blob: b4dab63c6dbdc0f29c0e368b926a7217522148ea [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080037#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080052#include <linux/kprobes.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070053#include <asm/tlb.h>
54
55#include <asm/unistd.h>
56
57/*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66/*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75/*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81/*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89#define DEF_TIMESLICE (100 * HZ / 1000)
90#define ON_RUNQUEUE_WEIGHT 30
91#define CHILD_PENALTY 95
92#define PARENT_PENALTY 100
93#define EXIT_WEIGHT 3
94#define PRIO_BONUS_RATIO 25
95#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96#define INTERACTIVE_DELTA 2
97#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98#define STARVATION_LIMIT (MAX_SLEEP_AVG)
99#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101/*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129#define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133#define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135#ifdef CONFIG_SMP
136#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139#else
140#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142#endif
143
144#define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700150
151#define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154#define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158#define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161/*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172
Peter Williams2dd73a42006-06-27 02:54:34 -0700173static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174{
Peter Williams2dd73a42006-06-27 02:54:34 -0700175 if (static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700178 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179}
Peter Williams2dd73a42006-06-27 02:54:34 -0700180
181static inline unsigned int task_timeslice(task_t *p)
182{
183 return static_prio_timeslice(p->static_prio);
184}
185
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
187 < (long long) (sd)->cache_hot_time)
188
189/*
190 * These are the runqueue data structures:
191 */
192
Linus Torvalds1da177e2005-04-16 15:20:36 -0700193typedef struct runqueue runqueue_t;
194
195struct prio_array {
196 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700197 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198 struct list_head queue[MAX_PRIO];
199};
200
201/*
202 * This is the main, per-CPU runqueue data structure.
203 *
204 * Locking rule: those places that want to lock multiple runqueues
205 * (such as the load balancing or the thread migration code), lock
206 * acquire operations must be ordered by ascending &runqueue.
207 */
208struct runqueue {
209 spinlock_t lock;
210
211 /*
212 * nr_running and cpu_load should be in the same cacheline because
213 * remote CPUs use both these fields when doing load calculation.
214 */
215 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700216 unsigned long raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700217#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -0700218 unsigned long cpu_load[3];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219#endif
220 unsigned long long nr_switches;
221
222 /*
223 * This is part of a global counter where only the total sum
224 * over all CPUs matters. A task can increase this counter on
225 * one CPU and if it got migrated afterwards it may decrease
226 * it on another CPU. Always updated under the runqueue lock:
227 */
228 unsigned long nr_uninterruptible;
229
230 unsigned long expired_timestamp;
231 unsigned long long timestamp_last_tick;
232 task_t *curr, *idle;
233 struct mm_struct *prev_mm;
234 prio_array_t *active, *expired, arrays[2];
235 int best_expired_prio;
236 atomic_t nr_iowait;
237
238#ifdef CONFIG_SMP
239 struct sched_domain *sd;
240
241 /* For active balancing */
242 int active_balance;
243 int push_cpu;
244
245 task_t *migration_thread;
246 struct list_head migration_queue;
247#endif
248
249#ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
252
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
258
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
263
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267#endif
268};
269
270static DEFINE_PER_CPU(struct runqueue, runqueues);
271
Nick Piggin674311d2005-06-25 14:57:27 -0700272/*
273 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700274 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700275 *
276 * The domain tree of any CPU may only be accessed from within
277 * preempt-disabled sections.
278 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279#define for_each_domain(cpu, domain) \
Nick Piggin674311d2005-06-25 14:57:27 -0700280for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281
282#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
283#define this_rq() (&__get_cpu_var(runqueues))
284#define task_rq(p) cpu_rq(task_cpu(p))
285#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
286
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700288# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700290#ifndef finish_arch_switch
291# define finish_arch_switch(prev) do { } while (0)
292#endif
293
294#ifndef __ARCH_WANT_UNLOCKED_CTXSW
295static inline int task_running(runqueue_t *rq, task_t *p)
296{
297 return rq->curr == p;
298}
299
300static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
301{
302}
303
304static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
305{
Ingo Molnarda04c032005-09-13 11:17:59 +0200306#ifdef CONFIG_DEBUG_SPINLOCK
307 /* this is a valid case when another task releases the spinlock */
308 rq->lock.owner = current;
309#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700310 spin_unlock_irq(&rq->lock);
311}
312
313#else /* __ARCH_WANT_UNLOCKED_CTXSW */
314static inline int task_running(runqueue_t *rq, task_t *p)
315{
316#ifdef CONFIG_SMP
317 return p->oncpu;
318#else
319 return rq->curr == p;
320#endif
321}
322
323static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
324{
325#ifdef CONFIG_SMP
326 /*
327 * We can optimise this out completely for !SMP, because the
328 * SMP rebalancing from interrupt is the only thing that cares
329 * here.
