| /* | 
 |  * (C) Copyright 2006-2007 Freescale Semiconductor, Inc. | 
 |  * | 
 |  * (C) Copyright 2006 | 
 |  * Wolfgang Denk, DENX Software Engineering, wd@denx.de. | 
 |  * | 
 |  * Copyright (C) 2004-2006 Freescale Semiconductor, Inc. | 
 |  * (C) Copyright 2003 Motorola Inc. | 
 |  * Xianghua Xiao (X.Xiao@motorola.com) | 
 |  * | 
 |  * See file CREDITS for list of people who contributed to this | 
 |  * project. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation; either version 2 of | 
 |  * the License, or (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
 |  * MA 02111-1307 USA | 
 |  */ | 
 |  | 
 | #include <common.h> | 
 | #include <asm/processor.h> | 
 | #include <i2c.h> | 
 | #include <spd.h> | 
 | #include <asm/mmu.h> | 
 | #include <spd_sdram.h> | 
 |  | 
 | DECLARE_GLOBAL_DATA_PTR; | 
 |  | 
 | void board_add_ram_info(int use_default) | 
 | { | 
 | 	volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR; | 
 | 	volatile ddr83xx_t *ddr = &immap->ddr; | 
 | 	char buf[32]; | 
 |  | 
 | 	printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) | 
 | 			   >> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1); | 
 |  | 
 | 	if (ddr->sdram_cfg & SDRAM_CFG_32_BE) | 
 | 		puts(", 32-bit"); | 
 | 	else | 
 | 		puts(", 64-bit"); | 
 |  | 
 | 	if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN) | 
 | 		puts(", ECC on"); | 
 | 	else | 
 | 		puts(", ECC off"); | 
 |  | 
 | 	printf(", %s MHz)", strmhz(buf, gd->mem_clk)); | 
 |  | 
 | #if defined(CONFIG_SYS_LB_SDRAM) && defined(CONFIG_SYS_LBC_SDRAM_SIZE) | 
 | 	puts("\nSDRAM: "); | 
 | 	print_size (CONFIG_SYS_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)"); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_SPD_EEPROM | 
 | #ifndef	CONFIG_SYS_READ_SPD | 
 | #define CONFIG_SYS_READ_SPD	i2c_read | 
 | #endif | 
 |  | 
 | /* | 
 |  * Convert picoseconds into clock cycles (rounding up if needed). | 
 |  */ | 
 | int | 
 | picos_to_clk(int picos) | 
 | { | 
 | 	unsigned int mem_bus_clk; | 
 | 	int clks; | 
 |  | 
 | 	mem_bus_clk = gd->mem_clk >> 1; | 
 | 	clks = picos / (1000000000 / (mem_bus_clk / 1000)); | 
 | 	if (picos % (1000000000 / (mem_bus_clk / 1000)) != 0) | 
 | 		clks++; | 
 |  | 
 | 	return clks; | 
 | } | 
 |  | 
 | unsigned int banksize(unsigned char row_dens) | 
 | { | 
 | 	return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; | 
 | } | 
 |  | 
 | int read_spd(uint addr) | 
 | { | 
 | 	return ((int) addr); | 
 | } | 
 |  | 
 | #undef SPD_DEBUG | 
 | #ifdef SPD_DEBUG | 
 | static void spd_debug(spd_eeprom_t *spd) | 
 | { | 
 | 	printf ("\nDIMM type:       %-18.18s\n", spd->mpart); | 
 | 	printf ("SPD size:        %d\n", spd->info_size); | 
 | 	printf ("EEPROM size:     %d\n", 1 << spd->chip_size); | 
 | 	printf ("Memory type:     %d\n", spd->mem_type); | 
 | 	printf ("Row addr:        %d\n", spd->nrow_addr); | 
 | 	printf ("Column addr:     %d\n", spd->ncol_addr); | 
 | 	printf ("# of rows:       %d\n", spd->nrows); | 
 | 	printf ("Row density:     %d\n", spd->row_dens); | 
 | 	printf ("# of banks:      %d\n", spd->nbanks); | 
 | 	printf ("Data width:      %d\n", | 
 | 			256 * spd->dataw_msb + spd->dataw_lsb); | 
 | 	printf ("Chip width:      %d\n", spd->primw); | 
 | 	printf ("Refresh rate:    %02X\n", spd->refresh); | 
 | 	printf ("CAS latencies:   %02X\n", spd->cas_lat); | 
 | 	printf ("Write latencies: %02X\n", spd->write_lat); | 
 | 	printf ("tRP:             %d\n", spd->trp); | 
 | 	printf ("tRCD:            %d\n", spd->trcd); | 
 | 	printf ("\n"); | 
 | } | 
 | #endif /* SPD_DEBUG */ | 
 |  | 
 | long int spd_sdram() | 
 | { | 
 | 	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; | 
 | 	volatile ddr83xx_t *ddr = &immap->ddr; | 
 | 	volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0]; | 
 | 	spd_eeprom_t spd; | 
 | 	unsigned int n_ranks; | 
