blob: 7e8d4aa22233a6ee1d8febadc498c9932a6c037e [file] [log] [blame]
Paul Burton3179d372014-04-14 11:00:56 +01001/*
2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11#include <linux/init.h>
12#include <linux/percpu.h>
13#include <linux/slab.h>
14
15#include <asm/asm-offsets.h>
16#include <asm/cacheflush.h>
17#include <asm/cacheops.h>
18#include <asm/idle.h>
19#include <asm/mips-cm.h>
20#include <asm/mips-cpc.h>
21#include <asm/mipsmtregs.h>
22#include <asm/pm.h>
23#include <asm/pm-cps.h>
24#include <asm/smp-cps.h>
25#include <asm/uasm.h>
26
27/*
28 * cps_nc_entry_fn - type of a generated non-coherent state entry function
29 * @online: the count of online coupled VPEs
30 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31 *
32 * The code entering & exiting non-coherent states is generated at runtime
33 * using uasm, in order to ensure that the compiler cannot insert a stray
34 * memory access at an unfortunate time and to allow the generation of optimal
35 * core-specific code particularly for cache routines. If coupled_coherence
36 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37 * returns the number of VPEs that were in the wait state at the point this
38 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39 * the entry function for CPS_PM_NC_WAIT.
40 */
41typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42
43/*
44 * The entry point of the generated non-coherent idle state entry/exit
45 * functions. Actually per-core rather than per-CPU.
46 */
47static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 nc_asm_enter);
49
50/* Bitmap indicating which states are supported by the system */
51DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52
53/*
54 * Indicates the number of coupled VPEs ready to operate in a non-coherent
55 * state. Actually per-core rather than per-CPU.
56 */
57static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
59
60/* Indicates online CPUs coupled with the current CPU */
61static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
62
63/*
64 * Used to synchronize entry to deep idle states. Actually per-core rather
65 * than per-CPU.
66 */
67static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
68
69/* Saved CPU state across the CPS_PM_POWER_GATED state */
70DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
71
72/* A somewhat arbitrary number of labels & relocs for uasm */
73static struct uasm_label labels[32] __initdata;
74static struct uasm_reloc relocs[32] __initdata;
75
76/* CPU dependant sync types */
77static unsigned stype_intervention;
78static unsigned stype_memory;
79static unsigned stype_ordering;
80
81enum mips_reg {
82 zero, at, v0, v1, a0, a1, a2, a3,
83 t0, t1, t2, t3, t4, t5, t6, t7,
84 s0, s1, s2, s3, s4, s5, s6, s7,
85 t8, t9, k0, k1, gp, sp, fp, ra,
86};
87
88bool cps_pm_support_state(enum cps_pm_state state)
89{
90 return test_bit(state, state_support);
91}
92
93static void coupled_barrier(atomic_t *a, unsigned online)
94{
95 /*
96 * This function is effectively the same as
97 * cpuidle_coupled_parallel_barrier, which can't be used here since
98 * there's no cpuidle device.
99 */
100
101 if (!coupled_coherence)
102 return;
103
Paul Burton7c5491b2014-06-11 11:00:57 +0100104 smp_mb__before_atomic();
Paul Burton3179d372014-04-14 11:00:56 +0100105 atomic_inc(a);
106
107 while (atomic_read(a) < online)
108 cpu_relax();
109
110 if (atomic_inc_return(a) == online * 2) {
111 atomic_set(a, 0);
112 return;
113 }
114
115 while (atomic_read(a) > online)
116 cpu_relax();
117}
118
119int cps_pm_enter_state(enum cps_pm_state state)
120{
121 unsigned cpu = smp_processor_id();
122 unsigned core = current_cpu_data.core;
123 unsigned online, left;
124 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
125 u32 *core_ready_count, *nc_core_ready_count;
126 void *nc_addr;
127 cps_nc_entry_fn entry;
128 struct core_boot_config *core_cfg;
129 struct vpe_boot_config *vpe_cfg;
130
131 /* Check that there is an entry function for this state */
132 entry = per_cpu(nc_asm_enter, core)[state];
133 if (!entry)
134 return -EINVAL;
135
136 /* Calculate which coupled CPUs (VPEs) are online */
137#ifdef CONFIG_MIPS_MT
138 if (cpu_online(cpu)) {
139 cpumask_and(coupled_mask, cpu_online_mask,
140 &cpu_sibling_map[cpu]);
141 online = cpumask_weight(coupled_mask);
