Christophe Kerello | 2cd457f | 2018-12-14 10:58:07 +0100 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) STMicroelectronics 2018 |
| 4 | * Author: Christophe Kerello <christophe.kerello@st.com> |
| 5 | */ |
| 6 | |
| 7 | #include <linux/clk.h> |
| 8 | #include <linux/dmaengine.h> |
| 9 | #include <linux/dma-mapping.h> |
| 10 | #include <linux/errno.h> |
| 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/iopoll.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/mtd/rawnand.h> |
| 15 | #include <linux/pinctrl/consumer.h> |
| 16 | #include <linux/platform_device.h> |
| 17 | #include <linux/reset.h> |
| 18 | |
| 19 | /* Bad block marker length */ |
| 20 | #define FMC2_BBM_LEN 2 |
| 21 | |
| 22 | /* ECC step size */ |
| 23 | #define FMC2_ECC_STEP_SIZE 512 |
| 24 | |
| 25 | /* BCHDSRx registers length */ |
| 26 | #define FMC2_BCHDSRS_LEN 20 |
| 27 | |
| 28 | /* HECCR length */ |
| 29 | #define FMC2_HECCR_LEN 4 |
| 30 | |
| 31 | /* Max requests done for a 8k nand page size */ |
| 32 | #define FMC2_MAX_SG 16 |
| 33 | |
| 34 | /* Max chip enable */ |
| 35 | #define FMC2_MAX_CE 2 |
| 36 | |
| 37 | /* Max ECC buffer length */ |
| 38 | #define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) |
| 39 | |
| 40 | /* Timings */ |
| 41 | #define FMC2_THIZ 1 |
| 42 | #define FMC2_TIO 8000 |
| 43 | #define FMC2_TSYNC 3000 |
| 44 | #define FMC2_PCR_TIMING_MASK 0xf |
| 45 | #define FMC2_PMEM_PATT_TIMING_MASK 0xff |
| 46 | |
| 47 | /* FMC2 Controller Registers */ |
| 48 | #define FMC2_BCR1 0x0 |
| 49 | #define FMC2_PCR 0x80 |
| 50 | #define FMC2_SR 0x84 |
| 51 | #define FMC2_PMEM 0x88 |
| 52 | #define FMC2_PATT 0x8c |
| 53 | #define FMC2_HECCR 0x94 |
| 54 | #define FMC2_CSQCR 0x200 |
| 55 | #define FMC2_CSQCFGR1 0x204 |
| 56 | #define FMC2_CSQCFGR2 0x208 |
| 57 | #define FMC2_CSQCFGR3 0x20c |
| 58 | #define FMC2_CSQAR1 0x210 |
| 59 | #define FMC2_CSQAR2 0x214 |
| 60 | #define FMC2_CSQIER 0x220 |
| 61 | #define FMC2_CSQISR 0x224 |
| 62 | #define FMC2_CSQICR 0x228 |
| 63 | #define FMC2_CSQEMSR 0x230 |
| 64 | #define FMC2_BCHIER 0x250 |
| 65 | #define FMC2_BCHISR 0x254 |
| 66 | #define FMC2_BCHICR 0x258 |
| 67 | #define FMC2_BCHPBR1 0x260 |
| 68 | #define FMC2_BCHPBR2 0x264 |
| 69 | #define FMC2_BCHPBR3 0x268 |
| 70 | #define FMC2_BCHPBR4 0x26c |
| 71 | #define FMC2_BCHDSR0 0x27c |
| 72 | #define FMC2_BCHDSR1 0x280 |
| 73 | #define FMC2_BCHDSR2 0x284 |
| 74 | #define FMC2_BCHDSR3 0x288 |
| 75 | #define FMC2_BCHDSR4 0x28c |
| 76 | |
| 77 | /* Register: FMC2_BCR1 */ |
| 78 | #define FMC2_BCR1_FMC2EN BIT(31) |
| 79 | |
| 80 | /* Register: FMC2_PCR */ |
| 81 | #define FMC2_PCR_PWAITEN BIT(1) |
| 82 | #define FMC2_PCR_PBKEN BIT(2) |
| 83 | #define FMC2_PCR_PWID_MASK GENMASK(5, 4) |
| 84 | #define FMC2_PCR_PWID(x) (((x) & 0x3) << 4) |
| 85 | #define FMC2_PCR_PWID_BUSWIDTH_8 0 |
| 86 | #define FMC2_PCR_PWID_BUSWIDTH_16 1 |
| 87 | #define FMC2_PCR_ECCEN BIT(6) |
| 88 | #define FMC2_PCR_ECCALG BIT(8) |
| 89 | #define FMC2_PCR_TCLR_MASK GENMASK(12, 9) |
| 90 | #define FMC2_PCR_TCLR(x) (((x) & 0xf) << 9) |
| 91 | #define FMC2_PCR_TCLR_DEFAULT 0xf |
| 92 | #define FMC2_PCR_TAR_MASK GENMASK(16, 13) |
| 93 | #define FMC2_PCR_TAR(x) (((x) & 0xf) << 13) |
| 94 | #define FMC2_PCR_TAR_DEFAULT 0xf |
| 95 | #define FMC2_PCR_ECCSS_MASK GENMASK(19, 17) |
| 96 | #define FMC2_PCR_ECCSS(x) (((x) & 0x7) << 17) |
| 97 | #define FMC2_PCR_ECCSS_512 1 |
| 98 | #define FMC2_PCR_ECCSS_2048 3 |
| 99 | #define FMC2_PCR_BCHECC BIT(24) |
| 100 | #define FMC2_PCR_WEN BIT(25) |
| 101 | |
| 102 | /* Register: FMC2_SR */ |
| 103 | #define FMC2_SR_NWRF BIT(6) |
| 104 | |
| 105 | /* Register: FMC2_PMEM */ |
| 106 | #define FMC2_PMEM_MEMSET(x) (((x) & 0xff) << 0) |
| 107 | #define FMC2_PMEM_MEMWAIT(x) (((x) & 0xff) << 8) |
| 108 | #define FMC2_PMEM_MEMHOLD(x) (((x) & 0xff) << 16) |
| 109 | #define FMC2_PMEM_MEMHIZ(x) (((x) & 0xff) << 24) |
| 110 | #define FMC2_PMEM_DEFAULT 0x0a0a0a0a |
| 111 | |
| 112 | /* Register: FMC2_PATT */ |
| 113 | #define FMC2_PATT_ATTSET(x) (((x) & 0xff) << 0) |
| 114 | #define FMC2_PATT_ATTWAIT(x) (((x) & 0xff) << 8) |
| 115 | #define FMC2_PATT_ATTHOLD(x) (((x) & 0xff) << 16) |
| 116 | #define FMC2_PATT_ATTHIZ(x) (((x) & 0xff) << 24) |
| 117 | #define FMC2_PATT_DEFAULT 0x0a0a0a0a |
| 118 | |
| 119 | /* Register: FMC2_CSQCR */ |
| 120 | #define FMC2_CSQCR_CSQSTART BIT(0) |
| 121 | |
| 122 | /* Register: FMC2_CSQCFGR1 */ |
| 123 | #define FMC2_CSQCFGR1_CMD2EN BIT(1) |
| 124 | #define FMC2_CSQCFGR1_DMADEN BIT(2) |
| 125 | #define FMC2_CSQCFGR1_ACYNBR(x) (((x) & 0x7) << 4) |
| 126 | #define FMC2_CSQCFGR1_CMD1(x) (((x) & 0xff) << 8) |
| 127 | #define FMC2_CSQCFGR1_CMD2(x) (((x) & 0xff) << 16) |
| 128 | #define FMC2_CSQCFGR1_CMD1T BIT(24) |
| 129 | #define FMC2_CSQCFGR1_CMD2T BIT(25) |
| 130 | |
| 131 | /* Register: FMC2_CSQCFGR2 */ |
| 132 | #define FMC2_CSQCFGR2_SQSDTEN BIT(0) |
| 133 | #define FMC2_CSQCFGR2_RCMD2EN BIT(1) |
| 134 | #define FMC2_CSQCFGR2_DMASEN BIT(2) |
| 135 | #define FMC2_CSQCFGR2_RCMD1(x) (((x) & 0xff) << 8) |
| 136 | #define FMC2_CSQCFGR2_RCMD2(x) (((x) & 0xff) << 16) |
| 137 | #define FMC2_CSQCFGR2_RCMD1T BIT(24) |
| 138 | #define FMC2_CSQCFGR2_RCMD2T BIT(25) |
| 139 | |
| 140 | /* Register: FMC2_CSQCFGR3 */ |
| 141 | #define FMC2_CSQCFGR3_SNBR(x) (((x) & 0x1f) << 8) |
| 142 | #define FMC2_CSQCFGR3_AC1T BIT(16) |
| 143 | #define FMC2_CSQCFGR3_AC2T BIT(17) |
| 144 | #define FMC2_CSQCFGR3_AC3T BIT(18) |
| 145 | #define FMC2_CSQCFGR3_AC4T BIT(19) |
| 146 | #define FMC2_CSQCFGR3_AC5T BIT(20) |
| 147 | #define FMC2_CSQCFGR3_SDT BIT(21) |
| 148 | #define FMC2_CSQCFGR3_RAC1T BIT(22) |
| 149 | #define FMC2_CSQCFGR3_RAC2T BIT(23) |
| 150 | |
| 151 | /* Register: FMC2_CSQCAR1 */ |
| 152 | #define FMC2_CSQCAR1_ADDC1(x) (((x) & 0xff) << 0) |
| 153 | #define FMC2_CSQCAR1_ADDC2(x) (((x) & 0xff) << 8) |
| 154 | #define FMC2_CSQCAR1_ADDC3(x) (((x) & 0xff) << 16) |
| 155 | #define FMC2_CSQCAR1_ADDC4(x) (((x) & 0xff) << 24) |
| 156 | |
| 157 | /* Register: FMC2_CSQCAR2 */ |
| 158 | #define FMC2_CSQCAR2_ADDC5(x) (((x) & 0xff) << 0) |
| 159 | #define FMC2_CSQCAR2_NANDCEN(x) (((x) & 0x3) << 10) |
| 160 | #define FMC2_CSQCAR2_SAO(x) (((x) & 0xffff) << 16) |
| 161 | |
| 162 | /* Register: FMC2_CSQIER */ |
| 163 | #define FMC2_CSQIER_TCIE BIT(0) |
| 164 | |
| 165 | /* Register: FMC2_CSQICR */ |
| 166 | #define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) |
| 167 | |
| 168 | /* Register: FMC2_CSQEMSR */ |
| 169 | #define FMC2_CSQEMSR_SEM GENMASK(15, 0) |
| 170 | |
| 171 | /* Register: FMC2_BCHIER */ |
| 172 | #define FMC2_BCHIER_DERIE BIT(1) |
| 173 | #define FMC2_BCHIER_EPBRIE BIT(4) |
| 174 | |
| 175 | /* Register: FMC2_BCHICR */ |
| 176 | #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) |
| 177 | |
| 178 | /* Register: FMC2_BCHDSR0 */ |
| 179 | #define FMC2_BCHDSR0_DUE BIT(0) |
| 180 | #define FMC2_BCHDSR0_DEF BIT(1) |
| 181 | #define FMC2_BCHDSR0_DEN_MASK GENMASK(7, 4) |
| 182 | #define FMC2_BCHDSR0_DEN_SHIFT 4 |
| 183 | |
| 184 | /* Register: FMC2_BCHDSR1 */ |
| 185 | #define FMC2_BCHDSR1_EBP1_MASK GENMASK(12, 0) |
| 186 | #define FMC2_BCHDSR1_EBP2_MASK GENMASK(28, 16) |
| 187 | #define FMC2_BCHDSR1_EBP2_SHIFT 16 |
| 188 | |
| 189 | /* Register: FMC2_BCHDSR2 */ |
| 190 | #define FMC2_BCHDSR2_EBP3_MASK GENMASK(12, 0) |
| 191 | #define FMC2_BCHDSR2_EBP4_MASK GENMASK(28, 16) |
| 192 | #define FMC2_BCHDSR2_EBP4_SHIFT 16 |
| 193 | |
| 194 | /* Register: FMC2_BCHDSR3 */ |
| 195 | #define FMC2_BCHDSR3_EBP5_MASK GENMASK(12, 0) |
| 196 | #define FMC2_BCHDSR3_EBP6_MASK GENMASK(28, 16) |
| 197 | #define FMC2_BCHDSR3_EBP6_SHIFT 16 |
| 198 | |
| 199 | /* Register: FMC2_BCHDSR4 */ |
| 200 | #define FMC2_BCHDSR4_EBP7_MASK GENMASK(12, 0) |
| 201 | #define FMC2_BCHDSR4_EBP8_MASK GENMASK(28, 16) |
| 202 | #define FMC2_BCHDSR4_EBP8_SHIFT 16 |
| 203 | |
| 204 | enum stm32_fmc2_ecc { |
| 205 | FMC2_ECC_HAM = 1, |
| 206 | FMC2_ECC_BCH4 = 4, |
| 207 | FMC2_ECC_BCH8 = 8 |
| 208 | }; |
| 209 | |
| 210 | struct stm32_fmc2_timings { |
| 211 | u8 tclr; |
| 212 | u8 tar; |
| 213 | u8 thiz; |
| 214 | u8 twait; |
