blob: 1f46a4a199da10edef2e0af80da2f3f2bed4550f [file] [log] [blame]
/*
* Driver for Nvidia TEGRA spi controller in slave mode.
*
* Copyright (c) 2011, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*#define DEBUG 1*/
/*#define VERBOSE_DEBUG 1*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/spi-tegra.h>
#include <mach/dma.h>
#include <mach/clk.h>
#include <mach/spi.h>
#define SLINK_COMMAND 0x000
#define SLINK_BIT_LENGTH(x) (((x) & 0x1f) << 0)
#define SLINK_WORD_SIZE(x) (((x) & 0x1f) << 5)
#define SLINK_BOTH_EN (1 << 10)
#define SLINK_CS_SW (1 << 11)
#define SLINK_CS_VALUE (1 << 12)
#define SLINK_CS_POLARITY (1 << 13)
#define SLINK_IDLE_SDA_DRIVE_LOW (0 << 16)
#define SLINK_IDLE_SDA_DRIVE_HIGH (1 << 16)
#define SLINK_IDLE_SDA_PULL_LOW (2 << 16)
#define SLINK_IDLE_SDA_PULL_HIGH (3 << 16)
#define SLINK_IDLE_SDA_MASK (3 << 16)
#define SLINK_CS_POLARITY1 (1 << 20)
#define SLINK_CK_SDA (1 << 21)
#define SLINK_CS_POLARITY2 (1 << 22)
#define SLINK_CS_POLARITY3 (1 << 23)
#define SLINK_IDLE_SCLK_DRIVE_LOW (0 << 24)
#define SLINK_IDLE_SCLK_DRIVE_HIGH (1 << 24)
#define SLINK_IDLE_SCLK_PULL_LOW (2 << 24)
#define SLINK_IDLE_SCLK_PULL_HIGH (3 << 24)
#define SLINK_IDLE_SCLK_MASK (3 << 24)
#define SLINK_M_S (1 << 28)
#define SLINK_WAIT (1 << 29)
#define SLINK_GO (1 << 30)
#define SLINK_ENB (1 << 31)
#define SLINK_COMMAND2 0x004
#define SLINK_LSBFE (1 << 0)
#define SLINK_SSOE (1 << 1)
#define SLINK_SPIE (1 << 4)
#define SLINK_BIDIROE (1 << 6)
#define SLINK_MODFEN (1 << 7)
#define SLINK_INT_SIZE(x) (((x) & 0x1f) << 8)
#define SLINK_CS_ACTIVE_BETWEEN (1 << 17)
#define SLINK_SS_EN_CS(x) (((x) & 0x3) << 18)
#define SLINK_SS_SETUP(x) (((x) & 0x3) << 20)
#define SLINK_FIFO_REFILLS_0 (0 << 22)
#define SLINK_FIFO_REFILLS_1 (1 << 22)
#define SLINK_FIFO_REFILLS_2 (2 << 22)
#define SLINK_FIFO_REFILLS_3 (3 << 22)
#define SLINK_FIFO_REFILLS_MASK (3 << 22)
#define SLINK_WAIT_PACK_INT(x) (((x) & 0x7) << 26)
#define SLINK_SPC0 (1 << 29)
#define SLINK_TXEN (1 << 30)
#define SLINK_RXEN (1 << 31)
#define SLINK_STATUS 0x008
#define SLINK_COUNT(val) (((val) >> 0) & 0x1f)
#define SLINK_WORD(val) (((val) >> 5) & 0x1f)
#define SLINK_BLK_CNT(val) (((val) >> 0) & 0xffff)
#define SLINK_MODF (1 << 16)
#define SLINK_RX_UNF (1 << 18)
#define SLINK_TX_OVF (1 << 19)
#define SLINK_TX_FULL (1 << 20)
#define SLINK_TX_EMPTY (1 << 21)
#define SLINK_RX_FULL (1 << 22)
#define SLINK_RX_EMPTY (1 << 23)
#define SLINK_TX_UNF (1 << 24)
#define SLINK_RX_OVF (1 << 25)
#define SLINK_TX_FLUSH (1 << 26)
#define SLINK_RX_FLUSH (1 << 27)
#define SLINK_SCLK (1 << 28)
#define SLINK_ERR (1 << 29)
#define SLINK_RDY (1 << 30)
#define SLINK_BSY (1 << 31)
#define SLINK_MAS_DATA 0x010
#define SLINK_SLAVE_DATA 0x014
#define SLINK_DMA_CTL 0x018
#define SLINK_DMA_BLOCK_SIZE(x) (((x) & 0xffff) << 0)
#define SLINK_TX_TRIG_1 (0 << 16)
#define SLINK_TX_TRIG_4 (1 << 16)
#define SLINK_TX_TRIG_8 (2 << 16)
#define SLINK_TX_TRIG_16 (3 << 16)
#define SLINK_TX_TRIG_MASK (3 << 16)
#define SLINK_RX_TRIG_1 (0 << 18)
#define SLINK_RX_TRIG_4 (1 << 18)
#define SLINK_RX_TRIG_8 (2 << 18)
#define SLINK_RX_TRIG_16 (3 << 18)
#define SLINK_RX_TRIG_MASK (3 << 18)
#define SLINK_PACKED (1 << 20)
#define SLINK_PACK_SIZE_4 (0 << 21)
#define SLINK_PACK_SIZE_8 (1 << 21)
#define SLINK_PACK_SIZE_16 (2 << 21)
#define SLINK_PACK_SIZE_32 (3 << 21)
#define SLINK_PACK_SIZE_MASK (3 << 21)
#define SLINK_IE_TXC (1 << 26)
#define SLINK_IE_RXC (1 << 27)
#define SLINK_DMA_EN (1 << 31)
#define SLINK_STATUS2 0x01c
#define SLINK_TX_FIFO_EMPTY_COUNT(val) (((val) & 0x3f) >> 0)
#define SLINK_RX_FIFO_FULL_COUNT(val) (((val) & 0x3f0000) >> 16)
#define SLINK_SS_HOLD_TIME(val) (((val) & 0xF) << 6)
#define SLINK_TX_FIFO 0x100
#define SLINK_RX_FIFO 0x180
#define DATA_DIR_TX (1 << 0)
#define DATA_DIR_RX (1 << 1)
#define SPI_FIFO_DEPTH 32
#define SLINK_DMA_TIMEOUT (msecs_to_jiffies(1000))
static const unsigned long spi_tegra_req_sels[] = {
TEGRA_DMA_REQ_SEL_SL2B1,
TEGRA_DMA_REQ_SEL_SL2B2,
TEGRA_DMA_REQ_SEL_SL2B3,
TEGRA_DMA_REQ_SEL_SL2B4,
#ifndef CONFIG_ARCH_TEGRA_2x_SOC
TEGRA_DMA_REQ_SEL_SL2B5,
TEGRA_DMA_REQ_SEL_SL2B6,
#endif
};
#define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
#define TX_FIFO_EMPTY_COUNT_MAX SLINK_TX_FIFO_EMPTY_COUNT(0x20)
#define RX_FIFO_FULL_COUNT_ZERO SLINK_RX_FIFO_FULL_COUNT(0)
