|  | /* | 
|  | * NVM Express device driver | 
|  | * Copyright (c) 2011, Intel Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., | 
|  | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/nvme.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/genhd.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/kdev_t.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #include <asm-generic/io-64-nonatomic-lo-hi.h> | 
|  |  | 
|  | #define NVME_Q_DEPTH 1024 | 
|  | #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command)) | 
|  | #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion)) | 
|  | #define NVME_MINORS 64 | 
|  | #define NVME_IO_TIMEOUT	(5 * HZ) | 
|  | #define ADMIN_TIMEOUT	(60 * HZ) | 
|  |  | 
|  | static int nvme_major; | 
|  | module_param(nvme_major, int, 0); | 
|  |  | 
|  | static int use_threaded_interrupts; | 
|  | module_param(use_threaded_interrupts, int, 0); | 
|  |  | 
|  | static DEFINE_SPINLOCK(dev_list_lock); | 
|  | static LIST_HEAD(dev_list); | 
|  | static struct task_struct *nvme_thread; | 
|  |  | 
|  | /* | 
|  | * Represents an NVM Express device.  Each nvme_dev is a PCI function. | 
|  | */ | 
|  | struct nvme_dev { | 
|  | struct list_head node; | 
|  | struct nvme_queue **queues; | 
|  | u32 __iomem *dbs; | 
|  | struct pci_dev *pci_dev; | 
|  | struct dma_pool *prp_page_pool; | 
|  | struct dma_pool *prp_small_pool; | 
|  | int instance; | 
|  | int queue_count; | 
|  | int db_stride; | 
|  | u32 ctrl_config; | 
|  | struct msix_entry *entry; | 
|  | struct nvme_bar __iomem *bar; | 
|  | struct list_head namespaces; | 
|  | char serial[20]; | 
|  | char model[40]; | 
|  | char firmware_rev[8]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * An NVM Express namespace is equivalent to a SCSI LUN | 
|  | */ | 
|  | struct nvme_ns { | 
|  | struct list_head list; | 
|  |  | 
|  | struct nvme_dev *dev; | 
|  | struct request_queue *queue; | 
|  | struct gendisk *disk; | 
|  |  | 
|  | int ns_id; | 
|  | int lba_shift; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * An NVM Express queue.  Each device has at least two (one for admin | 
|  | * commands and one for I/O commands). | 
|  | */ | 
|  | struct nvme_queue { | 
|  | struct device *q_dmadev; | 
|  | struct nvme_dev *dev; | 
|  | spinlock_t q_lock; | 
|  | struct nvme_command *sq_cmds; | 
|  | volatile struct nvme_completion *cqes; | 
|  | dma_addr_t sq_dma_addr; | 
|  | dma_addr_t cq_dma_addr; | 
|  | wait_queue_head_t sq_full; | 
|  | wait_queue_t sq_cong_wait; | 
|  | struct bio_list sq_cong; | 
|  | u32 __iomem *q_db; | 
|  | u16 q_depth; | 
|  | u16 cq_vector; | 
|  | u16 sq_head; | 
|  | u16 sq_tail; | 
|  | u16 cq_head; | 
|  | u16 cq_phase; | 
|  | unsigned long cmdid_data[]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Check we didin't inadvertently grow the command struct | 
|  | */ | 
|  | static inline void _nvme_check_size(void) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); | 
|  | BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); | 
|  | BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); | 
|  | BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); | 
|  | BUILD_BUG_ON(sizeof(struct nvme_features) != 64); | 
|  | BUILD_BUG_ON(sizeof(struct nvme_command) != 64); | 
|  | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); | 
|  | BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); | 
|  | BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); | 
|  | } | 
|  |  | 
|  | typedef void (*nvme_completion_fn)(struct nvme_dev *, void *, | 
|  | struct nvme_completion *); | 
|  |  | 
|  | struct nvme_cmd_info { | 
|  | nvme_completion_fn fn; | 
|  | void *ctx; | 
|  | unsigned long timeout; | 
|  | }; | 
|  |  | 
|  | static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq) | 
|  | { | 
|  | return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_cmdid() - Allocate a Command ID | 
|  | * @nvmeq: The queue that will be used for this command | 
|  | * @ctx: A pointer that will be passed to the handler | 
|  | * @handler: The function to call on completion | 
|  | * | 
|  | * Allocate a Command ID for a queue.  The data passed in will | 
|  | * be passed to the completion handler.  This is implemented by using | 
|  | * the bottom two bits of the ctx pointer to store the handler ID. | 
|  | * Passing in a pointer that's not 4-byte aligned will cause a BUG. | 
|  | * We can change this if it becomes a problem. | 
|  | * | 
|  | * May be called with local interrupts disabled and the q_lock held, | 
|  | * or with interrupts enabled and no locks held. | 
|  | */ | 
|  | static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, | 
|  | nvme_completion_fn handler, unsigned timeout) | 
|  | { | 
|  | int depth = nvmeq->q_depth - 1; | 
|  | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | 
|  | int cmdid; | 
|  |  | 
|  | do { | 
|  | cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth); | 
|  | if (cmdid >= depth) | 
|  | return -EBUSY; | 
|  | } while (test_and_set_bit(cmdid, nvmeq->cmdid_data)); | 
|  |  | 
|  | info[cmdid].fn = handler; | 
|  | info[cmdid].ctx = ctx; | 
|  | info[cmdid].timeout = jiffies + timeout; | 
|  | return cmdid; | 
|  | } | 
|  |  | 
|  | static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, | 
|  | nvme_completion_fn handler, unsigned timeout) | 
|  | { | 
|  | int cmdid; | 
|  | wait_event_killable(nvmeq->sq_full, | 
|  | (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0); | 
|  | return (cmdid < 0) ? -EINTR : cmdid; | 
|  | } | 
|  |  | 
|  | /* Special values must be less than 0x1000 */ | 
|  | #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA) | 
|  | #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE) | 
|  | #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE) | 
|  | #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE) | 
|  | #define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE) | 
|  |  | 
|  | static void special_completion(struct nvme_dev *dev, void *ctx, | 
|  | struct nvme_completion *cqe) | 
|  | { | 
|  | if (ctx == CMD_CTX_CANCELLED) | 
|  | return; | 
|  | if (ctx == CMD_CTX_FLUSH) | 
|  | return; | 
|  | if (ctx == CMD_CTX_COMPLETED) { | 
|  | dev_warn(&dev->pci_dev->dev, | 
|  | "completed id %d twice on queue %d\n", | 
|  | cqe->command_id, le16_to_cpup(&cqe->sq_id)); | 
|  | return; | 
|  | } | 
|  | if (ctx == CMD_CTX_INVALID) { | 
|  | dev_warn(&dev->pci_dev->dev, | 
|  | "invalid id %d completed on queue %d\n", | 
|  | cqe->command_id, le16_to_cpup(&cqe->sq_id)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with local interrupts disabled and the q_lock held.  May not sleep. | 