330 */
331 next->oncpu = 1;
332#endif
333#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
334 spin_unlock_irq(&rq->lock);
335#else
336 spin_unlock(&rq->lock);
337#endif
338}
339
340static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
341{
342#ifdef CONFIG_SMP
343 /*
344 * After ->oncpu is cleared, the task can be moved to a different CPU.
345 * We must ensure this doesn't happen until the switch is completely
346 * finished.
347 */
348 smp_wmb();
349 prev->oncpu = 0;
350#endif
351#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
352 local_irq_enable();
353#endif
354}
355#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700356
357/*
358 * task_rq_lock - lock the runqueue a given task resides on and disable
359 * interrupts. Note the ordering: we can safely lookup the task_rq without
360 * explicitly disabling preemption.
361 */
362static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
363 __acquires(rq->lock)
364{
365 struct runqueue *rq;
366
367repeat_lock_task:
368 local_irq_save(*flags);
369 rq = task_rq(p);
370 spin_lock(&rq->lock);
371 if (unlikely(rq != task_rq(p))) {
372 spin_unlock_irqrestore(&rq->lock, *flags);
373 goto repeat_lock_task;
374 }
375 return rq;
376}
377
378static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
379 __releases(rq->lock)
380{
381 spin_unlock_irqrestore(&rq->lock, *flags);
382}
383
384#ifdef CONFIG_SCHEDSTATS
385/*
386 * bump this up when changing the output format or the meaning of an existing
387 * format, so that tools can adapt (or abort)
388 */
Nick Piggin68767a02005-06-25 14:57:20 -0700389#define SCHEDSTAT_VERSION 12
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390
391static int show_schedstat(struct seq_file *seq, void *v)
392{
393 int cpu;
394
395 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
396 seq_printf(seq, "timestamp %lu\n", jiffies);
397 for_each_online_cpu(cpu) {
398 runqueue_t *rq = cpu_rq(cpu);
399#ifdef CONFIG_SMP
400 struct sched_domain *sd;
401 int dcnt = 0;
402#endif
403
404 /* runqueue-specific stats */
405 seq_printf(seq,
406 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
407 cpu, rq->yld_both_empty,
408 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
409 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
410 rq->ttwu_cnt, rq->ttwu_local,
411 rq->rq_sched_info.cpu_time,
412 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
413
414 seq_printf(seq, "\n");
415
416#ifdef CONFIG_SMP
417 /* domain-specific stats */
Nick Piggin674311d2005-06-25 14:57:27 -0700418 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419 for_each_domain(cpu, sd) {
420 enum idle_type itype;
421 char mask_str[NR_CPUS];
422
423 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
424 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
425 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
426 itype++) {
427 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
428 sd->lb_cnt[itype],
429 sd->lb_balanced[itype],
430 sd->lb_failed[itype],
431 sd->lb_imbalance[itype],
432 sd->lb_gained[itype],
433 sd->lb_hot_gained[itype],
434 sd->lb_nobusyq[itype],
435 sd->lb_nobusyg[itype]);
436 }
Nick Piggin68767a02005-06-25 14:57:20 -0700437 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
Nick Piggin68767a02005-06-25 14:57:20 -0700439 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
440 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700441 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
442 }
Nick Piggin674311d2005-06-25 14:57:27 -0700443 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444#endif
445 }
446 return 0;
447}
448
449static int schedstat_open(struct inode *inode, struct file *file)
450{
451 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
452 char *buf = kmalloc(size, GFP_KERNEL);
453 struct seq_file *m;
454 int res;
455
456 if (!buf)
457 return -ENOMEM;
458 res = single_open(file, show_schedstat, NULL);
459 if (!res) {
460 m = file->private_data;
461 m->buf = buf;
462 m->size = size;
463 } else
464 kfree(buf);
465 return res;
466}
467
468struct file_operations proc_schedstat_operations = {
469 .open = schedstat_open,
470 .read = seq_read,
471 .llseek = seq_lseek,
472 .release = single_release,
473};
474
475# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
476# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
477#else /* !CONFIG_SCHEDSTATS */
478# define schedstat_inc(rq, field) do { } while (0)
479# define schedstat_add(rq, field, amt) do { } while (0)
480#endif
481
482/*
483 * rq_lock - lock a given runqueue and disable interrupts.