| 215 | u8 thold_mem; |
| 216 | u8 tset_mem; |
| 217 | u8 thold_att; |
| 218 | u8 tset_att; |
| 219 | }; |
| 220 | |
| 221 | struct stm32_fmc2_nand { |
| 222 | struct nand_chip chip; |
| 223 | struct stm32_fmc2_timings timings; |
| 224 | int ncs; |
| 225 | int cs_used[FMC2_MAX_CE]; |
| 226 | }; |
| 227 | |
| 228 | static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) |
| 229 | { |
| 230 | return container_of(chip, struct stm32_fmc2_nand, chip); |
| 231 | } |
| 232 | |
| 233 | struct stm32_fmc2_nfc { |
| 234 | struct nand_controller base; |
| 235 | struct stm32_fmc2_nand nand; |
| 236 | struct device *dev; |
| 237 | void __iomem *io_base; |
| 238 | void __iomem *data_base[FMC2_MAX_CE]; |
| 239 | void __iomem *cmd_base[FMC2_MAX_CE]; |
| 240 | void __iomem *addr_base[FMC2_MAX_CE]; |
| 241 | phys_addr_t io_phys_addr; |
| 242 | phys_addr_t data_phys_addr[FMC2_MAX_CE]; |
| 243 | struct clk *clk; |
| 244 | |
| 245 | struct dma_chan *dma_tx_ch; |
| 246 | struct dma_chan *dma_rx_ch; |
| 247 | struct dma_chan *dma_ecc_ch; |
| 248 | struct sg_table dma_data_sg; |
| 249 | struct sg_table dma_ecc_sg; |
| 250 | u8 *ecc_buf; |
| 251 | int dma_ecc_len; |
| 252 | |
| 253 | struct completion complete; |
| 254 | struct completion dma_data_complete; |
| 255 | struct completion dma_ecc_complete; |
| 256 | |
| 257 | u8 cs_assigned; |
| 258 | int cs_sel; |
| 259 | }; |
| 260 | |
| 261 | static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) |
| 262 | { |
| 263 | return container_of(base, struct stm32_fmc2_nfc, base); |
| 264 | } |
| 265 | |
| 266 | /* Timings configuration */ |
| 267 | static void stm32_fmc2_timings_init(struct nand_chip *chip) |
| 268 | { |
| 269 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 270 | struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| 271 | struct stm32_fmc2_timings *timings = &nand->timings; |
| 272 | u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); |
| 273 | u32 pmem, patt; |
| 274 | |
| 275 | /* Set tclr/tar timings */ |
| 276 | pcr &= ~FMC2_PCR_TCLR_MASK; |
| 277 | pcr |= FMC2_PCR_TCLR(timings->tclr); |
| 278 | pcr &= ~FMC2_PCR_TAR_MASK; |
| 279 | pcr |= FMC2_PCR_TAR(timings->tar); |
| 280 | |
| 281 | /* Set tset/twait/thold/thiz timings in common bank */ |
| 282 | pmem = FMC2_PMEM_MEMSET(timings->tset_mem); |
| 283 | pmem |= FMC2_PMEM_MEMWAIT(timings->twait); |
| 284 | pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem); |
| 285 | pmem |= FMC2_PMEM_MEMHIZ(timings->thiz); |
| 286 | |
| 287 | /* Set tset/twait/thold/thiz timings in attribut bank */ |
| 288 | patt = FMC2_PATT_ATTSET(timings->tset_att); |
| 289 | patt |= FMC2_PATT_ATTWAIT(timings->twait); |
| 290 | patt |= FMC2_PATT_ATTHOLD(timings->thold_att); |
| 291 | patt |= FMC2_PATT_ATTHIZ(timings->thiz); |
| 292 | |
| 293 | writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); |
| 294 | writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM); |
| 295 | writel_relaxed(patt, fmc2->io_base + FMC2_PATT); |
| 296 | } |
| 297 | |
| 298 | /* Controller configuration */ |
| 299 | static void stm32_fmc2_setup(struct nand_chip *chip) |
| 300 | { |
| 301 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 302 | u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); |
| 303 | |
| 304 | /* Configure ECC algorithm (default configuration is Hamming) */ |
| 305 | pcr &= ~FMC2_PCR_ECCALG; |
| 306 | pcr &= ~FMC2_PCR_BCHECC; |
| 307 | if (chip->ecc.strength == FMC2_ECC_BCH8) { |
| 308 | pcr |= FMC2_PCR_ECCALG; |
| 309 | pcr |= FMC2_PCR_BCHECC; |
| 310 | } else if (chip->ecc.strength == FMC2_ECC_BCH4) { |
| 311 | pcr |= FMC2_PCR_ECCALG; |
| 312 | } |
| 313 | |
| 314 | /* Set buswidth */ |
| 315 | pcr &= ~FMC2_PCR_PWID_MASK; |
| 316 | if (chip->options & NAND_BUSWIDTH_16) |
| 317 | pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); |
| 318 | |
| 319 | /* Set ECC sector size */ |
| 320 | pcr &= ~FMC2_PCR_ECCSS_MASK; |
| 321 | pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512); |
| 322 | |
| 323 | writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); |
| 324 | } |
| 325 | |
| 326 | /* Select target */ |
| 327 | static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr) |
| 328 | { |
| 329 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 330 | struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| 331 | struct dma_slave_config dma_cfg; |
| 332 | int ret; |
| 333 | |
| 334 | if (nand->cs_used[chipnr] == fmc2->cs_sel) |
| 335 | return 0; |
| 336 | |
| 337 | fmc2->cs_sel = nand->cs_used[chipnr]; |
| 338 | |
| 339 | /* FMC2 setup routine */ |
| 340 | stm32_fmc2_setup(chip); |
| 341 | |
| 342 | /* Apply timings */ |
| 343 | stm32_fmc2_timings_init(chip); |
| 344 | |
| 345 | if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) { |
| 346 | memset(&dma_cfg, 0, sizeof(dma_cfg)); |
| 347 | dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel]; |
| 348 | dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel]; |
| 349 | dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 350 | dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 351 | dma_cfg.src_maxburst = 32; |
| 352 | dma_cfg.dst_maxburst = 32; |
| 353 | |
| 354 | ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg); |
| 355 | if (ret) { |
| 356 | dev_err(fmc2->dev, "tx DMA engine slave config failed\n"); |
| 357 | return ret; |
| 358 | } |
| 359 | |
| 360 | ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg); |
| 361 | if (ret) { |
| 362 | dev_err(fmc2->dev, "rx DMA engine slave config failed\n"); |
| 363 | return ret; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | if (fmc2->dma_ecc_ch) { |
| 368 | /* |
| 369 | * Hamming: we read HECCR register |
| 370 | * BCH4/BCH8: we read BCHDSRSx registers |
| 371 | */ |
| 372 | memset(&dma_cfg, 0, sizeof(dma_cfg)); |
| 373 | dma_cfg.src_addr = fmc2->io_phys_addr; |
| 374 | dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? |
| 375 | FMC2_HECCR : FMC2_BCHDSR0; |
| 376 | dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 377 | |
| 378 | ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg); |
| 379 | if (ret) { |
| 380 | dev_err(fmc2->dev, "ECC DMA engine slave config failed\n"); |
| 381 | return ret; |
| 382 | } |
| 383 | |
| 384 | /* Calculate ECC length needed for one sector */ |
| 385 | fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? |
| 386 | FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; |
| 387 | } |
| 388 | |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | /* Set bus width to 16-bit or 8-bit */ |
| 393 | static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set) |
| 394 | { |
| 395 | u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); |
| 396 | |
| 397 | pcr &= ~FMC2_PCR_PWID_MASK; |
| 398 | if (set) |
| 399 | pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); |
| 400 | writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); |
| 401 | } |
| 402 | |
| 403 | /* Enable irq sources in case of the sequencer is used */ |
| 404 | static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2) |
| 405 | { |
| 406 | u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER); |
| 407 | |
| 408 | csqier |= FMC2_CSQIER_TCIE; |
| 409 | |
| 410 | writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER); |
| 411 | } |
| 412 | |
| 413 | /* Disable irq sources in case of the sequencer is used */ |
| 414 | static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2) |
| 415 | { |
| 416 | u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER); |
| 417 | |
| 418 | csqier &= ~FMC2_CSQIER_TCIE; |
| 419 | |
| 420 | writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER); |
| 421 | } |
| 422 | |
| 423 | /* Clear irq sources in case of the sequencer is used */ |
| 424 | static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2) |
| 425 | { |
| 426 | writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR); |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * ECC Hamming calculation |
| 431 | * ECC is 3 bytes for 512 bytes of data (supports error correction up to |
| 432 | * max of 1-bit) |