|  | */ | 
|  | static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid, | 
|  | nvme_completion_fn *fn) | 
|  | { | 
|  | void *ctx; | 
|  | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | 
|  |  | 
|  | if (cmdid >= nvmeq->q_depth) { | 
|  | *fn = special_completion; | 
|  | return CMD_CTX_INVALID; | 
|  | } | 
|  | *fn = info[cmdid].fn; | 
|  | ctx = info[cmdid].ctx; | 
|  | info[cmdid].fn = special_completion; | 
|  | info[cmdid].ctx = CMD_CTX_COMPLETED; | 
|  | clear_bit(cmdid, nvmeq->cmdid_data); | 
|  | wake_up(&nvmeq->sq_full); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid, | 
|  | nvme_completion_fn *fn) | 
|  | { | 
|  | void *ctx; | 
|  | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | 
|  | if (fn) | 
|  | *fn = info[cmdid].fn; | 
|  | ctx = info[cmdid].ctx; | 
|  | info[cmdid].fn = special_completion; | 
|  | info[cmdid].ctx = CMD_CTX_CANCELLED; | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) | 
|  | { | 
|  | return dev->queues[get_cpu() + 1]; | 
|  | } | 
|  |  | 
|  | static void put_nvmeq(struct nvme_queue *nvmeq) | 
|  | { | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell | 
|  | * @nvmeq: The queue to use | 
|  | * @cmd: The command to send | 
|  | * | 
|  | * Safe to use from interrupt context | 
|  | */ | 
|  | static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) | 
|  | { | 
|  | unsigned long flags; | 
|  | u16 tail; | 
|  | spin_lock_irqsave(&nvmeq->q_lock, flags); | 
|  | tail = nvmeq->sq_tail; | 
|  | memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); | 
|  | if (++tail == nvmeq->q_depth) | 
|  | tail = 0; | 
|  | writel(tail, nvmeq->q_db); | 
|  | nvmeq->sq_tail = tail; | 
|  | spin_unlock_irqrestore(&nvmeq->q_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The nvme_iod describes the data in an I/O, including the list of PRP | 
|  | * entries.  You can't see it in this data structure because C doesn't let | 
|  | * me express that.  Use nvme_alloc_iod to ensure there's enough space | 
|  | * allocated to store the PRP list. | 
|  | */ | 
|  | struct nvme_iod { | 
|  | void *private;		/* For the use of the submitter of the I/O */ | 
|  | int npages;		/* In the PRP list. 0 means small pool in use */ | 
|  | int offset;		/* Of PRP list */ | 
|  | int nents;		/* Used in scatterlist */ | 
|  | int length;		/* Of data, in bytes */ | 
|  | dma_addr_t first_dma; | 
|  | struct scatterlist sg[0]; | 
|  | }; | 
|  |  | 
|  | static __le64 **iod_list(struct nvme_iod *iod) | 
|  | { | 
|  | return ((void *)iod) + iod->offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Will slightly overestimate the number of pages needed.  This is OK | 
|  | * as it only leads to a small amount of wasted memory for the lifetime of | 
|  | * the I/O. | 
|  | */ | 
|  | static int nvme_npages(unsigned size) | 
|  | { | 
|  | unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE); | 
|  | return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); | 
|  | } | 
|  |  | 
|  | static struct nvme_iod * | 
|  | nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp) | 
|  | { | 
|  | struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) + | 
|  | sizeof(__le64 *) * nvme_npages(nbytes) + | 
|  | sizeof(struct scatterlist) * nseg, gfp); | 
|  |  | 
|  | if (iod) { | 
|  | iod->offset = offsetof(struct nvme_iod, sg[nseg]); | 
|  | iod->npages = -1; | 
|  | iod->length = nbytes; | 
|  | } | 
|  |  | 
|  | return iod; | 
|  | } | 
|  |  | 
|  | static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) | 
|  | { | 
|  | const int last_prp = PAGE_SIZE / 8 - 1; | 
|  | int i; | 
|  | __le64 **list = iod_list(iod); | 
|  | dma_addr_t prp_dma = iod->first_dma; | 
|  |  | 
|  | if (iod->npages == 0) | 
|  | dma_pool_free(dev->prp_small_pool, list[0], prp_dma); | 
|  | for (i = 0; i < iod->npages; i++) { | 
|  | __le64 *prp_list = list[i]; | 
|  | dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); | 
|  | dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); | 
|  | prp_dma = next_prp_dma; | 
|  | } | 
|  | kfree(iod); | 
|  | } | 
|  |  | 
|  | static void requeue_bio(struct nvme_dev *dev, struct bio *bio) | 
|  | { | 
|  | struct nvme_queue *nvmeq = get_nvmeq(dev); | 
|  | if (bio_list_empty(&nvmeq->sq_cong)) | 
|  | add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); | 
|  | bio_list_add(&nvmeq->sq_cong, bio); | 
|  | put_nvmeq(nvmeq); | 
|  | wake_up_process(nvme_thread); | 
|  | } | 
|  |  | 
|  | static void bio_completion(struct nvme_dev *dev, void *ctx, | 
|  | struct nvme_completion *cqe) | 
|  | { | 
|  | struct nvme_iod *iod = ctx; | 
|  | struct bio *bio = iod->private; | 
|  | u16 status = le16_to_cpup(&cqe->status) >> 1; | 
|  |  | 
|  | dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, | 
|  | bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
|  | nvme_free_iod(dev, iod); | 
|  | if (status) { | 
|  | bio_endio(bio, -EIO); | 
|  | } else if (bio->bi_vcnt > bio->bi_idx) { | 
|  | requeue_bio(dev, bio); | 
|  | } else { | 
|  | bio_endio(bio, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* length is in bytes.  gfp flags indicates whether we may sleep. */ | 
|  | static int nvme_setup_prps(struct nvme_dev *dev, | 
|  | struct nvme_common_command *cmd, struct nvme_iod *iod, | 
|  | int total_len, gfp_t gfp) | 
|  | { | 
|  | struct dma_pool *pool; | 
|  | int length = total_len; | 
|  | struct scatterlist *sg = iod->sg; | 
|  | int dma_len = sg_dma_len(sg); | 
|  | u64 dma_addr = sg_dma_address(sg); | 
|  | int offset = offset_in_page(dma_addr); | 
|  | __le64 *prp_list; | 
|  | __le64 **list = iod_list(iod); | 
|  | dma_addr_t prp_dma; | 
|  | int nprps, i; | 
|  |  | 
|  | cmd->prp1 = cpu_to_le64(dma_addr); | 
|  | length -= (PAGE_SIZE - offset); | 
|  | if (length <= 0) | 
|  | return total_len; | 
|  |  | 
|  | dma_len -= (PAGE_SIZE - offset); | 
|  | if (dma_len) { | 
|  | dma_addr += (PAGE_SIZE - offset); | 
|  | } else { | 
|  | sg = sg_next(sg); | 
|  | dma_addr = sg_dma_address(sg); | 
|  | dma_len = sg_dma_len(sg); | 
|  | } | 
|  |  | 
|  | if (length <= PAGE_SIZE) { | 
|  | cmd->prp2 = cpu_to_le64(dma_addr); | 
|  | return total_len; | 
|  | } | 
|  |  | 
|  | nprps = DIV_ROUND_UP(length, PAGE_SIZE); | 
|  | if (nprps <= (256 / 8)) { | 
|  | pool = dev->prp_small_pool; | 
|  | iod->npages = 0; | 
|  | } else { | 
|  | pool = dev->prp_page_pool; | 
|  | iod->npages = 1; | 
|  | } | 
|  |  | 
|  | prp_list = dma_pool_alloc(pool, gfp, &prp_dma); | 
|  | if (!prp_list) { | 
|  | cmd->prp2 = cpu_to_le64(dma_addr); | 
|  | iod->npages = -1; | 
|  | return (total_len - length) + PAGE_SIZE; | 
|  | } | 