#define SLINK_STATUS2_RESET \
(TX_FIFO_EMPTY_COUNT_MAX | \
RX_FIFO_FULL_COUNT_ZERO << 16)
#define MAX_CHIP_SELECT 4
#define SLINK_FIFO_DEPTH 4
struct spi_tegra_data {
struct spi_master *master;
struct platform_device *pdev;
spinlock_t lock;
char port_name[32];
struct clk *clk;
void __iomem *base;
unsigned long phys;
unsigned irq;
u32 cur_speed;
struct list_head queue;
struct spi_transfer *cur;
struct spi_device *cur_spi;
unsigned cur_pos;
unsigned cur_len;
unsigned words_per_32bit;
unsigned bytes_per_word;
unsigned curr_dma_words;
unsigned cur_direction;
bool is_dma_allowed;
struct tegra_dma_req rx_dma_req;
struct tegra_dma_channel *rx_dma;
u32 *rx_buf;
dma_addr_t rx_buf_phys;
unsigned cur_rx_pos;
struct tegra_dma_req tx_dma_req;
struct tegra_dma_channel *tx_dma;
u32 *tx_buf;
dma_addr_t tx_buf_phys;
unsigned cur_tx_pos;
unsigned dma_buf_size;
unsigned max_buf_size;
bool is_curr_dma_xfer;
bool is_clkon_always;
bool clk_state;
bool is_suspended;
bool is_hw_based_cs;
struct completion rx_dma_complete;
struct completion tx_dma_complete;
u32 rx_complete;
u32 tx_complete;
u32 tx_status;
u32 rx_status;
u32 status_reg;
bool is_packed;
unsigned long packed_size;
u32 command_reg;
u32 command2_reg;
u32 dma_control_reg;
u32 def_command_reg;
u32 def_command2_reg;
callback client_slave_ready_cb;
void *client_data;
struct spi_clk_parent *parent_clk_list;
int parent_clk_count;
unsigned long max_rate;
unsigned long max_parent_rate;
int min_div;
};
static inline unsigned long spi_tegra_readl(struct spi_tegra_data *tspi,
unsigned long reg)
{
if (!tspi->clk_state)
BUG();
return readl(tspi->base + reg);
}
static inline void spi_tegra_writel(struct spi_tegra_data *tspi,
unsigned long val, unsigned long reg)
{
if (!tspi->clk_state)
BUG();
writel(val, tspi->base + reg);
}
static void cancel_dma(struct tegra_dma_channel *dma_chan,
struct tegra_dma_req *req)
{
tegra_dma_cancel(dma_chan);
if (req->status == -TEGRA_DMA_REQ_ERROR_ABORTED)
req->complete(req);
}
int spi_tegra_register_callback(struct spi_device *spi, callback func,
void *client_data)
{
struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
if (!tspi || !func)
return -EINVAL;
tspi->client_slave_ready_cb = func;
tspi->client_data = client_data;
return 0;
}
EXPORT_SYMBOL_GPL(spi_tegra_register_callback);
static void spi_tegra_clear_status(struct spi_tegra_data *tspi)
{
unsigned long val;
unsigned long val_write = 0;
val = spi_tegra_readl(tspi, SLINK_STATUS);
val_write = SLINK_RDY;
if (val & SLINK_TX_OVF)
val_write |= SLINK_TX_OVF;
if (val & SLINK_RX_OVF)
val_write |= SLINK_RX_OVF;
if (val & SLINK_RX_UNF)
val_write |= SLINK_RX_UNF;
if (val & SLINK_TX_UNF)
val_write |= SLINK_TX_UNF;
spi_tegra_writel(tspi, val_write, SLINK_STATUS);
}
static unsigned long spi_tegra_get_packed_size(struct spi_tegra_data *tspi,
struct spi_transfer *t)
{
unsigned long val;
switch (tspi->bytes_per_word) {
case 0:
val = SLINK_PACK_SIZE_4;
break;
case 1:
val = SLINK_PACK_SIZE_8;
break;
case 2:
val = SLINK_PACK_SIZE_16;
break;
case 4:
val = SLINK_PACK_SIZE_32;
break;
default:
val = 0;
}
return val;
}
static unsigned spi_tegra_calculate_curr_xfer_param(
struct spi_device *spi, struct spi_tegra_data *tspi,
struct spi_transfer *t)
{
unsigned remain_len = t->len - tspi->cur_pos;
unsigned max_word;
unsigned bits_per_word ;
unsigned max_len;
unsigned total_fifo_words;
bits_per_word = t->bits_per_word ? t->bits_per_word :
spi->bits_per_word;
tspi->bytes_per_word = (bits_per_word - 1) / 8 + 1;
if (bits_per_word == 8 || bits_per_word == 16) {
tspi->is_packed = 1;
tspi->words_per_32bit = 32/bits_per_word;
} else {
tspi->is_packed = 0;
tspi->words_per_32bit = 1;
}
tspi->packed_size = spi_tegra_get_packed_size(tspi, t);
if (tspi->is_packed) {
max_len = min(remain_len, tspi->max_buf_size);
tspi->curr_dma_words = max_len/tspi->bytes_per_word;
total_fifo_words = remain_len/4;
} else {
max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
max_word = min(max_word, tspi->max_buf_size/4);
tspi->curr_dma_words = max_word;
total_fifo_words = remain_len/tspi->bytes_per_word;
}
/* All transfer should be in one shot */
if (tspi->curr_dma_words * tspi->bytes_per_word != t->len) {
dev_err(&tspi->pdev->dev, "The requested length can not be"