| 433 | */ |
| 434 | static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc) |
| 435 | { |
| 436 | ecc[0] = ecc_sta; |
| 437 | ecc[1] = ecc_sta >> 8; |
| 438 | ecc[2] = ecc_sta >> 16; |
| 439 | } |
| 440 | |
| 441 | static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat, |
| 442 | u8 *read_ecc, u8 *calc_ecc) |
| 443 | { |
| 444 | u8 bit_position = 0, b0, b1, b2; |
| 445 | u32 byte_addr = 0, b; |
| 446 | u32 i, shifting = 1; |
| 447 | |
| 448 | /* Indicate which bit and byte is faulty (if any) */ |
| 449 | b0 = read_ecc[0] ^ calc_ecc[0]; |
| 450 | b1 = read_ecc[1] ^ calc_ecc[1]; |
| 451 | b2 = read_ecc[2] ^ calc_ecc[2]; |
| 452 | b = b0 | (b1 << 8) | (b2 << 16); |
| 453 | |
| 454 | /* No errors */ |
| 455 | if (likely(!b)) |
| 456 | return 0; |
| 457 | |
| 458 | /* Calculate bit position */ |
| 459 | for (i = 0; i < 3; i++) { |
| 460 | switch (b % 4) { |
| 461 | case 2: |
| 462 | bit_position += shifting; |
| 463 | case 1: |
| 464 | break; |
| 465 | default: |
| 466 | return -EBADMSG; |
| 467 | } |
| 468 | shifting <<= 1; |
| 469 | b >>= 2; |
| 470 | } |
| 471 | |
| 472 | /* Calculate byte position */ |
| 473 | shifting = 1; |
| 474 | for (i = 0; i < 9; i++) { |
| 475 | switch (b % 4) { |
| 476 | case 2: |
| 477 | byte_addr += shifting; |
| 478 | case 1: |
| 479 | break; |
| 480 | default: |
| 481 | return -EBADMSG; |
| 482 | } |
| 483 | shifting <<= 1; |
| 484 | b >>= 2; |
| 485 | } |
| 486 | |
| 487 | /* Flip the bit */ |
| 488 | dat[byte_addr] ^= (1 << bit_position); |
| 489 | |
| 490 | return 1; |
| 491 | } |
| 492 | |
| 493 | /* BCH algorithm correction */ |
| 494 | static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) |
| 495 | { |
| 496 | u32 bchdsr0 = ecc_sta[0]; |
| 497 | u32 bchdsr1 = ecc_sta[1]; |
| 498 | u32 bchdsr2 = ecc_sta[2]; |
| 499 | u32 bchdsr3 = ecc_sta[3]; |
| 500 | u32 bchdsr4 = ecc_sta[4]; |
| 501 | u16 pos[8]; |
| 502 | int i, den; |
| 503 | unsigned int nb_errs = 0; |
| 504 | |
| 505 | /* No errors found */ |
| 506 | if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) |
| 507 | return 0; |
| 508 | |
| 509 | /* Too many errors detected */ |
| 510 | if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) |
| 511 | return -EBADMSG; |
| 512 | |
| 513 | pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK; |
| 514 | pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT; |
| 515 | pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK; |
| 516 | pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT; |
| 517 | pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK; |
| 518 | pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT; |
| 519 | pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK; |
| 520 | pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT; |
| 521 | |
| 522 | den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT; |
| 523 | for (i = 0; i < den; i++) { |
| 524 | if (pos[i] < eccsize * 8) { |
| 525 | change_bit(pos[i], (unsigned long *)dat); |
| 526 | nb_errs++; |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | return nb_errs; |
| 531 | } |
| 532 | |
| 533 | /* Sequencer read/write configuration */ |
| 534 | static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page, |
| 535 | int raw, bool write_data) |
| 536 | { |
| 537 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 538 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 539 | u32 csqcfgr1, csqcfgr2, csqcfgr3; |
| 540 | u32 csqar1, csqar2; |
| 541 | u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; |
| 542 | u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); |
| 543 | |
| 544 | if (write_data) |
| 545 | pcr |= FMC2_PCR_WEN; |
| 546 | else |
| 547 | pcr &= ~FMC2_PCR_WEN; |
| 548 | writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); |
| 549 | |
| 550 | /* |
| 551 | * - Set Program Page/Page Read command |
| 552 | * - Enable DMA request data |
| 553 | * - Set timings |
| 554 | */ |
| 555 | csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; |
| 556 | if (write_data) |
| 557 | csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN); |
| 558 | else |
| 559 | csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) | |
| 560 | FMC2_CSQCFGR1_CMD2EN | |
| 561 | FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) | |
| 562 | FMC2_CSQCFGR1_CMD2T; |
| 563 | |
| 564 | /* |
| 565 | * - Set Random Data Input/Random Data Read command |
| 566 | * - Enable the sequencer to access the Spare data area |
| 567 | * - Enable DMA request status decoding for read |
| 568 | * - Set timings |
| 569 | */ |
| 570 | if (write_data) |
| 571 | csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN); |
| 572 | else |
| 573 | csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) | |
| 574 | FMC2_CSQCFGR2_RCMD2EN | |
| 575 | FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) | |
| 576 | FMC2_CSQCFGR2_RCMD1T | |
| 577 | FMC2_CSQCFGR2_RCMD2T; |
| 578 | if (!raw) { |
| 579 | csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; |
| 580 | csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN; |
| 581 | } |
| 582 | |
| 583 | /* |
| 584 | * - Set the number of sectors to be written |
| 585 | * - Set timings |
| 586 | */ |
| 587 | csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1); |
| 588 | if (write_data) { |
| 589 | csqcfgr3 |= FMC2_CSQCFGR3_RAC2T; |
| 590 | if (chip->options & NAND_ROW_ADDR_3) |
| 591 | csqcfgr3 |= FMC2_CSQCFGR3_AC5T; |
| 592 | else |
| 593 | csqcfgr3 |= FMC2_CSQCFGR3_AC4T; |
| 594 | } |
| 595 | |
| 596 | /* |
| 597 | * Set the fourth first address cycles |
| 598 | * Byte 1 and byte 2 => column, we start at 0x0 |
| 599 | * Byte 3 and byte 4 => page |
| 600 | */ |
| 601 | csqar1 = FMC2_CSQCAR1_ADDC3(page); |
| 602 | csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8); |
| 603 | |
| 604 | /* |
| 605 | * - Set chip enable number |
| 606 | * - Set ECC byte offset in the spare area |
| 607 | * - Calculate the number of address cycles to be issued |
| 608 | * - Set byte 5 of address cycle if needed |
| 609 | */ |
| 610 | csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel); |
| 611 | if (chip->options & NAND_BUSWIDTH_16) |
| 612 | csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1); |
| 613 | else |
| 614 | csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset); |
| 615 | if (chip->options & NAND_ROW_ADDR_3) { |
| 616 | csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5); |
| 617 | csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16); |
| 618 | } else { |
| 619 | csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4); |
| 620 | } |
| 621 | |
| 622 | writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1); |
| 623 | writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2); |
| 624 | writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3); |
| 625 | writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1); |
| 626 | writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2); |
| 627 | } |
| 628 | |
| 629 | static void stm32_fmc2_dma_callback(void *arg) |
| 630 | { |
| 631 | complete((struct completion *)arg); |
| 632 | } |
| 633 | |
| 634 | /* Read/write data from/to a page */ |
| 635 | static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf, |
| 636 | int raw, bool write_data) |
| 637 | { |
| 638 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 639 | struct dma_async_tx_descriptor *desc_data, *desc_ecc; |
| 640 | struct scatterlist *sg; |
| 641 | struct dma_chan *dma_ch = fmc2->dma_rx_ch; |
| 642 | enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; |
| 643 | enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; |
| 644 | u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR); |
| 645 | int eccsteps = chip->ecc.steps; |
| 646 | int eccsize = chip->ecc.size; |
| 647 | const u8 *p = buf; |
| 648 | int s, ret; |
| 649 | |
| 650 | /* Configure DMA data */ |
| 651 | if (write_data) { |
| 652 | dma_data_dir = DMA_TO_DEVICE; |
| 653 | dma_transfer_dir = DMA_MEM_TO_DEV; |
| 654 | dma_ch = fmc2->dma_tx_ch; |
| 655 | } |
| 656 | |