484 */
485static inline runqueue_t *this_rq_lock(void)
486 __acquires(rq->lock)
487{
488 runqueue_t *rq;
489
490 local_irq_disable();
491 rq = this_rq();
492 spin_lock(&rq->lock);
493
494 return rq;
495}
496
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497#ifdef CONFIG_SCHEDSTATS
498/*
499 * Called when a process is dequeued from the active array and given
500 * the cpu. We should note that with the exception of interactive
501 * tasks, the expired queue will become the active queue after the active
502 * queue is empty, without explicitly dequeuing and requeuing tasks in the
503 * expired queue. (Interactive tasks may be requeued directly to the
504 * active queue, thus delaying tasks in the expired queue from running;
505 * see scheduler_tick()).
506 *
507 * This function is only called from sched_info_arrive(), rather than
508 * dequeue_task(). Even though a task may be queued and dequeued multiple
509 * times as it is shuffled about, we're really interested in knowing how
510 * long it was from the *first* time it was queued to the time that it
511 * finally hit a cpu.
512 */
513static inline void sched_info_dequeued(task_t *t)
514{
515 t->sched_info.last_queued = 0;
516}
517
518/*
519 * Called when a task finally hits the cpu. We can now calculate how
520 * long it was waiting to run. We also note when it began so that we
521 * can keep stats on how long its timeslice is.
522 */
Arjan van de Ven858119e2006-01-14 13:20:43 -0800523static void sched_info_arrive(task_t *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
525 unsigned long now = jiffies, diff = 0;
526 struct runqueue *rq = task_rq(t);
527
528 if (t->sched_info.last_queued)
529 diff = now - t->sched_info.last_queued;
530 sched_info_dequeued(t);
531 t->sched_info.run_delay += diff;
532 t->sched_info.last_arrival = now;
533 t->sched_info.pcnt++;
534
535 if (!rq)
536 return;
537
538 rq->rq_sched_info.run_delay += diff;
539 rq->rq_sched_info.pcnt++;
540}
541
542/*
543 * Called when a process is queued into either the active or expired
544 * array. The time is noted and later used to determine how long we
545 * had to wait for us to reach the cpu. Since the expired queue will
546 * become the active queue after active queue is empty, without dequeuing
547 * and requeuing any tasks, we are interested in queuing to either. It
548 * is unusual but not impossible for tasks to be dequeued and immediately
549 * requeued in the same or another array: this can happen in sched_yield(),
550 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
551 * to runqueue.
552 *
553 * This function is only called from enqueue_task(), but also only updates
554 * the timestamp if it is already not set. It's assumed that
555 * sched_info_dequeued() will clear that stamp when appropriate.
556 */
557static inline void sched_info_queued(task_t *t)
558{
559 if (!t->sched_info.last_queued)
560 t->sched_info.last_queued = jiffies;
561}
562
563/*
564 * Called when a process ceases being the active-running process, either
565 * voluntarily or involuntarily. Now we can calculate how long we ran.
566 */
567static inline void sched_info_depart(task_t *t)
568{
569 struct runqueue *rq = task_rq(t);
570 unsigned long diff = jiffies - t->sched_info.last_arrival;
571
572 t->sched_info.cpu_time += diff;
573
574 if (rq)
575 rq->rq_sched_info.cpu_time += diff;
576}
577
578/*
579 * Called when tasks are switched involuntarily due, typically, to expiring
580 * their time slice. (This may also be called when switching to or from
581 * the idle task.) We are only called when prev != next.
582 */
583static inline void sched_info_switch(task_t *prev, task_t *next)
584{
585 struct runqueue *rq = task_rq(prev);
586
587 /*
588 * prev now departs the cpu. It's not interesting to record
589 * stats about how efficient we were at scheduling the idle
590 * process, however.
591 */
592 if (prev != rq->idle)
593 sched_info_depart(prev);
594
595 if (next != rq->idle)
596 sched_info_arrive(next);
597}
598#else
599#define sched_info_queued(t) do { } while (0)
600#define sched_info_switch(t, next) do { } while (0)
601#endif /* CONFIG_SCHEDSTATS */
602
603/*
604 * Adding/removing a task to/from a priority array:
605 */
606static void dequeue_task(struct task_struct *p, prio_array_t *array)
607{
608 array->nr_active--;
609 list_del(&p->run_list);
610 if (list_empty(array->queue + p->prio))
611 __clear_bit(p->prio, array->bitmap);
612}
613
614static void enqueue_task(struct task_struct *p, prio_array_t *array)
615{
616 sched_info_queued(p);
617 list_add_tail(&p->run_list, array->queue + p->prio);
618 __set_bit(p->prio, array->bitmap);
619 array->nr_active++;
620 p->array = array;
621}
622
623/*
624 * Put task to the end of the run list without the overhead of dequeue
625 * followed by enqueue.