" transferred in one shot\n");
BUG();
}
return total_fifo_words;
}
static unsigned spi_tegra_fill_tx_fifo_from_client_txbuf(
struct spi_tegra_data *tspi, struct spi_transfer *t)
{
unsigned nbytes;
unsigned tx_empty_count;
unsigned long fifo_status;
u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
unsigned max_n_32bit;
unsigned i, count;
unsigned long x;
unsigned int written_words;
fifo_status = spi_tegra_readl(tspi, SLINK_STATUS2);
tx_empty_count = SLINK_TX_FIFO_EMPTY_COUNT(fifo_status);
if (tspi->is_packed) {
nbytes = tspi->curr_dma_words * tspi->bytes_per_word;
max_n_32bit = (min(nbytes, tx_empty_count*4) - 1)/4 + 1;
for (count = 0; count < max_n_32bit; ++count) {
x = 0;
for (i = 0; (i < 4) && nbytes; i++, nbytes--)
x |= (*tx_buf++) << (i*8);
spi_tegra_writel(tspi, x, SLINK_TX_FIFO);
}
written_words = min(max_n_32bit * tspi->words_per_32bit,
tspi->curr_dma_words);
} else {
max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
nbytes = max_n_32bit * tspi->bytes_per_word;
for (count = 0; count < max_n_32bit; ++count) {
x = 0;
for (i = 0; nbytes && (i < tspi->bytes_per_word);
++i, nbytes--)
x |= ((*tx_buf++) << i*8);
spi_tegra_writel(tspi, x, SLINK_TX_FIFO);
}
written_words = max_n_32bit;
}
tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
return written_words;
}
static unsigned int spi_tegra_read_rx_fifo_to_client_rxbuf(
struct spi_tegra_data *tspi, struct spi_transfer *t)
{
unsigned rx_full_count;
unsigned long fifo_status;
u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
unsigned i, count;
unsigned long x;
unsigned int read_words;
unsigned len;
fifo_status = spi_tegra_readl(tspi, SLINK_STATUS2);
rx_full_count = SLINK_RX_FIFO_FULL_COUNT(fifo_status);
dev_dbg(&tspi->pdev->dev, "Rx fifo count %d\n", rx_full_count);
if (tspi->is_packed) {
len = tspi->curr_dma_words * tspi->bytes_per_word;
for (count = 0; count < rx_full_count; ++count) {
x = spi_tegra_readl(tspi, SLINK_RX_FIFO);
for (i = 0; len && (i < 4); ++i, len--)
*rx_buf++ = (x >> i*8) & 0xFF;
}
tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
read_words += tspi->curr_dma_words;
} else {
for (count = 0; count < rx_full_count; ++count) {
x = spi_tegra_readl(tspi, SLINK_RX_FIFO);
for (i = 0; (i < tspi->bytes_per_word); ++i)
*rx_buf++ = (x >> (i*8)) & 0xFF;
}
tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
read_words += rx_full_count;
}
return read_words;
}
static void spi_tegra_copy_client_txbuf_to_spi_txbuf(
struct spi_tegra_data *tspi, struct spi_transfer *t)
{
unsigned len;
if (tspi->is_packed) {
len = tspi->curr_dma_words * tspi->bytes_per_word;
memcpy(tspi->tx_buf, t->tx_buf + tspi->cur_pos, len);
} else {
unsigned int i;
unsigned int count;
u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
unsigned int x;
for (count = 0; count < tspi->curr_dma_words; ++count) {
x = 0;
for (i = 0; consume && (i < tspi->bytes_per_word);
++i, consume--)
x |= ((*tx_buf++) << i*8);
tspi->tx_buf[count] = x;
}
}
tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
}
static void spi_tegra_copy_spi_rxbuf_to_client_rxbuf(
struct spi_tegra_data *tspi, struct spi_transfer *t)
{
unsigned len;
if (tspi->is_packed) {
len = tspi->curr_dma_words * tspi->bytes_per_word;
memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_buf, len);
} else {
unsigned int i;
unsigned int count;
unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
unsigned int x;
for (count = 0; count < tspi->curr_dma_words; ++count) {
x = tspi->rx_buf[count];
for (i = 0; (i < tspi->bytes_per_word); ++i)
*rx_buf++ = (x >> (i*8)) & 0xFF;
}
}
tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
}
static int spi_tegra_start_dma_based_transfer(
struct spi_tegra_data *tspi, struct spi_transfer *t)
{
unsigned long val;
unsigned long test_val;
unsigned int len;
int ret = 0;
INIT_COMPLETION(tspi->rx_dma_complete);
INIT_COMPLETION(tspi->tx_dma_complete);
val = SLINK_DMA_BLOCK_SIZE(tspi->curr_dma_words - 1);
val |= tspi->packed_size;
if (tspi->is_packed)
len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
4) * 4;
else
len = tspi->curr_dma_words * 4;
if (len & 0xF)
val |= SLINK_TX_TRIG_1 | SLINK_RX_TRIG_1;
else if (((len) >> 4) & 0x1)
val |= SLINK_TX_TRIG_4 | SLINK_RX_TRIG_4;
else
val |= SLINK_TX_TRIG_8 | SLINK_RX_TRIG_8;