 | 	unsigned int odt_rd_cfg, odt_wr_cfg; | 
 | 	unsigned char twr_clk, twtr_clk; | 
 | 	unsigned int sdram_type; | 
 | 	unsigned int memsize; | 
 | 	unsigned int law_size; | 
 | 	unsigned char caslat, caslat_ctrl; | 
 | 	unsigned int trfc, trfc_clk, trfc_low, trfc_high; | 
 | 	unsigned int trcd_clk, trtp_clk; | 
 | 	unsigned char cke_min_clk; | 
 | 	unsigned char add_lat, wr_lat; | 
 | 	unsigned char wr_data_delay; | 
 | 	unsigned char four_act; | 
 | 	unsigned char cpo; | 
 | 	unsigned char burstlen; | 
 | 	unsigned char odt_cfg, mode_odt_enable; | 
 | 	unsigned int max_bus_clk; | 
 | 	unsigned int max_data_rate, effective_data_rate; | 
 | 	unsigned int ddrc_clk; | 
 | 	unsigned int refresh_clk; | 
 | 	unsigned int sdram_cfg; | 
 | 	unsigned int ddrc_ecc_enable; | 
 | 	unsigned int pvr = get_pvr(); | 
 |  | 
 | 	/* Read SPD parameters with I2C */ | 
 | 	CONFIG_SYS_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd)); | 
 | #ifdef SPD_DEBUG | 
 | 	spd_debug(&spd); | 
 | #endif | 
 | 	/* Check the memory type */ | 
 | 	if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) { | 
 | 		debug("DDR: Module mem type is %02X\n", spd.mem_type); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check the number of physical bank */ | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
 | 		n_ranks = spd.nrows; | 
 | 	} else { | 
 | 		n_ranks = (spd.nrows & 0x7) + 1; | 
 | 	} | 
 |  | 
 | 	if (n_ranks > 2) { | 
 | 		printf("DDR: The number of physical bank is %02X\n", n_ranks); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check if the number of row of the module is in the range of DDRC */ | 
 | 	if (spd.nrow_addr < 12 || spd.nrow_addr > 15) { | 
 | 		printf("DDR: Row number is out of range of DDRC, row=%02X\n", | 
 | 							 spd.nrow_addr); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check if the number of col of the module is in the range of DDRC */ | 
 | 	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { | 
 | 		printf("DDR: Col number is out of range of DDRC, col=%02X\n", | 
 | 							 spd.ncol_addr); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SYS_DDRCDR_VALUE | 
 | 	/* | 
 | 	 * Adjust DDR II IO voltage biasing.  It just makes it work. | 
 | 	 */ | 
 | 	if(spd.mem_type == SPD_MEMTYPE_DDR2) { | 
 | 		immap->sysconf.ddrcdr = CONFIG_SYS_DDRCDR_VALUE; | 
 | 	} | 
 | 	udelay(50000); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * ODT configuration recommendation from DDR Controller Chapter. | 
 | 	 */ | 
 | 	odt_rd_cfg = 0;			/* Never assert ODT */ | 
 | 	odt_wr_cfg = 0;			/* Never assert ODT */ | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR2) { | 
 | 		odt_wr_cfg = 1;		/* Assert ODT on writes to CSn */ | 
 | 	} | 
 |  | 
 | 	/* Setup DDR chip select register */ | 
 | #ifdef CONFIG_SYS_83XX_DDR_USES_CS0 | 
 | 	ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1; | 
 | 	ddr->cs_config[0] = ( 1 << 31 | 
 | 			    | (odt_rd_cfg << 20) | 
 | 			    | (odt_wr_cfg << 16) | 
 | 			    | ((spd.nbanks == 8 ? 1 : 0) << 14) | 
 | 			    | ((spd.nrow_addr - 12) << 8) | 
 | 			    | (spd.ncol_addr - 8) ); | 
 | 	debug("\n"); | 
 | 	debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds); | 
 | 	debug("cs0_config = 0x%08x\n",ddr->cs_config[0]); | 
 |  | 
 | 	if (n_ranks == 2) { | 
 | 		ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8) | 
 | 				  | ((banksize(spd.row_dens) >> 23) - 1) ); | 
 | 		ddr->cs_config[1] = ( 1<<31 | 
 | 				    | (odt_rd_cfg << 20) | 
 | 				    | (odt_wr_cfg << 16) | 
 | 				    | ((spd.nbanks == 8 ? 1 : 0) << 14) | 
 | 				    | ((spd.nrow_addr - 12) << 8) | 
 | 				    | (spd.ncol_addr - 8) ); | 
 | 		debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds); | 
 | 		debug("cs1_config = 0x%08x\n",ddr->cs_config[1]); | 
 | 	} | 
 |  | 
 | #else | 