142 cpumask_clear_cpu(cpu, coupled_mask);
143 } else
144#endif
145 {
146 cpumask_clear(coupled_mask);
147 online = 1;
148 }
149
150 /* Setup the VPE to run mips_cps_pm_restore when started again */
Masahiro Yamada97f26452016-08-03 13:45:50 -0700151 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
Paul Burton064231e2014-07-09 12:48:18 +0100152 /* Power gating relies upon CPS SMP */
153 if (!mips_cps_smp_in_use())
154 return -EINVAL;
155
Paul Burton3179d372014-04-14 11:00:56 +0100156 core_cfg = &mips_cps_core_bootcfg[core];
Paul Burtonc90e49f2014-07-09 12:48:21 +0100157 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
Paul Burton3179d372014-04-14 11:00:56 +0100158 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
159 vpe_cfg->gp = (unsigned long)current_thread_info();
160 vpe_cfg->sp = 0;
161 }
162
163 /* Indicate that this CPU might not be coherent */
164 cpumask_clear_cpu(cpu, &cpu_coherent_mask);
Paul Burton7c5491b2014-06-11 11:00:57 +0100165 smp_mb__after_atomic();
Paul Burton3179d372014-04-14 11:00:56 +0100166
167 /* Create a non-coherent mapping of the core ready_count */
168 core_ready_count = per_cpu(ready_count, core);
169 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
170 (unsigned long)core_ready_count);
171 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
172 nc_core_ready_count = nc_addr;
173
174 /* Ensure ready_count is zero-initialised before the assembly runs */
175 ACCESS_ONCE(*nc_core_ready_count) = 0;
176 coupled_barrier(&per_cpu(pm_barrier, core), online);
177
178 /* Run the generated entry code */
179 left = entry(online, nc_core_ready_count);
180
181 /* Remove the non-coherent mapping of ready_count */
182 kunmap_noncoherent();
183
184 /* Indicate that this CPU is definitely coherent */
185 cpumask_set_cpu(cpu, &cpu_coherent_mask);
186
187 /*
188 * If this VPE is the first to leave the non-coherent wait state then
189 * it needs to wake up any coupled VPEs still running their wait
190 * instruction so that they return to cpuidle, which can then complete
191 * coordination between the coupled VPEs & provide the governor with
192 * a chance to reflect on the length of time the VPEs were in the
193 * idle state.
194 */
195 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
196 arch_send_call_function_ipi_mask(coupled_mask);
197
198 return 0;
199}
200
201static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
202 struct uasm_reloc **pr,
203 const struct cache_desc *cache,
204 unsigned op, int lbl)
205{
206 unsigned cache_size = cache->ways << cache->waybit;
207 unsigned i;
208 const unsigned unroll_lines = 32;
209
210 /* If the cache isn't present this function has it easy */
211 if (cache->flags & MIPS_CACHE_NOT_PRESENT)
212 return;
213
214 /* Load base address */
215 UASM_i_LA(pp, t0, (long)CKSEG0);
216
217 /* Calculate end address */
218 if (cache_size < 0x8000)
219 uasm_i_addiu(pp, t1, t0, cache_size);
220 else
221 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
222
223 /* Start of cache op loop */
224 uasm_build_label(pl, *pp, lbl);
225
226 /* Generate the cache ops */
Markos Chandras0f2a1482016-02-03 03:15:23 +0000227 for (i = 0; i < unroll_lines; i++) {
228 if (cpu_has_mips_r6) {
229 uasm_i_cache(pp, op, 0, t0);
230 uasm_i_addiu(pp, t0, t0, cache->linesz);
231 } else {
232 uasm_i_cache(pp, op, i * cache->linesz, t0);
233 }
234 }
Paul Burton3179d372014-04-14 11:00:56 +0100235
Markos Chandras0f2a1482016-02-03 03:15:23 +0000236 if (!cpu_has_mips_r6)
237 /* Update the base address */
238 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
Paul Burton3179d372014-04-14 11:00:56 +0100239
240 /* Loop if we haven't reached the end address yet */
241 uasm_il_bne(pp, pr, t0, t1, lbl);
242 uasm_i_nop(pp);
243}
244
245static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
246 struct uasm_reloc **pr,
247 const struct cpuinfo_mips *cpu_info,
248 int lbl)
249{
250 unsigned i, fsb_size = 8;
251 unsigned num_loads = (fsb_size * 3) / 2;
252 unsigned line_stride = 2;
253 unsigned line_size = cpu_info->dcache.linesz;
254 unsigned perf_counter, perf_event;
255 unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
256
257 /*
258 * Determine whether this CPU requires an FSB flush, and if so which
259 * performance counter/event reflect stalls due to a full FSB.
