|  | /* Common capabilities, needed by capability.o and root_plug.o | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or modify | 
|  | *	it under the terms of the GNU General Public License as published by | 
|  | *	the Free Software Foundation; either version 2 of the License, or | 
|  | *	(at your option) any later version. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/netlink.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/xattr.h> | 
|  | #include <linux/hugetlb.h> | 
|  |  | 
|  | int cap_netlink_send(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | NETLINK_CB(skb).eff_cap = current->cap_effective; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(cap_netlink_send); | 
|  |  | 
|  | int cap_netlink_recv(struct sk_buff *skb, int cap) | 
|  | { | 
|  | if (!cap_raised(NETLINK_CB(skb).eff_cap, cap)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(cap_netlink_recv); | 
|  |  | 
|  | int cap_capable (struct task_struct *tsk, int cap) | 
|  | { | 
|  | /* Derived from include/linux/sched.h:capable. */ | 
|  | if (cap_raised(tsk->cap_effective, cap)) | 
|  | return 0; | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | int cap_settime(struct timespec *ts, struct timezone *tz) | 
|  | { | 
|  | if (!capable(CAP_SYS_TIME)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cap_ptrace (struct task_struct *parent, struct task_struct *child) | 
|  | { | 
|  | /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ | 
|  | if (!cap_issubset(child->cap_permitted, parent->cap_permitted) && | 
|  | !__capable(parent, CAP_SYS_PTRACE)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cap_capget (struct task_struct *target, kernel_cap_t *effective, | 
|  | kernel_cap_t *inheritable, kernel_cap_t *permitted) | 
|  | { | 
|  | /* Derived from kernel/capability.c:sys_capget. */ | 
|  | *effective = cap_t (target->cap_effective); | 
|  | *inheritable = cap_t (target->cap_inheritable); | 
|  | *permitted = cap_t (target->cap_permitted); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, | 
|  | kernel_cap_t *inheritable, kernel_cap_t *permitted) | 
|  | { | 
|  | /* Derived from kernel/capability.c:sys_capset. */ | 
|  | /* verify restrictions on target's new Inheritable set */ | 
|  | if (!cap_issubset (*inheritable, | 
|  | cap_combine (target->cap_inheritable, | 
|  | current->cap_permitted))) { | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* verify restrictions on target's new Permitted set */ | 
|  | if (!cap_issubset (*permitted, | 
|  | cap_combine (target->cap_permitted, | 
|  | current->cap_permitted))) { | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ | 
|  | if (!cap_issubset (*effective, *permitted)) { | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, | 
|  | kernel_cap_t *inheritable, kernel_cap_t *permitted) | 
|  | { | 
|  | target->cap_effective = *effective; | 
|  | target->cap_inheritable = *inheritable; | 
|  | target->cap_permitted = *permitted; | 
|  | } | 
|  |  | 
|  | int cap_bprm_set_security (struct linux_binprm *bprm) | 
|  | { | 
|  | /* Copied from fs/exec.c:prepare_binprm. */ | 
|  |  | 
|  | /* We don't have VFS support for capabilities yet */ | 
|  | cap_clear (bprm->cap_inheritable); | 
|  | cap_clear (bprm->cap_permitted); | 
|  | cap_clear (bprm->cap_effective); | 
|  |  | 
|  | /*  To support inheritance of root-permissions and suid-root | 
|  | *  executables under compatibility mode, we raise all three | 
|  | *  capability sets for the file. | 
|  | * | 
|  | *  If only the real uid is 0, we only raise the inheritable | 
|  | *  and permitted sets of the executable file. | 
|  | */ | 
