|  | /* | 
|  | *  Anticipatory & deadline i/o scheduler. | 
|  | * | 
|  | *  Copyright (C) 2002 Jens Axboe <axboe@kernel.dk> | 
|  | *                     Nick Piggin <nickpiggin@yahoo.com.au> | 
|  | * | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/elevator.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/interrupt.h> | 
|  |  | 
|  | #define REQ_SYNC	1 | 
|  | #define REQ_ASYNC	0 | 
|  |  | 
|  | /* | 
|  | * See Documentation/block/as-iosched.txt | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * max time before a read is submitted. | 
|  | */ | 
|  | #define default_read_expire (HZ / 8) | 
|  |  | 
|  | /* | 
|  | * ditto for writes, these limits are not hard, even | 
|  | * if the disk is capable of satisfying them. | 
|  | */ | 
|  | #define default_write_expire (HZ / 4) | 
|  |  | 
|  | /* | 
|  | * read_batch_expire describes how long we will allow a stream of reads to | 
|  | * persist before looking to see whether it is time to switch over to writes. | 
|  | */ | 
|  | #define default_read_batch_expire (HZ / 2) | 
|  |  | 
|  | /* | 
|  | * write_batch_expire describes how long we want a stream of writes to run for. | 
|  | * This is not a hard limit, but a target we set for the auto-tuning thingy. | 
|  | * See, the problem is: we can send a lot of writes to disk cache / TCQ in | 
|  | * a short amount of time... | 
|  | */ | 
|  | #define default_write_batch_expire (HZ / 8) | 
|  |  | 
|  | /* | 
|  | * max time we may wait to anticipate a read (default around 6ms) | 
|  | */ | 
|  | #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) | 
|  |  | 
|  | /* | 
|  | * Keep track of up to 20ms thinktimes. We can go as big as we like here, | 
|  | * however huge values tend to interfere and not decay fast enough. A program | 
|  | * might be in a non-io phase of operation. Waiting on user input for example, | 
|  | * or doing a lengthy computation. A small penalty can be justified there, and | 
|  | * will still catch out those processes that constantly have large thinktimes. | 
|  | */ | 
|  | #define MAX_THINKTIME (HZ/50UL) | 
|  |  | 
|  | /* Bits in as_io_context.state */ | 
|  | enum as_io_states { | 
|  | AS_TASK_RUNNING=0,	/* Process has not exited */ | 
|  | AS_TASK_IOSTARTED,	/* Process has started some IO */ | 
|  | AS_TASK_IORUNNING,	/* Process has completed some IO */ | 
|  | }; | 
|  |  | 
|  | enum anticipation_status { | 
|  | ANTIC_OFF=0,		/* Not anticipating (normal operation)	*/ | 
|  | ANTIC_WAIT_REQ,		/* The last read has not yet completed  */ | 
|  | ANTIC_WAIT_NEXT,	/* Currently anticipating a request vs | 
|  | last read (which has completed) */ | 
|  | ANTIC_FINISHED,		/* Anticipating but have found a candidate | 
|  | * or timed out */ | 
|  | }; | 
|  |  | 
|  | struct as_data { | 
|  | /* | 
|  | * run time data | 
|  | */ | 
|  |  | 
|  | struct request_queue *q;	/* the "owner" queue */ | 
|  |  | 
|  | /* | 
|  | * requests (as_rq s) are present on both sort_list and fifo_list | 
|  | */ | 
|  | struct rb_root sort_list[2]; | 
|  | struct list_head fifo_list[2]; | 
|  |  | 
|  | struct request *next_rq[2];	/* next in sort order */ | 
|  | sector_t last_sector[2];	/* last REQ_SYNC & REQ_ASYNC sectors */ | 
|  |  | 
|  | unsigned long exit_prob;	/* probability a task will exit while | 
|  | being waited on */ | 
|  | unsigned long exit_no_coop;	/* probablility an exited task will | 
|  | not be part of a later cooperating | 
|  | request */ | 
|  | unsigned long new_ttime_total; 	/* mean thinktime on new proc */ | 
|  | unsigned long new_ttime_mean; | 
|  | u64 new_seek_total;		/* mean seek on new proc */ | 
|  | sector_t new_seek_mean; | 
|  |  | 
|  | unsigned long current_batch_expires; | 
|  | unsigned long last_check_fifo[2]; | 
|  | int changed_batch;		/* 1: waiting for old batch to end */ | 
|  | int new_batch;			/* 1: waiting on first read complete */ | 
|  | int batch_data_dir;		/* current batch REQ_SYNC / REQ_ASYNC */ | 
|  | int write_batch_count;		/* max # of reqs in a write batch */ | 
|  | int current_write_count;	/* how many requests left this batch */ | 
|  | int write_batch_idled;		/* has the write batch gone idle? */ | 
|  |  | 
|  | enum anticipation_status antic_status; | 
|  | unsigned long antic_start;	/* jiffies: when it started */ | 
|  | struct timer_list antic_timer;	/* anticipatory scheduling timer */ | 
|  | struct work_struct antic_work;	/* Deferred unplugging */ | 
|  | struct io_context *io_context;	/* Identify the expected process */ | 
|  | int ioc_finished; /* IO associated with io_context is finished */ | 
|  | int nr_dispatched; | 
|  |  | 
|  | /* | 
|  | * settings that change how the i/o scheduler behaves | 
|  | */ | 
|  | unsigned long fifo_expire[2]; | 
|  | unsigned long batch_expire[2]; | 
|  | unsigned long antic_expire; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * per-request data. | 
|  | */ | 
|  | enum arq_state { | 
|  | AS_RQ_NEW=0,		/* New - not referenced and not on any lists */ | 
|  | AS_RQ_QUEUED,		/* In the request queue. It belongs to the | 
|  | scheduler */ | 
|  | AS_RQ_DISPATCHED,	/* On the dispatch list. It belongs to the | 
|  | driver now */ | 
|  | AS_RQ_PRESCHED,		/* Debug poisoning for requests being used */ | 
|  | AS_RQ_REMOVED, | 
|  | AS_RQ_MERGED, | 
|  | AS_RQ_POSTSCHED,	/* when they shouldn't be */ | 
|  | }; | 
|  |  | 
|  | #define RQ_IOC(rq)	((struct io_context *) (rq)->elevator_private) | 
|  | #define RQ_STATE(rq)	((enum arq_state)(rq)->elevator_private2) | 
|  | #define RQ_SET_STATE(rq, state)	((rq)->elevator_private2 = (void *) state) | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned long, ioc_count); | 
|  | static struct completion *ioc_gone; | 
|  | static DEFINE_SPINLOCK(ioc_gone_lock); | 
|  |  | 
|  | static void as_move_to_dispatch(struct as_data *ad, struct request *rq); | 
|  | static void as_antic_stop(struct as_data *ad); | 
|  |  | 
|  | /* | 
|  | * IO Context helper functions | 
|  | */ | 
|  |  | 
|  | /* Called to deallocate the as_io_context */ | 
|  | static void free_as_io_context(struct as_io_context *aic) | 
|  | { | 
|  | kfree(aic); | 