| 657 | for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) { |
| 658 | sg_set_buf(sg, p, eccsize); |
| 659 | p += eccsize; |
| 660 | } |
| 661 | |
| 662 | ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl, |
| 663 | eccsteps, dma_data_dir); |
| 664 | if (ret < 0) |
| 665 | return ret; |
| 666 | |
| 667 | desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl, |
| 668 | eccsteps, dma_transfer_dir, |
| 669 | DMA_PREP_INTERRUPT); |
| 670 | if (!desc_data) { |
| 671 | ret = -ENOMEM; |
| 672 | goto err_unmap_data; |
| 673 | } |
| 674 | |
| 675 | reinit_completion(&fmc2->dma_data_complete); |
| 676 | reinit_completion(&fmc2->complete); |
| 677 | desc_data->callback = stm32_fmc2_dma_callback; |
| 678 | desc_data->callback_param = &fmc2->dma_data_complete; |
| 679 | ret = dma_submit_error(dmaengine_submit(desc_data)); |
| 680 | if (ret) |
| 681 | goto err_unmap_data; |
| 682 | |
| 683 | dma_async_issue_pending(dma_ch); |
| 684 | |
| 685 | if (!write_data && !raw) { |
| 686 | /* Configure DMA ECC status */ |
| 687 | p = fmc2->ecc_buf; |
| 688 | for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) { |
| 689 | sg_set_buf(sg, p, fmc2->dma_ecc_len); |
| 690 | p += fmc2->dma_ecc_len; |
| 691 | } |
| 692 | |
| 693 | ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl, |
| 694 | eccsteps, dma_data_dir); |
| 695 | if (ret < 0) |
| 696 | goto err_unmap_data; |
| 697 | |
| 698 | desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch, |
| 699 | fmc2->dma_ecc_sg.sgl, |
| 700 | eccsteps, dma_transfer_dir, |
| 701 | DMA_PREP_INTERRUPT); |
| 702 | if (!desc_ecc) { |
| 703 | ret = -ENOMEM; |
| 704 | goto err_unmap_ecc; |
| 705 | } |
| 706 | |
| 707 | reinit_completion(&fmc2->dma_ecc_complete); |
| 708 | desc_ecc->callback = stm32_fmc2_dma_callback; |
| 709 | desc_ecc->callback_param = &fmc2->dma_ecc_complete; |
| 710 | ret = dma_submit_error(dmaengine_submit(desc_ecc)); |
| 711 | if (ret) |
| 712 | goto err_unmap_ecc; |
| 713 | |
| 714 | dma_async_issue_pending(fmc2->dma_ecc_ch); |
| 715 | } |
| 716 | |
| 717 | stm32_fmc2_clear_seq_irq(fmc2); |
| 718 | stm32_fmc2_enable_seq_irq(fmc2); |
| 719 | |
| 720 | /* Start the transfer */ |
| 721 | csqcr |= FMC2_CSQCR_CSQSTART; |
| 722 | writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR); |
| 723 | |
| 724 | /* Wait end of sequencer transfer */ |
| 725 | if (!wait_for_completion_timeout(&fmc2->complete, |
| 726 | msecs_to_jiffies(1000))) { |
| 727 | dev_err(fmc2->dev, "seq timeout\n"); |
| 728 | stm32_fmc2_disable_seq_irq(fmc2); |
| 729 | dmaengine_terminate_all(dma_ch); |
| 730 | if (!write_data && !raw) |
| 731 | dmaengine_terminate_all(fmc2->dma_ecc_ch); |
| 732 | ret = -ETIMEDOUT; |
| 733 | goto err_unmap_ecc; |
| 734 | } |
| 735 | |
| 736 | /* Wait DMA data transfer completion */ |
| 737 | if (!wait_for_completion_timeout(&fmc2->dma_data_complete, |
| 738 | msecs_to_jiffies(100))) { |
| 739 | dev_err(fmc2->dev, "data DMA timeout\n"); |
| 740 | dmaengine_terminate_all(dma_ch); |
| 741 | ret = -ETIMEDOUT; |
| 742 | } |
| 743 | |
| 744 | /* Wait DMA ECC transfer completion */ |
| 745 | if (!write_data && !raw) { |
| 746 | if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete, |
| 747 | msecs_to_jiffies(100))) { |
| 748 | dev_err(fmc2->dev, "ECC DMA timeout\n"); |
| 749 | dmaengine_terminate_all(fmc2->dma_ecc_ch); |
| 750 | ret = -ETIMEDOUT; |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | err_unmap_ecc: |
| 755 | if (!write_data && !raw) |
| 756 | dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl, |
| 757 | eccsteps, dma_data_dir); |
| 758 | |
| 759 | err_unmap_data: |
| 760 | dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir); |
| 761 | |
| 762 | return ret; |
| 763 | } |
| 764 | |
| 765 | static int stm32_fmc2_sequencer_write(struct nand_chip *chip, |
| 766 | const u8 *buf, int oob_required, |
| 767 | int page, int raw) |
| 768 | { |
| 769 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 770 | int ret; |
| 771 | |
| 772 | /* Configure the sequencer */ |
| 773 | stm32_fmc2_rw_page_init(chip, page, raw, true); |
| 774 | |
| 775 | /* Write the page */ |
| 776 | ret = stm32_fmc2_xfer(chip, buf, raw, true); |
| 777 | if (ret) |
| 778 | return ret; |
| 779 | |
| 780 | /* Write oob */ |
| 781 | if (oob_required) { |
| 782 | ret = nand_change_write_column_op(chip, mtd->writesize, |
| 783 | chip->oob_poi, mtd->oobsize, |
| 784 | false); |
| 785 | if (ret) |
| 786 | return ret; |
| 787 | } |
| 788 | |
| 789 | return nand_prog_page_end_op(chip); |
| 790 | } |
| 791 | |
| 792 | static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip, |
| 793 | const u8 *buf, |
| 794 | int oob_required, |
| 795 | int page) |
| 796 | { |
| 797 | int ret; |
| 798 | |
| 799 | /* Select the target */ |
| 800 | ret = stm32_fmc2_select_chip(chip, chip->cur_cs); |
| 801 | if (ret) |
| 802 | return ret; |
| 803 | |
| 804 | return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false); |
| 805 | } |
| 806 | |
| 807 | static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip, |
| 808 | const u8 *buf, |
| 809 | int oob_required, |
| 810 | int page) |
| 811 | { |
| 812 | int ret; |
| 813 | |
| 814 | /* Select the target */ |
| 815 | ret = stm32_fmc2_select_chip(chip, chip->cur_cs); |
| 816 | if (ret) |
| 817 | return ret; |
| 818 | |
| 819 | return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true); |
| 820 | } |
| 821 | |
| 822 | /* Get a status indicating which sectors have errors */ |
| 823 | static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2) |
| 824 | { |
| 825 | u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR); |
| 826 | |
| 827 | return csqemsr & FMC2_CSQEMSR_SEM; |
| 828 | } |
| 829 | |
| 830 | static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat, |
| 831 | u8 *read_ecc, u8 *calc_ecc) |
| 832 | { |
| 833 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 834 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 835 | int eccbytes = chip->ecc.bytes; |
| 836 | int eccsteps = chip->ecc.steps; |
| 837 | int eccstrength = chip->ecc.strength; |
| 838 | int i, s, eccsize = chip->ecc.size; |
| 839 | u32 *ecc_sta = (u32 *)fmc2->ecc_buf; |
| 840 | u16 sta_map = stm32_fmc2_get_mapping_status(fmc2); |
| 841 | unsigned int max_bitflips = 0; |
| 842 | |
| 843 | for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { |
| 844 | int stat = 0; |
| 845 | |
| 846 | if (eccstrength == FMC2_ECC_HAM) { |
| 847 | /* Ecc_sta = FMC2_HECCR */ |
| 848 | if (sta_map & BIT(s)) { |
| 849 | stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]); |
| 850 | stat = stm32_fmc2_ham_correct(chip, dat, |
| 851 | &read_ecc[i], |
| 852 | &calc_ecc[i]); |
| 853 | } |
| 854 | ecc_sta++; |
| 855 | } else { |
| 856 | /* |
| 857 | * Ecc_sta[0] = FMC2_BCHDSR0 |
| 858 | * Ecc_sta[1] = FMC2_BCHDSR1 |
| 859 | * Ecc_sta[2] = FMC2_BCHDSR2 |
| 860 | * Ecc_sta[3] = FMC2_BCHDSR3 |
| 861 | * Ecc_sta[4] = FMC2_BCHDSR4 |
| 862 | */ |
| 863 | if (sta_map & BIT(s)) |
| 864 | stat = stm32_fmc2_bch_decode(eccsize, dat, |
| 865 | ecc_sta); |
| 866 | ecc_sta += 5; |
| 867 | } |
| 868 | |
| 869 | if (stat == -EBADMSG) |
| 870 | /* Check for empty pages with bitflips */ |
| 871 | stat = nand_check_erased_ecc_chunk(dat, eccsize, |
| 872 | &read_ecc[i], |
| 873 | eccbytes, |
| 874 | NULL, 0, |
| 875 | eccstrength); |
| 876 | |
| 877 | if (stat < 0) { |
| 878 | mtd->ecc_stats.failed++; |
| 879 | } else { |
| 880 | mtd->ecc_stats.corrected += stat; |
| 881 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | return max_bitflips; |
| 886 | } |
| 887 | |
| 888 | static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf, |
| 889 | int oob_required, int page) |
| 890 | { |
| 891 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 892 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 893 | u8 *ecc_calc = chip->ecc.calc_buf; |
| 894 | u8 *ecc_code = chip->ecc.code_buf; |
| 895 | u16 sta_map; |
| 896 | int ret; |
| 897 | |
| 898 | /* Select the target */ |
| 899 | ret = stm32_fmc2_select_chip(chip, chip->cur_cs); |
| 900 | if (ret) |