260 */
261 switch (__get_cpu_type(cpu_info->cputype)) {
262 case CPU_INTERAPTIV:
263 perf_counter = 1;
264 perf_event = 51;
265 break;
266
267 case CPU_PROAPTIV:
268 /* Newer proAptiv cores don't require this workaround */
269 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
270 return 0;
271
272 /* On older ones it's unavailable */
273 return -1;
274
Paul Burton3179d372014-04-14 11:00:56 +0100275 default:
Matt Redfearnb97d0b92016-09-07 10:45:11 +0100276 /* Assume that the CPU does not need this workaround */
277 return 0;
Paul Burton3179d372014-04-14 11:00:56 +0100278 }
279
280 /*
281 * Ensure that the fill/store buffer (FSB) is not holding the results
282 * of a prefetch, since if it is then the CPC sequencer may become
283 * stuck in the D3 (ClrBus) state whilst entering a low power state.
284 */
285
286 /* Preserve perf counter setup */
287 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
288 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
289
290 /* Setup perf counter to count FSB full pipeline stalls */
291 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
292 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
293 uasm_i_ehb(pp);
294 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
295 uasm_i_ehb(pp);
296
297 /* Base address for loads */
298 UASM_i_LA(pp, t0, (long)CKSEG0);
299
300 /* Start of clear loop */
301 uasm_build_label(pl, *pp, lbl);
302
303 /* Perform some loads to fill the FSB */
304 for (i = 0; i < num_loads; i++)
305 uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
306
307 /*
308 * Invalidate the new D-cache entries so that the cache will need
309 * refilling (via the FSB) if the loop is executed again.
310 */
311 for (i = 0; i < num_loads; i++) {
312 uasm_i_cache(pp, Hit_Invalidate_D,
313 i * line_size * line_stride, t0);
314 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
315 i * line_size * line_stride, t0);
316 }
317
Matt Redfearnf6b43d93542016-09-07 10:45:12 +0100318 /* Barrier ensuring previous cache invalidates are complete */
Paul Burton3179d372014-04-14 11:00:56 +0100319 uasm_i_sync(pp, stype_memory);
320 uasm_i_ehb(pp);
321
322 /* Check whether the pipeline stalled due to the FSB being full */
323 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
324
325 /* Loop if it didn't */
326 uasm_il_beqz(pp, pr, t1, lbl);
327 uasm_i_nop(pp);
328
329 /* Restore perf counter 1. The count may well now be wrong... */
330 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
331 uasm_i_ehb(pp);
332 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
333 uasm_i_ehb(pp);
334
335 return 0;
336}
337
338static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
339 struct uasm_reloc **pr,
340 unsigned r_addr, int lbl)
341{
342 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
343 uasm_build_label(pl, *pp, lbl);
344 uasm_i_ll(pp, t1, 0, r_addr);
345 uasm_i_or(pp, t1, t1, t0);
346 uasm_i_sc(pp, t1, 0, r_addr);
347 uasm_il_beqz(pp, pr, t1, lbl);
348 uasm_i_nop(pp);
349}
350
351static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
352{
353 struct uasm_label *l = labels;
354 struct uasm_reloc *r = relocs;
355 u32 *buf, *p;
356 const unsigned r_online = a0;
357 const unsigned r_nc_count = a1;
358 const unsigned r_pcohctl = t7;
359 const unsigned max_instrs = 256;
360 unsigned cpc_cmd;
361 int err;
362 enum {
363 lbl_incready = 1,
364 lbl_poll_cont,
365 lbl_secondary_hang,
366 lbl_disable_coherence,
367 lbl_flush_fsb,
368 lbl_invicache,
369 lbl_flushdcache,
370 lbl_hang,
371 lbl_set_cont,
372 lbl_secondary_cont,
373 lbl_decready,
374 };
375
376 /* Allocate a buffer to hold the generated code */
377 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
378 if (!buf)
379 return NULL;
380
381 /* Clear labels & relocs ready for (re)use */
382 memset(labels, 0, sizeof(labels));
383 memset(relocs, 0, sizeof(relocs));
384
Masahiro Yamada97f26452016-08-03 13:45:50 -0700385 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
Paul Burton064231e2014-07-09 12:48:18 +0100386 /* Power gating relies upon CPS SMP */
387 if (!mips_cps_smp_in_use())
388 goto out_err;
389
Paul Burton3179d372014-04-14 11:00:56 +0100390 /*
391 * Save CPU state. Note the non-standard calling convention
392 * with the return address placed in v0 to avoid clobbering
393 * the ra register before it is saved.