|  | elv_ioc_count_dec(ioc_count); | 
|  | if (ioc_gone) { | 
|  | /* | 
|  | * AS scheduler is exiting, grab exit lock and check | 
|  | * the pending io context count. If it hits zero, | 
|  | * complete ioc_gone and set it back to NULL. | 
|  | */ | 
|  | spin_lock(&ioc_gone_lock); | 
|  | if (ioc_gone && !elv_ioc_count_read(ioc_count)) { | 
|  | complete(ioc_gone); | 
|  | ioc_gone = NULL; | 
|  | } | 
|  | spin_unlock(&ioc_gone_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void as_trim(struct io_context *ioc) | 
|  | { | 
|  | spin_lock_irq(&ioc->lock); | 
|  | if (ioc->aic) | 
|  | free_as_io_context(ioc->aic); | 
|  | ioc->aic = NULL; | 
|  | spin_unlock_irq(&ioc->lock); | 
|  | } | 
|  |  | 
|  | /* Called when the task exits */ | 
|  | static void exit_as_io_context(struct as_io_context *aic) | 
|  | { | 
|  | WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); | 
|  | clear_bit(AS_TASK_RUNNING, &aic->state); | 
|  | } | 
|  |  | 
|  | static struct as_io_context *alloc_as_io_context(void) | 
|  | { | 
|  | struct as_io_context *ret; | 
|  |  | 
|  | ret = kmalloc(sizeof(*ret), GFP_ATOMIC); | 
|  | if (ret) { | 
|  | ret->dtor = free_as_io_context; | 
|  | ret->exit = exit_as_io_context; | 
|  | ret->state = 1 << AS_TASK_RUNNING; | 
|  | atomic_set(&ret->nr_queued, 0); | 
|  | atomic_set(&ret->nr_dispatched, 0); | 
|  | spin_lock_init(&ret->lock); | 
|  | ret->ttime_total = 0; | 
|  | ret->ttime_samples = 0; | 
|  | ret->ttime_mean = 0; | 
|  | ret->seek_total = 0; | 
|  | ret->seek_samples = 0; | 
|  | ret->seek_mean = 0; | 
|  | elv_ioc_count_inc(ioc_count); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the current task has no AS IO context then create one and initialise it. | 
|  | * Then take a ref on the task's io context and return it. | 
|  | */ | 
|  | static struct io_context *as_get_io_context(int node) | 
|  | { | 
|  | struct io_context *ioc = get_io_context(GFP_ATOMIC, node); | 
|  | if (ioc && !ioc->aic) { | 
|  | ioc->aic = alloc_as_io_context(); | 
|  | if (!ioc->aic) { | 
|  | put_io_context(ioc); | 
|  | ioc = NULL; | 
|  | } | 
|  | } | 
|  | return ioc; | 
|  | } | 
|  |  | 
|  | static void as_put_io_context(struct request *rq) | 
|  | { | 
|  | struct as_io_context *aic; | 
|  |  | 
|  | if (unlikely(!RQ_IOC(rq))) | 
|  | return; | 
|  |  | 
|  | aic = RQ_IOC(rq)->aic; | 
|  |  | 
|  | if (rq_is_sync(rq) && aic) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&aic->lock, flags); | 
|  | set_bit(AS_TASK_IORUNNING, &aic->state); | 
|  | aic->last_end_request = jiffies; | 
|  | spin_unlock_irqrestore(&aic->lock, flags); | 
|  | } | 
|  |  | 
|  | put_io_context(RQ_IOC(rq)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rb tree support functions | 
|  | */ | 
|  | #define RQ_RB_ROOT(ad, rq)	(&(ad)->sort_list[rq_is_sync((rq))]) | 
|  |  | 
|  | static void as_add_rq_rb(struct as_data *ad, struct request *rq) | 
|  | { | 
|  | struct request *alias; | 
|  |  | 
|  | while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) { | 
|  | as_move_to_dispatch(ad, alias); | 
|  | as_antic_stop(ad); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void as_del_rq_rb(struct as_data *ad, struct request *rq) | 
|  | { | 
|  | elv_rb_del(RQ_RB_ROOT(ad, rq), rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IO Scheduler proper | 
|  | */ | 
|  |  | 
|  | #define MAXBACK (1024 * 1024)	/* | 
|  | * Maximum distance the disk will go backward | 
|  | * for a request. | 
|  | */ | 
|  |  | 
|  | #define BACK_PENALTY	2 | 
|  |  | 
|  | /* | 
|  | * as_choose_req selects the preferred one of two requests of the same data_dir | 
|  | * ignoring time - eg. timeouts, which is the job of as_dispatch_request | 
|  | */ | 
|  | static struct request * | 
|  | as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2) | 
|  | { | 
|  | int data_dir; | 
|  | sector_t last, s1, s2, d1, d2; | 
|  | int r1_wrap=0, r2_wrap=0;	/* requests are behind the disk head */ | 
|  | const sector_t maxback = MAXBACK; | 
|  |  | 
|  | if (rq1 == NULL || rq1 == rq2) | 
|  | return rq2; | 
|  | if (rq2 == NULL) | 
|  | return rq1; | 
|  |  | 
|  | data_dir = rq_is_sync(rq1); | 
|  |  | 
|  | last = ad->last_sector[data_dir]; | 
|  | s1 = rq1->sector; | 
|  | s2 = rq2->sector; | 
|  |  | 
|  | BUG_ON(data_dir != rq_is_sync(rq2)); | 
|  |  | 
|  | /* | 
|  | * Strict one way elevator _except_ in the case where we allow | 
|  | * short backward seeks which are biased as twice the cost of a | 
|  | * similar forward seek. | 
|  | */ | 
|  | if (s1 >= last) | 
|  | d1 = s1 - last; | 
|  | else if (s1+maxback >= last) | 
|  | d1 = (last - s1)*BACK_PENALTY; | 
|  | else { | 
|  | r1_wrap = 1; | 
|  | d1 = 0; /* shut up, gcc */ | 
|  | } | 
|  |  | 
|  | if (s2 >= last) | 
|  | d2 = s2 - last; | 
|  | else if (s2+maxback >= last) | 
|  | d2 = (last - s2)*BACK_PENALTY; | 
|  | else { | 
|  | r2_wrap = 1; | 
|  | d2 = 0; | 
|  | } | 
|  |  | 
|  | /* Found required data */ | 
|  | if (!r1_wrap && r2_wrap) | 
|  | return rq1; | 
|  | else if (!r2_wrap && r1_wrap) | 
|  | return rq2; | 
|  | else if (r1_wrap && r2_wrap) { | 
|  | /* both behind the head */ | 
|  | if (s1 <= s2) | 
|  | return rq1; | 
|  | else | 
|  | return rq2; | 
|  | } | 
|  |  | 
|  | /* Both requests in front of the head */ | 
|  | if (d1 < d2) | 
|  | return rq1; | 
|  | else if (d2 < d1) | 
|  | return rq2; | 
|  | else { | 
|  | if (s1 >= s2) | 
|  | return rq1; | 
|  | else | 
|  | return rq2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_find_next_rq finds the next request after @prev in elevator order. | 
|  | * this with as_choose_req form the basis for how the scheduler chooses | 
|  | * what request to process next. Anticipation works on top of this. | 
|  | */ | 
|  | static struct request * | 
|  | as_find_next_rq(struct as_data *ad, struct request *last) | 
|  | { | 
|  | struct rb_node *rbnext = rb_next(&last->rb_node); | 
|  | struct rb_node *rbprev = rb_prev(&last->rb_node); | 
|  | struct request *next = NULL, *prev = NULL; | 
|  |  | 
|  | BUG_ON(RB_EMPTY_NODE(&last->rb_node)); | 
|  |  | 
|  | if (rbprev) | 
|  | prev = rb_entry_rq(rbprev); | 