| 901 | return ret; |
| 902 | |
| 903 | /* Configure the sequencer */ |
| 904 | stm32_fmc2_rw_page_init(chip, page, 0, false); |
| 905 | |
| 906 | /* Read the page */ |
| 907 | ret = stm32_fmc2_xfer(chip, buf, 0, false); |
| 908 | if (ret) |
| 909 | return ret; |
| 910 | |
| 911 | sta_map = stm32_fmc2_get_mapping_status(fmc2); |
| 912 | |
| 913 | /* Check if errors happen */ |
| 914 | if (likely(!sta_map)) { |
| 915 | if (oob_required) |
| 916 | return nand_change_read_column_op(chip, mtd->writesize, |
| 917 | chip->oob_poi, |
| 918 | mtd->oobsize, false); |
| 919 | |
| 920 | return 0; |
| 921 | } |
| 922 | |
| 923 | /* Read oob */ |
| 924 | ret = nand_change_read_column_op(chip, mtd->writesize, |
| 925 | chip->oob_poi, mtd->oobsize, false); |
| 926 | if (ret) |
| 927 | return ret; |
| 928 | |
| 929 | ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| 930 | chip->ecc.total); |
| 931 | if (ret) |
| 932 | return ret; |
| 933 | |
| 934 | /* Correct data */ |
| 935 | return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); |
| 936 | } |
| 937 | |
| 938 | static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf, |
| 939 | int oob_required, int page) |
| 940 | { |
| 941 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 942 | int ret; |
| 943 | |
| 944 | /* Select the target */ |
| 945 | ret = stm32_fmc2_select_chip(chip, chip->cur_cs); |
| 946 | if (ret) |
| 947 | return ret; |
| 948 | |
| 949 | /* Configure the sequencer */ |
| 950 | stm32_fmc2_rw_page_init(chip, page, 1, false); |
| 951 | |
| 952 | /* Read the page */ |
| 953 | ret = stm32_fmc2_xfer(chip, buf, 1, false); |
| 954 | if (ret) |
| 955 | return ret; |
| 956 | |
| 957 | /* Read oob */ |
| 958 | if (oob_required) |
| 959 | return nand_change_read_column_op(chip, mtd->writesize, |
| 960 | chip->oob_poi, mtd->oobsize, |
| 961 | false); |
| 962 | |
| 963 | return 0; |
| 964 | } |
| 965 | |
| 966 | static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id) |
| 967 | { |
| 968 | struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id; |
| 969 | |
| 970 | stm32_fmc2_disable_seq_irq(fmc2); |
| 971 | |
| 972 | complete(&fmc2->complete); |
| 973 | |
| 974 | return IRQ_HANDLED; |
| 975 | } |
| 976 | |
| 977 | static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf, |
| 978 | unsigned int len, bool force_8bit) |
| 979 | { |
| 980 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 981 | void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel]; |
| 982 | |
| 983 | if (force_8bit && chip->options & NAND_BUSWIDTH_16) |
| 984 | /* Reconfigure bus width to 8-bit */ |
| 985 | stm32_fmc2_set_buswidth_16(fmc2, false); |
| 986 | |
| 987 | if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { |
| 988 | if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { |
| 989 | *(u8 *)buf = readb_relaxed(io_addr_r); |
| 990 | buf += sizeof(u8); |
| 991 | len -= sizeof(u8); |
| 992 | } |
| 993 | |
| 994 | if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && |
| 995 | len >= sizeof(u16)) { |
| 996 | *(u16 *)buf = readw_relaxed(io_addr_r); |
| 997 | buf += sizeof(u16); |
| 998 | len -= sizeof(u16); |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | /* Buf is aligned */ |
| 1003 | while (len >= sizeof(u32)) { |
| 1004 | *(u32 *)buf = readl_relaxed(io_addr_r); |
| 1005 | buf += sizeof(u32); |
| 1006 | len -= sizeof(u32); |
| 1007 | } |
| 1008 | |
| 1009 | /* Read remaining bytes */ |
| 1010 | if (len >= sizeof(u16)) { |
| 1011 | *(u16 *)buf = readw_relaxed(io_addr_r); |
| 1012 | buf += sizeof(u16); |
| 1013 | len -= sizeof(u16); |
| 1014 | } |
| 1015 | |
| 1016 | if (len) |
| 1017 | *(u8 *)buf = readb_relaxed(io_addr_r); |
| 1018 | |
| 1019 | if (force_8bit && chip->options & NAND_BUSWIDTH_16) |
| 1020 | /* Reconfigure bus width to 16-bit */ |
| 1021 | stm32_fmc2_set_buswidth_16(fmc2, true); |
| 1022 | } |
| 1023 | |
| 1024 | static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf, |
| 1025 | unsigned int len, bool force_8bit) |
| 1026 | { |
| 1027 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 1028 | void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel]; |
| 1029 | |
| 1030 | if (force_8bit && chip->options & NAND_BUSWIDTH_16) |
| 1031 | /* Reconfigure bus width to 8-bit */ |
| 1032 | stm32_fmc2_set_buswidth_16(fmc2, false); |
| 1033 | |
| 1034 | if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { |
| 1035 | if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { |
| 1036 | writeb_relaxed(*(u8 *)buf, io_addr_w); |
| 1037 | buf += sizeof(u8); |
| 1038 | len -= sizeof(u8); |
| 1039 | } |
| 1040 | |
| 1041 | if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && |
| 1042 | len >= sizeof(u16)) { |
| 1043 | writew_relaxed(*(u16 *)buf, io_addr_w); |
| 1044 | buf += sizeof(u16); |
| 1045 | len -= sizeof(u16); |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | /* Buf is aligned */ |
| 1050 | while (len >= sizeof(u32)) { |
| 1051 | writel_relaxed(*(u32 *)buf, io_addr_w); |
| 1052 | buf += sizeof(u32); |
| 1053 | len -= sizeof(u32); |
| 1054 | } |
| 1055 | |
| 1056 | /* Write remaining bytes */ |
| 1057 | if (len >= sizeof(u16)) { |
| 1058 | writew_relaxed(*(u16 *)buf, io_addr_w); |
| 1059 | buf += sizeof(u16); |
| 1060 | len -= sizeof(u16); |
| 1061 | } |
| 1062 | |
| 1063 | if (len) |
| 1064 | writeb_relaxed(*(u8 *)buf, io_addr_w); |
| 1065 | |
| 1066 | if (force_8bit && chip->options & NAND_BUSWIDTH_16) |
| 1067 | /* Reconfigure bus width to 16-bit */ |
| 1068 | stm32_fmc2_set_buswidth_16(fmc2, true); |
| 1069 | } |
| 1070 | |
| 1071 | static int stm32_fmc2_exec_op(struct nand_chip *chip, |
| 1072 | const struct nand_operation *op, |
| 1073 | bool check_only) |
| 1074 | { |
| 1075 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 1076 | const struct nand_op_instr *instr = NULL; |
| 1077 | unsigned int op_id, i; |
| 1078 | int ret; |
| 1079 | |
| 1080 | ret = stm32_fmc2_select_chip(chip, op->cs); |
| 1081 | if (ret) |
| 1082 | return ret; |
| 1083 | |
| 1084 | if (check_only) |
| 1085 | return ret; |
| 1086 | |
| 1087 | for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| 1088 | instr = &op->instrs[op_id]; |
| 1089 | |
| 1090 | switch (instr->type) { |
| 1091 | case NAND_OP_CMD_INSTR: |
| 1092 | writeb_relaxed(instr->ctx.cmd.opcode, |
| 1093 | fmc2->cmd_base[fmc2->cs_sel]); |
| 1094 | break; |
| 1095 | |
| 1096 | case NAND_OP_ADDR_INSTR: |
| 1097 | for (i = 0; i < instr->ctx.addr.naddrs; i++) |
| 1098 | writeb_relaxed(instr->ctx.addr.addrs[i], |
| 1099 | fmc2->addr_base[fmc2->cs_sel]); |
| 1100 | break; |
| 1101 | |
| 1102 | case NAND_OP_DATA_IN_INSTR: |
| 1103 | stm32_fmc2_read_data(chip, instr->ctx.data.buf.in, |
| 1104 | instr->ctx.data.len, |
| 1105 | instr->ctx.data.force_8bit); |
| 1106 | break; |
| 1107 | |
| 1108 | case NAND_OP_DATA_OUT_INSTR: |
| 1109 | stm32_fmc2_write_data(chip, instr->ctx.data.buf.out, |
| 1110 | instr->ctx.data.len, |
| 1111 | instr->ctx.data.force_8bit); |
| 1112 | break; |
| 1113 | |
| 1114 | case NAND_OP_WAITRDY_INSTR: |
| 1115 | ret = nand_soft_waitrdy(chip, |
| 1116 | instr->ctx.waitrdy.timeout_ms); |
| 1117 | break; |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | return ret; |
| 1122 | } |
| 1123 | |
| 1124 | /* Controller initialization */ |
| 1125 | static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2) |
| 1126 | { |
| 1127 | u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); |
| 1128 | u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1); |
| 1129 | |
| 1130 | /* Set CS used to undefined */ |
| 1131 | fmc2->cs_sel = -1; |
| 1132 | |
| 1133 | /* Enable wait feature and nand flash memory bank */ |
| 1134 | pcr |= FMC2_PCR_PWAITEN; |
| 1135 | pcr |= FMC2_PCR_PBKEN; |
| 1136 | |
| 1137 | /* Set buswidth to 8 bits mode for identification */ |
| 1138 | pcr &= ~FMC2_PCR_PWID_MASK; |
| 1139 | |
| 1140 | /* ECC logic is disabled */ |
| 1141 | pcr &= ~FMC2_PCR_ECCEN; |
| 1142 | |
| 1143 | /* Default mode */ |
| 1144 | pcr &= ~FMC2_PCR_ECCALG; |
| 1145 | pcr &= ~FMC2_PCR_BCHECC; |
| 1146 | pcr &= ~FMC2_PCR_WEN; |
| 1147 | |