if (tspi->cur_direction & DATA_DIR_TX)
val |= SLINK_IE_TXC;
if (tspi->cur_direction & DATA_DIR_RX)
val |= SLINK_IE_RXC;
spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
tspi->dma_control_reg = val;
if (tspi->cur_direction & DATA_DIR_TX) {
spi_tegra_copy_client_txbuf_to_spi_txbuf(tspi, t);
wmb();
tspi->tx_dma_req.size = len;
ret = tegra_dma_enqueue_req(tspi->tx_dma, &tspi->tx_dma_req);
if (ret < 0) {
dev_err(&tspi->pdev->dev, "Error in starting tx dma "
" error = %d\n", ret);
return ret;
}
/* Wait for tx fifo to be fill before starting slink */
test_val = spi_tegra_readl(tspi, SLINK_STATUS);
while (!(test_val & SLINK_TX_FULL))
test_val = spi_tegra_readl(tspi, SLINK_STATUS);
}
if (tspi->cur_direction & DATA_DIR_RX) {
tspi->rx_dma_req.size = len;
ret = tegra_dma_enqueue_req(tspi->rx_dma, &tspi->rx_dma_req);
if (ret < 0) {
dev_err(&tspi->pdev->dev, "Error in starting rx dma "
" error = %d\n", ret);
if (tspi->cur_direction & DATA_DIR_TX)
cancel_dma(tspi->tx_dma, &tspi->tx_dma_req);
return ret;
}
}
tspi->is_curr_dma_xfer = true;
if (tspi->is_packed) {
val |= SLINK_PACKED;
spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
udelay(1);
wmb();
}
val |= SLINK_DMA_EN;
spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
return ret;
}
static int spi_tegra_start_cpu_based_transfer(
struct spi_tegra_data *tspi, struct spi_transfer *t)
{
unsigned long val;
unsigned curr_words;
val = tspi->packed_size;
if (tspi->cur_direction & DATA_DIR_TX)
val |= SLINK_IE_TXC;
if (tspi->cur_direction & DATA_DIR_RX)
val |= SLINK_IE_RXC;
spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
tspi->dma_control_reg = val;
if (tspi->cur_direction & DATA_DIR_TX)
curr_words = spi_tegra_fill_tx_fifo_from_client_txbuf(tspi, t);
else
curr_words = tspi->curr_dma_words;
val |= SLINK_DMA_BLOCK_SIZE(curr_words - 1);
spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
tspi->dma_control_reg = val;
tspi->is_curr_dma_xfer = false;
if (tspi->is_packed) {
val |= SLINK_PACKED;
spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
udelay(1);
wmb();
}
val |= SLINK_DMA_EN;
spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
return 0;
}
static void set_best_clk_source(struct spi_tegra_data *tspi,
unsigned long speed)
{
long new_rate;
unsigned long err_rate;
int rate = speed * 4;
unsigned int fin_err = speed * 4;
int final_index = -1;
int count;
int ret;
struct clk *pclk;
unsigned long prate, crate, nrate;
unsigned long cdiv;
if (!tspi->parent_clk_count || !tspi->parent_clk_list)
return;
/* make sure divisor is more than min_div */
pclk = clk_get_parent(tspi->clk);
prate = clk_get_rate(pclk);
crate = clk_get_rate(tspi->clk);
cdiv = DIV_ROUND_UP(prate, crate);
if (cdiv < tspi->min_div) {
nrate = DIV_ROUND_UP(prate, tspi->min_div);
clk_set_rate(tspi->clk, nrate);
}
for (count = 0; count < tspi->parent_clk_count; ++count) {
if (!tspi->parent_clk_list[count].parent_clk)
continue;
ret = clk_set_parent(tspi->clk,
tspi->parent_clk_list[count].parent_clk);
if (ret < 0) {
dev_warn(&tspi->pdev->dev, "Error in setting parent "
" clk src %s\n",
tspi->parent_clk_list[count].name);
continue;
}
new_rate = clk_round_rate(tspi->clk, rate);
if (new_rate < 0)
continue;
err_rate = abs(new_rate - rate);
if (err_rate < fin_err) {
final_index = count;
fin_err = err_rate;
}
}
if (final_index >= 0) {
dev_info(&tspi->pdev->dev, "Setting clk_src %s\n",
tspi->parent_clk_list[final_index].name);
clk_set_parent(tspi->clk,
tspi->parent_clk_list[final_index].parent_clk);
}
}
static void spi_tegra_start_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
u32 speed;
u8 bits_per_word;
unsigned total_fifo_words;
int ret;
unsigned long command;
unsigned long command2;
bits_per_word = t->bits_per_word ? t->bits_per_word :
spi->bits_per_word;
speed = t->speed_hz ? t->speed_hz : spi->max_speed_hz;
if (speed != tspi->cur_speed) {
set_best_clk_source(tspi, speed);
clk_set_rate(tspi->clk, speed * 4);
tspi->cur_speed = speed;
}
tspi->cur = t;
tspi->cur_spi = spi;
tspi->cur_pos = 0;
tspi->cur_rx_pos = 0;
tspi->cur_tx_pos = 0;
tspi->rx_complete = 0;
tspi->tx_complete = 0;
total_fifo_words = spi_tegra_calculate_curr_xfer_param(spi, tspi, t);
command2 = tspi->def_command2_reg;
if (!tspi->is_clkon_always) {
if (!tspi->clk_state) {
clk_enable(tspi->clk);