|  |  | 
|  | if (rbnext) | 
|  | next = rb_entry_rq(rbnext); | 
|  | else { | 
|  | const int data_dir = rq_is_sync(last); | 
|  |  | 
|  | rbnext = rb_first(&ad->sort_list[data_dir]); | 
|  | if (rbnext && rbnext != &last->rb_node) | 
|  | next = rb_entry_rq(rbnext); | 
|  | } | 
|  |  | 
|  | return as_choose_req(ad, next, prev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * anticipatory scheduling functions follow | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * as_antic_expired tells us when we have anticipated too long. | 
|  | * The funny "absolute difference" math on the elapsed time is to handle | 
|  | * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. | 
|  | */ | 
|  | static int as_antic_expired(struct as_data *ad) | 
|  | { | 
|  | long delta_jif; | 
|  |  | 
|  | delta_jif = jiffies - ad->antic_start; | 
|  | if (unlikely(delta_jif < 0)) | 
|  | delta_jif = -delta_jif; | 
|  | if (delta_jif < ad->antic_expire) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_antic_waitnext starts anticipating that a nice request will soon be | 
|  | * submitted. See also as_antic_waitreq | 
|  | */ | 
|  | static void as_antic_waitnext(struct as_data *ad) | 
|  | { | 
|  | unsigned long timeout; | 
|  |  | 
|  | BUG_ON(ad->antic_status != ANTIC_OFF | 
|  | && ad->antic_status != ANTIC_WAIT_REQ); | 
|  |  | 
|  | timeout = ad->antic_start + ad->antic_expire; | 
|  |  | 
|  | mod_timer(&ad->antic_timer, timeout); | 
|  |  | 
|  | ad->antic_status = ANTIC_WAIT_NEXT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_antic_waitreq starts anticipating. We don't start timing the anticipation | 
|  | * until the request that we're anticipating on has finished. This means we | 
|  | * are timing from when the candidate process wakes up hopefully. | 
|  | */ | 
|  | static void as_antic_waitreq(struct as_data *ad) | 
|  | { | 
|  | BUG_ON(ad->antic_status == ANTIC_FINISHED); | 
|  | if (ad->antic_status == ANTIC_OFF) { | 
|  | if (!ad->io_context || ad->ioc_finished) | 
|  | as_antic_waitnext(ad); | 
|  | else | 
|  | ad->antic_status = ANTIC_WAIT_REQ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called directly by the functions in this file to stop anticipation. | 
|  | * We kill the timer and schedule a call to the request_fn asap. | 
|  | */ | 
|  | static void as_antic_stop(struct as_data *ad) | 
|  | { | 
|  | int status = ad->antic_status; | 
|  |  | 
|  | if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { | 
|  | if (status == ANTIC_WAIT_NEXT) | 
|  | del_timer(&ad->antic_timer); | 
|  | ad->antic_status = ANTIC_FINISHED; | 
|  | /* see as_work_handler */ | 
|  | kblockd_schedule_work(ad->q, &ad->antic_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_antic_timeout is the timer function set by as_antic_waitnext. | 
|  | */ | 
|  | static void as_antic_timeout(unsigned long data) | 
|  | { | 
|  | struct request_queue *q = (struct request_queue *)data; | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(q->queue_lock, flags); | 
|  | if (ad->antic_status == ANTIC_WAIT_REQ | 
|  | || ad->antic_status == ANTIC_WAIT_NEXT) { | 
|  | struct as_io_context *aic; | 
|  | spin_lock(&ad->io_context->lock); | 
|  | aic = ad->io_context->aic; | 
|  |  | 
|  | ad->antic_status = ANTIC_FINISHED; | 
|  | kblockd_schedule_work(q, &ad->antic_work); | 
|  |  | 
|  | if (aic->ttime_samples == 0) { | 
|  | /* process anticipated on has exited or timed out*/ | 
|  | ad->exit_prob = (7*ad->exit_prob + 256)/8; | 
|  | } | 
|  | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | 
|  | /* process not "saved" by a cooperating request */ | 
|  | ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8; | 
|  | } | 
|  | spin_unlock(&ad->io_context->lock); | 
|  | } | 
|  | spin_unlock_irqrestore(q->queue_lock, flags); | 
|  | } | 
|  |  | 
|  | static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, | 
|  | unsigned long ttime) | 
|  | { | 
|  | /* fixed point: 1.0 == 1<<8 */ | 
|  | if (aic->ttime_samples == 0) { | 
|  | ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; | 
|  | ad->new_ttime_mean = ad->new_ttime_total / 256; | 
|  |  | 
|  | ad->exit_prob = (7*ad->exit_prob)/8; | 
|  | } | 
|  | aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; | 
|  | aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; | 
|  | aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; | 
|  | } | 
|  |  | 
|  | static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, | 
|  | sector_t sdist) | 
|  | { | 
|  | u64 total; | 
|  |  | 
|  | if (aic->seek_samples == 0) { | 
|  | ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; | 
|  | ad->new_seek_mean = ad->new_seek_total / 256; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't allow the seek distance to get too large from the | 
|  | * odd fragment, pagein, etc | 
|  | */ | 
|  | if (aic->seek_samples <= 60) /* second&third seek */ | 
|  | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); | 
|  | else | 
|  | sdist = min(sdist, (aic->seek_mean * 4)	+ 2*1024*64); | 
|  |  | 
|  | aic->seek_samples = (7*aic->seek_samples + 256) / 8; | 
|  | aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; | 
|  | total = aic->seek_total + (aic->seek_samples/2); | 
|  | do_div(total, aic->seek_samples); | 
|  | aic->seek_mean = (sector_t)total; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_update_iohist keeps a decaying histogram of IO thinktimes, and | 
|  | * updates @aic->ttime_mean based on that. It is called when a new | 
|  | * request is queued. | 
|  | */ | 
|  | static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, | 
|  | struct request *rq) | 
|  | { | 
|  | int data_dir = rq_is_sync(rq); | 
|  | unsigned long thinktime = 0; | 
|  | sector_t seek_dist; | 
|  |  | 
|  | if (aic == NULL) | 
|  | return; | 
|  |  | 
|  | if (data_dir == REQ_SYNC) { | 
|  | unsigned long in_flight = atomic_read(&aic->nr_queued) | 
|  | + atomic_read(&aic->nr_dispatched); | 
|  | spin_lock(&aic->lock); | 
|  | if (test_bit(AS_TASK_IORUNNING, &aic->state) || | 
|  | test_bit(AS_TASK_IOSTARTED, &aic->state)) { | 
|  | /* Calculate read -> read thinktime */ | 