| 1148 | /* Set default ECC sector size */ |
| 1149 | pcr &= ~FMC2_PCR_ECCSS_MASK; |
| 1150 | pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048); |
| 1151 | |
| 1152 | /* Set default tclr/tar timings */ |
| 1153 | pcr &= ~FMC2_PCR_TCLR_MASK; |
| 1154 | pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT); |
| 1155 | pcr &= ~FMC2_PCR_TAR_MASK; |
| 1156 | pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT); |
| 1157 | |
| 1158 | /* Enable FMC2 controller */ |
| 1159 | bcr1 |= FMC2_BCR1_FMC2EN; |
| 1160 | |
| 1161 | writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1); |
| 1162 | writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); |
| 1163 | writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM); |
| 1164 | writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT); |
| 1165 | } |
| 1166 | |
| 1167 | /* Controller timings */ |
| 1168 | static void stm32_fmc2_calc_timings(struct nand_chip *chip, |
| 1169 | const struct nand_sdr_timings *sdrt) |
| 1170 | { |
| 1171 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 1172 | struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| 1173 | struct stm32_fmc2_timings *tims = &nand->timings; |
| 1174 | unsigned long hclk = clk_get_rate(fmc2->clk); |
| 1175 | unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); |
| 1176 | int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att; |
| 1177 | |
| 1178 | tar = hclkp; |
| 1179 | if (tar < sdrt->tAR_min) |
| 1180 | tar = sdrt->tAR_min; |
| 1181 | tims->tar = DIV_ROUND_UP(tar, hclkp) - 1; |
| 1182 | if (tims->tar > FMC2_PCR_TIMING_MASK) |
| 1183 | tims->tar = FMC2_PCR_TIMING_MASK; |
| 1184 | |
| 1185 | tclr = hclkp; |
| 1186 | if (tclr < sdrt->tCLR_min) |
| 1187 | tclr = sdrt->tCLR_min; |
| 1188 | tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1; |
| 1189 | if (tims->tclr > FMC2_PCR_TIMING_MASK) |
| 1190 | tims->tclr = FMC2_PCR_TIMING_MASK; |
| 1191 | |
| 1192 | tims->thiz = FMC2_THIZ; |
| 1193 | thiz = (tims->thiz + 1) * hclkp; |
| 1194 | |
| 1195 | /* |
| 1196 | * tWAIT > tRP |
| 1197 | * tWAIT > tWP |
| 1198 | * tWAIT > tREA + tIO |
| 1199 | */ |
| 1200 | twait = hclkp; |
| 1201 | if (twait < sdrt->tRP_min) |
| 1202 | twait = sdrt->tRP_min; |
| 1203 | if (twait < sdrt->tWP_min) |
| 1204 | twait = sdrt->tWP_min; |
| 1205 | if (twait < sdrt->tREA_max + FMC2_TIO) |
| 1206 | twait = sdrt->tREA_max + FMC2_TIO; |
| 1207 | tims->twait = DIV_ROUND_UP(twait, hclkp); |
| 1208 | if (tims->twait == 0) |
| 1209 | tims->twait = 1; |
| 1210 | else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK) |
| 1211 | tims->twait = FMC2_PMEM_PATT_TIMING_MASK; |
| 1212 | |
| 1213 | /* |
| 1214 | * tSETUP_MEM > tCS - tWAIT |
| 1215 | * tSETUP_MEM > tALS - tWAIT |
| 1216 | * tSETUP_MEM > tDS - (tWAIT - tHIZ) |
| 1217 | */ |
| 1218 | tset_mem = hclkp; |
| 1219 | if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) |
| 1220 | tset_mem = sdrt->tCS_min - twait; |
| 1221 | if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) |
| 1222 | tset_mem = sdrt->tALS_min - twait; |
| 1223 | if (twait > thiz && (sdrt->tDS_min > twait - thiz) && |
| 1224 | (tset_mem < sdrt->tDS_min - (twait - thiz))) |
| 1225 | tset_mem = sdrt->tDS_min - (twait - thiz); |
| 1226 | tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp); |
| 1227 | if (tims->tset_mem == 0) |
| 1228 | tims->tset_mem = 1; |
| 1229 | else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK) |
| 1230 | tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK; |
| 1231 | |
| 1232 | /* |
| 1233 | * tHOLD_MEM > tCH |
| 1234 | * tHOLD_MEM > tREH - tSETUP_MEM |
| 1235 | * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) |
| 1236 | */ |
| 1237 | thold_mem = hclkp; |
| 1238 | if (thold_mem < sdrt->tCH_min) |
| 1239 | thold_mem = sdrt->tCH_min; |
| 1240 | if (sdrt->tREH_min > tset_mem && |
| 1241 | (thold_mem < sdrt->tREH_min - tset_mem)) |
| 1242 | thold_mem = sdrt->tREH_min - tset_mem; |
| 1243 | if ((sdrt->tRC_min > tset_mem + twait) && |
| 1244 | (thold_mem < sdrt->tRC_min - (tset_mem + twait))) |
| 1245 | thold_mem = sdrt->tRC_min - (tset_mem + twait); |
| 1246 | if ((sdrt->tWC_min > tset_mem + twait) && |
| 1247 | (thold_mem < sdrt->tWC_min - (tset_mem + twait))) |
| 1248 | thold_mem = sdrt->tWC_min - (tset_mem + twait); |
| 1249 | tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp); |
| 1250 | if (tims->thold_mem == 0) |
| 1251 | tims->thold_mem = 1; |
| 1252 | else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK) |
| 1253 | tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK; |
| 1254 | |
| 1255 | /* |
| 1256 | * tSETUP_ATT > tCS - tWAIT |
| 1257 | * tSETUP_ATT > tCLS - tWAIT |
| 1258 | * tSETUP_ATT > tALS - tWAIT |
| 1259 | * tSETUP_ATT > tRHW - tHOLD_MEM |
| 1260 | * tSETUP_ATT > tDS - (tWAIT - tHIZ) |
| 1261 | */ |
| 1262 | tset_att = hclkp; |
| 1263 | if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) |
| 1264 | tset_att = sdrt->tCS_min - twait; |
| 1265 | if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) |
| 1266 | tset_att = sdrt->tCLS_min - twait; |
| 1267 | if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) |
| 1268 | tset_att = sdrt->tALS_min - twait; |
| 1269 | if (sdrt->tRHW_min > thold_mem && |
| 1270 | (tset_att < sdrt->tRHW_min - thold_mem)) |
| 1271 | tset_att = sdrt->tRHW_min - thold_mem; |
| 1272 | if (twait > thiz && (sdrt->tDS_min > twait - thiz) && |
| 1273 | (tset_att < sdrt->tDS_min - (twait - thiz))) |
| 1274 | tset_att = sdrt->tDS_min - (twait - thiz); |
| 1275 | tims->tset_att = DIV_ROUND_UP(tset_att, hclkp); |
| 1276 | if (tims->tset_att == 0) |
| 1277 | tims->tset_att = 1; |
| 1278 | else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK) |
| 1279 | tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK; |
| 1280 | |
| 1281 | /* |
| 1282 | * tHOLD_ATT > tALH |
| 1283 | * tHOLD_ATT > tCH |
| 1284 | * tHOLD_ATT > tCLH |
| 1285 | * tHOLD_ATT > tCOH |
| 1286 | * tHOLD_ATT > tDH |
| 1287 | * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM |
| 1288 | * tHOLD_ATT > tADL - tSETUP_MEM |
| 1289 | * tHOLD_ATT > tWH - tSETUP_MEM |
| 1290 | * tHOLD_ATT > tWHR - tSETUP_MEM |
| 1291 | * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) |
| 1292 | * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) |
| 1293 | */ |
| 1294 | thold_att = hclkp; |
| 1295 | if (thold_att < sdrt->tALH_min) |
| 1296 | thold_att = sdrt->tALH_min; |
| 1297 | if (thold_att < sdrt->tCH_min) |
| 1298 | thold_att = sdrt->tCH_min; |
| 1299 | if (thold_att < sdrt->tCLH_min) |
| 1300 | thold_att = sdrt->tCLH_min; |
| 1301 | if (thold_att < sdrt->tCOH_min) |
| 1302 | thold_att = sdrt->tCOH_min; |
| 1303 | if (thold_att < sdrt->tDH_min) |
| 1304 | thold_att = sdrt->tDH_min; |
| 1305 | if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && |
| 1306 | (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) |
| 1307 | thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; |
| 1308 | if (sdrt->tADL_min > tset_mem && |
| 1309 | (thold_att < sdrt->tADL_min - tset_mem)) |
| 1310 | thold_att = sdrt->tADL_min - tset_mem; |
| 1311 | if (sdrt->tWH_min > tset_mem && |
| 1312 | (thold_att < sdrt->tWH_min - tset_mem)) |
| 1313 | thold_att = sdrt->tWH_min - tset_mem; |
| 1314 | if (sdrt->tWHR_min > tset_mem && |
| 1315 | (thold_att < sdrt->tWHR_min - tset_mem)) |
| 1316 | thold_att = sdrt->tWHR_min - tset_mem; |
| 1317 | if ((sdrt->tRC_min > tset_att + twait) && |
| 1318 | (thold_att < sdrt->tRC_min - (tset_att + twait))) |
| 1319 | thold_att = sdrt->tRC_min - (tset_att + twait); |
| 1320 | if ((sdrt->tWC_min > tset_att + twait) && |
| 1321 | (thold_att < sdrt->tWC_min - (tset_att + twait))) |
| 1322 | thold_att = sdrt->tWC_min - (tset_att + twait); |
| 1323 | tims->thold_att = DIV_ROUND_UP(thold_att, hclkp); |
| 1324 | if (tims->thold_att == 0) |
| 1325 | tims->thold_att = 1; |
| 1326 | else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK) |
| 1327 | tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK; |
| 1328 | } |
| 1329 | |
| 1330 | static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr, |
