blob: 098e79c213480fa2cd141e9098e3530d58ed457f [file] [log] [blame]
/*
* drivers/rtc/rtc_ricoh583.c
*
* rtc driver for ricoh rc5t583 pmu
*
* copyright (c) 2011, nvidia corporation.
*
* this program is free software; you can redistribute it and/or modify
* it under the terms of the gnu general public license as published by
* the free software foundation; either version 2 of the license, or
* (at your option) any later version.
*
* this program is distributed in the hope that it will be useful, but without
* any warranty; without even the implied warranty of merchantability or
* fitness for a particular purpose. see the gnu general public license for
* more details.
*
* you should have received a copy of the gnu general public license along
* with this program; if not, write to the free software foundation, inc.,
* 51 franklin street, fifth floor, boston, ma 02110-1301, usa.
*/
/* #define debug 1 */
/* #define verbose_debug 1 */
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mfd/ricoh583.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <linux/module.h>
#define rtc_ctrl1 0xED
#define rtc_ctrl2 0xEE
#define rtc_seconds_reg 0xE0
#define rtc_alarm_y 0xF0
#define rtc_adjust 0xE7
/*
linux rtc driver refers 1900 as base year in many calculations.
(e.g. refer drivers/rtc/rtc-lib.c)
*/
#define os_ref_year 1900
/*
pmu rtc have only 2 nibbles to store year information, so using an
offset of 100 to set the base year as 2000 for our driver.
*/
#define rtc_year_offset 100
struct ricoh583_rtc {
unsigned long epoch_start;
int irq;
struct rtc_device *rtc;
bool irq_en;
};
static int ricoh583_read_regs(struct device *dev, int reg, int len,
uint8_t *val)
{
int ret;
ret = ricoh583_bulk_reads(dev->parent, reg, len, val);
if (ret < 0) {
dev_err(dev->parent, "\n %s failed reading from 0x%02x\n",
__func__, reg);
WARN_ON(1);
}
return ret;
}
static int ricoh583_write_regs(struct device *dev, int reg, int len,
uint8_t *val)
{
int ret;
ret = ricoh583_bulk_writes(dev->parent, reg, len, val);
if (ret < 0) {
dev_err(dev->parent, "\n %s failed writing\n", __func__);
WARN_ON(1);
}
return ret;
}
static int ricoh583_rtc_valid_tm(struct device *dev, struct rtc_time *tm)
{
if (tm->tm_year >= (rtc_year_offset + 99)
|| tm->tm_mon > 12
|| tm->tm_mday < 1
|| tm->tm_mday > rtc_month_days(tm->tm_mon,
tm->tm_year + os_ref_year)
|| tm->tm_hour >= 24
|| tm->tm_min >= 60
|| tm->tm_sec >= 60) {
dev_err(dev->parent, "\n returning error due to time"
"%d/%d/%d %d:%d:%d", tm->tm_mon, tm->tm_mday,
tm->tm_year, tm->tm_hour, tm->tm_min, tm->tm_sec);
return -EINVAL;
}
return 0;
}
static u8 dec2bcd(u8 dec)
{
return ((dec/10)<<4)+(dec%10);
}
static u8 bcd2dec(u8 bcd)
{
return (bcd >> 4)*10+(bcd & 0xf);
}
static void convert_bcd_to_decimal(u8 *buf, u8 len)
{
int i = 0;
for (i = 0; i < len; i++)
buf[i] = bcd2dec(buf[i]);
}
static void convert_decimal_to_bcd(u8 *buf, u8 len)
{
int i = 0;
for (i = 0; i < len; i++)
buf[i] = dec2bcd(buf[i]);
}
static void print_time(struct device *dev, struct rtc_time *tm)
{
dev_info(dev, "rtc-time : %d/%d/%d %d:%d\n",
(tm->tm_mon + 1), tm->tm_mday, (tm->tm_year + os_ref_year),
tm->tm_hour, tm->tm_min);
}
static int ricoh583_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
u8 buff[7];
int err;