tspi->clk_state = 1;
}
}
spi_tegra_clear_status(tspi);
command = tspi->def_command_reg;
command |= SLINK_BIT_LENGTH(bits_per_word - 1);
command |= SLINK_CS_SW;
command &= ~SLINK_IDLE_SCLK_MASK & ~SLINK_CK_SDA;
if (spi->mode & SPI_CPHA)
command |= SLINK_CK_SDA;
if (spi->mode & SPI_CPOL)
command |= SLINK_IDLE_SCLK_DRIVE_HIGH;
else
command |= SLINK_IDLE_SCLK_DRIVE_LOW;
spi_tegra_writel(tspi, command, SLINK_COMMAND);
tspi->command_reg = command;
dev_dbg(&tspi->pdev->dev, "The def 0x%x and written 0x%lx\n",
tspi->def_command_reg, command);
command2 &= ~(SLINK_SS_EN_CS(~0) | SLINK_RXEN | SLINK_TXEN);
tspi->cur_direction = 0;
if (t->rx_buf) {
command2 |= SLINK_RXEN;
tspi->cur_direction |= DATA_DIR_RX;
}
if (t->tx_buf) {
command2 |= SLINK_TXEN;
tspi->cur_direction |= DATA_DIR_TX;
}
command2 |= SLINK_SS_EN_CS(spi->chip_select);
spi_tegra_writel(tspi, command2, SLINK_COMMAND2);
tspi->command2_reg = command2;
if (total_fifo_words > SPI_FIFO_DEPTH)
ret = spi_tegra_start_dma_based_transfer(tspi, t);
else
ret = spi_tegra_start_cpu_based_transfer(tspi, t);
WARN_ON(ret < 0);
if (tspi->client_slave_ready_cb)
tspi->client_slave_ready_cb(tspi->client_data);
}
static void spi_tegra_start_message(struct spi_device *spi,
struct spi_message *m)
{
struct spi_transfer *t;
m->actual_length = 0;
m->status = 0;
t = list_first_entry(&m->transfers, struct spi_transfer, transfer_list);
spi_tegra_start_transfer(spi, t);
}
static int spi_tegra_setup(struct spi_device *spi)
{
struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
unsigned long cs_bit;
unsigned long val;
unsigned long flags;
dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
spi->bits_per_word,
spi->mode & SPI_CPOL ? "" : "~",
spi->mode & SPI_CPHA ? "" : "~",
spi->max_speed_hz);
BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
switch (spi->chip_select) {
case 0:
cs_bit = SLINK_CS_POLARITY;
break;
case 1:
cs_bit = SLINK_CS_POLARITY1;
break;
case 2:
cs_bit = SLINK_CS_POLARITY2;
break;
case 3:
cs_bit = SLINK_CS_POLARITY3;
break;
default:
return -EINVAL;
}
spin_lock_irqsave(&tspi->lock, flags);
val = tspi->def_command_reg;
if (spi->mode & SPI_CS_HIGH)
val |= cs_bit;
else
val &= ~cs_bit;
tspi->def_command_reg = val;
if (!tspi->is_clkon_always && !tspi->clk_state) {
clk_enable(tspi->clk);
tspi->clk_state = 1;
}
spi_tegra_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
if (!tspi->is_clkon_always && tspi->clk_state) {
clk_disable(tspi->clk);
tspi->clk_state = 0;
}
spin_unlock_irqrestore(&tspi->lock, flags);
return 0;
}
static int spi_tegra_transfer(struct spi_device *spi, struct spi_message *m)
{
struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
struct spi_transfer *t;
unsigned long flags;
int was_empty;
int bytes_per_word;
u8 bits_per_word;
int fifo_word;
/* Support only one transfer per message */
if (!list_is_singular(&m->transfers))
return -EINVAL;
if (list_empty(&m->transfers) || !m->complete)
return -EINVAL;
t = list_first_entry(&m->transfers, struct spi_transfer, transfer_list);
if (t->bits_per_word < 0 || t->bits_per_word > 32)
return -EINVAL;
if (t->len == 0)
return -EINVAL;
bits_per_word = (t->bits_per_word) ? : spi->bits_per_word;
/* Check that the all words are available */
bytes_per_word = (bits_per_word + 7)/8;
if (t->len % bytes_per_word != 0)
return -EINVAL;
if (!t->rx_buf && !t->tx_buf)
return -EINVAL;
if ((bits_per_word == 8) || (bits_per_word == 16))
fifo_word = t->len/4;
else
fifo_word = t->len/bytes_per_word;
if (fifo_word >= tspi->max_buf_size/4)
return -EINVAL;
spin_lock_irqsave(&tspi->lock, flags);
if (WARN_ON(tspi->is_suspended)) {
spin_unlock_irqrestore(&tspi->lock, flags);
return -EBUSY;
}
m->state = spi;
was_empty = list_empty(&tspi->queue);
list_add_tail(&m->queue, &tspi->queue);
if (was_empty)
spi_tegra_start_message(spi, m);
spin_unlock_irqrestore(&tspi->lock, flags);
return 0;
}
static void spi_tegra_curr_transfer_complete(struct spi_tegra_data *tspi,
unsigned err, unsigned cur_xfer_size)
{
struct spi_message *m;
struct spi_device *spi;
m = list_first_entry(&tspi->queue, struct spi_message, queue);
if (err)
m->status = -EIO;
spi = m->state;
m->actual_length += cur_xfer_size;
list_del(&m->queue);
m->complete(m->context);
if (!list_empty(&tspi->queue)) {