626 */
627static void requeue_task(struct task_struct *p, prio_array_t *array)
628{
629 list_move_tail(&p->run_list, array->queue + p->prio);
630}
631
632static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
633{
634 list_add(&p->run_list, array->queue + p->prio);
635 __set_bit(p->prio, array->bitmap);
636 array->nr_active++;
637 p->array = array;
638}
639
640/*
641 * effective_prio - return the priority that is based on the static
642 * priority but is modified by bonuses/penalties.
643 *
644 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
645 * into the -5 ... 0 ... +5 bonus/penalty range.
646 *
647 * We use 25% of the full 0...39 priority range so that:
648 *
649 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
650 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
651 *
652 * Both properties are important to certain workloads.
653 */
654static int effective_prio(task_t *p)
655{
656 int bonus, prio;
657
658 if (rt_task(p))
659 return p->prio;
660
661 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
662
663 prio = p->static_prio - bonus;
664 if (prio < MAX_RT_PRIO)
665 prio = MAX_RT_PRIO;
666 if (prio > MAX_PRIO-1)
667 prio = MAX_PRIO-1;
668 return prio;
669}
670
671/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700672 * To aid in avoiding the subversion of "niceness" due to uneven distribution
673 * of tasks with abnormal "nice" values across CPUs the contribution that
674 * each task makes to its run queue's load is weighted according to its
675 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
676 * scaled version of the new time slice allocation that they receive on time
677 * slice expiry etc.
678 */
679
680/*
681 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
682 * If static_prio_timeslice() is ever changed to break this assumption then
683 * this code will need modification
684 */
685#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
686#define LOAD_WEIGHT(lp) \
687 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
688#define PRIO_TO_LOAD_WEIGHT(prio) \
689 LOAD_WEIGHT(static_prio_timeslice(prio))
690#define RTPRIO_TO_LOAD_WEIGHT(rp) \
691 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
692
693static void set_load_weight(task_t *p)
694{
695 if (rt_task(p)) {
696#ifdef CONFIG_SMP
697 if (p == task_rq(p)->migration_thread)
698 /*
699 * The migration thread does the actual balancing.
700 * Giving its load any weight will skew balancing
701 * adversely.
702 */
703 p->load_weight = 0;
704 else
705#endif
706 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
707 } else
708 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
709}
710
711static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
712{
713 rq->raw_weighted_load += p->load_weight;
714}
715
716static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
717{
718 rq->raw_weighted_load -= p->load_weight;
719}
720
721static inline void inc_nr_running(task_t *p, runqueue_t *rq)
722{
723 rq->nr_running++;
724 inc_raw_weighted_load(rq, p);
725}
726
727static inline void dec_nr_running(task_t *p, runqueue_t *rq)
728{
729 rq->nr_running--;
730 dec_raw_weighted_load(rq, p);
731}
732
733/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700734 * __activate_task - move a task to the runqueue.
735 */
Con Kolivasd425b272006-03-31 02:31:29 -0800736static void __activate_task(task_t *p, runqueue_t *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700737{
Con Kolivasd425b272006-03-31 02:31:29 -0800738 prio_array_t *target = rq->active;
739
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700740 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800741 target = rq->expired;
742 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700743 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700744}
745
746/*
747 * __activate_idle_task - move idle task to the _front_ of runqueue.
748 */
749static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
750{
751 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700752 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700753}
754
Chen Shanga3464a12005-06-25 14:57:31 -0700755static int recalc_task_prio(task_t *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756{
757 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700758 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700759
Con Kolivasd425b272006-03-31 02:31:29 -0800760 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800761 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700762
763 if (likely(sleep_time > 0)) {
764 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700765 * This ceiling is set to the lowest priority that would allow
766 * a task to be reinserted into the active array on timeslice
767 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700768 */
Con Kolivas72d28542006-06-27 02:54:30 -0700769 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800770
Con Kolivas72d28542006-06-27 02:54:30 -0700771 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
772 /*
773 * Prevents user tasks from achieving best priority
774 * with one single large enough sleep.
