572int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
573{
574 int retval;
575
576 spin_lock_irq(&pdc_lock);
577 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
578 __pa(pdc_result), hpa);
579 if (retval < 0) {
580 /* FIXME: else read MAC from NVRAM */
581 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
582 } else {
583 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
584 }
585 spin_unlock_irq(&pdc_lock);
586
587 return retval;
588}
589EXPORT_SYMBOL(pdc_lan_station_id);
590
591/**
592 * pdc_stable_read - Read data from Stable Storage.
593 * @staddr: Stable Storage address to access.
594 * @memaddr: The memory address where Stable Storage data shall be copied.
595 * @count: number of bytes to transfert. count is multiple of 4.
596 *
597 * This PDC call reads from the Stable Storage address supplied in staddr
598 * and copies count bytes to the memory address memaddr.
599 * The call will fail if staddr+count > PDC_STABLE size.
600 */
601int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
602{
603 int retval;
604
605 spin_lock_irq(&pdc_lock);
606 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
607 __pa(pdc_result), count);
608 convert_to_wide(pdc_result);
609 memcpy(memaddr, pdc_result, count);
610 spin_unlock_irq(&pdc_lock);
611
612 return retval;
613}
614EXPORT_SYMBOL(pdc_stable_read);
615
616/**
617 * pdc_stable_write - Write data to Stable Storage.
618 * @staddr: Stable Storage address to access.
619 * @memaddr: The memory address where Stable Storage data shall be read from.
620 * @count: number of bytes to transfert. count is multiple of 4.
621 *
622 * This PDC call reads count bytes from the supplied memaddr address,
623 * and copies count bytes to the Stable Storage address staddr.
624 * The call will fail if staddr+count > PDC_STABLE size.
625 */
626int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
627{
628 int retval;
629
630 spin_lock_irq(&pdc_lock);
631 memcpy(pdc_result, memaddr, count);
632 convert_to_wide(pdc_result);
633 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
634 __pa(pdc_result), count);
635 spin_unlock_irq(&pdc_lock);
636
637 return retval;
638}
639EXPORT_SYMBOL(pdc_stable_write);
640
641/**
642 * pdc_stable_get_size - Get Stable Storage size in bytes.
643 * @size: pointer where the size will be stored.
644 *
645 * This PDC call returns the number of bytes in the processor's Stable
646 * Storage, which is the number of contiguous bytes implemented in Stable
647 * Storage starting from staddr=0. size in an unsigned 64-bit integer
648 * which is a multiple of four.
649 */
650int pdc_stable_get_size(unsigned long *size)
651{
652 int retval;
653
654 spin_lock_irq(&pdc_lock);
655 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
656 *size = pdc_result[0];
657 spin_unlock_irq(&pdc_lock);
658
659 return retval;
660}
661EXPORT_SYMBOL(pdc_stable_get_size);
662
663/**
664 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
665 *
666 * This PDC call is meant to be used to check the integrity of the current
667 * contents of Stable Storage.
668 */
669int pdc_stable_verify_contents(void)
670{
671 int retval;
672
673 spin_lock_irq(&pdc_lock);
674 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
675 spin_unlock_irq(&pdc_lock);
676
677 return retval;
678}
679EXPORT_SYMBOL(pdc_stable_verify_contents);
680
681/**
682 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
683 * the validity indicator.
684 *
685 * This PDC call will erase all contents of Stable Storage. Use with care!
686 */
687int pdc_stable_initialize(void)
688{
689 int retval;
690
691 spin_lock_irq(&pdc_lock);
692 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
693 spin_unlock_irq(&pdc_lock);
694
695 return retval;
696}
697EXPORT_SYMBOL(pdc_stable_initialize);
698
699/**
700 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
701 * @hwpath: fully bc.mod style path to the device.
702 * @initiator: the array to return the result into
703 *
704 * Get the SCSI operational parameters from PDC.
705 * Needed since HPUX never used BIOS or symbios card NVRAM.
706 * Most ncr/sym cards won't have an entry and just use whatever
707 * capabilities of the card are (eg Ultra, LVD). But there are
708 * several cases where it's useful:
709 * o set SCSI id for Multi-initiator clusters,
710 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
711 * o bus width exported is less than what the interface chip supports.