 | 	ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1; | 
 | 	ddr->cs_config[2] = ( 1 << 31 | 
 | 			    | (odt_rd_cfg << 20) | 
 | 			    | (odt_wr_cfg << 16) | 
 | 			    | ((spd.nbanks == 8 ? 1 : 0) << 14) | 
 | 			    | ((spd.nrow_addr - 12) << 8) | 
 | 			    | (spd.ncol_addr - 8) ); | 
 | 	debug("\n"); | 
 | 	debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds); | 
 | 	debug("cs2_config = 0x%08x\n",ddr->cs_config[2]); | 
 |  | 
 | 	if (n_ranks == 2) { | 
 | 		ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8) | 
 | 				  | ((banksize(spd.row_dens) >> 23) - 1) ); | 
 | 		ddr->cs_config[3] = ( 1<<31 | 
 | 				    | (odt_rd_cfg << 20) | 
 | 				    | (odt_wr_cfg << 16) | 
 | 				    | ((spd.nbanks == 8 ? 1 : 0) << 14) | 
 | 				    | ((spd.nrow_addr - 12) << 8) | 
 | 				    | (spd.ncol_addr - 8) ); | 
 | 		debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds); | 
 | 		debug("cs3_config = 0x%08x\n",ddr->cs_config[3]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Figure out memory size in Megabytes. | 
 | 	 */ | 
 | 	memsize = n_ranks * banksize(spd.row_dens) / 0x100000; | 
 |  | 
 | 	/* | 
 | 	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. | 
 | 	 */ | 
 | 	law_size = 19 + __ilog2(memsize); | 
 |  | 
 | 	/* | 
 | 	 * Set up LAWBAR for all of DDR. | 
 | 	 */ | 
 | 	ecm->bar = CONFIG_SYS_DDR_SDRAM_BASE & 0xfffff000; | 
 | 	ecm->ar  = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); | 
 | 	debug("DDR:bar=0x%08x\n", ecm->bar); | 
 | 	debug("DDR:ar=0x%08x\n", ecm->ar); | 
 |  | 
 | 	/* | 
 | 	 * Find the largest CAS by locating the highest 1 bit | 
 | 	 * in the spd.cas_lat field.  Translate it to a DDR | 
 | 	 * controller field value: | 
 | 	 * | 
 | 	 *	CAS Lat	DDR I	DDR II	Ctrl | 
 | 	 *	Clocks	SPD Bit	SPD Bit	Value | 
 | 	 *	-------	-------	-------	----- | 
 | 	 *	1.0	0		0001 | 
 | 	 *	1.5	1		0010 | 
 | 	 *	2.0	2	2	0011 | 
 | 	 *	2.5	3		0100 | 
 | 	 *	3.0	4	3	0101 | 
 | 	 *	3.5	5		0110 | 
 | 	 *	4.0	6	4	0111 | 
 | 	 *	4.5			1000 | 
 | 	 *	5.0		5	1001 | 
 | 	 */ | 
 | 	caslat = __ilog2(spd.cas_lat); | 
 | 	if ((spd.mem_type == SPD_MEMTYPE_DDR) | 
 | 	    && (caslat > 6)) { | 
 | 		printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); | 
 | 		return 0; | 
 | 	} else if (spd.mem_type == SPD_MEMTYPE_DDR2 | 
 | 		   && (caslat < 2 || caslat > 5)) { | 
 | 		printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", | 
 | 		       spd.cas_lat); | 
 | 		return 0; | 
 | 	} | 
 | 	debug("DDR: caslat SPD bit is %d\n", caslat); | 
 |  | 
 | 	max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10 | 
 | 			+ (spd.clk_cycle & 0x0f)); | 
 | 	max_data_rate = max_bus_clk * 2; | 
 |  | 
 | 	debug("DDR:Module maximum data rate is: %d MHz\n", max_data_rate); | 
 |  | 
 | 	ddrc_clk = gd->mem_clk / 1000000; | 
 | 	effective_data_rate = 0; | 
 |  | 
 | 	if (max_data_rate >= 460) { /* it is DDR2-800, 667, 533 */ | 
 | 		if (spd.cas_lat & 0x08) | 
 | 			caslat = 3; | 
 | 		else | 
 | 			caslat = 4; | 
 | 		if (ddrc_clk <= 460 && ddrc_clk > 350) | 
 | 			effective_data_rate = 400; | 
 | 		else if (ddrc_clk <=350 && ddrc_clk > 280) | 
 | 			effective_data_rate = 333; | 
 | 		else if (ddrc_clk <= 280 && ddrc_clk > 230) | 
 | 			effective_data_rate = 266; | 
 | 		else | 
 | 			effective_data_rate = 200; | 
 | 	} else if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */ | 
 | 		if (ddrc_clk <= 460 && ddrc_clk > 350) { | 
 | 			/* DDR controller clk at 350~460 */ | 
 | 			effective_data_rate = 400; /* 5ns */ | 
 | 			caslat = caslat; | 
 | 		} else if (ddrc_clk <= 350 && ddrc_clk > 280) { | 
 | 			/* DDR controller clk at 280~350 */ | 
 | 			effective_data_rate = 333; /* 6ns */ | 
 | 			if (spd.clk_cycle2 == 0x60) | 
 | 				caslat = caslat - 1; | 
 | 			else | 
 | 				caslat = caslat; | 
 | 		} else if (ddrc_clk <= 280 && ddrc_clk > 230) { | 