|  | list[0] = prp_list; | 
|  | iod->first_dma = prp_dma; | 
|  | cmd->prp2 = cpu_to_le64(prp_dma); | 
|  | i = 0; | 
|  | for (;;) { | 
|  | if (i == PAGE_SIZE / 8) { | 
|  | __le64 *old_prp_list = prp_list; | 
|  | prp_list = dma_pool_alloc(pool, gfp, &prp_dma); | 
|  | if (!prp_list) | 
|  | return total_len - length; | 
|  | list[iod->npages++] = prp_list; | 
|  | prp_list[0] = old_prp_list[i - 1]; | 
|  | old_prp_list[i - 1] = cpu_to_le64(prp_dma); | 
|  | i = 1; | 
|  | } | 
|  | prp_list[i++] = cpu_to_le64(dma_addr); | 
|  | dma_len -= PAGE_SIZE; | 
|  | dma_addr += PAGE_SIZE; | 
|  | length -= PAGE_SIZE; | 
|  | if (length <= 0) | 
|  | break; | 
|  | if (dma_len > 0) | 
|  | continue; | 
|  | BUG_ON(dma_len < 0); | 
|  | sg = sg_next(sg); | 
|  | dma_addr = sg_dma_address(sg); | 
|  | dma_len = sg_dma_len(sg); | 
|  | } | 
|  |  | 
|  | return total_len; | 
|  | } | 
|  |  | 
|  | /* NVMe scatterlists require no holes in the virtual address */ | 
|  | #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \ | 
|  | (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE)) | 
|  |  | 
|  | static int nvme_map_bio(struct device *dev, struct nvme_iod *iod, | 
|  | struct bio *bio, enum dma_data_direction dma_dir, int psegs) | 
|  | { | 
|  | struct bio_vec *bvec, *bvprv = NULL; | 
|  | struct scatterlist *sg = NULL; | 
|  | int i, old_idx, length = 0, nsegs = 0; | 
|  |  | 
|  | sg_init_table(iod->sg, psegs); | 
|  | old_idx = bio->bi_idx; | 
|  | bio_for_each_segment(bvec, bio, i) { | 
|  | if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) { | 
|  | sg->length += bvec->bv_len; | 
|  | } else { | 
|  | if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec)) | 
|  | break; | 
|  | sg = sg ? sg + 1 : iod->sg; | 
|  | sg_set_page(sg, bvec->bv_page, bvec->bv_len, | 
|  | bvec->bv_offset); | 
|  | nsegs++; | 
|  | } | 
|  | length += bvec->bv_len; | 
|  | bvprv = bvec; | 
|  | } | 
|  | bio->bi_idx = i; | 
|  | iod->nents = nsegs; | 
|  | sg_mark_end(sg); | 
|  | if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) { | 
|  | bio->bi_idx = old_idx; | 
|  | return -ENOMEM; | 
|  | } | 
|  | return length; | 
|  | } | 
|  |  | 
|  | static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns, | 
|  | int cmdid) | 
|  | { | 
|  | struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; | 
|  |  | 
|  | memset(cmnd, 0, sizeof(*cmnd)); | 
|  | cmnd->common.opcode = nvme_cmd_flush; | 
|  | cmnd->common.command_id = cmdid; | 
|  | cmnd->common.nsid = cpu_to_le32(ns->ns_id); | 
|  |  | 
|  | if (++nvmeq->sq_tail == nvmeq->q_depth) | 
|  | nvmeq->sq_tail = 0; | 
|  | writel(nvmeq->sq_tail, nvmeq->q_db); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns) | 
|  | { | 
|  | int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH, | 
|  | special_completion, NVME_IO_TIMEOUT); | 
|  | if (unlikely(cmdid < 0)) | 
|  | return cmdid; | 
|  |  | 
|  | return nvme_submit_flush(nvmeq, ns, cmdid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with local interrupts disabled and the q_lock held.  May not sleep. | 
|  | */ | 
|  | static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct nvme_command *cmnd; | 
|  | struct nvme_iod *iod; | 
|  | enum dma_data_direction dma_dir; | 
|  | int cmdid, length, result = -ENOMEM; | 
|  | u16 control; | 
|  | u32 dsmgmt; | 
|  | int psegs = bio_phys_segments(ns->queue, bio); | 
|  |  | 
|  | if ((bio->bi_rw & REQ_FLUSH) && psegs) { | 
|  | result = nvme_submit_flush_data(nvmeq, ns); | 
|  | if (result) | 
|  | return result; | 
|  | } | 
|  |  | 
|  | iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC); | 
|  | if (!iod) | 
|  | goto nomem; | 
|  | iod->private = bio; | 
|  |  | 
|  | result = -EBUSY; | 
|  | cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT); | 
|  | if (unlikely(cmdid < 0)) | 
|  | goto free_iod; | 
|  |  | 
|  | if ((bio->bi_rw & REQ_FLUSH) && !psegs) | 
|  | return nvme_submit_flush(nvmeq, ns, cmdid); | 
|  |  | 
|  | control = 0; | 
|  | if (bio->bi_rw & REQ_FUA) | 
|  | control |= NVME_RW_FUA; | 
|  | if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD)) | 
|  | control |= NVME_RW_LR; | 
|  |  | 
|  | dsmgmt = 0; | 
|  | if (bio->bi_rw & REQ_RAHEAD) | 
|  | dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; | 
|  |  | 
|  | cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; | 
|  |  | 
|  | memset(cmnd, 0, sizeof(*cmnd)); | 
|  | if (bio_data_dir(bio)) { | 
|  | cmnd->rw.opcode = nvme_cmd_write; | 
|  | dma_dir = DMA_TO_DEVICE; | 
|  | } else { | 
|  | cmnd->rw.opcode = nvme_cmd_read; | 
|  | dma_dir = DMA_FROM_DEVICE; | 
|  | } | 
|  |  | 
|  | result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs); | 
|  | if (result < 0) | 
|  | goto free_iod; | 
|  | length = result; | 
|  |  | 
|  | cmnd->rw.command_id = cmdid; | 
|  | cmnd->rw.nsid = cpu_to_le32(ns->ns_id); | 
|  | length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length, | 
|  | GFP_ATOMIC); | 
|  | cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9)); | 
|  | cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1); | 
|  | cmnd->rw.control = cpu_to_le16(control); | 
|  | cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); | 
|  |  | 
|  | bio->bi_sector += length >> 9; | 
|  |  | 
|  | if (++nvmeq->sq_tail == nvmeq->q_depth) | 
|  | nvmeq->sq_tail = 0; | 
|  | writel(nvmeq->sq_tail, nvmeq->q_db); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_iod: | 
|  | nvme_free_iod(nvmeq->dev, iod); | 
|  | nomem: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void nvme_make_request(struct request_queue *q, struct bio *bio) | 
|  | { | 
|  | struct nvme_ns *ns = q->queuedata; | 
|  | struct nvme_queue *nvmeq = get_nvmeq(ns->dev); | 
|  | int result = -EBUSY; | 
|  |  | 
|  | spin_lock_irq(&nvmeq->q_lock); | 
|  | if (bio_list_empty(&nvmeq->sq_cong)) | 
|  | result = nvme_submit_bio_queue(nvmeq, ns, bio); | 
|  | if (unlikely(result)) { | 
|  | if (bio_list_empty(&nvmeq->sq_cong)) | 
|  | add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); | 
|  | bio_list_add(&nvmeq->sq_cong, bio); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&nvmeq->q_lock); | 
|  | put_nvmeq(nvmeq); | 
|  | } | 
|  |  | 
|  | static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq) | 
|  | { | 
|  | u16 head, phase; | 
|  |  | 
|  | head = nvmeq->cq_head; | 
|  | phase = nvmeq->cq_phase; | 
|  |  | 
|  | for (;;) { | 
|  | void *ctx; | 
|  | nvme_completion_fn fn; | 
|  | struct nvme_completion cqe = nvmeq->cqes[head]; | 
|  | if ((le16_to_cpu(cqe.status) & 1) != phase) | 
|  | break; | 
|  | nvmeq->sq_head = le16_to_cpu(cqe.sq_head); | 
|  | if (++head == nvmeq->q_depth) { | 