| 1331 | const struct nand_data_interface *conf) |
| 1332 | { |
| 1333 | const struct nand_sdr_timings *sdrt; |
| 1334 | |
| 1335 | sdrt = nand_get_sdr_timings(conf); |
| 1336 | if (IS_ERR(sdrt)) |
| 1337 | return PTR_ERR(sdrt); |
| 1338 | |
| 1339 | if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) |
| 1340 | return 0; |
| 1341 | |
| 1342 | stm32_fmc2_calc_timings(chip, sdrt); |
| 1343 | |
| 1344 | /* Apply timings */ |
| 1345 | stm32_fmc2_timings_init(chip); |
| 1346 | |
| 1347 | return 0; |
| 1348 | } |
| 1349 | |
| 1350 | /* DMA configuration */ |
| 1351 | static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2) |
| 1352 | { |
| 1353 | int ret; |
| 1354 | |
| 1355 | fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx"); |
| 1356 | fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx"); |
| 1357 | fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc"); |
| 1358 | |
| 1359 | if (fmc2->dma_ecc_ch) { |
| 1360 | ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, |
| 1361 | GFP_KERNEL); |
| 1362 | if (ret) |
| 1363 | return ret; |
| 1364 | |
| 1365 | /* Allocate a buffer to store ECC status registers */ |
| 1366 | fmc2->ecc_buf = devm_kzalloc(fmc2->dev, |
| 1367 | FMC2_MAX_ECC_BUF_LEN, |
| 1368 | GFP_KERNEL); |
| 1369 | if (!fmc2->ecc_buf) |
| 1370 | return -ENOMEM; |
| 1371 | } else { |
| 1372 | dev_err(fmc2->dev, "ECC DMA not defined in the device tree\n"); |
| 1373 | return -ENOENT; |
| 1374 | } |
| 1375 | |
| 1376 | if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) { |
| 1377 | ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, |
| 1378 | GFP_KERNEL); |
| 1379 | if (ret) |
| 1380 | return ret; |
| 1381 | |
| 1382 | init_completion(&fmc2->dma_data_complete); |
| 1383 | init_completion(&fmc2->dma_ecc_complete); |
| 1384 | } else { |
| 1385 | dev_err(fmc2->dev, "rx/tx DMA not defined in the device tree\n"); |
| 1386 | return -ENOENT; |
| 1387 | } |
| 1388 | |
| 1389 | return 0; |
| 1390 | } |
| 1391 | |
| 1392 | /* NAND callbacks setup */ |
| 1393 | static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip) |
| 1394 | { |
| 1395 | /* Specific callbacks to read/write a page */ |
| 1396 | chip->ecc.correct = stm32_fmc2_sequencer_correct; |
| 1397 | chip->ecc.write_page = stm32_fmc2_sequencer_write_page; |
| 1398 | chip->ecc.read_page = stm32_fmc2_sequencer_read_page; |
| 1399 | chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw; |
| 1400 | chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw; |
| 1401 | |
| 1402 | /* Specific configurations depending on the algo used */ |
| 1403 | if (chip->ecc.strength == FMC2_ECC_HAM) |
| 1404 | chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; |
| 1405 | else if (chip->ecc.strength == FMC2_ECC_BCH8) |
| 1406 | chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; |
| 1407 | else |
| 1408 | chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; |
| 1409 | } |
| 1410 | |
| 1411 | /* FMC2 layout */ |
| 1412 | static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| 1413 | struct mtd_oob_region *oobregion) |
| 1414 | { |
| 1415 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1416 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1417 | |
| 1418 | if (section) |
| 1419 | return -ERANGE; |
| 1420 | |
| 1421 | oobregion->length = ecc->total; |
| 1422 | oobregion->offset = FMC2_BBM_LEN; |
| 1423 | |
| 1424 | return 0; |
| 1425 | } |
| 1426 | |
| 1427 | static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| 1428 | struct mtd_oob_region *oobregion) |
| 1429 | { |
| 1430 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1431 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1432 | |
| 1433 | if (section) |
| 1434 | return -ERANGE; |
| 1435 | |
| 1436 | oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; |
| 1437 | oobregion->offset = ecc->total + FMC2_BBM_LEN; |
| 1438 | |
| 1439 | return 0; |
| 1440 | } |
| 1441 | |
| 1442 | static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = { |
| 1443 | .ecc = stm32_fmc2_nand_ooblayout_ecc, |
| 1444 | .free = stm32_fmc2_nand_ooblayout_free, |
| 1445 | }; |
| 1446 | |
| 1447 | /* FMC2 caps */ |
| 1448 | static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength) |
| 1449 | { |
| 1450 | /* Hamming */ |
| 1451 | if (strength == FMC2_ECC_HAM) |
| 1452 | return 4; |
| 1453 | |
| 1454 | /* BCH8 */ |
| 1455 | if (strength == FMC2_ECC_BCH8) |
| 1456 | return 14; |
| 1457 | |
| 1458 | /* BCH4 */ |
| 1459 | return 8; |
| 1460 | } |
| 1461 | |
| 1462 | NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes, |
| 1463 | FMC2_ECC_STEP_SIZE, |
| 1464 | FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); |
| 1465 | |
| 1466 | /* FMC2 controller ops */ |
| 1467 | static int stm32_fmc2_attach_chip(struct nand_chip *chip) |
| 1468 | { |
| 1469 | struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); |
| 1470 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1471 | int ret; |
| 1472 | |
| 1473 | /* |
| 1474 | * Only NAND_ECC_HW mode is actually supported |
| 1475 | * Hamming => ecc.strength = 1 |
| 1476 | * BCH4 => ecc.strength = 4 |
| 1477 | * BCH8 => ecc.strength = 8 |
| 1478 | * ECC sector size = 512 |
| 1479 | */ |
| 1480 | if (chip->ecc.mode != NAND_ECC_HW) { |
| 1481 | dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n"); |
| 1482 | return -EINVAL; |
| 1483 | } |
| 1484 | |
| 1485 | ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps, |
| 1486 | mtd->oobsize - FMC2_BBM_LEN); |
| 1487 | if (ret) { |
| 1488 | dev_err(fmc2->dev, "no valid ECC settings set\n"); |
| 1489 | return ret; |
| 1490 | } |
| 1491 | |
| 1492 | if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { |
| 1493 | dev_err(fmc2->dev, "nand page size is not supported\n"); |
| 1494 | return -EINVAL; |
| 1495 | } |
| 1496 | |
| 1497 | if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| 1498 | chip->bbt_options |= NAND_BBT_NO_OOB; |
| 1499 | |
| 1500 | /* NAND callbacks setup */ |
| 1501 | stm32_fmc2_nand_callbacks_setup(chip); |
| 1502 | |
| 1503 | /* Define ECC layout */ |
| 1504 | mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops); |
| 1505 | |
| 1506 | /* Configure bus width to 16-bit */ |
| 1507 | if (chip->options & NAND_BUSWIDTH_16) |
| 1508 | stm32_fmc2_set_buswidth_16(fmc2, true); |
| 1509 | |
| 1510 | return 0; |
| 1511 | } |
| 1512 | |
| 1513 | static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = { |
| 1514 | .attach_chip = stm32_fmc2_attach_chip, |
| 1515 | .exec_op = stm32_fmc2_exec_op, |
| 1516 | .setup_data_interface = stm32_fmc2_setup_interface, |
| 1517 | }; |
| 1518 | |
| 1519 | /* FMC2 probe */ |
| 1520 | static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2, |
| 1521 | struct device_node *dn) |
| 1522 | { |
| 1523 | struct stm32_fmc2_nand *nand = &fmc2->nand; |
| 1524 | u32 cs; |
| 1525 | int ret, i; |
| 1526 | |
| 1527 | if (!of_get_property(dn, "reg", &nand->ncs)) |
| 1528 | return -EINVAL; |
| 1529 | |
| 1530 | nand->ncs /= sizeof(u32); |
| 1531 | if (!nand->ncs) { |
| 1532 | dev_err(fmc2->dev, "invalid reg property size\n"); |
| 1533 | return -EINVAL; |
| 1534 | } |
| 1535 | |
| 1536 | for (i = 0; i < nand->ncs; i++) { |
| 1537 | ret = of_property_read_u32_index(dn, "reg", i, &cs); |
| 1538 | if (ret) { |
| 1539 | dev_err(fmc2->dev, "could not retrieve reg property: %d\n", |
| 1540 | ret); |
| 1541 | return ret; |
| 1542 | } |
| 1543 | |
| 1544 | if (cs > FMC2_MAX_CE) { |
| 1545 | dev_err(fmc2->dev, "invalid reg value: %d\n", cs); |
| 1546 | return -EINVAL; |
| 1547 | } |
| 1548 | |
| 1549 | if (fmc2->cs_assigned & BIT(cs)) { |
| 1550 | dev_err(fmc2->dev, "cs already assigned: %d\n", cs); |
| 1551 | return -EINVAL; |
| 1552 | } |
| 1553 | |
| 1554 | fmc2->cs_assigned |= BIT(cs); |
| 1555 | nand->cs_used[i] = cs; |
| 1556 | } |
| 1557 | |
| 1558 | nand_set_flash_node(&nand->chip, dn); |
| 1559 | |
| 1560 | return 0; |
| 1561 | } |
| 1562 | |
| 1563 | static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2) |
| 1564 | { |
| 1565 | struct device_node *dn = fmc2->dev->of_node; |