 | 			/* DDR controller clk at 230~280 */ | 
 | 			effective_data_rate = 266; /* 7.5ns */ | 
 | 			if (spd.clk_cycle3 == 0x75) | 
 | 				caslat = caslat - 2; | 
 | 			else if (spd.clk_cycle2 == 0x75) | 
 | 				caslat = caslat - 1; | 
 | 			else | 
 | 				caslat = caslat; | 
 | 		} else if (ddrc_clk <= 230 && ddrc_clk > 90) { | 
 | 			/* DDR controller clk at 90~230 */ | 
 | 			effective_data_rate = 200; /* 10ns */ | 
 | 			if (spd.clk_cycle3 == 0xa0) | 
 | 				caslat = caslat - 2; | 
 | 			else if (spd.clk_cycle2 == 0xa0) | 
 | 				caslat = caslat - 1; | 
 | 			else | 
 | 				caslat = caslat; | 
 | 		} | 
 | 	} else if (max_data_rate >= 323) { /* it is DDR 333 */ | 
 | 		if (ddrc_clk <= 350 && ddrc_clk > 280) { | 
 | 			/* DDR controller clk at 280~350 */ | 
 | 			effective_data_rate = 333; /* 6ns */ | 
 | 			caslat = caslat; | 
 | 		} else if (ddrc_clk <= 280 && ddrc_clk > 230) { | 
 | 			/* DDR controller clk at 230~280 */ | 
 | 			effective_data_rate = 266; /* 7.5ns */ | 
 | 			if (spd.clk_cycle2 == 0x75) | 
 | 				caslat = caslat - 1; | 
 | 			else | 
 | 				caslat = caslat; | 
 | 		} else if (ddrc_clk <= 230 && ddrc_clk > 90) { | 
 | 			/* DDR controller clk at 90~230 */ | 
 | 			effective_data_rate = 200; /* 10ns */ | 
 | 			if (spd.clk_cycle3 == 0xa0) | 
 | 				caslat = caslat - 2; | 
 | 			else if (spd.clk_cycle2 == 0xa0) | 
 | 				caslat = caslat - 1; | 
 | 			else | 
 | 				caslat = caslat; | 
 | 		} | 
 | 	} else if (max_data_rate >= 256) { /* it is DDR 266 */ | 
 | 		if (ddrc_clk <= 350 && ddrc_clk > 280) { | 
 | 			/* DDR controller clk at 280~350 */ | 
 | 			printf("DDR: DDR controller freq is more than " | 
 | 				"max data rate of the module\n"); | 
 | 			return 0; | 
 | 		} else if (ddrc_clk <= 280 && ddrc_clk > 230) { | 
 | 			/* DDR controller clk at 230~280 */ | 
 | 			effective_data_rate = 266; /* 7.5ns */ | 
 | 			caslat = caslat; | 
 | 		} else if (ddrc_clk <= 230 && ddrc_clk > 90) { | 
 | 			/* DDR controller clk at 90~230 */ | 
 | 			effective_data_rate = 200; /* 10ns */ | 
 | 			if (spd.clk_cycle2 == 0xa0) | 
 | 				caslat = caslat - 1; | 
 | 		} | 
 | 	} else if (max_data_rate >= 190) { /* it is DDR 200 */ | 
 | 		if (ddrc_clk <= 350 && ddrc_clk > 230) { | 
 | 			/* DDR controller clk at 230~350 */ | 
 | 			printf("DDR: DDR controller freq is more than " | 
 | 				"max data rate of the module\n"); | 
 | 			return 0; | 
 | 		} else if (ddrc_clk <= 230 && ddrc_clk > 90) { | 
 | 			/* DDR controller clk at 90~230 */ | 
 | 			effective_data_rate = 200; /* 10ns */ | 
 | 			caslat = caslat; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	debug("DDR:Effective data rate is: %dMHz\n", effective_data_rate); | 
 | 	debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat); | 
 |  | 
 | 	/* | 
 | 	 * Errata DDR6 work around: input enable 2 cycles earlier. | 
 | 	 * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2. | 
 | 	 */ | 
 | 	if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){ | 
 | 		if (caslat == 2) | 
 | 			ddr->debug_reg = 0x201c0000; /* CL=2 */ | 
 | 		else if (caslat == 3) | 
 | 			ddr->debug_reg = 0x202c0000; /* CL=2.5 */ | 
 | 		else if (caslat == 4) | 
 | 			ddr->debug_reg = 0x202c0000; /* CL=3.0 */ | 
 |  | 
 | 		__asm__ __volatile__ ("sync"); | 
 |  | 
 | 		debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Convert caslat clocks to DDR controller value. | 
 | 	 * Force caslat_ctrl to be DDR Controller field-sized. | 
 | 	 */ | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
 | 		caslat_ctrl = (caslat + 1) & 0x07; | 
 | 	} else { | 
 | 		caslat_ctrl =  (2 * caslat - 1) & 0x0f; | 
 | 	} | 
 |  | 
 | 	debug("DDR: effective data rate is %d MHz\n", effective_data_rate); | 
 | 	debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", | 
 | 	      caslat, caslat_ctrl); | 
 |  | 
 | 	/* | 
 | 	 * Timing Config 0. | 