err = ricoh583_read_regs(dev, rtc_seconds_reg, sizeof(buff), buff);
if (err < 0) {
dev_err(dev, "\n %s :: failed to read time\n", __FILE__);
return err;
}
convert_bcd_to_decimal(buff, sizeof(buff));
tm->tm_sec = buff[0];
tm->tm_min = buff[1];
tm->tm_hour = buff[2];
tm->tm_wday = buff[3];
tm->tm_mday = buff[4];
tm->tm_mon = buff[5] - 1;
tm->tm_year = buff[6] + rtc_year_offset;
print_time(dev, tm);
return ricoh583_rtc_valid_tm(dev, tm);
}
static int ricoh583_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
u8 buff[7];
int err;
print_time(dev, tm);
buff[0] = tm->tm_sec;
buff[1] = tm->tm_min;
buff[2] = tm->tm_hour;
buff[3] = tm->tm_wday;
buff[4] = tm->tm_mday;
buff[5] = tm->tm_mon + 1;
buff[6] = tm->tm_year - rtc_year_offset;
convert_decimal_to_bcd(buff, sizeof(buff));
err = ricoh583_write_regs(dev, rtc_seconds_reg, sizeof(buff), buff);
if (err < 0) {
dev_err(dev->parent, "\n failed to program new time\n");
return err;
}
return 0;
}
static int ricoh583_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm);
static int ricoh583_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct ricoh583_rtc *rtc = dev_get_drvdata(dev);
unsigned long seconds;
u8 buff[5];
int err;
struct rtc_time tm;
if (rtc->irq == -1)
return -EIO;
rtc_tm_to_time(&alrm->time, &seconds);
ricoh583_rtc_read_time(dev, &tm);
rtc_tm_to_time(&tm, &rtc->epoch_start);
/*
work around: As YAL does not provide the seconds register,
program minute register to next minute, in cases when alarm
is requested within a minute from the current time.
*/
if (seconds - rtc->epoch_start < 60)
alrm->time.tm_min += 1;
dev_info(dev->parent, "\n setting alarm to requested time::\n");
print_time(dev->parent, &alrm->time);
if (WARN_ON(alrm->enabled && (seconds < rtc->epoch_start))) {
dev_err(dev->parent, "\n can't set alarm to requested time\n");
return -EINVAL;
}
if (alrm->enabled && !rtc->irq_en)
rtc->irq_en = true;
else if (!alrm->enabled && rtc->irq_en)
rtc->irq_en = false;
buff[0] = alrm->time.tm_min;
buff[1] = alrm->time.tm_hour;
buff[2] = alrm->time.tm_mday;
buff[3] = alrm->time.tm_mon + 1;
buff[4] = alrm->time.tm_year - rtc_year_offset;
convert_decimal_to_bcd(buff, sizeof(buff));
err = ricoh583_write_regs(dev, rtc_alarm_y, sizeof(buff), buff);
if (err) {
dev_err(dev->parent, "\n unable to set alarm\n");
return -EBUSY;
}
buff[0] = 0x20; /* to enable alarm_y */
buff[1] = 0x20; /* to enable 24-hour format */
err = ricoh583_write_regs(dev, rtc_ctrl1, 2, buff);
if (err) {
dev_err(dev, "failed programming rtc ctrl regs\n");
return -EBUSY;
}
return err;
}
static int ricoh583_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
u8 buff[5];
int err;
err = ricoh583_read_regs(dev, rtc_alarm_y, sizeof(buff), buff);
if (err)
return err;
convert_bcd_to_decimal(buff, sizeof(buff));
alrm->time.tm_min = buff[0];
alrm->time.tm_hour = buff[1];
alrm->time.tm_mday = buff[2];
alrm->time.tm_mon = buff[3] - 1;
alrm->time.tm_year = buff[4] + rtc_year_offset;
dev_info(dev->parent, "\n getting alarm time::\n");
print_time(dev, &alrm->time);
return 0;
}
static const struct rtc_class_ops ricoh583_rtc_ops = {
.read_time = ricoh583_rtc_read_time,
.set_time = ricoh583_rtc_set_time,
.set_alarm = ricoh583_rtc_set_alarm,
.read_alarm = ricoh583_rtc_read_alarm,
};