|  | head = 0; | 
|  | phase = !phase; | 
|  | } | 
|  |  | 
|  | ctx = free_cmdid(nvmeq, cqe.command_id, &fn); | 
|  | fn(nvmeq->dev, ctx, &cqe); | 
|  | } | 
|  |  | 
|  | /* If the controller ignores the cq head doorbell and continuously | 
|  | * writes to the queue, it is theoretically possible to wrap around | 
|  | * the queue twice and mistakenly return IRQ_NONE.  Linux only | 
|  | * requires that 0.1% of your interrupts are handled, so this isn't | 
|  | * a big problem. | 
|  | */ | 
|  | if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride)); | 
|  | nvmeq->cq_head = head; | 
|  | nvmeq->cq_phase = phase; | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t nvme_irq(int irq, void *data) | 
|  | { | 
|  | irqreturn_t result; | 
|  | struct nvme_queue *nvmeq = data; | 
|  | spin_lock(&nvmeq->q_lock); | 
|  | result = nvme_process_cq(nvmeq); | 
|  | spin_unlock(&nvmeq->q_lock); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static irqreturn_t nvme_irq_check(int irq, void *data) | 
|  | { | 
|  | struct nvme_queue *nvmeq = data; | 
|  | struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; | 
|  | if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) | 
|  | return IRQ_NONE; | 
|  | return IRQ_WAKE_THREAD; | 
|  | } | 
|  |  | 
|  | static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid) | 
|  | { | 
|  | spin_lock_irq(&nvmeq->q_lock); | 
|  | cancel_cmdid(nvmeq, cmdid, NULL); | 
|  | spin_unlock_irq(&nvmeq->q_lock); | 
|  | } | 
|  |  | 
|  | struct sync_cmd_info { | 
|  | struct task_struct *task; | 
|  | u32 result; | 
|  | int status; | 
|  | }; | 
|  |  | 
|  | static void sync_completion(struct nvme_dev *dev, void *ctx, | 
|  | struct nvme_completion *cqe) | 
|  | { | 
|  | struct sync_cmd_info *cmdinfo = ctx; | 
|  | cmdinfo->result = le32_to_cpup(&cqe->result); | 
|  | cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; | 
|  | wake_up_process(cmdinfo->task); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 0 on success.  If the result is negative, it's a Linux error code; | 
|  | * if the result is positive, it's an NVM Express status code | 
|  | */ | 
|  | static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, | 
|  | struct nvme_command *cmd, u32 *result, unsigned timeout) | 
|  | { | 
|  | int cmdid; | 
|  | struct sync_cmd_info cmdinfo; | 
|  |  | 
|  | cmdinfo.task = current; | 
|  | cmdinfo.status = -EINTR; | 
|  |  | 
|  | cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion, | 
|  | timeout); | 
|  | if (cmdid < 0) | 
|  | return cmdid; | 
|  | cmd->common.command_id = cmdid; | 
|  |  | 
|  | set_current_state(TASK_KILLABLE); | 
|  | nvme_submit_cmd(nvmeq, cmd); | 
|  | schedule(); | 
|  |  | 
|  | if (cmdinfo.status == -EINTR) { | 
|  | nvme_abort_command(nvmeq, cmdid); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | if (result) | 
|  | *result = cmdinfo.result; | 
|  |  | 
|  | return cmdinfo.status; | 
|  | } | 
|  |  | 
|  | static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, | 
|  | u32 *result) | 
|  | { | 
|  | return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); | 
|  | } | 
|  |  | 
|  | static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) | 
|  | { | 
|  | int status; | 
|  | struct nvme_command c; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.delete_queue.opcode = opcode; | 
|  | c.delete_queue.qid = cpu_to_le16(id); | 
|  |  | 
|  | status = nvme_submit_admin_cmd(dev, &c, NULL); | 
|  | if (status) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, | 
|  | struct nvme_queue *nvmeq) | 
|  | { | 
|  | int status; | 
|  | struct nvme_command c; | 
|  | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.create_cq.opcode = nvme_admin_create_cq; | 
|  | c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); | 
|  | c.create_cq.cqid = cpu_to_le16(qid); | 
|  | c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | 
|  | c.create_cq.cq_flags = cpu_to_le16(flags); | 
|  | c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); | 
|  |  | 
|  | status = nvme_submit_admin_cmd(dev, &c, NULL); | 
|  | if (status) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, | 
|  | struct nvme_queue *nvmeq) | 
|  | { | 
|  | int status; | 
|  | struct nvme_command c; | 
|  | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.create_sq.opcode = nvme_admin_create_sq; | 
|  | c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); | 
|  | c.create_sq.sqid = cpu_to_le16(qid); | 
|  | c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | 
|  | c.create_sq.sq_flags = cpu_to_le16(flags); | 
|  | c.create_sq.cqid = cpu_to_le16(qid); | 
|  |  | 
|  | status = nvme_submit_admin_cmd(dev, &c, NULL); | 
|  | if (status) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) | 
|  | { | 
|  | return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); | 
|  | } | 
|  |  | 
|  | static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) | 
|  | { | 
|  | return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); | 
|  | } | 
|  |  | 
|  | static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns, | 
|  | dma_addr_t dma_addr) | 
|  | { | 
|  | struct nvme_command c; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.identify.opcode = nvme_admin_identify; | 
|  | c.identify.nsid = cpu_to_le32(nsid); | 
|  | c.identify.prp1 = cpu_to_le64(dma_addr); | 
|  | c.identify.cns = cpu_to_le32(cns); | 
|  |  | 
|  | return nvme_submit_admin_cmd(dev, &c, NULL); | 
|  | } | 
|  |  | 
|  | static int nvme_get_features(struct nvme_dev *dev, unsigned fid, | 
|  | unsigned dword11, dma_addr_t dma_addr) | 
|  | { | 
|  | struct nvme_command c; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.features.opcode = nvme_admin_get_features; | 
|  | c.features.prp1 = cpu_to_le64(dma_addr); | 
|  | c.features.fid = cpu_to_le32(fid); | 
|  | c.features.dword11 = cpu_to_le32(dword11); | 
|  |  | 
|  | return nvme_submit_admin_cmd(dev, &c, NULL); | 
|  | } | 
|  |  | 
|  | static int nvme_set_features(struct nvme_dev *dev, unsigned fid, | 
|  | unsigned dword11, dma_addr_t dma_addr, u32 *result) | 
|  | { | 
|  | struct nvme_command c; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.features.opcode = nvme_admin_set_features; | 
|  | c.features.prp1 = cpu_to_le64(dma_addr); | 
|  | c.features.fid = cpu_to_le32(fid); | 
|  | c.features.dword11 = cpu_to_le32(dword11); | 
|  |  | 
|  | return nvme_submit_admin_cmd(dev, &c, result); | 
|  | } | 
|  |  | 
|  | static void nvme_free_queue(struct nvme_dev *dev, int qid) | 
|  | { | 
|  | struct nvme_queue *nvmeq = dev->queues[qid]; | 
|  | int vector = dev->entry[nvmeq->cq_vector].vector; | 