 | 	 * Avoid writing for DDR I. | 
 | 	 */ | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR2) { | 
 | 		unsigned char taxpd_clk = 8;		/* By the book. */ | 
 | 		unsigned char tmrd_clk = 2;		/* By the book. */ | 
 | 		unsigned char act_pd_exit = 2;		/* Empirical? */ | 
 | 		unsigned char pre_pd_exit = 6;		/* Empirical? */ | 
 |  | 
 | 		ddr->timing_cfg_0 = (0 | 
 | 			| ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */ | 
 | 			| ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */ | 
 | 			| ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */ | 
 | 			| ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */ | 
 | 			); | 
 | 		debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, | 
 | 	 * use conservative value. | 
 | 	 * For DDR II, they are bytes 36 and 37, in quarter nanos. | 
 | 	 */ | 
 |  | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
 | 		twr_clk = 3;	/* Clocks */ | 
 | 		twtr_clk = 1;	/* Clocks */ | 
 | 	} else { | 
 | 		twr_clk = picos_to_clk(spd.twr * 250); | 
 | 		twtr_clk = picos_to_clk(spd.twtr * 250); | 
 | 		if (twtr_clk < 2) | 
 | 			twtr_clk = 2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate Trfc, in picos. | 
 | 	 * DDR I:  Byte 42 straight up in ns. | 
 | 	 * DDR II: Byte 40 and 42 swizzled some, in ns. | 
 | 	 */ | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
 | 		trfc = spd.trfc * 1000;		/* up to ps */ | 
 | 	} else { | 
 | 		unsigned int byte40_table_ps[8] = { | 
 | 			0, | 
 | 			250, | 
 | 			330, | 
 | 			500, | 
 | 			660, | 
 | 			750, | 
 | 			0, | 
 | 			0 | 
 | 		}; | 
 |  | 
 | 		trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 | 
 | 			+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; | 
 | 	} | 
 | 	trfc_clk = picos_to_clk(trfc); | 
 |  | 
 | 	/* | 
 | 	 * Trcd, Byte 29, from quarter nanos to ps and clocks. | 
 | 	 */ | 
 | 	trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; | 
 |  | 
 | 	/* | 
 | 	 * Convert trfc_clk to DDR controller fields.  DDR I should | 
 | 	 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the | 
 | 	 * 83xx controller has an extended REFREC field of three bits. | 
 | 	 * The controller automatically adds 8 clocks to this value, | 
 | 	 * so preadjust it down 8 first before splitting it up. | 
 | 	 */ | 
 | 	trfc_low = (trfc_clk - 8) & 0xf; | 
 | 	trfc_high = ((trfc_clk - 8) >> 4) & 0x3; | 
 |  | 
 | 	ddr->timing_cfg_1 = | 
 | 	    (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |	/* PRETOACT */ | 
 | 	     ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */ | 
 | 	     (trcd_clk << 20 ) |				/* ACTTORW */ | 
 | 	     (caslat_ctrl << 16 ) |				/* CASLAT */ | 
 | 	     (trfc_low << 12 ) |				/* REFEC */ | 
 | 	     ((twr_clk & 0x07) << 8) |				/* WRRREC */ | 
 | 	     ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) |	/* ACTTOACT */ | 
 | 	     ((twtr_clk & 0x07) << 0)				/* WRTORD */ | 
 | 	    ); | 
 |  | 
 | 	/* | 
 | 	 * Additive Latency | 
 | 	 * For DDR I, 0. | 
 | 	 * For DDR II, with ODT enabled, use "a value" less than ACTTORW, | 
 | 	 * which comes from Trcd, and also note that: | 
 | 	 *	add_lat + caslat must be >= 4 | 
 | 	 */ | 
 | 	add_lat = 0; | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR2 | 
 | 	    && (odt_wr_cfg || odt_rd_cfg) | 
 | 	    && (caslat < 4)) { | 
 | 		add_lat = 4 - caslat; | 
 | 		if ((add_lat + caslat) < 4) { | 
 | 			add_lat = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write Data Delay | 
 | 	 * Historically 0x2 == 4/8 clock delay. | 
 | 	 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. | 
 | 	 */ | 
 | 	wr_data_delay = 2; | 
 |  | 
 | 	/* | 
 | 	 * Write Latency | 
 | 	 * Read to Precharge | 
 | 	 * Minimum CKE Pulse Width. | 
 | 	 * Four Activate Window | 
 | 	 */ | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
 | 		/* | 