m = list_first_entry(&tspi->queue, struct spi_message, queue);
spi = m->state;
spi_tegra_start_message(spi, m);
} else {
spi_tegra_writel(tspi, tspi->def_command_reg, SLINK_COMMAND);
spi_tegra_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
if (!tspi->is_clkon_always) {
if (tspi->clk_state) {
/* Provide delay to stablize the signal
state */
udelay(10);
clk_disable(tspi->clk);
tspi->clk_state = 0;
}
}
}
}
static void tegra_spi_tx_dma_complete(struct tegra_dma_req *req)
{
struct spi_tegra_data *tspi = req->dev;
complete(&tspi->tx_dma_complete);
}
static void tegra_spi_rx_dma_complete(struct tegra_dma_req *req)
{
struct spi_tegra_data *tspi = req->dev;
complete(&tspi->rx_dma_complete);
}
static void handle_cpu_based_xfer(void *context_data)
{
struct spi_tegra_data *tspi = context_data;
struct spi_transfer *t = tspi->cur;
unsigned long flags;
spin_lock_irqsave(&tspi->lock, flags);
if (tspi->tx_status || tspi->rx_status ||
(tspi->status_reg & SLINK_BSY)) {
dev_err(&tspi->pdev->dev, "%s ERROR bit set 0x%x\n",
__func__, tspi->status_reg);
tegra_periph_reset_assert(tspi->clk);
udelay(2);
tegra_periph_reset_deassert(tspi->clk);
WARN_ON(1);
spi_tegra_curr_transfer_complete(tspi,
tspi->tx_status || tspi->rx_status, t->len);
goto exit;
}
dev_vdbg(&tspi->pdev->dev, " Current direction %x\n",
tspi->cur_direction);
if (tspi->cur_direction & DATA_DIR_RX)
spi_tegra_read_rx_fifo_to_client_rxbuf(tspi, t);
if (tspi->cur_direction & DATA_DIR_TX)
tspi->cur_pos = tspi->cur_tx_pos;
else if (tspi->cur_direction & DATA_DIR_RX)
tspi->cur_pos = tspi->cur_rx_pos;
else
WARN_ON(1);
dev_vdbg(&tspi->pdev->dev, "current position %d and length of the "
"transfer %d\n", tspi->cur_pos, t->len);
if (tspi->cur_pos == t->len) {
spi_tegra_curr_transfer_complete(tspi,
tspi->tx_status || tspi->rx_status, t->len);
goto exit;
}
/* There should not be remaining transfer */
BUG();
exit:
spin_unlock_irqrestore(&tspi->lock, flags);
return;
}
static irqreturn_t spi_tegra_isr_thread(int irq, void *context_data)
{
struct spi_tegra_data *tspi = context_data;
struct spi_transfer *t = tspi->cur;
long wait_status;
int err = 0;
unsigned long flags;
if (!tspi->is_curr_dma_xfer) {
handle_cpu_based_xfer(context_data);
return IRQ_HANDLED;
}
/* Abort dmas if any error */
if (tspi->cur_direction & DATA_DIR_TX) {
if (tspi->tx_status) {
cancel_dma(tspi->tx_dma, &tspi->tx_dma_req);
err += 1;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tspi->tx_dma_complete, SLINK_DMA_TIMEOUT);
if (wait_status <= 0) {
cancel_dma(tspi->tx_dma, &tspi->tx_dma_req);
dev_err(&tspi->pdev->dev, "Error in Dma Tx "
"transfer\n");
err += 1;
}
}
}
if (tspi->cur_direction & DATA_DIR_RX) {
if (tspi->rx_status) {
cancel_dma(tspi->rx_dma, &tspi->rx_dma_req);
err += 2;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tspi->rx_dma_complete, SLINK_DMA_TIMEOUT);
if (wait_status <= 0) {
cancel_dma(tspi->rx_dma, &tspi->rx_dma_req);
dev_err(&tspi->pdev->dev, "Error in Dma Rx "
"transfer\n");
err += 2;
}
}
}
spin_lock_irqsave(&tspi->lock, flags);
if (err) {
dev_err(&tspi->pdev->dev, "%s ERROR bit set 0x%x\n",
__func__, tspi->status_reg);
tegra_periph_reset_assert(tspi->clk);
udelay(2);
tegra_periph_reset_deassert(tspi->clk);
WARN_ON(1);
spi_tegra_curr_transfer_complete(tspi, err, t->len);
spin_unlock_irqrestore(&tspi->lock, flags);
return IRQ_HANDLED;
}
if (tspi->cur_direction & DATA_DIR_RX)
spi_tegra_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
if (tspi->cur_direction & DATA_DIR_TX)
tspi->cur_pos = tspi->cur_tx_pos;
else if (tspi->cur_direction & DATA_DIR_RX)
tspi->cur_pos = tspi->cur_rx_pos;
else
WARN_ON(1);
if (tspi->cur_pos == t->len) {
spi_tegra_curr_transfer_complete(tspi,
tspi->tx_status || tspi->rx_status, t->len);
spin_unlock_irqrestore(&tspi->lock, flags);
return IRQ_HANDLED;
}
spin_unlock_irqrestore(&tspi->lock, flags);
/* There should not be remaining transfer */
BUG();
return IRQ_HANDLED;
}
static irqreturn_t spi_tegra_isr(int irq, void *context_data)
{
struct spi_tegra_data *tspi = context_data;
tspi->status_reg = spi_tegra_readl(tspi, SLINK_STATUS);
if (tspi->cur_direction & DATA_DIR_TX)
tspi->tx_status = tspi->status_reg &
(SLINK_TX_OVF | SLINK_TX_UNF);
if (tspi->cur_direction & DATA_DIR_RX)
tspi->rx_status = tspi->status_reg &