static irqreturn_t ricoh583_rtc_irq(int irq, void *data)
{
struct device *dev = data;
struct ricoh583_rtc *rtc = dev_get_drvdata(dev);
u8 reg;
int err;
/* clear alarm-Y status bits.*/
err = ricoh583_read_regs(dev, rtc_ctrl2, 1, &reg);
if (err) {
dev_err(dev->parent, "unable to read rtc_ctrl2 reg\n");
return -EBUSY;
}
reg &= ~0x8;
err = ricoh583_write_regs(dev, rtc_ctrl2, 1, &reg);
if (err) {
dev_err(dev->parent, "unable to program rtc_status reg\n");
return -EBUSY;
}
rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
return IRQ_HANDLED;
}
static int __devinit ricoh583_rtc_probe(struct platform_device *pdev)
{
struct ricoh583_rtc_platform_data *pdata = pdev->dev.platform_data;
struct ricoh583_rtc *rtc;
struct rtc_time tm;
int err;
u8 reg[2];
rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
rtc->irq = -1;
if (!pdata) {
dev_err(&pdev->dev, "no platform_data specified\n");
return -EINVAL;
}
if (pdata->irq < 0)
dev_err(&pdev->dev, "\n no irq specified, wakeup is disabled\n");
dev_set_drvdata(&pdev->dev, rtc);
device_init_wakeup(&pdev->dev, 1);
rtc->rtc = rtc_device_register(pdev->name, &pdev->dev,
&ricoh583_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc->rtc)) {
err = PTR_ERR(rtc->rtc);
goto fail;
}
reg[0] = 0; /* clearing RTC Adjust register */
err = ricoh583_write_regs(&pdev->dev, rtc_adjust, 1, reg);
if (err) {
dev_err(&pdev->dev, "unable to program rtc_adjust reg\n");
return -EBUSY;
}
reg[0] = 0x20; /* to enable alarm_y */
reg[1] = 0x20; /* to enable 24-hour format */
err = ricoh583_write_regs(&pdev->dev, rtc_ctrl1, 2, reg);
if (err) {
dev_err(&pdev->dev, "failed rtc setup\n");
return -EBUSY;
}
ricoh583_rtc_read_time(&pdev->dev, &tm);
if (ricoh583_rtc_valid_tm(&pdev->dev, &tm)) {
if (pdata->time.tm_year < 2000 || pdata->time.tm_year > 2100) {
memset(&pdata->time, 0, sizeof(pdata->time));
pdata->time.tm_year = rtc_year_offset;
pdata->time.tm_mday = 1;
} else
pdata->time.tm_year -= os_ref_year;
ricoh583_rtc_set_time(&pdev->dev, &pdata->time);
}
if (pdata && (pdata->irq >= 0)) {
rtc->irq = pdata->irq;
err = request_threaded_irq(pdata->irq, NULL, ricoh583_rtc_irq,
IRQF_ONESHOT, "rtc_ricoh583",
&pdev->dev);
if (err) {
dev_err(&pdev->dev, "request IRQ:%d fail\n", rtc->irq);
rtc->irq = -1;
} else {
device_init_wakeup(&pdev->dev, 1);
enable_irq_wake(rtc->irq);
}
}
return 0;
fail:
if (!IS_ERR_OR_NULL(rtc->rtc))
rtc_device_unregister(rtc->rtc);
kfree(rtc);
return err;
}
static int __devexit ricoh583_rtc_remove(struct platform_device *pdev)
{
struct ricoh583_rtc *rtc = dev_get_drvdata(&pdev->dev);
if (rtc->irq != -1)
free_irq(rtc->irq, rtc);
rtc_device_unregister(rtc->rtc);
kfree(rtc);
return 0;
}
static struct platform_driver ricoh583_rtc_driver = {
.driver = {
.name = "rtc_ricoh583",
.owner = THIS_MODULE,
},
.probe = ricoh583_rtc_probe,
.remove = __devexit_p(ricoh583_rtc_remove),
};
static int __init ricoh583_rtc_init(void)
{
return platform_driver_register(&ricoh583_rtc_driver);
}
module_init(ricoh583_rtc_init);
static void __exit ricoh583_rtc_exit(void)
{
platform_driver_unregister(&ricoh583_rtc_driver);
}
module_exit(ricoh583_rtc_exit);
MODULE_DESCRIPTION("RICOH PMU ricoh583 RTC driver");
MODULE_AUTHOR("NVIDIA Corporation");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:rtc_ricoh583");