 | 		 * This is a lie.  It should really be 1, but if it is | 
 | 		 * set to 1, bits overlap into the old controller's | 
 | 		 * otherwise unused ACSM field.  If we leave it 0, then | 
 | 		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea. | 
 | 		 */ | 
 | 		wr_lat = 0; | 
 |  | 
 | 		trtp_clk = 2;		/* By the book. */ | 
 | 		cke_min_clk = 1;	/* By the book. */ | 
 | 		four_act = 1;		/* By the book. */ | 
 |  | 
 | 	} else { | 
 | 		wr_lat = caslat - 1; | 
 |  | 
 | 		/* Convert SPD value from quarter nanos to picos. */ | 
 | 		trtp_clk = picos_to_clk(spd.trtp * 250); | 
 | 		if (trtp_clk < 2) | 
 | 			trtp_clk = 2; | 
 | 		trtp_clk += add_lat; | 
 |  | 
 | 		cke_min_clk = 3;	/* By the book. */ | 
 | 		four_act = picos_to_clk(37500);	/* By the book. 1k pages? */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Empirically set ~MCAS-to-preamble override for DDR 2. | 
 | 	 * Your milage will vary. | 
 | 	 */ | 
 | 	cpo = 0; | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR2) { | 
 | 		if (effective_data_rate == 266) { | 
 | 			cpo = 0x4;		/* READ_LAT + 1/2 */ | 
 | 		} else if (effective_data_rate == 333) { | 
 | 			cpo = 0x6;		/* READ_LAT + 1 */ | 
 | 		} else if (effective_data_rate == 400) { | 
 | 			cpo = 0x7;		/* READ_LAT + 5/4 */ | 
 | 		} else { | 
 | 			/* Automatic calibration */ | 
 | 			cpo = 0x1f; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ddr->timing_cfg_2 = (0 | 
 | 		| ((add_lat & 0x7) << 28)		/* ADD_LAT */ | 
 | 		| ((cpo & 0x1f) << 23)			/* CPO */ | 
 | 		| ((wr_lat & 0x7) << 19)		/* WR_LAT */ | 
 | 		| ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */ | 
 | 		| ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */ | 
 | 		| ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */ | 
 | 		| ((four_act & 0x1f) << 0)		/* FOUR_ACT */ | 
 | 		); | 
 |  | 
 | 	debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1); | 
 | 	debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2); | 
 |  | 
 | 	/* Check DIMM data bus width */ | 
 | 	if (spd.dataw_lsb < 64) { | 
 | 		if (spd.mem_type == SPD_MEMTYPE_DDR) | 
 | 			burstlen = 0x03; /* 32 bit data bus, burst len is 8 */ | 
 | 		else | 
 | 			burstlen = 0x02; /* 32 bit data bus, burst len is 4 */ | 
 | 		debug("\n   DDR DIMM: data bus width is 32 bit"); | 
 | 	} else { | 
 | 		burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */ | 
 | 		debug("\n   DDR DIMM: data bus width is 64 bit"); | 
 | 	} | 
 |  | 
 | 	/* Is this an ECC DDR chip? */ | 
 | 	if (spd.config == 0x02) | 
 | 		debug(" with ECC\n"); | 
 | 	else | 
 | 		debug(" without ECC\n"); | 
 |  | 
 | 	/* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus, | 
 | 	   Burst type is sequential | 
 | 	 */ | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
 | 		switch (caslat) { | 
 | 		case 1: | 
 | 			ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */ | 
 | 			break; | 
 | 		case 2: | 
 | 			ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */ | 
 | 			break; | 
 | 		case 3: | 
 | 			ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */ | 
 | 			break; | 
 | 		case 4: | 
 | 			ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */ | 
 | 			break; | 
 | 		default: | 
 | 			printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n"); | 
 | 			return 0; | 
 | 		} | 
 | 	} else { | 
 | 		mode_odt_enable = 0x0;                  /* Default disabled */ | 
 | 		if (odt_wr_cfg || odt_rd_cfg) { | 
 | 			/* | 
 | 			 * Bits 6 and 2 in Extended MRS(1) | 
 | 			 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. | 
 | 			 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. | 
 | 			 */ | 
 | 			mode_odt_enable = 0x40;         /* 150 Ohm */ | 
 | 		} | 
 |  | 
 | 		ddr->sdram_mode = | 
 | 			(0 | 
 | 			 | (1 << (16 + 10))             /* DQS Differential disable */ | 
 | 			 | (add_lat << (16 + 3))        /* Additive Latency in EMRS1 */ | 