394 */
395 UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
396 uasm_i_jalr(&p, v0, t0);
397 uasm_i_nop(&p);
398 }
399
400 /*
401 * Load addresses of required CM & CPC registers. This is done early
402 * because they're needed in both the enable & disable coherence steps
403 * but in the coupled case the enable step will only run on one VPE.
404 */
405 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
406
407 if (coupled_coherence) {
408 /* Increment ready_count */
409 uasm_i_sync(&p, stype_ordering);
410 uasm_build_label(&l, p, lbl_incready);
411 uasm_i_ll(&p, t1, 0, r_nc_count);
412 uasm_i_addiu(&p, t2, t1, 1);
413 uasm_i_sc(&p, t2, 0, r_nc_count);
414 uasm_il_beqz(&p, &r, t2, lbl_incready);
415 uasm_i_addiu(&p, t1, t1, 1);
416
Matt Redfearnf6b43d93542016-09-07 10:45:12 +0100417 /* Barrier ensuring all CPUs see the updated r_nc_count value */
Paul Burton3179d372014-04-14 11:00:56 +0100418 uasm_i_sync(&p, stype_ordering);
419
420 /*
421 * If this is the last VPE to become ready for non-coherence
422 * then it should branch below.
423 */
424 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
425 uasm_i_nop(&p);
426
427 if (state < CPS_PM_POWER_GATED) {
428 /*
429 * Otherwise this is not the last VPE to become ready
430 * for non-coherence. It needs to wait until coherence
431 * has been disabled before proceeding, which it will do
432 * by polling for the top bit of ready_count being set.
433 */
434 uasm_i_addiu(&p, t1, zero, -1);
435 uasm_build_label(&l, p, lbl_poll_cont);
436 uasm_i_lw(&p, t0, 0, r_nc_count);
437 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
438 uasm_i_ehb(&p);
439 uasm_i_yield(&p, zero, t1);
440 uasm_il_b(&p, &r, lbl_poll_cont);
441 uasm_i_nop(&p);
442 } else {
443 /*
444 * The core will lose power & this VPE will not continue
445 * so it can simply halt here.
446 */
447 uasm_i_addiu(&p, t0, zero, TCHALT_H);
448 uasm_i_mtc0(&p, t0, 2, 4);
449 uasm_build_label(&l, p, lbl_secondary_hang);
450 uasm_il_b(&p, &r, lbl_secondary_hang);
451 uasm_i_nop(&p);
452 }
453 }
454
455 /*
456 * This is the point of no return - this VPE will now proceed to
457 * disable coherence. At this point we *must* be sure that no other
458 * VPE within the core will interfere with the L1 dcache.
459 */
460 uasm_build_label(&l, p, lbl_disable_coherence);
461
462 /* Invalidate the L1 icache */
463 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
464 Index_Invalidate_I, lbl_invicache);
465
466 /* Writeback & invalidate the L1 dcache */
467 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
468 Index_Writeback_Inv_D, lbl_flushdcache);
469
Matt Redfearnf6b43d93542016-09-07 10:45:12 +0100470 /* Barrier ensuring previous cache invalidates are complete */
Paul Burton3179d372014-04-14 11:00:56 +0100471 uasm_i_sync(&p, stype_memory);
472 uasm_i_ehb(&p);
473
474 /*
475 * Disable all but self interventions. The load from COHCTL is defined
476 * by the interAptiv & proAptiv SUMs as ensuring that the operation
Adam Buchbinder92a76f62016-02-25 00:44:58 -0800477 * resulting from the preceding store is complete.