|  |  | 
|  | irq_set_affinity_hint(vector, NULL); | 
|  | free_irq(vector, nvmeq); | 
|  |  | 
|  | /* Don't tell the adapter to delete the admin queue */ | 
|  | if (qid) { | 
|  | adapter_delete_sq(dev, qid); | 
|  | adapter_delete_cq(dev, qid); | 
|  | } | 
|  |  | 
|  | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | 
|  | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | 
|  | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | 
|  | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | 
|  | kfree(nvmeq); | 
|  | } | 
|  |  | 
|  | static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, | 
|  | int depth, int vector) | 
|  | { | 
|  | struct device *dmadev = &dev->pci_dev->dev; | 
|  | unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info)); | 
|  | struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL); | 
|  | if (!nvmeq) | 
|  | return NULL; | 
|  |  | 
|  | nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth), | 
|  | &nvmeq->cq_dma_addr, GFP_KERNEL); | 
|  | if (!nvmeq->cqes) | 
|  | goto free_nvmeq; | 
|  | memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth)); | 
|  |  | 
|  | nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth), | 
|  | &nvmeq->sq_dma_addr, GFP_KERNEL); | 
|  | if (!nvmeq->sq_cmds) | 
|  | goto free_cqdma; | 
|  |  | 
|  | nvmeq->q_dmadev = dmadev; | 
|  | nvmeq->dev = dev; | 
|  | spin_lock_init(&nvmeq->q_lock); | 
|  | nvmeq->cq_head = 0; | 
|  | nvmeq->cq_phase = 1; | 
|  | init_waitqueue_head(&nvmeq->sq_full); | 
|  | init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread); | 
|  | bio_list_init(&nvmeq->sq_cong); | 
|  | nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)]; | 
|  | nvmeq->q_depth = depth; | 
|  | nvmeq->cq_vector = vector; | 
|  |  | 
|  | return nvmeq; | 
|  |  | 
|  | free_cqdma: | 
|  | dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, | 
|  | nvmeq->cq_dma_addr); | 
|  | free_nvmeq: | 
|  | kfree(nvmeq); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, | 
|  | const char *name) | 
|  | { | 
|  | if (use_threaded_interrupts) | 
|  | return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, | 
|  | nvme_irq_check, nvme_irq, | 
|  | IRQF_DISABLED | IRQF_SHARED, | 
|  | name, nvmeq); | 
|  | return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, | 
|  | IRQF_DISABLED | IRQF_SHARED, name, nvmeq); | 
|  | } | 
|  |  | 
|  | static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, | 
|  | int qid, int cq_size, int vector) | 
|  | { | 
|  | int result; | 
|  | struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector); | 
|  |  | 
|  | if (!nvmeq) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | result = adapter_alloc_cq(dev, qid, nvmeq); | 
|  | if (result < 0) | 
|  | goto free_nvmeq; | 
|  |  | 
|  | result = adapter_alloc_sq(dev, qid, nvmeq); | 
|  | if (result < 0) | 
|  | goto release_cq; | 
|  |  | 
|  | result = queue_request_irq(dev, nvmeq, "nvme"); | 
|  | if (result < 0) | 
|  | goto release_sq; | 
|  |  | 
|  | return nvmeq; | 
|  |  | 
|  | release_sq: | 
|  | adapter_delete_sq(dev, qid); | 
|  | release_cq: | 
|  | adapter_delete_cq(dev, qid); | 
|  | free_nvmeq: | 
|  | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | 
|  | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | 
|  | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | 
|  | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | 
|  | kfree(nvmeq); | 
|  | return ERR_PTR(result); | 
|  | } | 
|  |  | 
|  | static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev) | 
|  | { | 
|  | int result; | 
|  | u32 aqa; | 
|  | u64 cap; | 
|  | unsigned long timeout; | 
|  | struct nvme_queue *nvmeq; | 
|  |  | 
|  | dev->dbs = ((void __iomem *)dev->bar) + 4096; | 
|  |  | 
|  | nvmeq = nvme_alloc_queue(dev, 0, 64, 0); | 
|  | if (!nvmeq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | aqa = nvmeq->q_depth - 1; | 
|  | aqa |= aqa << 16; | 
|  |  | 
|  | dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM; | 
|  | dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; | 
|  | dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; | 
|  | dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; | 
|  |  | 
|  | writel(0, &dev->bar->cc); | 
|  | writel(aqa, &dev->bar->aqa); | 
|  | writeq(nvmeq->sq_dma_addr, &dev->bar->asq); | 
|  | writeq(nvmeq->cq_dma_addr, &dev->bar->acq); | 
|  | writel(dev->ctrl_config, &dev->bar->cc); | 
|  |  | 
|  | cap = readq(&dev->bar->cap); | 
|  | timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; | 
|  | dev->db_stride = NVME_CAP_STRIDE(cap); | 
|  |  | 
|  | while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) { | 
|  | msleep(100); | 
|  | if (fatal_signal_pending(current)) | 
|  | return -EINTR; | 
|  | if (time_after(jiffies, timeout)) { | 
|  | dev_err(&dev->pci_dev->dev, | 
|  | "Device not ready; aborting initialisation\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | result = queue_request_irq(dev, nvmeq, "nvme admin"); | 
|  | dev->queues[0] = nvmeq; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write, | 
|  | unsigned long addr, unsigned length) | 
|  | { | 
|  | int i, err, count, nents, offset; | 
|  | struct scatterlist *sg; | 
|  | struct page **pages; | 
|  | struct nvme_iod *iod; | 
|  |  | 
|  | if (addr & 3) | 
|  | return ERR_PTR(-EINVAL); | 
|  | if (!length) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | offset = offset_in_page(addr); | 
|  | count = DIV_ROUND_UP(offset + length, PAGE_SIZE); | 
|  | pages = kcalloc(count, sizeof(*pages), GFP_KERNEL); | 
|  |  | 
|  | err = get_user_pages_fast(addr, count, 1, pages); | 
|  | if (err < count) { | 
|  | count = err; | 
|  | err = -EFAULT; | 
|  | goto put_pages; | 
|  | } | 
|  |  | 
|  | iod = nvme_alloc_iod(count, length, GFP_KERNEL); | 
|  | sg = iod->sg; | 
|  | sg_init_table(sg, count); | 
|  | for (i = 0; i < count; i++) { | 
|  | sg_set_page(&sg[i], pages[i], | 
|  | min_t(int, length, PAGE_SIZE - offset), offset); | 
|  | length -= (PAGE_SIZE - offset); | 
|  | offset = 0; | 
|  | } | 
|  | sg_mark_end(&sg[i - 1]); | 
|  | iod->nents = count; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | nents = dma_map_sg(&dev->pci_dev->dev, sg, count, | 
|  | write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
|  | if (!nents) | 
|  | goto free_iod; | 
|  |  | 
|  | kfree(pages); | 
|  | return iod; | 
|  |  | 
|  | free_iod: | 
|  | kfree(iod); | 
|  | put_pages: | 
|  | for (i = 0; i < count; i++) | 
|  | put_page(pages[i]); | 
|  | kfree(pages); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void nvme_unmap_user_pages(struct nvme_dev *dev, int write, | 