 | 			 | (mode_odt_enable << 16)      /* ODT Enable in EMRS1 */ | 
 | 			 | ((twr_clk - 1) << 9)         /* Write Recovery Autopre */ | 
 | 			 | (caslat << 4)                /* caslat */ | 
 | 			 | (burstlen << 0)              /* Burst length */ | 
 | 			); | 
 | 	} | 
 | 	debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode); | 
 |  | 
 | 	/* | 
 | 	 * Clear EMRS2 and EMRS3. | 
 | 	 */ | 
 | 	ddr->sdram_mode2 = 0; | 
 | 	debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2); | 
 |  | 
 | 	switch (spd.refresh) { | 
 | 		case 0x00: | 
 | 		case 0x80: | 
 | 			refresh_clk = picos_to_clk(15625000); | 
 | 			break; | 
 | 		case 0x01: | 
 | 		case 0x81: | 
 | 			refresh_clk = picos_to_clk(3900000); | 
 | 			break; | 
 | 		case 0x02: | 
 | 		case 0x82: | 
 | 			refresh_clk = picos_to_clk(7800000); | 
 | 			break; | 
 | 		case 0x03: | 
 | 		case 0x83: | 
 | 			refresh_clk = picos_to_clk(31300000); | 
 | 			break; | 
 | 		case 0x04: | 
 | 		case 0x84: | 
 | 			refresh_clk = picos_to_clk(62500000); | 
 | 			break; | 
 | 		case 0x05: | 
 | 		case 0x85: | 
 | 			refresh_clk = picos_to_clk(125000000); | 
 | 			break; | 
 | 		default: | 
 | 			refresh_clk = 0x512; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set BSTOPRE to 0x100 for page mode | 
 | 	 * If auto-charge is used, set BSTOPRE = 0 | 
 | 	 */ | 
 | 	ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100; | 
 | 	debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval); | 
 |  | 
 | 	/* | 
 | 	 * SDRAM Cfg 2 | 
 | 	 */ | 
 | 	odt_cfg = 0; | 
 | #ifndef CONFIG_NEVER_ASSERT_ODT_TO_CPU | 
 | 	if (odt_rd_cfg | odt_wr_cfg) { | 
 | 		odt_cfg = 0x2;		/* ODT to IOs during reads */ | 
 | 	} | 
 | #endif | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR2) { | 
 | 		ddr->sdram_cfg2 = (0 | 
 | 			    | (0 << 26)	/* True DQS */ | 
 | 			    | (odt_cfg << 21)	/* ODT only read */ | 
 | 			    | (1 << 12)	/* 1 refresh at a time */ | 
 | 			    ); | 
 |  | 
 | 		debug("DDR: sdram_cfg2  = 0x%08x\n", ddr->sdram_cfg2); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SYS_DDR_SDRAM_CLK_CNTL	/* Optional platform specific value */ | 
 | 	ddr->sdram_clk_cntl = CONFIG_SYS_DDR_SDRAM_CLK_CNTL; | 
 | #endif | 
 | 	debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl); | 
 |  | 
 | 	asm("sync;isync"); | 
 |  | 
 | 	udelay(600); | 
 |  | 
 | 	/* | 
 | 	 * Figure out the settings for the sdram_cfg register. Build up | 
 | 	 * the value in 'sdram_cfg' before writing since the write into | 
 | 	 * the register will actually enable the memory controller, and all | 
 | 	 * settings must be done before enabling. | 
 | 	 * | 
 | 	 * sdram_cfg[0]   = 1 (ddr sdram logic enable) | 
 | 	 * sdram_cfg[1]   = 1 (self-refresh-enable) | 
 | 	 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) | 
 | 	 *			010 DDR 1 SDRAM | 
 | 	 *			011 DDR 2 SDRAM | 
 | 	 * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode) | 
 | 	 * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts) | 
 | 	 */ | 
 | 	if (spd.mem_type == SPD_MEMTYPE_DDR) | 
 | 		sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1; | 
 | 	else | 
 | 		sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR2; | 
 |  | 
 | 	sdram_cfg = (0 | 
 | 		     | SDRAM_CFG_MEM_EN		/* DDR enable */ | 
 | 		     | SDRAM_CFG_SREN		/* Self refresh */ | 
 | 		     | sdram_type		/* SDRAM type */ | 
 | 		     ); | 
 |  | 
 | 	/* sdram_cfg[3] = RD_EN - registered DIMM enable */ | 
 | 	if (spd.mod_attr & 0x02) | 
 | 		sdram_cfg |= SDRAM_CFG_RD_EN; | 
 |  | 
 | 	/* The DIMM is 32bit width */ | 
 | 	if (spd.dataw_lsb < 64) { | 
 | 		if (spd.mem_type == SPD_MEMTYPE_DDR) | 
 | 			sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE; | 
 | 		if (spd.mem_type == SPD_MEMTYPE_DDR2) | 
 | 			sdram_cfg |= SDRAM_CFG_32_BE; | 
 | 	} | 
 |  | 