712 */
713int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
714{
715 int retval;
716
717 spin_lock_irq(&pdc_lock);
718
719/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
720#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
721 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
722
723 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
724 __pa(pdc_result), __pa(hwpath));
725 if (retval < PDC_OK)
726 goto out;
727
728 if (pdc_result[0] < 16) {
729 initiator->host_id = pdc_result[0];
730 } else {
731 initiator->host_id = -1;
732 }
733
734 /*
735 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
736 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
737 */
738 switch (pdc_result[1]) {
739 case 1: initiator->factor = 50; break;
740 case 2: initiator->factor = 25; break;
741 case 5: initiator->factor = 12; break;
742 case 25: initiator->factor = 10; break;
743 case 20: initiator->factor = 12; break;
744 case 40: initiator->factor = 10; break;
745 default: initiator->factor = -1; break;
746 }
747
748 if (IS_SPROCKETS()) {
749 initiator->width = pdc_result[4];
750 initiator->mode = pdc_result[5];
751 } else {
752 initiator->width = -1;
753 initiator->mode = -1;
754 }
755
756 out:
757 spin_unlock_irq(&pdc_lock);
758 return (retval >= PDC_OK);
759}
760EXPORT_SYMBOL(pdc_get_initiator);
761
762
763/**
764 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
765 * @num_entries: The return value.
766 * @hpa: The HPA for the device.
767 *
768 * This PDC function returns the number of entries in the specified cell's
769 * interrupt table.
770 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
771 */
772int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
773{
774 int retval;
775
776 spin_lock_irq(&pdc_lock);
777 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
778 __pa(pdc_result), hpa);
779 convert_to_wide(pdc_result);
780 *num_entries = pdc_result[0];
781 spin_unlock_irq(&pdc_lock);
782
783 return retval;
784}
785
786/**
787 * pdc_pci_irt - Get the PCI interrupt routing table.
788 * @num_entries: The number of entries in the table.
789 * @hpa: The Hard Physical Address of the device.
790 * @tbl:
791 *
792 * Get the PCI interrupt routing table for the device at the given HPA.
793 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
794 */
795int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
796{
797 int retval;
798
799 BUG_ON((unsigned long)tbl & 0x7);
800
801 spin_lock_irq(&pdc_lock);
802 pdc_result[0] = num_entries;
803 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
804 __pa(pdc_result), hpa, __pa(tbl));
805 spin_unlock_irq(&pdc_lock);
806
807 return retval;
808}
809
810
811#if 0 /* UNTEST CODE - left here in case someone needs it */
812
813/**
814 * pdc_pci_config_read - read PCI config space.
815 * @hpa token from PDC to indicate which PCI device
816 * @pci_addr configuration space address to read from
817 *
818 * Read PCI Configuration space *before* linux PCI subsystem is running.
819 */
820unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
821{
822 int retval;
823 spin_lock_irq(&pdc_lock);
824 pdc_result[0] = 0;
825 pdc_result[1] = 0;
826 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
827 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
828 spin_unlock_irq(&pdc_lock);
829 return retval ? ~0 : (unsigned int) pdc_result[0];
830}
831
832
833/**
834 * pdc_pci_config_write - read PCI config space.
835 * @hpa token from PDC to indicate which PCI device
836 * @pci_addr configuration space address to write
837 * @val value we want in the 32-bit register
838 *
839 * Write PCI Configuration space *before* linux PCI subsystem is running.
840 */
841void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
842{
843 int retval;
844 spin_lock_irq(&pdc_lock);
845 pdc_result[0] = 0;
846 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
847 __pa(pdc_result), hpa,
848 cfg_addr&~3UL, 4UL, (unsigned long) val);
849 spin_unlock_irq(&pdc_lock);
850 return retval;
851}
852#endif /* UNTESTED CODE */
853
854/**
855 * pdc_tod_read - Read the Time-Of-Day clock.