|  | struct nvme_iod *iod) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, | 
|  | write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
|  |  | 
|  | for (i = 0; i < iod->nents; i++) | 
|  | put_page(sg_page(&iod->sg[i])); | 
|  | } | 
|  |  | 
|  | static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) | 
|  | { | 
|  | struct nvme_dev *dev = ns->dev; | 
|  | struct nvme_queue *nvmeq; | 
|  | struct nvme_user_io io; | 
|  | struct nvme_command c; | 
|  | unsigned length; | 
|  | int status; | 
|  | struct nvme_iod *iod; | 
|  |  | 
|  | if (copy_from_user(&io, uio, sizeof(io))) | 
|  | return -EFAULT; | 
|  | length = (io.nblocks + 1) << ns->lba_shift; | 
|  |  | 
|  | switch (io.opcode) { | 
|  | case nvme_cmd_write: | 
|  | case nvme_cmd_read: | 
|  | case nvme_cmd_compare: | 
|  | iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (IS_ERR(iod)) | 
|  | return PTR_ERR(iod); | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.rw.opcode = io.opcode; | 
|  | c.rw.flags = io.flags; | 
|  | c.rw.nsid = cpu_to_le32(ns->ns_id); | 
|  | c.rw.slba = cpu_to_le64(io.slba); | 
|  | c.rw.length = cpu_to_le16(io.nblocks); | 
|  | c.rw.control = cpu_to_le16(io.control); | 
|  | c.rw.dsmgmt = cpu_to_le16(io.dsmgmt); | 
|  | c.rw.reftag = io.reftag; | 
|  | c.rw.apptag = io.apptag; | 
|  | c.rw.appmask = io.appmask; | 
|  | /* XXX: metadata */ | 
|  | length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL); | 
|  |  | 
|  | nvmeq = get_nvmeq(dev); | 
|  | /* | 
|  | * Since nvme_submit_sync_cmd sleeps, we can't keep preemption | 
|  | * disabled.  We may be preempted at any point, and be rescheduled | 
|  | * to a different CPU.  That will cause cacheline bouncing, but no | 
|  | * additional races since q_lock already protects against other CPUs. | 
|  | */ | 
|  | put_nvmeq(nvmeq); | 
|  | if (length != (io.nblocks + 1) << ns->lba_shift) | 
|  | status = -ENOMEM; | 
|  | else | 
|  | status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT); | 
|  |  | 
|  | nvme_unmap_user_pages(dev, io.opcode & 1, iod); | 
|  | nvme_free_iod(dev, iod); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int nvme_user_admin_cmd(struct nvme_ns *ns, | 
|  | struct nvme_admin_cmd __user *ucmd) | 
|  | { | 
|  | struct nvme_dev *dev = ns->dev; | 
|  | struct nvme_admin_cmd cmd; | 
|  | struct nvme_command c; | 
|  | int status, length; | 
|  | struct nvme_iod *iod; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EACCES; | 
|  | if (copy_from_user(&cmd, ucmd, sizeof(cmd))) | 
|  | return -EFAULT; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.common.opcode = cmd.opcode; | 
|  | c.common.flags = cmd.flags; | 
|  | c.common.nsid = cpu_to_le32(cmd.nsid); | 
|  | c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); | 
|  | c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); | 
|  | c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); | 
|  | c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); | 
|  | c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); | 
|  | c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); | 
|  | c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); | 
|  | c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); | 
|  |  | 
|  | length = cmd.data_len; | 
|  | if (cmd.data_len) { | 
|  | iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr, | 
|  | length); | 
|  | if (IS_ERR(iod)) | 
|  | return PTR_ERR(iod); | 
|  | length = nvme_setup_prps(dev, &c.common, iod, length, | 
|  | GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | if (length != cmd.data_len) | 
|  | status = -ENOMEM; | 
|  | else | 
|  | status = nvme_submit_admin_cmd(dev, &c, NULL); | 
|  |  | 
|  | if (cmd.data_len) { | 
|  | nvme_unmap_user_pages(dev, cmd.opcode & 1, iod); | 
|  | nvme_free_iod(dev, iod); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | struct nvme_ns *ns = bdev->bd_disk->private_data; | 
|  |  | 
|  | switch (cmd) { | 
|  | case NVME_IOCTL_ID: | 
|  | return ns->ns_id; | 
|  | case NVME_IOCTL_ADMIN_CMD: | 
|  | return nvme_user_admin_cmd(ns, (void __user *)arg); | 
|  | case NVME_IOCTL_SUBMIT_IO: | 
|  | return nvme_submit_io(ns, (void __user *)arg); | 
|  | default: | 
|  | return -ENOTTY; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct block_device_operations nvme_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .ioctl		= nvme_ioctl, | 
|  | .compat_ioctl	= nvme_ioctl, | 
|  | }; | 
|  |  | 
|  | static void nvme_timeout_ios(struct nvme_queue *nvmeq) | 
|  | { | 
|  | int depth = nvmeq->q_depth - 1; | 
|  | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | 
|  | unsigned long now = jiffies; | 
|  | int cmdid; | 
|  |  | 
|  | for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) { | 
|  | void *ctx; | 
|  | nvme_completion_fn fn; | 
|  | static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, }; | 
|  |  | 
|  | if (!time_after(now, info[cmdid].timeout)) | 
|  | continue; | 
|  | dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid); | 
|  | ctx = cancel_cmdid(nvmeq, cmdid, &fn); | 
|  | fn(nvmeq->dev, ctx, &cqe); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_resubmit_bios(struct nvme_queue *nvmeq) | 
|  | { | 
|  | while (bio_list_peek(&nvmeq->sq_cong)) { | 
|  | struct bio *bio = bio_list_pop(&nvmeq->sq_cong); | 
|  | struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; | 
|  | if (nvme_submit_bio_queue(nvmeq, ns, bio)) { | 
|  | bio_list_add_head(&nvmeq->sq_cong, bio); | 
|  | break; | 
|  | } | 
|  | if (bio_list_empty(&nvmeq->sq_cong)) | 
|  | remove_wait_queue(&nvmeq->sq_full, | 
|  | &nvmeq->sq_cong_wait); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int nvme_kthread(void *data) | 
|  | { | 
|  | struct nvme_dev *dev; | 
|  |  | 
|  | while (!kthread_should_stop()) { | 
|  | __set_current_state(TASK_RUNNING); | 
|  | spin_lock(&dev_list_lock); | 
|  | list_for_each_entry(dev, &dev_list, node) { | 
|  | int i; | 
|  | for (i = 0; i < dev->queue_count; i++) { | 
|  | struct nvme_queue *nvmeq = dev->queues[i]; | 
|  | if (!nvmeq) | 
|  | continue; | 
|  | spin_lock_irq(&nvmeq->q_lock); | 
|  | if (nvme_process_cq(nvmeq)) | 
|  | printk("process_cq did something\n"); | 
|  | nvme_timeout_ios(nvmeq); | 
|  | nvme_resubmit_bios(nvmeq); | 
|  | spin_unlock_irq(&nvmeq->q_lock); | 
|  | } | 
|  | } | 
|  | spin_unlock(&dev_list_lock); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule_timeout(HZ); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static DEFINE_IDA(nvme_index_ida); | 
|  |  | 
|  | static int nvme_get_ns_idx(void) | 
|  | { | 
|  | int index, error; | 
|  |  | 
|  | do { | 