 | 	ddrc_ecc_enable = 0; | 
 |  | 
 | #if defined(CONFIG_DDR_ECC) | 
 | 	/* Enable ECC with sdram_cfg[2] */ | 
 | 	if (spd.config == 0x02) { | 
 | 		sdram_cfg |= 0x20000000; | 
 | 		ddrc_ecc_enable = 1; | 
 | 		/* disable error detection */ | 
 | 		ddr->err_disable = ~ECC_ERROR_ENABLE; | 
 | 		/* set single bit error threshold to maximum value, | 
 | 		 * reset counter to zero */ | 
 | 		ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) | | 
 | 				(0 << ECC_ERROR_MAN_SBEC_SHIFT); | 
 | 	} | 
 |  | 
 | 	debug("DDR:err_disable=0x%08x\n", ddr->err_disable); | 
 | 	debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe); | 
 | #endif | 
 | 	debug("   DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF"); | 
 |  | 
 | #if defined(CONFIG_DDR_2T_TIMING) | 
 | 	/* | 
 | 	 * Enable 2T timing by setting sdram_cfg[16]. | 
 | 	 */ | 
 | 	sdram_cfg |= SDRAM_CFG_2T_EN; | 
 | #endif | 
 | 	/* Enable controller, and GO! */ | 
 | 	ddr->sdram_cfg = sdram_cfg; | 
 | 	asm("sync;isync"); | 
 | 	udelay(500); | 
 |  | 
 | 	debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg); | 
 | 	return memsize; /*in MBytes*/ | 
 | } | 
 | #endif /* CONFIG_SPD_EEPROM */ | 
 |  | 
 | #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) | 
 | /* | 
 |  * Use timebase counter, get_timer() is not availabe | 
 |  * at this point of initialization yet. | 
 |  */ | 
 | static __inline__ unsigned long get_tbms (void) | 
 | { | 
 | 	unsigned long tbl; | 
 | 	unsigned long tbu1, tbu2; | 
 | 	unsigned long ms; | 
 | 	unsigned long long tmp; | 
 |  | 
 | 	ulong tbclk = get_tbclk(); | 
 |  | 
 | 	/* get the timebase ticks */ | 
 | 	do { | 
 | 		asm volatile ("mftbu %0":"=r" (tbu1):); | 
 | 		asm volatile ("mftb %0":"=r" (tbl):); | 
 | 		asm volatile ("mftbu %0":"=r" (tbu2):); | 
 | 	} while (tbu1 != tbu2); | 
 |  | 
 | 	/* convert ticks to ms */ | 
 | 	tmp = (unsigned long long)(tbu1); | 
 | 	tmp = (tmp << 32); | 
 | 	tmp += (unsigned long long)(tbl); | 
 | 	ms = tmp/(tbclk/1000); | 
 |  | 
 | 	return ms; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize all of memory for ECC, then enable errors. | 
 |  */ | 
 | void ddr_enable_ecc(unsigned int dram_size) | 
 | { | 
 | 	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; | 
 | 	volatile ddr83xx_t *ddr= &immap->ddr; | 
 | 	unsigned long t_start, t_end; | 
 | 	register u64 *p; | 
 | 	register uint size; | 
 | 	unsigned int pattern[2]; | 
 |  | 
 | 	icache_enable(); | 
 | 	t_start = get_tbms(); | 
 | 	pattern[0] = 0xdeadbeef; | 
 | 	pattern[1] = 0xdeadbeef; | 
 |  | 
 | #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA) | 
 | 	dma_meminit(pattern[0], dram_size); | 
 | #else | 
 | 	debug("ddr init: CPU FP write method\n"); | 
 | 	size = dram_size; | 
 | 	for (p = 0; p < (u64*)(size); p++) { | 
 | 		ppcDWstore((u32*)p, pattern); | 
 | 	} | 
 | 	__asm__ __volatile__ ("sync"); | 
 | #endif | 
 |  | 
 | 	t_end = get_tbms(); | 
 | 	icache_disable(); | 
 |  | 
 | 	debug("\nREADY!!\n"); | 
 | 	debug("ddr init duration: %ld ms\n", t_end - t_start); | 
 |  | 
 | 	/* Clear All ECC Errors */ | 
 | 	if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME) | 
 | 		ddr->err_detect |= ECC_ERROR_DETECT_MME; | 
 | 	if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE) | 
 | 		ddr->err_detect |= ECC_ERROR_DETECT_MBE; | 
 | 	if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE) | 
 | 		ddr->err_detect |= ECC_ERROR_DETECT_SBE; | 
 | 	if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE) | 
 | 		ddr->err_detect |= ECC_ERROR_DETECT_MSE; | 
 |  | 
 | 	/* Disable ECC-Interrupts */ | 
 | 	ddr->err_int_en &= ECC_ERR_INT_DISABLE; | 
 |  | 
 | 	/* Enable errors for ECC */ | 
 | 	ddr->err_disable &= ECC_ERROR_ENABLE; | 
 |  | 
 | 	__asm__ __volatile__ ("sync"); | 
 | 	__asm__ __volatile__ ("isync"); | 
 | } | 
 | #endif	/* CONFIG_DDR_ECC */ |