(SLINK_RX_OVF | SLINK_RX_UNF);
spi_tegra_clear_status(tspi);
return IRQ_WAKE_THREAD;
}
static int __init spi_tegra_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct spi_tegra_data *tspi;
struct resource *r;
struct tegra_spi_platform_data *pdata = pdev->dev.platform_data;
int ret;
int i;
master = spi_alloc_master(&pdev->dev, sizeof *tspi);
if (master == NULL) {
dev_err(&pdev->dev, "master allocation failed\n");
return -ENOMEM;
}
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
if (pdev->id != -1)
master->bus_num = pdev->id;
master->setup = spi_tegra_setup;
master->transfer = spi_tegra_transfer;
master->num_chipselect = MAX_CHIP_SELECT;
dev_set_drvdata(&pdev->dev, master);
tspi = spi_master_get_devdata(master);
tspi->master = master;
tspi->pdev = pdev;
spin_lock_init(&tspi->lock);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
ret = -ENODEV;
goto fail_no_mem;
}
if (!request_mem_region(r->start, (r->end - r->start) + 1,
dev_name(&pdev->dev))) {
ret = -EBUSY;
goto fail_no_mem;
}
tspi->phys = r->start;
tspi->base = ioremap(r->start, r->end - r->start + 1);
if (!tspi->base) {
dev_err(&pdev->dev, "can't ioremap iomem\n");
ret = -ENOMEM;
goto fail_io_map;
}
tspi->irq = platform_get_irq(pdev, 0);
if (unlikely(tspi->irq < 0)) {
dev_err(&pdev->dev, "can't find irq resource\n");
ret = -ENXIO;
goto fail_irq_req;
}
sprintf(tspi->port_name, "tegra_spi_%d", pdev->id);
ret = request_threaded_irq(tspi->irq, spi_tegra_isr,
spi_tegra_isr_thread, IRQF_DISABLED,
tspi->port_name, tspi);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
tspi->irq);
goto fail_irq_req;
}
tspi->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR_OR_NULL(tspi->clk)) {
dev_err(&pdev->dev, "can not get clock\n");
ret = PTR_ERR(tspi->clk);
goto fail_clk_get;
}
INIT_LIST_HEAD(&tspi->queue);
if (pdata) {
tspi->is_clkon_always = pdata->is_clkon_always;
tspi->is_dma_allowed = pdata->is_dma_based;
tspi->dma_buf_size = (pdata->max_dma_buffer) ?
pdata->max_dma_buffer : DEFAULT_SPI_DMA_BUF_LEN;
tspi->parent_clk_count = pdata->parent_clk_count;
tspi->parent_clk_list = pdata->parent_clk_list;
tspi->max_rate = pdata->max_rate;
} else {
tspi->is_clkon_always = false;
tspi->is_dma_allowed = true;
tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
tspi->parent_clk_count = 0;
tspi->parent_clk_list = NULL;
tspi->max_rate = 0;
}
tspi->max_parent_rate = 0;
tspi->min_div = 0;
if (tspi->parent_clk_count) {
tspi->max_parent_rate = tspi->parent_clk_list[0].fixed_clk_rate;
for (i = 1; i < tspi->parent_clk_count; ++i) {
tspi->max_parent_rate = max(tspi->max_parent_rate,
tspi->parent_clk_list[i].fixed_clk_rate);
}
if (tspi->max_rate)
tspi->min_div = DIV_ROUND_UP(tspi->max_parent_rate,
tspi->max_rate);
}
tspi->max_buf_size = SLINK_FIFO_DEPTH << 2;
if (!tspi->is_dma_allowed)
goto skip_dma_alloc;
init_completion(&tspi->tx_dma_complete);
init_completion(&tspi->rx_dma_complete);
tspi->rx_dma = tegra_dma_allocate_channel(TEGRA_DMA_MODE_ONESHOT,
"spi_rx_%d", pdev->id);
if (!tspi->rx_dma) {
dev_err(&pdev->dev, "can not allocate rx dma channel\n");
ret = -ENODEV;
goto fail_rx_dma_alloc;
}
tspi->rx_buf = dma_alloc_coherent(&pdev->dev, tspi->dma_buf_size,
&tspi->rx_buf_phys, GFP_KERNEL);
if (!tspi->rx_buf) {
dev_err(&pdev->dev, "can not allocate rx bounce buffer\n");
ret = -ENOMEM;
goto fail_rx_buf_alloc;
}
memset(&tspi->rx_dma_req, 0, sizeof(struct tegra_dma_req));
tspi->rx_dma_req.complete = tegra_spi_rx_dma_complete;
tspi->rx_dma_req.to_memory = 1;
tspi->rx_dma_req.dest_addr = tspi->rx_buf_phys;
tspi->rx_dma_req.virt_addr = tspi->rx_buf;
tspi->rx_dma_req.dest_bus_width = 32;
tspi->rx_dma_req.source_addr = tspi->phys + SLINK_RX_FIFO;
tspi->rx_dma_req.source_bus_width = 32;
tspi->rx_dma_req.source_wrap = 4;
tspi->rx_dma_req.dest_wrap = 0;
tspi->rx_dma_req.req_sel = spi_tegra_req_sels[pdev->id];
tspi->rx_dma_req.dev = tspi;
tspi->tx_dma = tegra_dma_allocate_channel(TEGRA_DMA_MODE_ONESHOT,
"spi_tx_%d", pdev->id);
if (!tspi->tx_dma) {
dev_err(&pdev->dev, "can not allocate tx dma channel\n");
ret = -ENODEV;
goto fail_tx_dma_alloc;
}
tspi->tx_buf = dma_alloc_coherent(&pdev->dev, tspi->dma_buf_size,
&tspi->tx_buf_phys, GFP_KERNEL);
if (!tspi->tx_buf) {
dev_err(&pdev->dev, "can not allocate tx bounce buffer\n");
ret = -ENOMEM;