|  | if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL)) | 
|  | return -1; | 
|  |  | 
|  | spin_lock(&dev_list_lock); | 
|  | error = ida_get_new(&nvme_index_ida, &index); | 
|  | spin_unlock(&dev_list_lock); | 
|  | } while (error == -EAGAIN); | 
|  |  | 
|  | if (error) | 
|  | index = -1; | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static void nvme_put_ns_idx(int index) | 
|  | { | 
|  | spin_lock(&dev_list_lock); | 
|  | ida_remove(&nvme_index_ida, index); | 
|  | spin_unlock(&dev_list_lock); | 
|  | } | 
|  |  | 
|  | static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid, | 
|  | struct nvme_id_ns *id, struct nvme_lba_range_type *rt) | 
|  | { | 
|  | struct nvme_ns *ns; | 
|  | struct gendisk *disk; | 
|  | int lbaf; | 
|  |  | 
|  | if (rt->attributes & NVME_LBART_ATTRIB_HIDE) | 
|  | return NULL; | 
|  |  | 
|  | ns = kzalloc(sizeof(*ns), GFP_KERNEL); | 
|  | if (!ns) | 
|  | return NULL; | 
|  | ns->queue = blk_alloc_queue(GFP_KERNEL); | 
|  | if (!ns->queue) | 
|  | goto out_free_ns; | 
|  | ns->queue->queue_flags = QUEUE_FLAG_DEFAULT; | 
|  | queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); | 
|  | queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); | 
|  | /*	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */ | 
|  | blk_queue_make_request(ns->queue, nvme_make_request); | 
|  | ns->dev = dev; | 
|  | ns->queue->queuedata = ns; | 
|  |  | 
|  | disk = alloc_disk(NVME_MINORS); | 
|  | if (!disk) | 
|  | goto out_free_queue; | 
|  | ns->ns_id = nsid; | 
|  | ns->disk = disk; | 
|  | lbaf = id->flbas & 0xf; | 
|  | ns->lba_shift = id->lbaf[lbaf].ds; | 
|  |  | 
|  | disk->major = nvme_major; | 
|  | disk->minors = NVME_MINORS; | 
|  | disk->first_minor = NVME_MINORS * nvme_get_ns_idx(); | 
|  | disk->fops = &nvme_fops; | 
|  | disk->private_data = ns; | 
|  | disk->queue = ns->queue; | 
|  | disk->driverfs_dev = &dev->pci_dev->dev; | 
|  | sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid); | 
|  | set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); | 
|  |  | 
|  | return ns; | 
|  |  | 
|  | out_free_queue: | 
|  | blk_cleanup_queue(ns->queue); | 
|  | out_free_ns: | 
|  | kfree(ns); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void nvme_ns_free(struct nvme_ns *ns) | 
|  | { | 
|  | int index = ns->disk->first_minor / NVME_MINORS; | 
|  | put_disk(ns->disk); | 
|  | nvme_put_ns_idx(index); | 
|  | blk_cleanup_queue(ns->queue); | 
|  | kfree(ns); | 
|  | } | 
|  |  | 
|  | static int set_queue_count(struct nvme_dev *dev, int count) | 
|  | { | 
|  | int status; | 
|  | u32 result; | 
|  | u32 q_count = (count - 1) | ((count - 1) << 16); | 
|  |  | 
|  | status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0, | 
|  | &result); | 
|  | if (status) | 
|  | return -EIO; | 
|  | return min(result & 0xffff, result >> 16) + 1; | 
|  | } | 
|  |  | 
|  | static int __devinit nvme_setup_io_queues(struct nvme_dev *dev) | 
|  | { | 
|  | int result, cpu, i, nr_io_queues, db_bar_size; | 
|  |  | 
|  | nr_io_queues = num_online_cpus(); | 
|  | result = set_queue_count(dev, nr_io_queues); | 
|  | if (result < 0) | 
|  | return result; | 
|  | if (result < nr_io_queues) | 
|  | nr_io_queues = result; | 
|  |  | 
|  | /* Deregister the admin queue's interrupt */ | 
|  | free_irq(dev->entry[0].vector, dev->queues[0]); | 
|  |  | 
|  | db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3)); | 
|  | if (db_bar_size > 8192) { | 
|  | iounmap(dev->bar); | 
|  | dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0), | 
|  | db_bar_size); | 
|  | dev->dbs = ((void __iomem *)dev->bar) + 4096; | 
|  | dev->queues[0]->q_db = dev->dbs; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_io_queues; i++) | 
|  | dev->entry[i].entry = i; | 
|  | for (;;) { | 
|  | result = pci_enable_msix(dev->pci_dev, dev->entry, | 
|  | nr_io_queues); | 
|  | if (result == 0) { | 
|  | break; | 
|  | } else if (result > 0) { | 
|  | nr_io_queues = result; | 
|  | continue; | 
|  | } else { | 
|  | nr_io_queues = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | result = queue_request_irq(dev, dev->queues[0], "nvme admin"); | 
|  | /* XXX: handle failure here */ | 
|  |  | 
|  | cpu = cpumask_first(cpu_online_mask); | 
|  | for (i = 0; i < nr_io_queues; i++) { | 
|  | irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu)); | 
|  | cpu = cpumask_next(cpu, cpu_online_mask); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_io_queues; i++) { | 
|  | dev->queues[i + 1] = nvme_create_queue(dev, i + 1, | 
|  | NVME_Q_DEPTH, i); | 
|  | if (IS_ERR(dev->queues[i + 1])) | 
|  | return PTR_ERR(dev->queues[i + 1]); | 
|  | dev->queue_count++; | 
|  | } | 
|  |  | 
|  | for (; i < num_possible_cpus(); i++) { | 
|  | int target = i % rounddown_pow_of_two(dev->queue_count - 1); | 
|  | dev->queues[i + 1] = dev->queues[target + 1]; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nvme_free_queues(struct nvme_dev *dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = dev->queue_count - 1; i >= 0; i--) | 
|  | nvme_free_queue(dev, i); | 
|  | } | 
|  |  | 
|  | static int __devinit nvme_dev_add(struct nvme_dev *dev) | 
|  | { | 
|  | int res, nn, i; | 
|  | struct nvme_ns *ns, *next; | 
|  | struct nvme_id_ctrl *ctrl; | 
|  | struct nvme_id_ns *id_ns; | 
|  | void *mem; | 
|  | dma_addr_t dma_addr; | 
|  |  | 
|  | res = nvme_setup_io_queues(dev); | 
|  | if (res) | 
|  | return res; | 
|  |  | 
|  | mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr, | 
|  | GFP_KERNEL); | 
|  |  | 
|  | res = nvme_identify(dev, 0, 1, dma_addr); | 
|  | if (res) { | 
|  | res = -EIO; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | ctrl = mem; | 
|  | nn = le32_to_cpup(&ctrl->nn); | 
|  | memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); | 
|  | memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); | 
|  | memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); | 
|  |  | 
|  | id_ns = mem; | 
|  | for (i = 1; i <= nn; i++) { | 
|  | res = nvme_identify(dev, i, 0, dma_addr); | 
|  | if (res) | 
|  | continue; | 
|  |  | 
|  | if (id_ns->ncap == 0) | 
|  | continue; | 
|  |  | 
|  | res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i, | 
|  | dma_addr + 4096); | 
|  | if (res) | 
|  | continue; | 
|  |  | 
|  | ns = nvme_alloc_ns(dev, i, mem, mem + 4096); | 
|  | if (ns) | 
|  | list_add_tail(&ns->list, &dev->namespaces); | 
|  | } | 
|  | list_for_each_entry(ns, &dev->namespaces, list) | 
|  | add_disk(ns->disk); | 
|  |  | 
|  | goto out; | 
|  |  | 
|  | out_free: | 
|  | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | 
|  | list_del(&ns->list); | 
|  | nvme_ns_free(ns); | 