856 * @tod: The return buffer:
857 *
858 * Read the Time-Of-Day clock
859 */
860int pdc_tod_read(struct pdc_tod *tod)
861{
862 int retval;
863
864 spin_lock_irq(&pdc_lock);
865 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
866 convert_to_wide(pdc_result);
867 memcpy(tod, pdc_result, sizeof(*tod));
868 spin_unlock_irq(&pdc_lock);
869
870 return retval;
871}
872EXPORT_SYMBOL(pdc_tod_read);
873
874/**
875 * pdc_tod_set - Set the Time-Of-Day clock.
876 * @sec: The number of seconds since epoch.
877 * @usec: The number of micro seconds.
878 *
879 * Set the Time-Of-Day clock.
880 */
881int pdc_tod_set(unsigned long sec, unsigned long usec)
882{
883 int retval;
884
885 spin_lock_irq(&pdc_lock);
886 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
887 spin_unlock_irq(&pdc_lock);
888
889 return retval;
890}
891EXPORT_SYMBOL(pdc_tod_set);
892
893#ifdef __LP64__
894int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
895 struct pdc_memory_table *tbl, unsigned long entries)
896{
897 int retval;
898
899 spin_lock_irq(&pdc_lock);
900 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
901 convert_to_wide(pdc_result);
902 memcpy(r_addr, pdc_result, sizeof(*r_addr));
903 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
904 spin_unlock_irq(&pdc_lock);
905
906 return retval;
907}
908#endif /* __LP64__ */
909
910/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
911 * so I guessed at unsigned long. Someone who knows what this does, can fix
912 * it later. :)
913 */
914int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
915{
916 int retval;
917
918 spin_lock_irq(&pdc_lock);
919 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
920 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
921 spin_unlock_irq(&pdc_lock);
922
923 return retval;
924}
925
926/*
927 * pdc_do_reset - Reset the system.
928 *
929 * Reset the system.
930 */
931int pdc_do_reset(void)
932{
933 int retval;
934
935 spin_lock_irq(&pdc_lock);
936 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
937 spin_unlock_irq(&pdc_lock);
938
939 return retval;
940}
941
942/*
943 * pdc_soft_power_info - Enable soft power switch.
944 * @power_reg: address of soft power register
945 *
946 * Return the absolute address of the soft power switch register
947 */
948int __init pdc_soft_power_info(unsigned long *power_reg)
949{
950 int retval;
951
952 *power_reg = (unsigned long) (-1);
953
954 spin_lock_irq(&pdc_lock);
955 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
956 if (retval == PDC_OK) {
957 convert_to_wide(pdc_result);
958 *power_reg = f_extend(pdc_result[0]);
959 }
960 spin_unlock_irq(&pdc_lock);
961
962 return retval;
963}
964
965/*
966 * pdc_soft_power_button - Control the soft power button behaviour
967 * @sw_control: 0 for hardware control, 1 for software control
968 *
969 *
970 * This PDC function places the soft power button under software or
971 * hardware control.
972 * Under software control the OS may control to when to allow to shut
973 * down the system. Under hardware control pressing the power button
974 * powers off the system immediately.
975 */
976int pdc_soft_power_button(int sw_control)
977{
978 int retval;
979 spin_lock_irq(&pdc_lock);
980 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
981 spin_unlock_irq(&pdc_lock);
982 return retval;
983}
984
985/*
986 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
987 * Primarily a problem on T600 (which parisc-linux doesn't support) but
988 * who knows what other platform firmware might do with this OS "hook".
989 */
990void pdc_io_reset(void)
991{
992 spin_lock_irq(&pdc_lock);
993 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
994 spin_unlock_irq(&pdc_lock);
995}
996
997/*
998 * pdc_io_reset_devices - Hack to Stop USB controller
999 *
1000 * If PDC used the usb controller, the usb controller
1001 * is still running and will crash the machines during iommu
1002 * setup, because of still running DMA. This PDC call
1003 * stops the USB controller.
1004 * Normally called after calling pdc_io_reset().
1005 */
1006void pdc_io_reset_devices(void)
1007{
1008 spin_lock_irq(&pdc_lock);
1009 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1010 spin_unlock_irq(&pdc_lock);
1011}
1012
1013
1014/**
1015 * pdc_iodc_putc - Console character print using IODC.
1016 * @c: the character to output.