Paul Burton3179d372014-04-14 11:00:56 +0100478 */
479 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
480 uasm_i_sw(&p, t0, 0, r_pcohctl);
481 uasm_i_lw(&p, t0, 0, r_pcohctl);
482
Matt Redfearnf6b43d93542016-09-07 10:45:12 +0100483 /* Barrier to ensure write to coherence control is complete */
Paul Burton3179d372014-04-14 11:00:56 +0100484 uasm_i_sync(&p, stype_intervention);
485 uasm_i_ehb(&p);
486
487 /* Disable coherence */
488 uasm_i_sw(&p, zero, 0, r_pcohctl);
489 uasm_i_lw(&p, t0, 0, r_pcohctl);
490
491 if (state >= CPS_PM_CLOCK_GATED) {
492 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
493 lbl_flush_fsb);
494 if (err)
495 goto out_err;
496
497 /* Determine the CPC command to issue */
498 switch (state) {
499 case CPS_PM_CLOCK_GATED:
500 cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
501 break;
502 case CPS_PM_POWER_GATED:
503 cpc_cmd = CPC_Cx_CMD_PWRDOWN;
504 break;
505 default:
506 BUG();
507 goto out_err;
508 }
509
510 /* Issue the CPC command */
511 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
512 uasm_i_addiu(&p, t1, zero, cpc_cmd);
513 uasm_i_sw(&p, t1, 0, t0);
514
515 if (state == CPS_PM_POWER_GATED) {
516 /* If anything goes wrong just hang */
517 uasm_build_label(&l, p, lbl_hang);
518 uasm_il_b(&p, &r, lbl_hang);
519 uasm_i_nop(&p);
520
521 /*
522 * There's no point generating more code, the core is
523 * powered down & if powered back up will run from the
524 * reset vector not from here.
525 */
526 goto gen_done;
527 }
528
Matt Redfearnf6b43d93542016-09-07 10:45:12 +0100529 /* Barrier to ensure write to CPC command is complete */
Paul Burton3179d372014-04-14 11:00:56 +0100530 uasm_i_sync(&p, stype_memory);
531 uasm_i_ehb(&p);
532 }
533
534 if (state == CPS_PM_NC_WAIT) {
535 /*
536 * At this point it is safe for all VPEs to proceed with
537 * execution. This VPE will set the top bit of ready_count
538 * to indicate to the other VPEs that they may continue.
539 */
540 if (coupled_coherence)
541 cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
542 lbl_set_cont);
543
544 /*
545 * VPEs which did not disable coherence will continue
546 * executing, after coherence has been disabled, from this
547 * point.
548 */
549 uasm_build_label(&l, p, lbl_secondary_cont);
550
551 /* Now perform our wait */
552 uasm_i_wait(&p, 0);
553 }
554
555 /*
556 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
557 * will run this. The first will actually re-enable coherence & the
558 * rest will just be performing a rather unusual nop.
559 */
560 uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
561 uasm_i_sw(&p, t0, 0, r_pcohctl);
562 uasm_i_lw(&p, t0, 0, r_pcohctl);
563
Matt Redfearnf6b43d93542016-09-07 10:45:12 +0100564 /* Barrier to ensure write to coherence control is complete */
Paul Burton3179d372014-04-14 11:00:56 +0100565 uasm_i_sync(&p, stype_memory);
566 uasm_i_ehb(&p);
567
568 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
569 /* Decrement ready_count */
570 uasm_build_label(&l, p, lbl_decready);
571 uasm_i_sync(&p, stype_ordering);
572 uasm_i_ll(&p, t1, 0, r_nc_count);
573 uasm_i_addiu(&p, t2, t1, -1);
574 uasm_i_sc(&p, t2, 0, r_nc_count);
575 uasm_il_beqz(&p, &r, t2, lbl_decready);
576 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
577
Matt Redfearnf6b43d93542016-09-07 10:45:12 +0100578 /* Barrier ensuring all CPUs see the updated r_nc_count value */
Paul Burton3179d372014-04-14 11:00:56 +0100579 uasm_i_sync(&p, stype_ordering);
580 }
581
582 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
583 /*
584 * At this point it is safe for all VPEs to proceed with
585 * execution. This VPE will set the top bit of ready_count
586 * to indicate to the other VPEs that they may continue.
587 */
588 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
589
590 /*
591 * This core will be reliant upon another core sending a
592 * power-up command to the CPC in order to resume operation.
593 * Thus an arbitrary VPE can't trigger the core leaving the
594 * idle state and the one that disables coherence might as well
595 * be the one to re-enable it. The rest will continue from here
596 * after that has been done.