|  | if (test_bit(AS_TASK_IORUNNING, &aic->state) | 
|  | && in_flight == 0) { | 
|  | thinktime = jiffies - aic->last_end_request; | 
|  | thinktime = min(thinktime, MAX_THINKTIME-1); | 
|  | } | 
|  | as_update_thinktime(ad, aic, thinktime); | 
|  |  | 
|  | /* Calculate read -> read seek distance */ | 
|  | if (aic->last_request_pos < rq->sector) | 
|  | seek_dist = rq->sector - aic->last_request_pos; | 
|  | else | 
|  | seek_dist = aic->last_request_pos - rq->sector; | 
|  | as_update_seekdist(ad, aic, seek_dist); | 
|  | } | 
|  | aic->last_request_pos = rq->sector + rq->nr_sectors; | 
|  | set_bit(AS_TASK_IOSTARTED, &aic->state); | 
|  | spin_unlock(&aic->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_close_req decides if one request is considered "close" to the | 
|  | * previous one issued. | 
|  | */ | 
|  | static int as_close_req(struct as_data *ad, struct as_io_context *aic, | 
|  | struct request *rq) | 
|  | { | 
|  | unsigned long delay;	/* jiffies */ | 
|  | sector_t last = ad->last_sector[ad->batch_data_dir]; | 
|  | sector_t next = rq->sector; | 
|  | sector_t delta; /* acceptable close offset (in sectors) */ | 
|  | sector_t s; | 
|  |  | 
|  | if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) | 
|  | delay = 0; | 
|  | else | 
|  | delay = jiffies - ad->antic_start; | 
|  |  | 
|  | if (delay == 0) | 
|  | delta = 8192; | 
|  | else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire) | 
|  | delta = 8192 << delay; | 
|  | else | 
|  | return 1; | 
|  |  | 
|  | if ((last <= next + (delta>>1)) && (next <= last + delta)) | 
|  | return 1; | 
|  |  | 
|  | if (last < next) | 
|  | s = next - last; | 
|  | else | 
|  | s = last - next; | 
|  |  | 
|  | if (aic->seek_samples == 0) { | 
|  | /* | 
|  | * Process has just started IO. Use past statistics to | 
|  | * gauge success possibility | 
|  | */ | 
|  | if (ad->new_seek_mean > s) { | 
|  | /* this request is better than what we're expecting */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | if (aic->seek_mean > s) { | 
|  | /* this request is better than what we're expecting */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_can_break_anticipation returns true if we have been anticipating this | 
|  | * request. | 
|  | * | 
|  | * It also returns true if the process against which we are anticipating | 
|  | * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to | 
|  | * dispatch it ASAP, because we know that application will not be submitting | 
|  | * any new reads. | 
|  | * | 
|  | * If the task which has submitted the request has exited, break anticipation. | 
|  | * | 
|  | * If this task has queued some other IO, do not enter enticipation. | 
|  | */ | 
|  | static int as_can_break_anticipation(struct as_data *ad, struct request *rq) | 
|  | { | 
|  | struct io_context *ioc; | 
|  | struct as_io_context *aic; | 
|  |  | 
|  | ioc = ad->io_context; | 
|  | BUG_ON(!ioc); | 
|  | spin_lock(&ioc->lock); | 
|  |  | 
|  | if (rq && ioc == RQ_IOC(rq)) { | 
|  | /* request from same process */ | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (ad->ioc_finished && as_antic_expired(ad)) { | 
|  | /* | 
|  | * In this situation status should really be FINISHED, | 
|  | * however the timer hasn't had the chance to run yet. | 
|  | */ | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | aic = ioc->aic; | 
|  | if (!aic) { | 
|  | spin_unlock(&ioc->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (atomic_read(&aic->nr_queued) > 0) { | 
|  | /* process has more requests queued */ | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (atomic_read(&aic->nr_dispatched) > 0) { | 
|  | /* process has more requests dispatched */ | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) { | 
|  | /* | 
|  | * Found a close request that is not one of ours. | 
|  | * | 
|  | * This makes close requests from another process update | 
|  | * our IO history. Is generally useful when there are | 
|  | * two or more cooperating processes working in the same | 
|  | * area. | 
|  | */ | 
|  | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | 
|  | if (aic->ttime_samples == 0) | 
|  | ad->exit_prob = (7*ad->exit_prob + 256)/8; | 
|  |  | 
|  | ad->exit_no_coop = (7*ad->exit_no_coop)/8; | 
|  | } | 
|  |  | 
|  | as_update_iohist(ad, aic, rq); | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | 
|  | /* process anticipated on has exited */ | 
|  | if (aic->ttime_samples == 0) | 
|  | ad->exit_prob = (7*ad->exit_prob + 256)/8; | 
|  |  | 
|  | if (ad->exit_no_coop > 128) { | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (aic->ttime_samples == 0) { | 
|  | if (ad->new_ttime_mean > ad->antic_expire) { | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  | if (ad->exit_prob * ad->exit_no_coop > 128*256) { | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  | } else if (aic->ttime_mean > ad->antic_expire) { | 
|  | /* the process thinks too much between requests */ | 
|  | spin_unlock(&ioc->lock); | 
|  | return 1; | 
|  | } | 
|  | spin_unlock(&ioc->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_can_anticipate indicates whether we should either run rq | 
|  | * or keep anticipating a better request. | 
|  | */ | 
|  | static int as_can_anticipate(struct as_data *ad, struct request *rq) | 
|  | { | 
|  | #if 0 /* disable for now, we need to check tag level as well */ | 
|  | /* | 
|  | * SSD device without seek penalty, disable idling | 
|  | */ | 
|  | if (blk_queue_nonrot(ad->q)) axman | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | if (!ad->io_context) | 
|  | /* | 
|  | * Last request submitted was a write | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | if (ad->antic_status == ANTIC_FINISHED) | 
|  | /* | 
|  | * Don't restart if we have just finished. Run the next request | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | if (as_can_break_anticipation(ad, rq)) | 
|  | /* | 
|  | * This request is a good candidate. Don't keep anticipating, | 
|  | * run it. | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * OK from here, we haven't finished, and don't have a decent request! | 