1017 *
1018 * Note that only these special chars are architected for console IODC io:
1019 * BEL, BS, CR, and LF. Others are passed through.
1020 * Since the HP console requires CR+LF to perform a 'newline', we translate
1021 * "\n" to "\r\n".
1022 */
1023void pdc_iodc_putc(unsigned char c)
1024{
1025 /* XXX Should we spinlock posx usage */
1026 static int posx; /* for simple TAB-Simulation... */
1027 static int __attribute__((aligned(8))) iodc_retbuf[32];
1028 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1029 unsigned int n;
1030 unsigned int flags;
1031
1032 switch (c) {
1033 case '\n':
1034 iodc_dbuf[0] = '\r';
1035 iodc_dbuf[1] = '\n';
1036 n = 2;
1037 posx = 0;
1038 break;
1039 case '\t':
1040 pdc_iodc_putc(' ');
1041 while (posx & 7) /* expand TAB */
1042 pdc_iodc_putc(' ');
1043 return; /* return since IODC can't handle this */
1044 case '\b':
1045 posx-=2; /* BS */
1046 default:
1047 iodc_dbuf[0] = c;
1048 n = 1;
1049 posx++;
1050 break;
1051 }
1052
1053 spin_lock_irqsave(&pdc_lock, flags);
1054 real32_call(PAGE0->mem_cons.iodc_io,
1055 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1056 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1057 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1058 spin_unlock_irqrestore(&pdc_lock, flags);
1059}
1060
1061/**
1062 * pdc_iodc_outc - Console character print using IODC (without conversions).
1063 * @c: the character to output.
1064 *
1065 * Write the character directly to the IODC console.
1066 */
1067void pdc_iodc_outc(unsigned char c)
1068{
1069 unsigned int n, flags;
1070
1071 /* fill buffer with one caracter and print it */
1072 static int __attribute__((aligned(8))) iodc_retbuf[32];
1073 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1074
1075 n = 1;
1076 iodc_dbuf[0] = c;
1077
1078 spin_lock_irqsave(&pdc_lock, flags);
1079 real32_call(PAGE0->mem_cons.iodc_io,
1080 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1081 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1082 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1083 spin_unlock_irqrestore(&pdc_lock, flags);
1084}
1085
1086/**
1087 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1088 *
1089 * Read a character (non-blocking) from the PDC console, returns -1 if
1090 * key is not present.
1091 */
1092int pdc_iodc_getc(void)
1093{
1094 unsigned int flags;
1095 static int __attribute__((aligned(8))) iodc_retbuf[32];
1096 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1097 int ch;
1098 int status;
1099
1100 /* Bail if no console input device. */
1101 if (!PAGE0->mem_kbd.iodc_io)
1102 return 0;
1103
1104 /* wait for a keyboard (rs232)-input */
1105 spin_lock_irqsave(&pdc_lock, flags);
1106 real32_call(PAGE0->mem_kbd.iodc_io,
1107 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1108 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1109 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1110
1111 ch = *iodc_dbuf;
1112 status = *iodc_retbuf;
1113 spin_unlock_irqrestore(&pdc_lock, flags);
1114
1115 if (status == 0)
1116 return -1;
1117
1118 return ch;
1119}
1120
1121int pdc_sti_call(unsigned long func, unsigned long flags,
1122 unsigned long inptr, unsigned long outputr,
1123 unsigned long glob_cfg)
1124{
1125 int retval;
1126
1127 spin_lock_irq(&pdc_lock);
1128 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1129 spin_unlock_irq(&pdc_lock);
1130
1131 return retval;
1132}
1133EXPORT_SYMBOL(pdc_sti_call);
1134
1135#ifdef __LP64__
1136/**
1137 * pdc_pat_cell_get_number - Returns the cell number.
1138 * @cell_info: The return buffer.
1139 *
1140 * This PDC call returns the cell number of the cell from which the call
1141 * is made.
1142 */
1143int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1144{
1145 int retval;
1146
1147 spin_lock_irq(&pdc_lock);
1148 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1149 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1150 spin_unlock_irq(&pdc_lock);
1151
1152 return retval;
1153}
1154
1155/**
1156 * pdc_pat_cell_module - Retrieve the cell's module information.