|  |  | 
|  | if (!issecure (SECURE_NOROOT)) { | 
|  | if (bprm->e_uid == 0 || current->uid == 0) { | 
|  | cap_set_full (bprm->cap_inheritable); | 
|  | cap_set_full (bprm->cap_permitted); | 
|  | } | 
|  | if (bprm->e_uid == 0) | 
|  | cap_set_full (bprm->cap_effective); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) | 
|  | { | 
|  | /* Derived from fs/exec.c:compute_creds. */ | 
|  | kernel_cap_t new_permitted, working; | 
|  |  | 
|  | new_permitted = cap_intersect (bprm->cap_permitted, cap_bset); | 
|  | working = cap_intersect (bprm->cap_inheritable, | 
|  | current->cap_inheritable); | 
|  | new_permitted = cap_combine (new_permitted, working); | 
|  |  | 
|  | if (bprm->e_uid != current->uid || bprm->e_gid != current->gid || | 
|  | !cap_issubset (new_permitted, current->cap_permitted)) { | 
|  | set_dumpable(current->mm, suid_dumpable); | 
|  |  | 
|  | if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) { | 
|  | if (!capable(CAP_SETUID)) { | 
|  | bprm->e_uid = current->uid; | 
|  | bprm->e_gid = current->gid; | 
|  | } | 
|  | if (!capable (CAP_SETPCAP)) { | 
|  | new_permitted = cap_intersect (new_permitted, | 
|  | current->cap_permitted); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | current->suid = current->euid = current->fsuid = bprm->e_uid; | 
|  | current->sgid = current->egid = current->fsgid = bprm->e_gid; | 
|  |  | 
|  | /* For init, we want to retain the capabilities set | 
|  | * in the init_task struct. Thus we skip the usual | 
|  | * capability rules */ | 
|  | if (!is_init(current)) { | 
|  | current->cap_permitted = new_permitted; | 
|  | current->cap_effective = | 
|  | cap_intersect (new_permitted, bprm->cap_effective); | 
|  | } | 
|  |  | 
|  | /* AUD: Audit candidate if current->cap_effective is set */ | 
|  |  | 
|  | current->keep_capabilities = 0; | 
|  | } | 
|  |  | 
|  | int cap_bprm_secureexec (struct linux_binprm *bprm) | 
|  | { | 
|  | /* If/when this module is enhanced to incorporate capability | 
|  | bits on files, the test below should be extended to also perform a | 
|  | test between the old and new capability sets.  For now, | 
|  | it simply preserves the legacy decision algorithm used by | 
|  | the old userland. */ | 
|  | return (current->euid != current->uid || | 
|  | current->egid != current->gid); | 
|  | } | 
|  |  | 
|  | int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, | 
|  | size_t size, int flags) | 
|  | { | 
|  | if (!strncmp(name, XATTR_SECURITY_PREFIX, | 
|  | sizeof(XATTR_SECURITY_PREFIX) - 1)  && | 
|  | !capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cap_inode_removexattr(struct dentry *dentry, char *name) | 
|  | { | 
|  | if (!strncmp(name, XATTR_SECURITY_PREFIX, | 
|  | sizeof(XATTR_SECURITY_PREFIX) - 1)  && | 
|  | !capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* moved from kernel/sys.c. */ | 
|  | /* | 
|  | * cap_emulate_setxuid() fixes the effective / permitted capabilities of | 
|  | * a process after a call to setuid, setreuid, or setresuid. | 
|  | * | 
|  | *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of | 
|  | *  {r,e,s}uid != 0, the permitted and effective capabilities are | 
|  | *  cleared. | 
|  | * | 
|  | *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective | 
|  | *  capabilities of the process are cleared. | 
|  | * | 
|  | *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective | 
|  | *  capabilities are set to the permitted capabilities. | 
|  | * | 
|  | *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should | 
|  | *  never happen. | 
|  | * | 
|  | *  -astor | 
|  | * | 
|  | * cevans - New behaviour, Oct '99 | 