|  | * Status is either ANTIC_OFF so start waiting, | 
|  | * ANTIC_WAIT_REQ so continue waiting for request to finish | 
|  | * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. | 
|  | */ | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_update_rq must be called whenever a request (rq) is added to | 
|  | * the sort_list. This function keeps caches up to date, and checks if the | 
|  | * request might be one we are "anticipating" | 
|  | */ | 
|  | static void as_update_rq(struct as_data *ad, struct request *rq) | 
|  | { | 
|  | const int data_dir = rq_is_sync(rq); | 
|  |  | 
|  | /* keep the next_rq cache up to date */ | 
|  | ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]); | 
|  |  | 
|  | /* | 
|  | * have we been anticipating this request? | 
|  | * or does it come from the same process as the one we are anticipating | 
|  | * for? | 
|  | */ | 
|  | if (ad->antic_status == ANTIC_WAIT_REQ | 
|  | || ad->antic_status == ANTIC_WAIT_NEXT) { | 
|  | if (as_can_break_anticipation(ad, rq)) | 
|  | as_antic_stop(ad); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gathers timings and resizes the write batch automatically | 
|  | */ | 
|  | static void update_write_batch(struct as_data *ad) | 
|  | { | 
|  | unsigned long batch = ad->batch_expire[REQ_ASYNC]; | 
|  | long write_time; | 
|  |  | 
|  | write_time = (jiffies - ad->current_batch_expires) + batch; | 
|  | if (write_time < 0) | 
|  | write_time = 0; | 
|  |  | 
|  | if (write_time > batch && !ad->write_batch_idled) { | 
|  | if (write_time > batch * 3) | 
|  | ad->write_batch_count /= 2; | 
|  | else | 
|  | ad->write_batch_count--; | 
|  | } else if (write_time < batch && ad->current_write_count == 0) { | 
|  | if (batch > write_time * 3) | 
|  | ad->write_batch_count *= 2; | 
|  | else | 
|  | ad->write_batch_count++; | 
|  | } | 
|  |  | 
|  | if (ad->write_batch_count < 1) | 
|  | ad->write_batch_count = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_completed_request is to be called when a request has completed and | 
|  | * returned something to the requesting process, be it an error or data. | 
|  | */ | 
|  | static void as_completed_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  |  | 
|  | WARN_ON(!list_empty(&rq->queuelist)); | 
|  |  | 
|  | if (RQ_STATE(rq) != AS_RQ_REMOVED) { | 
|  | WARN(1, "rq->state %d\n", RQ_STATE(rq)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ad->changed_batch && ad->nr_dispatched == 1) { | 
|  | ad->current_batch_expires = jiffies + | 
|  | ad->batch_expire[ad->batch_data_dir]; | 
|  | kblockd_schedule_work(q, &ad->antic_work); | 
|  | ad->changed_batch = 0; | 
|  |  | 
|  | if (ad->batch_data_dir == REQ_SYNC) | 
|  | ad->new_batch = 1; | 
|  | } | 
|  | WARN_ON(ad->nr_dispatched == 0); | 
|  | ad->nr_dispatched--; | 
|  |  | 
|  | /* | 
|  | * Start counting the batch from when a request of that direction is | 
|  | * actually serviced. This should help devices with big TCQ windows | 
|  | * and writeback caches | 
|  | */ | 
|  | if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) { | 
|  | update_write_batch(ad); | 
|  | ad->current_batch_expires = jiffies + | 
|  | ad->batch_expire[REQ_SYNC]; | 
|  | ad->new_batch = 0; | 
|  | } | 
|  |  | 
|  | if (ad->io_context == RQ_IOC(rq) && ad->io_context) { | 
|  | ad->antic_start = jiffies; | 
|  | ad->ioc_finished = 1; | 
|  | if (ad->antic_status == ANTIC_WAIT_REQ) { | 
|  | /* | 
|  | * We were waiting on this request, now anticipate | 
|  | * the next one | 
|  | */ | 
|  | as_antic_waitnext(ad); | 
|  | } | 
|  | } | 
|  |  | 
|  | as_put_io_context(rq); | 
|  | out: | 
|  | RQ_SET_STATE(rq, AS_RQ_POSTSCHED); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_remove_queued_request removes a request from the pre dispatch queue | 
|  | * without updating refcounts. It is expected the caller will drop the | 
|  | * reference unless it replaces the request at somepart of the elevator | 
|  | * (ie. the dispatch queue) | 
|  | */ | 
|  | static void as_remove_queued_request(struct request_queue *q, | 
|  | struct request *rq) | 
|  | { | 
|  | const int data_dir = rq_is_sync(rq); | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  | struct io_context *ioc; | 
|  |  | 
|  | WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED); | 
|  |  | 
|  | ioc = RQ_IOC(rq); | 
|  | if (ioc && ioc->aic) { | 
|  | BUG_ON(!atomic_read(&ioc->aic->nr_queued)); | 
|  | atomic_dec(&ioc->aic->nr_queued); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the "next_rq" cache if we are about to remove its | 
|  | * entry | 
|  | */ | 
|  | if (ad->next_rq[data_dir] == rq) | 
|  | ad->next_rq[data_dir] = as_find_next_rq(ad, rq); | 
|  |  | 
|  | rq_fifo_clear(rq); | 
|  | as_del_rq_rb(ad, rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_fifo_expired returns 0 if there are no expired requests on the fifo, | 
|  | * 1 otherwise.  It is ratelimited so that we only perform the check once per | 
|  | * `fifo_expire' interval.  Otherwise a large number of expired requests | 
|  | * would create a hopeless seekstorm. | 
|  | * | 
|  | * See as_antic_expired comment. | 
|  | */ | 
|  | static int as_fifo_expired(struct as_data *ad, int adir) | 
|  | { | 
|  | struct request *rq; | 
|  | long delta_jif; | 
|  |  | 
|  | delta_jif = jiffies - ad->last_check_fifo[adir]; | 
|  | if (unlikely(delta_jif < 0)) | 
|  | delta_jif = -delta_jif; | 
|  | if (delta_jif < ad->fifo_expire[adir]) | 
|  | return 0; | 
|  |  | 
|  | ad->last_check_fifo[adir] = jiffies; | 
|  |  | 
|  | if (list_empty(&ad->fifo_list[adir])) | 
|  | return 0; | 
|  |  | 
|  | rq = rq_entry_fifo(ad->fifo_list[adir].next); | 
|  |  | 
|  | return time_after(jiffies, rq_fifo_time(rq)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_batch_expired returns true if the current batch has expired. A batch | 
|  | * is a set of reads or a set of writes. | 
|  | */ | 
|  | static inline int as_batch_expired(struct as_data *ad) | 
|  | { | 
|  | if (ad->changed_batch || ad->new_batch) | 
|  | return 0; | 
|  |  | 
|  | if (ad->batch_data_dir == REQ_SYNC) | 
|  | /* TODO! add a check so a complete fifo gets written? */ | 