|  | } | 
|  |  | 
|  | out: | 
|  | dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int nvme_dev_remove(struct nvme_dev *dev) | 
|  | { | 
|  | struct nvme_ns *ns, *next; | 
|  |  | 
|  | spin_lock(&dev_list_lock); | 
|  | list_del(&dev->node); | 
|  | spin_unlock(&dev_list_lock); | 
|  |  | 
|  | /* TODO: wait all I/O finished or cancel them */ | 
|  |  | 
|  | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | 
|  | list_del(&ns->list); | 
|  | del_gendisk(ns->disk); | 
|  | nvme_ns_free(ns); | 
|  | } | 
|  |  | 
|  | nvme_free_queues(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nvme_setup_prp_pools(struct nvme_dev *dev) | 
|  | { | 
|  | struct device *dmadev = &dev->pci_dev->dev; | 
|  | dev->prp_page_pool = dma_pool_create("prp list page", dmadev, | 
|  | PAGE_SIZE, PAGE_SIZE, 0); | 
|  | if (!dev->prp_page_pool) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Optimisation for I/Os between 4k and 128k */ | 
|  | dev->prp_small_pool = dma_pool_create("prp list 256", dmadev, | 
|  | 256, 256, 0); | 
|  | if (!dev->prp_small_pool) { | 
|  | dma_pool_destroy(dev->prp_page_pool); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nvme_release_prp_pools(struct nvme_dev *dev) | 
|  | { | 
|  | dma_pool_destroy(dev->prp_page_pool); | 
|  | dma_pool_destroy(dev->prp_small_pool); | 
|  | } | 
|  |  | 
|  | /* XXX: Use an ida or something to let remove / add work correctly */ | 
|  | static void nvme_set_instance(struct nvme_dev *dev) | 
|  | { | 
|  | static int instance; | 
|  | dev->instance = instance++; | 
|  | } | 
|  |  | 
|  | static void nvme_release_instance(struct nvme_dev *dev) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int __devinit nvme_probe(struct pci_dev *pdev, | 
|  | const struct pci_device_id *id) | 
|  | { | 
|  | int bars, result = -ENOMEM; | 
|  | struct nvme_dev *dev; | 
|  |  | 
|  | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
|  | if (!dev) | 
|  | return -ENOMEM; | 
|  | dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry), | 
|  | GFP_KERNEL); | 
|  | if (!dev->entry) | 
|  | goto free; | 
|  | dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *), | 
|  | GFP_KERNEL); | 
|  | if (!dev->queues) | 
|  | goto free; | 
|  |  | 
|  | if (pci_enable_device_mem(pdev)) | 
|  | goto free; | 
|  | pci_set_master(pdev); | 
|  | bars = pci_select_bars(pdev, IORESOURCE_MEM); | 
|  | if (pci_request_selected_regions(pdev, bars, "nvme")) | 
|  | goto disable; | 
|  |  | 
|  | INIT_LIST_HEAD(&dev->namespaces); | 
|  | dev->pci_dev = pdev; | 
|  | pci_set_drvdata(pdev, dev); | 
|  | dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | 
|  | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | 
|  | nvme_set_instance(dev); | 
|  | dev->entry[0].vector = pdev->irq; | 
|  |  | 
|  | result = nvme_setup_prp_pools(dev); | 
|  | if (result) | 
|  | goto disable_msix; | 
|  |  | 
|  | dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); | 
|  | if (!dev->bar) { | 
|  | result = -ENOMEM; | 
|  | goto disable_msix; | 
|  | } | 
|  |  | 
|  | result = nvme_configure_admin_queue(dev); | 
|  | if (result) | 
|  | goto unmap; | 
|  | dev->queue_count++; | 
|  |  | 
|  | spin_lock(&dev_list_lock); | 
|  | list_add(&dev->node, &dev_list); | 
|  | spin_unlock(&dev_list_lock); | 
|  |  | 
|  | result = nvme_dev_add(dev); | 
|  | if (result) | 
|  | goto delete; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | delete: | 
|  | spin_lock(&dev_list_lock); | 
|  | list_del(&dev->node); | 
|  | spin_unlock(&dev_list_lock); | 
|  |  | 
|  | nvme_free_queues(dev); | 
|  | unmap: | 
|  | iounmap(dev->bar); | 
|  | disable_msix: | 
|  | pci_disable_msix(pdev); | 
|  | nvme_release_instance(dev); | 
|  | nvme_release_prp_pools(dev); | 
|  | disable: | 
|  | pci_disable_device(pdev); | 
|  | pci_release_regions(pdev); | 
|  | free: | 
|  | kfree(dev->queues); | 
|  | kfree(dev->entry); | 
|  | kfree(dev); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void __devexit nvme_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct nvme_dev *dev = pci_get_drvdata(pdev); | 
|  | nvme_dev_remove(dev); | 
|  | pci_disable_msix(pdev); | 
|  | iounmap(dev->bar); | 
|  | nvme_release_instance(dev); | 
|  | nvme_release_prp_pools(dev); | 
|  | pci_disable_device(pdev); | 
|  | pci_release_regions(pdev); | 
|  | kfree(dev->queues); | 
|  | kfree(dev->entry); | 
|  | kfree(dev); | 
|  | } | 
|  |  | 
|  | /* These functions are yet to be implemented */ | 
|  | #define nvme_error_detected NULL | 
|  | #define nvme_dump_registers NULL | 
|  | #define nvme_link_reset NULL | 
|  | #define nvme_slot_reset NULL | 
|  | #define nvme_error_resume NULL | 
|  | #define nvme_suspend NULL | 
|  | #define nvme_resume NULL | 
|  |  | 
|  | static struct pci_error_handlers nvme_err_handler = { | 
|  | .error_detected	= nvme_error_detected, | 
|  | .mmio_enabled	= nvme_dump_registers, | 
|  | .link_reset	= nvme_link_reset, | 
|  | .slot_reset	= nvme_slot_reset, | 
|  | .resume		= nvme_error_resume, | 
|  | }; | 
|  |  | 
|  | /* Move to pci_ids.h later */ | 
|  | #define PCI_CLASS_STORAGE_EXPRESS	0x010802 | 
|  |  | 
|  | static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = { | 
|  | { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, | 
|  | { 0, } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, nvme_id_table); | 
|  |  | 
|  | static struct pci_driver nvme_driver = { | 
|  | .name		= "nvme", | 
|  | .id_table	= nvme_id_table, | 
|  | .probe		= nvme_probe, | 
|  | .remove		= __devexit_p(nvme_remove), | 
|  | .suspend	= nvme_suspend, | 
|  | .resume		= nvme_resume, | 
|  | .err_handler	= &nvme_err_handler, | 
|  | }; | 
|  |  | 
|  | static int __init nvme_init(void) | 
|  | { | 
|  | int result = -EBUSY; | 
|  |  | 
|  | nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); | 
|  | if (IS_ERR(nvme_thread)) | 
|  | return PTR_ERR(nvme_thread); | 
|  |  | 
|  | nvme_major = register_blkdev(nvme_major, "nvme"); | 
|  | if (nvme_major <= 0) | 
|  | goto kill_kthread; | 
|  |  | 
|  | result = pci_register_driver(&nvme_driver); | 
|  | if (result) | 
|  | goto unregister_blkdev; | 
|  | return 0; | 
|  |  | 
|  | unregister_blkdev: | 
|  | unregister_blkdev(nvme_major, "nvme"); | 
|  | kill_kthread: | 
|  | kthread_stop(nvme_thread); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void __exit nvme_exit(void) | 
|  | { | 
|  | pci_unregister_driver(&nvme_driver); | 
|  | unregister_blkdev(nvme_major, "nvme"); | 
|  | kthread_stop(nvme_thread); | 
|  | } | 
|  |  | 
|  | MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION("0.8"); | 
|  | module_init(nvme_init); | 
|  | module_exit(nvme_exit); |