1157 * @actcnt: The number of bytes written to mem_addr.
1158 * @ploc: The physical location.
1159 * @mod: The module index.
1160 * @view_type: The view of the address type.
1161 * @mem_addr: The return buffer.
1162 *
1163 * This PDC call returns information about each module attached to the cell
1164 * at the specified location.
1165 */
1166int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1167 unsigned long view_type, void *mem_addr)
1168{
1169 int retval;
1170 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1171
1172 spin_lock_irq(&pdc_lock);
1173 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1174 ploc, mod, view_type, __pa(&result));
1175 if(!retval) {
1176 *actcnt = pdc_result[0];
1177 memcpy(mem_addr, &result, *actcnt);
1178 }
1179 spin_unlock_irq(&pdc_lock);
1180
1181 return retval;
1182}
1183
1184/**
1185 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1186 * @cpu_info: The return buffer.
1187 * @hpa: The Hard Physical Address of the CPU.
1188 *
1189 * Retrieve the cpu number for the cpu at the specified HPA.
1190 */
1191int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1192{
1193 int retval;
1194
1195 spin_lock_irq(&pdc_lock);
1196 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1197 __pa(&pdc_result), hpa);
1198 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1199 spin_unlock_irq(&pdc_lock);
1200
1201 return retval;
1202}
1203
1204/**
1205 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1206 * @num_entries: The return value.
1207 * @cell_num: The target cell.
1208 *
1209 * This PDC function returns the number of entries in the specified cell's
1210 * interrupt table.
1211 */
1212int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1213{
1214 int retval;
1215
1216 spin_lock_irq(&pdc_lock);
1217 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1218 __pa(pdc_result), cell_num);
1219 *num_entries = pdc_result[0];
1220 spin_unlock_irq(&pdc_lock);
1221
1222 return retval;
1223}
1224
1225/**
1226 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1227 * @r_addr: The return buffer.
1228 * @cell_num: The target cell.
1229 *
1230 * This PDC function returns the actual interrupt table for the specified cell.
1231 */
1232int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1233{
1234 int retval;
1235
1236 spin_lock_irq(&pdc_lock);
1237 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1238 __pa(r_addr), cell_num);
1239 spin_unlock_irq(&pdc_lock);
1240
1241 return retval;
1242}
1243
1244/**
1245 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1246 * @actlen: The return buffer.
1247 * @mem_addr: Pointer to the memory buffer.
1248 * @count: The number of bytes to read from the buffer.
1249 * @offset: The offset with respect to the beginning of the buffer.
1250 *
1251 */
1252int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1253 unsigned long count, unsigned long offset)
1254{
1255 int retval;
1256
1257 spin_lock_irq(&pdc_lock);
1258 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1259 __pa(pdc_result2), count, offset);
1260 *actual_len = pdc_result[0];
1261 memcpy(mem_addr, pdc_result2, *actual_len);
1262 spin_unlock_irq(&pdc_lock);
1263
1264 return retval;
1265}
1266
1267/**
1268 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1269 * @pci_addr: PCI configuration space address for which the read request is being made.
1270 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1271 * @mem_addr: Pointer to return memory buffer.
1272 *
1273 */
1274int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1275{
1276 int retval;
1277 spin_lock_irq(&pdc_lock);
1278 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1279 __pa(pdc_result), pci_addr, pci_size);
1280 switch(pci_size) {
1281 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1282 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1283 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1284 }
1285 spin_unlock_irq(&pdc_lock);
1286
1287 return retval;
1288}
1289
1290/**
1291 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1292 * @pci_addr: PCI configuration space address for which the write request is being made.
1293 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1294 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1295 * written to PCI Config space.