|  | return time_after(jiffies, ad->current_batch_expires); | 
|  |  | 
|  | return time_after(jiffies, ad->current_batch_expires) | 
|  | || ad->current_write_count == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * move an entry to dispatch queue | 
|  | */ | 
|  | static void as_move_to_dispatch(struct as_data *ad, struct request *rq) | 
|  | { | 
|  | const int data_dir = rq_is_sync(rq); | 
|  |  | 
|  | BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); | 
|  |  | 
|  | as_antic_stop(ad); | 
|  | ad->antic_status = ANTIC_OFF; | 
|  |  | 
|  | /* | 
|  | * This has to be set in order to be correctly updated by | 
|  | * as_find_next_rq | 
|  | */ | 
|  | ad->last_sector[data_dir] = rq->sector + rq->nr_sectors; | 
|  |  | 
|  | if (data_dir == REQ_SYNC) { | 
|  | struct io_context *ioc = RQ_IOC(rq); | 
|  | /* In case we have to anticipate after this */ | 
|  | copy_io_context(&ad->io_context, &ioc); | 
|  | } else { | 
|  | if (ad->io_context) { | 
|  | put_io_context(ad->io_context); | 
|  | ad->io_context = NULL; | 
|  | } | 
|  |  | 
|  | if (ad->current_write_count != 0) | 
|  | ad->current_write_count--; | 
|  | } | 
|  | ad->ioc_finished = 0; | 
|  |  | 
|  | ad->next_rq[data_dir] = as_find_next_rq(ad, rq); | 
|  |  | 
|  | /* | 
|  | * take it off the sort and fifo list, add to dispatch queue | 
|  | */ | 
|  | as_remove_queued_request(ad->q, rq); | 
|  | WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED); | 
|  |  | 
|  | elv_dispatch_sort(ad->q, rq); | 
|  |  | 
|  | RQ_SET_STATE(rq, AS_RQ_DISPATCHED); | 
|  | if (RQ_IOC(rq) && RQ_IOC(rq)->aic) | 
|  | atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched); | 
|  | ad->nr_dispatched++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_dispatch_request selects the best request according to | 
|  | * read/write expire, batch expire, etc, and moves it to the dispatch | 
|  | * queue. Returns 1 if a request was found, 0 otherwise. | 
|  | */ | 
|  | static int as_dispatch_request(struct request_queue *q, int force) | 
|  | { | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  | const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]); | 
|  | const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]); | 
|  | struct request *rq; | 
|  |  | 
|  | if (unlikely(force)) { | 
|  | /* | 
|  | * Forced dispatch, accounting is useless.  Reset | 
|  | * accounting states and dump fifo_lists.  Note that | 
|  | * batch_data_dir is reset to REQ_SYNC to avoid | 
|  | * screwing write batch accounting as write batch | 
|  | * accounting occurs on W->R transition. | 
|  | */ | 
|  | int dispatched = 0; | 
|  |  | 
|  | ad->batch_data_dir = REQ_SYNC; | 
|  | ad->changed_batch = 0; | 
|  | ad->new_batch = 0; | 
|  |  | 
|  | while (ad->next_rq[REQ_SYNC]) { | 
|  | as_move_to_dispatch(ad, ad->next_rq[REQ_SYNC]); | 
|  | dispatched++; | 
|  | } | 
|  | ad->last_check_fifo[REQ_SYNC] = jiffies; | 
|  |  | 
|  | while (ad->next_rq[REQ_ASYNC]) { | 
|  | as_move_to_dispatch(ad, ad->next_rq[REQ_ASYNC]); | 
|  | dispatched++; | 
|  | } | 
|  | ad->last_check_fifo[REQ_ASYNC] = jiffies; | 
|  |  | 
|  | return dispatched; | 
|  | } | 
|  |  | 
|  | /* Signal that the write batch was uncontended, so we can't time it */ | 
|  | if (ad->batch_data_dir == REQ_ASYNC && !reads) { | 
|  | if (ad->current_write_count == 0 || !writes) | 
|  | ad->write_batch_idled = 1; | 
|  | } | 
|  |  | 
|  | if (!(reads || writes) | 
|  | || ad->antic_status == ANTIC_WAIT_REQ | 
|  | || ad->antic_status == ANTIC_WAIT_NEXT | 
|  | || ad->changed_batch) | 
|  | return 0; | 
|  |  | 
|  | if (!(reads && writes && as_batch_expired(ad))) { | 
|  | /* | 
|  | * batch is still running or no reads or no writes | 
|  | */ | 
|  | rq = ad->next_rq[ad->batch_data_dir]; | 
|  |  | 
|  | if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) { | 
|  | if (as_fifo_expired(ad, REQ_SYNC)) | 
|  | goto fifo_expired; | 
|  |  | 
|  | if (as_can_anticipate(ad, rq)) { | 
|  | as_antic_waitreq(ad); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rq) { | 
|  | /* we have a "next request" */ | 
|  | if (reads && !writes) | 
|  | ad->current_batch_expires = | 
|  | jiffies + ad->batch_expire[REQ_SYNC]; | 
|  | goto dispatch_request; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * at this point we are not running a batch. select the appropriate | 
|  | * data direction (read / write) | 
|  | */ | 
|  |  | 
|  | if (reads) { | 
|  | BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC])); | 
|  |  | 
|  | if (writes && ad->batch_data_dir == REQ_SYNC) | 
|  | /* | 
|  | * Last batch was a read, switch to writes | 
|  | */ | 
|  | goto dispatch_writes; | 
|  |  | 
|  | if (ad->batch_data_dir == REQ_ASYNC) { | 
|  | WARN_ON(ad->new_batch); | 
|  | ad->changed_batch = 1; | 
|  | } | 
|  | ad->batch_data_dir = REQ_SYNC; | 
|  | rq = rq_entry_fifo(ad->fifo_list[REQ_SYNC].next); | 
|  | ad->last_check_fifo[ad->batch_data_dir] = jiffies; | 
|  | goto dispatch_request; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the last batch was a read | 
|  | */ | 
|  |  | 
|  | if (writes) { | 
|  | dispatch_writes: | 
|  | BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC])); | 
|  |  | 
|  | if (ad->batch_data_dir == REQ_SYNC) { | 
|  | ad->changed_batch = 1; | 
|  |  | 
|  | /* | 
|  | * new_batch might be 1 when the queue runs out of | 
|  | * reads. A subsequent submission of a write might | 
|  | * cause a change of batch before the read is finished. | 
|  | */ | 
|  | ad->new_batch = 0; | 
|  | } | 
|  | ad->batch_data_dir = REQ_ASYNC; | 
|  | ad->current_write_count = ad->write_batch_count; | 
|  | ad->write_batch_idled = 0; | 
|  | rq = rq_entry_fifo(ad->fifo_list[REQ_ASYNC].next); | 
|  | ad->last_check_fifo[REQ_ASYNC] = jiffies; | 
|  | goto dispatch_request; | 
|  | } | 
|  |  | 
|  | BUG(); | 
|  | return 0; | 
|  |  | 
|  | dispatch_request: | 
|  | /* | 
|  | * If a request has expired, service it. | 
|  | */ | 
|  |  | 
|  | if (as_fifo_expired(ad, ad->batch_data_dir)) { | 
|  | fifo_expired: | 
|  | rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | 