597 */
598 uasm_build_label(&l, p, lbl_secondary_cont);
599
Matt Redfearnf6b43d93542016-09-07 10:45:12 +0100600 /* Barrier ensuring all CPUs see the updated r_nc_count value */
Paul Burton3179d372014-04-14 11:00:56 +0100601 uasm_i_sync(&p, stype_ordering);
602 }
603
604 /* The core is coherent, time to return to C code */
605 uasm_i_jr(&p, ra);
606 uasm_i_nop(&p);
607
608gen_done:
609 /* Ensure the code didn't exceed the resources allocated for it */
610 BUG_ON((p - buf) > max_instrs);
611 BUG_ON((l - labels) > ARRAY_SIZE(labels));
612 BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
613
614 /* Patch branch offsets */
615 uasm_resolve_relocs(relocs, labels);
616
617 /* Flush the icache */
618 local_flush_icache_range((unsigned long)buf, (unsigned long)p);
619
620 return buf;
621out_err:
622 kfree(buf);
623 return NULL;
624}
625
626static int __init cps_gen_core_entries(unsigned cpu)
627{
628 enum cps_pm_state state;
629 unsigned core = cpu_data[cpu].core;
630 unsigned dlinesz = cpu_data[cpu].dcache.linesz;
631 void *entry_fn, *core_rc;
632
633 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
634 if (per_cpu(nc_asm_enter, core)[state])
635 continue;
636 if (!test_bit(state, state_support))
637 continue;
638
639 entry_fn = cps_gen_entry_code(cpu, state);
640 if (!entry_fn) {
641 pr_err("Failed to generate core %u state %u entry\n",
642 core, state);
643 clear_bit(state, state_support);
644 }
645
646 per_cpu(nc_asm_enter, core)[state] = entry_fn;
647 }
648
649 if (!per_cpu(ready_count, core)) {
650 core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
651 if (!core_rc) {
652 pr_err("Failed allocate core %u ready_count\n", core);
653 return -ENOMEM;
654 }
655 per_cpu(ready_count_alloc, core) = core_rc;
656
657 /* Ensure ready_count is aligned to a cacheline boundary */
658 core_rc += dlinesz - 1;
659 core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
660 per_cpu(ready_count, core) = core_rc;
661 }
662
663 return 0;
664}
665
666static int __init cps_pm_init(void)
667{
668 unsigned cpu;
669 int err;
670
671 /* Detect appropriate sync types for the system */
672 switch (current_cpu_data.cputype) {
673 case CPU_INTERAPTIV:
674 case CPU_PROAPTIV:
675 case CPU_M5150:
676 case CPU_P5600:
Markos Chandras4e88a862015-07-09 10:40:36 +0100677 case CPU_I6400:
Paul Burton3179d372014-04-14 11:00:56 +0100678 stype_intervention = 0x2;
679 stype_memory = 0x3;
680 stype_ordering = 0x10;
681 break;
682
683 default:
684 pr_warn("Power management is using heavyweight sync 0\n");
685 }
686
687 /* A CM is required for all non-coherent states */
688 if (!mips_cm_present()) {
689 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
690 goto out;
691 }
692
693 /*
694 * If interrupts were enabled whilst running a wait instruction on a
695 * non-coherent core then the VPE may end up processing interrupts
696 * whilst non-coherent. That would be bad.
697 */
698 if (cpu_wait == r4k_wait_irqoff)
699 set_bit(CPS_PM_NC_WAIT, state_support);
700 else
701 pr_warn("pm-cps: non-coherent wait unavailable\n");
702
703 /* Detect whether a CPC is present */
704 if (mips_cpc_present()) {
705 /* Detect whether clock gating is implemented */
706 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
707 set_bit(CPS_PM_CLOCK_GATED, state_support);
708 else
709 pr_warn("pm-cps: CPC does not support clock gating\n");
710
711 /* Power gating is available with CPS SMP & any CPC */
712 if (mips_cps_smp_in_use())
713 set_bit(CPS_PM_POWER_GATED, state_support);
714 else
715 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
716 } else {
717 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
718 }
719
720 for_each_present_cpu(cpu) {
721 err = cps_gen_core_entries(cpu);
722 if (err)
723 return err;
724 }
725out:
726 return 0;
727}
728arch_initcall(cps_pm_init);