goto fail_tx_buf_alloc;
}
memset(&tspi->tx_dma_req, 0, sizeof(struct tegra_dma_req));
tspi->tx_dma_req.complete = tegra_spi_tx_dma_complete;
tspi->tx_dma_req.to_memory = 0;
tspi->tx_dma_req.dest_addr = tspi->phys + SLINK_TX_FIFO;
tspi->tx_dma_req.virt_addr = tspi->tx_buf;
tspi->tx_dma_req.dest_bus_width = 32;
tspi->tx_dma_req.dest_wrap = 4;
tspi->tx_dma_req.source_wrap = 0;
tspi->tx_dma_req.source_addr = tspi->tx_buf_phys;
tspi->tx_dma_req.source_bus_width = 32;
tspi->tx_dma_req.req_sel = spi_tegra_req_sels[pdev->id];
tspi->tx_dma_req.dev = tspi;
tspi->max_buf_size = tspi->dma_buf_size;
tspi->def_command_reg = SLINK_CS_SW;
tspi->def_command2_reg = SLINK_CS_ACTIVE_BETWEEN;
skip_dma_alloc:
clk_enable(tspi->clk);
tspi->clk_state = 1;
spi_tegra_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2);
ret = spi_register_master(master);
if (!tspi->is_clkon_always) {
if (tspi->clk_state) {
clk_disable(tspi->clk);
tspi->clk_state = 0;
}
}
if (ret < 0) {
dev_err(&pdev->dev, "can not register to master err %d\n", ret);
goto fail_master_register;
}
return ret;
fail_master_register:
if (tspi->tx_buf)
dma_free_coherent(&pdev->dev, tspi->dma_buf_size,
tspi->tx_buf, tspi->tx_buf_phys);
fail_tx_buf_alloc:
if (tspi->tx_dma)
tegra_dma_free_channel(tspi->tx_dma);
fail_tx_dma_alloc:
if (tspi->rx_buf)
dma_free_coherent(&pdev->dev, tspi->dma_buf_size,
tspi->rx_buf, tspi->rx_buf_phys);
fail_rx_buf_alloc:
if (tspi->rx_dma)
tegra_dma_free_channel(tspi->rx_dma);
fail_rx_dma_alloc:
clk_put(tspi->clk);
fail_clk_get:
free_irq(tspi->irq, tspi);
fail_irq_req:
iounmap(tspi->base);
fail_io_map:
release_mem_region(r->start, (r->end - r->start) + 1);
fail_no_mem:
spi_master_put(master);
return ret;
}
static int __devexit spi_tegra_remove(struct platform_device *pdev)
{
struct spi_master *master;
struct spi_tegra_data *tspi;
struct resource *r;
master = dev_get_drvdata(&pdev->dev);
tspi = spi_master_get_devdata(master);
if (tspi->tx_buf)
dma_free_coherent(&pdev->dev, tspi->dma_buf_size,
tspi->tx_buf, tspi->tx_buf_phys);
if (tspi->tx_dma)
tegra_dma_free_channel(tspi->tx_dma);
if (tspi->rx_buf)
dma_free_coherent(&pdev->dev, tspi->dma_buf_size,
tspi->rx_buf, tspi->rx_buf_phys);
if (tspi->rx_dma)
tegra_dma_free_channel(tspi->rx_dma);
if (tspi->is_clkon_always) {
clk_disable(tspi->clk);
tspi->clk_state = 0;
}
clk_put(tspi->clk);
iounmap(tspi->base);
spi_master_put(master);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(r->start, (r->end - r->start) + 1);
return 0;
}
#ifdef CONFIG_PM
static int spi_tegra_suspend(struct platform_device *pdev, pm_message_t state)
{
struct spi_master *master;
struct spi_tegra_data *tspi;
unsigned long flags;
unsigned limit = 50;
master = dev_get_drvdata(&pdev->dev);
tspi = spi_master_get_devdata(master);
spin_lock_irqsave(&tspi->lock, flags);
tspi->is_suspended = true;
WARN_ON(!list_empty(&tspi->queue));
while (!list_empty(&tspi->queue) && limit--) {
spin_unlock_irqrestore(&tspi->lock, flags);
msleep(20);
spin_lock_irqsave(&tspi->lock, flags);
}
spin_unlock_irqrestore(&tspi->lock, flags);
if (tspi->is_clkon_always) {
clk_disable(tspi->clk);
tspi->clk_state = 0;
}
return 0;
}
static int spi_tegra_resume(struct platform_device *pdev)
{
struct spi_master *master;
struct spi_tegra_data *tspi;
unsigned long flags;
master = dev_get_drvdata(&pdev->dev);
tspi = spi_master_get_devdata(master);
spin_lock_irqsave(&tspi->lock, flags);
clk_enable(tspi->clk);
tspi->clk_state = 1;
spi_tegra_writel(tspi, tspi->command_reg, SLINK_COMMAND);
if (!tspi->is_clkon_always) {
clk_disable(tspi->clk);
tspi->clk_state = 0;
}
tspi->cur_speed = 0;
tspi->is_suspended = false;
spin_unlock_irqrestore(&tspi->lock, flags);
return 0;
}
#endif
MODULE_ALIAS("platform:spi_slave_tegra");
static struct platform_driver spi_tegra_driver = {
.driver = {
.name = "spi_slave_tegra",
.owner = THIS_MODULE,
},
.remove = __devexit_p(spi_tegra_remove),
#ifdef CONFIG_PM
.suspend = spi_tegra_suspend,
.resume = spi_tegra_resume,
#endif
};
static int __init spi_tegra_init(void)
{
return platform_driver_probe(&spi_tegra_driver, spi_tegra_probe);
}
subsys_initcall(spi_tegra_init);
static void __exit spi_tegra_exit(void)
{
platform_driver_unregister(&spi_tegra_driver);
}
module_exit(spi_tegra_exit);
MODULE_LICENSE("GPL");