| 1566 | struct device_node *child; |
| 1567 | int nchips = of_get_child_count(dn); |
| 1568 | int ret = 0; |
| 1569 | |
| 1570 | if (!nchips) { |
| 1571 | dev_err(fmc2->dev, "NAND chip not defined\n"); |
| 1572 | return -EINVAL; |
| 1573 | } |
| 1574 | |
| 1575 | if (nchips > 1) { |
| 1576 | dev_err(fmc2->dev, "too many NAND chips defined\n"); |
| 1577 | return -EINVAL; |
| 1578 | } |
| 1579 | |
| 1580 | for_each_child_of_node(dn, child) { |
| 1581 | ret = stm32_fmc2_parse_child(fmc2, child); |
| 1582 | if (ret < 0) { |
| 1583 | of_node_put(child); |
| 1584 | return ret; |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | return ret; |
| 1589 | } |
| 1590 | |
| 1591 | static int stm32_fmc2_probe(struct platform_device *pdev) |
| 1592 | { |
| 1593 | struct device *dev = &pdev->dev; |
| 1594 | struct reset_control *rstc; |
| 1595 | struct stm32_fmc2_nfc *fmc2; |
| 1596 | struct stm32_fmc2_nand *nand; |
| 1597 | struct resource *res; |
| 1598 | struct mtd_info *mtd; |
| 1599 | struct nand_chip *chip; |
| 1600 | int chip_cs, mem_region, ret, irq; |
| 1601 | |
| 1602 | fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL); |
| 1603 | if (!fmc2) |
| 1604 | return -ENOMEM; |
| 1605 | |
| 1606 | fmc2->dev = dev; |
| 1607 | nand_controller_init(&fmc2->base); |
| 1608 | fmc2->base.ops = &stm32_fmc2_nand_controller_ops; |
| 1609 | |
| 1610 | ret = stm32_fmc2_parse_dt(fmc2); |
| 1611 | if (ret) |
| 1612 | return ret; |
| 1613 | |
| 1614 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1615 | fmc2->io_base = devm_ioremap_resource(dev, res); |
| 1616 | if (IS_ERR(fmc2->io_base)) |
| 1617 | return PTR_ERR(fmc2->io_base); |
| 1618 | |
| 1619 | fmc2->io_phys_addr = res->start; |
| 1620 | |
| 1621 | for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE; |
| 1622 | chip_cs++, mem_region += 3) { |
| 1623 | if (!(fmc2->cs_assigned & BIT(chip_cs))) |
| 1624 | continue; |
| 1625 | |
| 1626 | res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region); |
| 1627 | fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res); |
| 1628 | if (IS_ERR(fmc2->data_base[chip_cs])) |
| 1629 | return PTR_ERR(fmc2->data_base[chip_cs]); |
| 1630 | |
| 1631 | fmc2->data_phys_addr[chip_cs] = res->start; |
| 1632 | |
| 1633 | res = platform_get_resource(pdev, IORESOURCE_MEM, |
| 1634 | mem_region + 1); |
| 1635 | fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res); |
| 1636 | if (IS_ERR(fmc2->cmd_base[chip_cs])) |
| 1637 | return PTR_ERR(fmc2->cmd_base[chip_cs]); |
| 1638 | |
| 1639 | res = platform_get_resource(pdev, IORESOURCE_MEM, |
| 1640 | mem_region + 2); |
| 1641 | fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res); |
| 1642 | if (IS_ERR(fmc2->addr_base[chip_cs])) |
| 1643 | return PTR_ERR(fmc2->addr_base[chip_cs]); |
| 1644 | } |
| 1645 | |
| 1646 | irq = platform_get_irq(pdev, 0); |
| 1647 | ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0, |
| 1648 | dev_name(dev), fmc2); |
| 1649 | if (ret) { |
| 1650 | dev_err(dev, "failed to request irq\n"); |
| 1651 | return ret; |
| 1652 | } |
| 1653 | |
| 1654 | init_completion(&fmc2->complete); |
| 1655 | |
| 1656 | fmc2->clk = devm_clk_get(dev, NULL); |
| 1657 | if (IS_ERR(fmc2->clk)) |
| 1658 | return PTR_ERR(fmc2->clk); |
| 1659 | |
| 1660 | ret = clk_prepare_enable(fmc2->clk); |
| 1661 | if (ret) { |
| 1662 | dev_err(dev, "can not enable the clock\n"); |
| 1663 | return ret; |
| 1664 | } |
| 1665 | |
| 1666 | rstc = devm_reset_control_get(dev, NULL); |
| 1667 | if (!IS_ERR(rstc)) { |
| 1668 | reset_control_assert(rstc); |
| 1669 | reset_control_deassert(rstc); |
| 1670 | } |
| 1671 | |
| 1672 | /* DMA setup */ |
| 1673 | ret = stm32_fmc2_dma_setup(fmc2); |
| 1674 | if (ret) |
| 1675 | return ret; |
| 1676 | |
| 1677 | /* FMC2 init routine */ |
| 1678 | stm32_fmc2_init(fmc2); |
| 1679 | |
| 1680 | nand = &fmc2->nand; |
| 1681 | chip = &nand->chip; |
| 1682 | mtd = nand_to_mtd(chip); |
| 1683 | mtd->dev.parent = dev; |
| 1684 | |
| 1685 | chip->controller = &fmc2->base; |
| 1686 | chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | |
| 1687 | NAND_USE_BOUNCE_BUFFER; |
| 1688 | |
| 1689 | /* Default ECC settings */ |
| 1690 | chip->ecc.mode = NAND_ECC_HW; |
| 1691 | chip->ecc.size = FMC2_ECC_STEP_SIZE; |
| 1692 | chip->ecc.strength = FMC2_ECC_BCH8; |
| 1693 | |
| 1694 | /* Scan to find existence of the device */ |
| 1695 | ret = nand_scan(chip, nand->ncs); |
| 1696 | if (ret) |
| 1697 | goto err_scan; |
| 1698 | |
| 1699 | ret = mtd_device_register(mtd, NULL, 0); |
| 1700 | if (ret) |
| 1701 | goto err_device_register; |
| 1702 | |
| 1703 | platform_set_drvdata(pdev, fmc2); |
| 1704 | |
| 1705 | return 0; |
| 1706 | |
| 1707 | err_device_register: |
| 1708 | nand_cleanup(chip); |
| 1709 | |
| 1710 | err_scan: |
| 1711 | if (fmc2->dma_ecc_ch) |
| 1712 | dma_release_channel(fmc2->dma_ecc_ch); |
| 1713 | if (fmc2->dma_tx_ch) |
| 1714 | dma_release_channel(fmc2->dma_tx_ch); |
| 1715 | if (fmc2->dma_rx_ch) |
| 1716 | dma_release_channel(fmc2->dma_rx_ch); |
| 1717 | |
| 1718 | sg_free_table(&fmc2->dma_data_sg); |
| 1719 | sg_free_table(&fmc2->dma_ecc_sg); |
| 1720 | |
| 1721 | clk_disable_unprepare(fmc2->clk); |
| 1722 | |
| 1723 | return ret; |
| 1724 | } |
| 1725 | |
| 1726 | static int stm32_fmc2_remove(struct platform_device *pdev) |
| 1727 | { |
| 1728 | struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev); |
| 1729 | struct stm32_fmc2_nand *nand = &fmc2->nand; |
| 1730 | |
| 1731 | nand_release(&nand->chip); |
| 1732 | |
| 1733 | if (fmc2->dma_ecc_ch) |
| 1734 | dma_release_channel(fmc2->dma_ecc_ch); |
| 1735 | if (fmc2->dma_tx_ch) |
| 1736 | dma_release_channel(fmc2->dma_tx_ch); |
| 1737 | if (fmc2->dma_rx_ch) |
| 1738 | dma_release_channel(fmc2->dma_rx_ch); |
| 1739 | |
| 1740 | sg_free_table(&fmc2->dma_data_sg); |
| 1741 | sg_free_table(&fmc2->dma_ecc_sg); |
| 1742 | |
| 1743 | clk_disable_unprepare(fmc2->clk); |
| 1744 | |
| 1745 | return 0; |
| 1746 | } |
| 1747 | |
| 1748 | static int __maybe_unused stm32_fmc2_suspend(struct device *dev) |
| 1749 | { |
| 1750 | struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev); |
| 1751 | |
| 1752 | clk_disable_unprepare(fmc2->clk); |
| 1753 | |
| 1754 | pinctrl_pm_select_sleep_state(dev); |
| 1755 | |
| 1756 | return 0; |
| 1757 | } |
| 1758 | |
| 1759 | static int __maybe_unused stm32_fmc2_resume(struct device *dev) |
| 1760 | { |
| 1761 | struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev); |
| 1762 | struct stm32_fmc2_nand *nand = &fmc2->nand; |
| 1763 | int chip_cs, ret; |
| 1764 | |
| 1765 | pinctrl_pm_select_default_state(dev); |
| 1766 | |
| 1767 | ret = clk_prepare_enable(fmc2->clk); |
| 1768 | if (ret) { |
| 1769 | dev_err(dev, "can not enable the clock\n"); |
| 1770 | return ret; |
| 1771 | } |
| 1772 | |
| 1773 | stm32_fmc2_init(fmc2); |
| 1774 | |
| 1775 | for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) { |
| 1776 | if (!(fmc2->cs_assigned & BIT(chip_cs))) |
| 1777 | continue; |
| 1778 | |
| 1779 | nand_reset(&nand->chip, chip_cs); |
| 1780 | } |
| 1781 | |
| 1782 | return 0; |
| 1783 | } |
| 1784 | |
| 1785 | static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend, |
| 1786 | stm32_fmc2_resume); |
| 1787 | |
| 1788 | static const struct of_device_id stm32_fmc2_match[] = { |
| 1789 | {.compatible = "st,stm32mp15-fmc2"}, |
| 1790 | {} |
| 1791 | }; |
| 1792 | MODULE_DEVICE_TABLE(of, stm32_fmc2_match); |
| 1793 | |
| 1794 | static struct platform_driver stm32_fmc2_driver = { |
| 1795 | .probe = stm32_fmc2_probe, |
| 1796 | .remove = stm32_fmc2_remove, |
| 1797 | .driver = { |
| 1798 | .name = "stm32_fmc2_nand", |
| 1799 | .of_match_table = stm32_fmc2_match, |
| 1800 | .pm = &stm32_fmc2_pm_ops, |
| 1801 | }, |
| 1802 | }; |
| 1803 | module_platform_driver(stm32_fmc2_driver); |
| 1804 | |
| 1805 | MODULE_ALIAS("platform:stm32_fmc2_nand"); |
| 1806 | MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); |
| 1807 | MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver"); |
| 1808 | MODULE_LICENSE("GPL v2"); |