|  | } | 
|  |  | 
|  | if (ad->changed_batch) { | 
|  | WARN_ON(ad->new_batch); | 
|  |  | 
|  | if (ad->nr_dispatched) | 
|  | return 0; | 
|  |  | 
|  | if (ad->batch_data_dir == REQ_ASYNC) | 
|  | ad->current_batch_expires = jiffies + | 
|  | ad->batch_expire[REQ_ASYNC]; | 
|  | else | 
|  | ad->new_batch = 1; | 
|  |  | 
|  | ad->changed_batch = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rq is the selected appropriate request. | 
|  | */ | 
|  | as_move_to_dispatch(ad, rq); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add rq to rbtree and fifo | 
|  | */ | 
|  | static void as_add_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  | int data_dir; | 
|  |  | 
|  | RQ_SET_STATE(rq, AS_RQ_NEW); | 
|  |  | 
|  | data_dir = rq_is_sync(rq); | 
|  |  | 
|  | rq->elevator_private = as_get_io_context(q->node); | 
|  |  | 
|  | if (RQ_IOC(rq)) { | 
|  | as_update_iohist(ad, RQ_IOC(rq)->aic, rq); | 
|  | atomic_inc(&RQ_IOC(rq)->aic->nr_queued); | 
|  | } | 
|  |  | 
|  | as_add_rq_rb(ad, rq); | 
|  |  | 
|  | /* | 
|  | * set expire time and add to fifo list | 
|  | */ | 
|  | rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]); | 
|  | list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]); | 
|  |  | 
|  | as_update_rq(ad, rq); /* keep state machine up to date */ | 
|  | RQ_SET_STATE(rq, AS_RQ_QUEUED); | 
|  | } | 
|  |  | 
|  | static void as_activate_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED); | 
|  | RQ_SET_STATE(rq, AS_RQ_REMOVED); | 
|  | if (RQ_IOC(rq) && RQ_IOC(rq)->aic) | 
|  | atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched); | 
|  | } | 
|  |  | 
|  | static void as_deactivate_request(struct request_queue *q, struct request *rq) | 
|  | { | 
|  | WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED); | 
|  | RQ_SET_STATE(rq, AS_RQ_DISPATCHED); | 
|  | if (RQ_IOC(rq) && RQ_IOC(rq)->aic) | 
|  | atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as_queue_empty tells us if there are requests left in the device. It may | 
|  | * not be the case that a driver can get the next request even if the queue | 
|  | * is not empty - it is used in the block layer to check for plugging and | 
|  | * merging opportunities | 
|  | */ | 
|  | static int as_queue_empty(struct request_queue *q) | 
|  | { | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  |  | 
|  | return list_empty(&ad->fifo_list[REQ_ASYNC]) | 
|  | && list_empty(&ad->fifo_list[REQ_SYNC]); | 
|  | } | 
|  |  | 
|  | static int | 
|  | as_merge(struct request_queue *q, struct request **req, struct bio *bio) | 
|  | { | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  | sector_t rb_key = bio->bi_sector + bio_sectors(bio); | 
|  | struct request *__rq; | 
|  |  | 
|  | /* | 
|  | * check for front merge | 
|  | */ | 
|  | __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key); | 
|  | if (__rq && elv_rq_merge_ok(__rq, bio)) { | 
|  | *req = __rq; | 
|  | return ELEVATOR_FRONT_MERGE; | 
|  | } | 
|  |  | 
|  | return ELEVATOR_NO_MERGE; | 
|  | } | 
|  |  | 
|  | static void as_merged_request(struct request_queue *q, struct request *req, | 
|  | int type) | 
|  | { | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  |  | 
|  | /* | 
|  | * if the merge was a front merge, we need to reposition request | 
|  | */ | 
|  | if (type == ELEVATOR_FRONT_MERGE) { | 
|  | as_del_rq_rb(ad, req); | 
|  | as_add_rq_rb(ad, req); | 
|  | /* | 
|  | * Note! At this stage of this and the next function, our next | 
|  | * request may not be optimal - eg the request may have "grown" | 
|  | * behind the disk head. We currently don't bother adjusting. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void as_merged_requests(struct request_queue *q, struct request *req, | 
|  | struct request *next) | 
|  | { | 
|  | /* | 
|  | * if next expires before rq, assign its expire time to arq | 
|  | * and move into next position (next will be deleted) in fifo | 
|  | */ | 
|  | if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) { | 
|  | if (time_before(rq_fifo_time(next), rq_fifo_time(req))) { | 
|  | list_move(&req->queuelist, &next->queuelist); | 
|  | rq_set_fifo_time(req, rq_fifo_time(next)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kill knowledge of next, this one is a goner | 
|  | */ | 
|  | as_remove_queued_request(q, next); | 
|  | as_put_io_context(next); | 
|  |  | 
|  | RQ_SET_STATE(next, AS_RQ_MERGED); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is executed in a "deferred" process context, by kblockd. It calls the | 
|  | * driver's request_fn so the driver can submit that request. | 
|  | * | 
|  | * IMPORTANT! This guy will reenter the elevator, so set up all queue global | 
|  | * state before calling, and don't rely on any state over calls. | 
|  | * | 
|  | * FIXME! dispatch queue is not a queue at all! | 
|  | */ | 
|  | static void as_work_handler(struct work_struct *work) | 
|  | { | 
|  | struct as_data *ad = container_of(work, struct as_data, antic_work); | 
|  | struct request_queue *q = ad->q; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(q->queue_lock, flags); | 
|  | blk_start_queueing(q); | 
|  | spin_unlock_irqrestore(q->queue_lock, flags); | 
|  | } | 
|  |  | 
|  | static int as_may_queue(struct request_queue *q, int rw) | 
|  | { | 
|  | int ret = ELV_MQUEUE_MAY; | 
|  | struct as_data *ad = q->elevator->elevator_data; | 
|  | struct io_context *ioc; | 
|  | if (ad->antic_status == ANTIC_WAIT_REQ || | 
|  | ad->antic_status == ANTIC_WAIT_NEXT) { | 
|  | ioc = as_get_io_context(q->node); | 
|  | if (ad->io_context == ioc) | 
|  | ret = ELV_MQUEUE_MUST; | 
|  | put_io_context(ioc); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void as_exit_queue(struct elevator_queue *e) | 
|  | { | 
|  | struct as_data *ad = e->elevator_data; | 
|  |  | 
|  | del_timer_sync(&ad->antic_timer); | 
|  | cancel_work_sync(&ad->antic_work); | 
|  |  | 
|  | BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC])); | 
|  | BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC])); | 
|  |  | 
|  | put_io_context(ad->io_context); | 