1296 *
1297 */
1298int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1299{
1300 int retval;
1301
1302 spin_lock_irq(&pdc_lock);
1303 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1304 pci_addr, pci_size, val);
1305 spin_unlock_irq(&pdc_lock);
1306
1307 return retval;
1308}
1309#endif /* __LP64__ */
1310
1311
1312/***************** 32-bit real-mode calls ***********/
1313/* The struct below is used
1314 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1315 * real32_call_asm() then uses this stack in narrow real mode
1316 */
1317
1318struct narrow_stack {
1319 /* use int, not long which is 64 bits */
1320 unsigned int arg13;
1321 unsigned int arg12;
1322 unsigned int arg11;
1323 unsigned int arg10;
1324 unsigned int arg9;
1325 unsigned int arg8;
1326 unsigned int arg7;
1327 unsigned int arg6;
1328 unsigned int arg5;
1329 unsigned int arg4;
1330 unsigned int arg3;
1331 unsigned int arg2;
1332 unsigned int arg1;
1333 unsigned int arg0;
1334 unsigned int frame_marker[8];
1335 unsigned int sp;
1336 /* in reality, there's nearly 8k of stack after this */
1337};
1338
1339long real32_call(unsigned long fn, ...)
1340{
1341 va_list args;
1342 extern struct narrow_stack real_stack;
1343 extern unsigned long real32_call_asm(unsigned int *,
1344 unsigned int *,
1345 unsigned int);
1346
1347 va_start(args, fn);
1348 real_stack.arg0 = va_arg(args, unsigned int);
1349 real_stack.arg1 = va_arg(args, unsigned int);
1350 real_stack.arg2 = va_arg(args, unsigned int);
1351 real_stack.arg3 = va_arg(args, unsigned int);
1352 real_stack.arg4 = va_arg(args, unsigned int);
1353 real_stack.arg5 = va_arg(args, unsigned int);
1354 real_stack.arg6 = va_arg(args, unsigned int);
1355 real_stack.arg7 = va_arg(args, unsigned int);
1356 real_stack.arg8 = va_arg(args, unsigned int);
1357 real_stack.arg9 = va_arg(args, unsigned int);
1358 real_stack.arg10 = va_arg(args, unsigned int);
1359 real_stack.arg11 = va_arg(args, unsigned int);
1360 real_stack.arg12 = va_arg(args, unsigned int);
1361 real_stack.arg13 = va_arg(args, unsigned int);
1362 va_end(args);
1363
1364 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1365}
1366
1367#ifdef __LP64__
1368/***************** 64-bit real-mode calls ***********/
1369
1370struct wide_stack {
1371 unsigned long arg0;
1372 unsigned long arg1;
1373 unsigned long arg2;
1374 unsigned long arg3;
1375 unsigned long arg4;
1376 unsigned long arg5;
1377 unsigned long arg6;
1378 unsigned long arg7;
1379 unsigned long arg8;
1380 unsigned long arg9;
1381 unsigned long arg10;
1382 unsigned long arg11;
1383 unsigned long arg12;
1384 unsigned long arg13;
1385 unsigned long frame_marker[2]; /* rp, previous sp */
1386 unsigned long sp;
1387 /* in reality, there's nearly 8k of stack after this */
1388};
1389
1390long real64_call(unsigned long fn, ...)
1391{
1392 va_list args;
1393 extern struct wide_stack real64_stack;
1394 extern unsigned long real64_call_asm(unsigned long *,
1395 unsigned long *,
1396 unsigned long);
1397
1398 va_start(args, fn);
1399 real64_stack.arg0 = va_arg(args, unsigned long);
1400 real64_stack.arg1 = va_arg(args, unsigned long);
1401 real64_stack.arg2 = va_arg(args, unsigned long);
1402 real64_stack.arg3 = va_arg(args, unsigned long);
1403 real64_stack.arg4 = va_arg(args, unsigned long);
1404 real64_stack.arg5 = va_arg(args, unsigned long);
1405 real64_stack.arg6 = va_arg(args, unsigned long);
1406 real64_stack.arg7 = va_arg(args, unsigned long);
1407 real64_stack.arg8 = va_arg(args, unsigned long);
1408 real64_stack.arg9 = va_arg(args, unsigned long);
1409 real64_stack.arg10 = va_arg(args, unsigned long);
1410 real64_stack.arg11 = va_arg(args, unsigned long);
1411 real64_stack.arg12 = va_arg(args, unsigned long);
1412 real64_stack.arg13 = va_arg(args, unsigned long);
1413 va_end(args);
1414
1415 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1416}
1417
1418#endif /* __LP64__ */
1419