|  | * A process may, via prctl(), elect to keep its capabilities when it | 
|  | * calls setuid() and switches away from uid==0. Both permitted and | 
|  | * effective sets will be retained. | 
|  | * Without this change, it was impossible for a daemon to drop only some | 
|  | * of its privilege. The call to setuid(!=0) would drop all privileges! | 
|  | * Keeping uid 0 is not an option because uid 0 owns too many vital | 
|  | * files.. | 
|  | * Thanks to Olaf Kirch and Peter Benie for spotting this. | 
|  | */ | 
|  | static inline void cap_emulate_setxuid (int old_ruid, int old_euid, | 
|  | int old_suid) | 
|  | { | 
|  | if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) && | 
|  | (current->uid != 0 && current->euid != 0 && current->suid != 0) && | 
|  | !current->keep_capabilities) { | 
|  | cap_clear (current->cap_permitted); | 
|  | cap_clear (current->cap_effective); | 
|  | } | 
|  | if (old_euid == 0 && current->euid != 0) { | 
|  | cap_clear (current->cap_effective); | 
|  | } | 
|  | if (old_euid != 0 && current->euid == 0) { | 
|  | current->cap_effective = current->cap_permitted; | 
|  | } | 
|  | } | 
|  |  | 
|  | int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, | 
|  | int flags) | 
|  | { | 
|  | switch (flags) { | 
|  | case LSM_SETID_RE: | 
|  | case LSM_SETID_ID: | 
|  | case LSM_SETID_RES: | 
|  | /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */ | 
|  | if (!issecure (SECURE_NO_SETUID_FIXUP)) { | 
|  | cap_emulate_setxuid (old_ruid, old_euid, old_suid); | 
|  | } | 
|  | break; | 
|  | case LSM_SETID_FS: | 
|  | { | 
|  | uid_t old_fsuid = old_ruid; | 
|  |  | 
|  | /* Copied from kernel/sys.c:setfsuid. */ | 
|  |  | 
|  | /* | 
|  | * FIXME - is fsuser used for all CAP_FS_MASK capabilities? | 
|  | *          if not, we might be a bit too harsh here. | 
|  | */ | 
|  |  | 
|  | if (!issecure (SECURE_NO_SETUID_FIXUP)) { | 
|  | if (old_fsuid == 0 && current->fsuid != 0) { | 
|  | cap_t (current->cap_effective) &= | 
|  | ~CAP_FS_MASK; | 
|  | } | 
|  | if (old_fsuid != 0 && current->fsuid == 0) { | 
|  | cap_t (current->cap_effective) |= | 
|  | (cap_t (current->cap_permitted) & | 
|  | CAP_FS_MASK); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void cap_task_reparent_to_init (struct task_struct *p) | 
|  | { | 
|  | p->cap_effective = CAP_INIT_EFF_SET; | 
|  | p->cap_inheritable = CAP_INIT_INH_SET; | 
|  | p->cap_permitted = CAP_FULL_SET; | 
|  | p->keep_capabilities = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | int cap_syslog (int type) | 
|  | { | 
|  | if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cap_vm_enough_memory(long pages) | 
|  | { | 
|  | int cap_sys_admin = 0; | 
|  |  | 
|  | if (cap_capable(current, CAP_SYS_ADMIN) == 0) | 
|  | cap_sys_admin = 1; | 
|  | return __vm_enough_memory(pages, cap_sys_admin); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(cap_capable); | 
|  | EXPORT_SYMBOL(cap_settime); | 
|  | EXPORT_SYMBOL(cap_ptrace); | 
|  | EXPORT_SYMBOL(cap_capget); | 
|  | EXPORT_SYMBOL(cap_capset_check); | 
|  | EXPORT_SYMBOL(cap_capset_set); | 
|  | EXPORT_SYMBOL(cap_bprm_set_security); | 
|  | EXPORT_SYMBOL(cap_bprm_apply_creds); | 
|  | EXPORT_SYMBOL(cap_bprm_secureexec); | 
|  | EXPORT_SYMBOL(cap_inode_setxattr); | 
|  | EXPORT_SYMBOL(cap_inode_removexattr); | 
|  | EXPORT_SYMBOL(cap_task_post_setuid); | 
|  | EXPORT_SYMBOL(cap_task_reparent_to_init); | 
|  | EXPORT_SYMBOL(cap_syslog); | 
|  | EXPORT_SYMBOL(cap_vm_enough_memory); | 
|  |  | 
|  | MODULE_DESCRIPTION("Standard Linux Common Capabilities Security Module"); | 
|  | MODULE_LICENSE("GPL"); |