|  | kfree(ad); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initialize elevator private data (as_data). | 
|  | */ | 
|  | static void *as_init_queue(struct request_queue *q) | 
|  | { | 
|  | struct as_data *ad; | 
|  |  | 
|  | ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node); | 
|  | if (!ad) | 
|  | return NULL; | 
|  |  | 
|  | ad->q = q; /* Identify what queue the data belongs to */ | 
|  |  | 
|  | /* anticipatory scheduling helpers */ | 
|  | ad->antic_timer.function = as_antic_timeout; | 
|  | ad->antic_timer.data = (unsigned long)q; | 
|  | init_timer(&ad->antic_timer); | 
|  | INIT_WORK(&ad->antic_work, as_work_handler); | 
|  |  | 
|  | INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]); | 
|  | INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]); | 
|  | ad->sort_list[REQ_SYNC] = RB_ROOT; | 
|  | ad->sort_list[REQ_ASYNC] = RB_ROOT; | 
|  | ad->fifo_expire[REQ_SYNC] = default_read_expire; | 
|  | ad->fifo_expire[REQ_ASYNC] = default_write_expire; | 
|  | ad->antic_expire = default_antic_expire; | 
|  | ad->batch_expire[REQ_SYNC] = default_read_batch_expire; | 
|  | ad->batch_expire[REQ_ASYNC] = default_write_batch_expire; | 
|  |  | 
|  | ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; | 
|  | ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10; | 
|  | if (ad->write_batch_count < 2) | 
|  | ad->write_batch_count = 2; | 
|  |  | 
|  | return ad; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sysfs parts below | 
|  | */ | 
|  |  | 
|  | static ssize_t | 
|  | as_var_show(unsigned int var, char *page) | 
|  | { | 
|  | return sprintf(page, "%d\n", var); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | as_var_store(unsigned long *var, const char *page, size_t count) | 
|  | { | 
|  | char *p = (char *) page; | 
|  |  | 
|  | *var = simple_strtoul(p, &p, 10); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t est_time_show(struct elevator_queue *e, char *page) | 
|  | { | 
|  | struct as_data *ad = e->elevator_data; | 
|  | int pos = 0; | 
|  |  | 
|  | pos += sprintf(page+pos, "%lu %% exit probability\n", | 
|  | 100*ad->exit_prob/256); | 
|  | pos += sprintf(page+pos, "%lu %% probability of exiting without a " | 
|  | "cooperating process submitting IO\n", | 
|  | 100*ad->exit_no_coop/256); | 
|  | pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); | 
|  | pos += sprintf(page+pos, "%llu sectors new seek distance\n", | 
|  | (unsigned long long)ad->new_seek_mean); | 
|  |  | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | #define SHOW_FUNCTION(__FUNC, __VAR)				\ | 
|  | static ssize_t __FUNC(struct elevator_queue *e, char *page)	\ | 
|  | {								\ | 
|  | struct as_data *ad = e->elevator_data;			\ | 
|  | return as_var_show(jiffies_to_msecs((__VAR)), (page));	\ | 
|  | } | 
|  | SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]); | 
|  | SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]); | 
|  | SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire); | 
|  | SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]); | 
|  | SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]); | 
|  | #undef SHOW_FUNCTION | 
|  |  | 
|  | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)				\ | 
|  | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\ | 
|  | {									\ | 
|  | struct as_data *ad = e->elevator_data;				\ | 
|  | int ret = as_var_store(__PTR, (page), count);			\ | 
|  | if (*(__PTR) < (MIN))						\ | 
|  | *(__PTR) = (MIN);					\ | 
|  | else if (*(__PTR) > (MAX))					\ | 
|  | *(__PTR) = (MAX);					\ | 
|  | *(__PTR) = msecs_to_jiffies(*(__PTR));				\ | 
|  | return ret;							\ | 
|  | } | 
|  | STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX); | 
|  | STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX); | 
|  | STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX); | 
|  | STORE_FUNCTION(as_read_batch_expire_store, | 
|  | &ad->batch_expire[REQ_SYNC], 0, INT_MAX); | 
|  | STORE_FUNCTION(as_write_batch_expire_store, | 
|  | &ad->batch_expire[REQ_ASYNC], 0, INT_MAX); | 
|  | #undef STORE_FUNCTION | 
|  |  | 
|  | #define AS_ATTR(name) \ | 
|  | __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store) | 
|  |  | 
|  | static struct elv_fs_entry as_attrs[] = { | 
|  | __ATTR_RO(est_time), | 
|  | AS_ATTR(read_expire), | 
|  | AS_ATTR(write_expire), | 
|  | AS_ATTR(antic_expire), | 
|  | AS_ATTR(read_batch_expire), | 
|  | AS_ATTR(write_batch_expire), | 
|  | __ATTR_NULL | 
|  | }; | 
|  |  | 
|  | static struct elevator_type iosched_as = { | 
|  | .ops = { | 
|  | .elevator_merge_fn = 		as_merge, | 
|  | .elevator_merged_fn =		as_merged_request, | 
|  | .elevator_merge_req_fn =	as_merged_requests, | 
|  | .elevator_dispatch_fn =		as_dispatch_request, | 
|  | .elevator_add_req_fn =		as_add_request, | 
|  | .elevator_activate_req_fn =	as_activate_request, | 
|  | .elevator_deactivate_req_fn = 	as_deactivate_request, | 
|  | .elevator_queue_empty_fn =	as_queue_empty, | 
|  | .elevator_completed_req_fn =	as_completed_request, | 
|  | .elevator_former_req_fn =	elv_rb_former_request, | 
|  | .elevator_latter_req_fn =	elv_rb_latter_request, | 
|  | .elevator_may_queue_fn =	as_may_queue, | 
|  | .elevator_init_fn =		as_init_queue, | 
|  | .elevator_exit_fn =		as_exit_queue, | 
|  | .trim =				as_trim, | 
|  | }, | 
|  |  | 
|  | .elevator_attrs = as_attrs, | 
|  | .elevator_name = "anticipatory", | 
|  | .elevator_owner = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init as_init(void) | 
|  | { | 
|  | elv_register(&iosched_as); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit as_exit(void) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(all_gone); | 
|  | elv_unregister(&iosched_as); | 
|  | ioc_gone = &all_gone; | 
|  | /* ioc_gone's update must be visible before reading ioc_count */ | 
|  | smp_wmb(); | 
|  | if (elv_ioc_count_read(ioc_count)) | 
|  | wait_for_completion(&all_gone); | 
|  | synchronize_rcu(); | 
|  | } | 
|  |  | 
|  | module_init(as_init); | 
|  | module_exit(as_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Nick Piggin"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("anticipatory IO scheduler"); |