775 */
776 p->sleep_avg = ceiling;
777 /*
778 * Using INTERACTIVE_SLEEP() as a ceiling places a
779 * nice(0) task 1ms sleep away from promotion, and
780 * gives it 700ms to round-robin with no chance of
781 * being demoted. This is more than generous, so
782 * mark this sleep as non-interactive to prevent the
783 * on-runqueue bonus logic from intervening should
784 * this task not receive cpu immediately.
785 */
786 p->sleep_type = SLEEP_NONINTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787 } else {
788 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700789 * Tasks waking from uninterruptible sleep are
790 * limited in their sleep_avg rise as they
791 * are likely to be waiting on I/O
792 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800793 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Con Kolivas72d28542006-06-27 02:54:30 -0700794 if (p->sleep_avg >= ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795 sleep_time = 0;
796 else if (p->sleep_avg + sleep_time >=
Con Kolivas72d28542006-06-27 02:54:30 -0700797 ceiling) {
798 p->sleep_avg = ceiling;
799 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 }
801 }
802
803 /*
804 * This code gives a bonus to interactive tasks.
805 *
806 * The boost works by updating the 'average sleep time'
807 * value here, based on ->timestamp. The more time a
808 * task spends sleeping, the higher the average gets -
809 * and the higher the priority boost gets as well.
810 */
811 p->sleep_avg += sleep_time;
812
Linus Torvalds1da177e2005-04-16 15:20:36 -0700813 }
Con Kolivas72d28542006-06-27 02:54:30 -0700814 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
815 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816 }
817
Chen Shanga3464a12005-06-25 14:57:31 -0700818 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700819}
820
821/*
822 * activate_task - move a task to the runqueue and do priority recalculation
823 *
824 * Update all the scheduling statistics stuff. (sleep average
825 * calculation, priority modifiers, etc.)
826 */
827static void activate_task(task_t *p, runqueue_t *rq, int local)
828{
829 unsigned long long now;
830
831 now = sched_clock();
832#ifdef CONFIG_SMP
833 if (!local) {
834 /* Compensate for drifting sched_clock */
835 runqueue_t *this_rq = this_rq();
836 now = (now - this_rq->timestamp_last_tick)
837 + rq->timestamp_last_tick;
838 }
839#endif
840
Chen, Kenneth Wa47ab932005-11-09 15:45:29 -0800841 if (!rt_task(p))
842 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843
844 /*
845 * This checks to make sure it's not an uninterruptible task
846 * that is now waking up.
847 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800848 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700849 /*
850 * Tasks which were woken up by interrupts (ie. hw events)
851 * are most likely of interactive nature. So we give them
852 * the credit of extending their sleep time to the period
853 * of time they spend on the runqueue, waiting for execution
854 * on a CPU, first time around:
855 */
856 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -0800857 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858 else {
859 /*
860 * Normal first-time wakeups get a credit too for
861 * on-runqueue time, but it will be weighted down:
862 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800863 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864 }
865 }
866 p->timestamp = now;
867
868 __activate_task(p, rq);
869}
870
871/*
872 * deactivate_task - remove a task from the runqueue.
873 */
874static void deactivate_task(struct task_struct *p, runqueue_t *rq)
875{
Peter Williams2dd73a42006-06-27 02:54:34 -0700876 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877 dequeue_task(p, p->array);
878 p->array = NULL;
879}
880
881/*
882 * resched_task - mark a task 'to be rescheduled now'.
883 *
884 * On UP this means the setting of the need_resched flag, on SMP it
885 * might also involve a cross-CPU call to trigger the scheduler on
886 * the target CPU.
887 */
888#ifdef CONFIG_SMP
Andi Kleen495ab9c2006-06-26 13:59:11 +0200889
890#ifndef tsk_is_polling
891#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
892#endif
893
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894static void resched_task(task_t *p)
895{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800896 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897
898 assert_spin_locked(&task_rq(p)->lock);
899
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800900 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
901 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700902
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800903 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
904
905 cpu = task_cpu(p);
906 if (cpu == smp_processor_id())
907 return;
908
Andi Kleen495ab9c2006-06-26 13:59:11 +0200909 /* NEED_RESCHED must be visible before we test polling */
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800910 smp_mb();
Andi Kleen495ab9c2006-06-26 13:59:11 +0200911 if (!tsk_is_polling(p))
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800912 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700913}
914#else
915static inline void resched_task(task_t *p)
916{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800917 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918 set_tsk_need_resched(p);
919}
920#endif
921
922/**
923 * task_curr - is this task currently executing on a CPU?
924 * @p: the task in question.
925 */
926inline int task_curr(const task_t *p)
927{
928 return cpu_curr(task_cpu(p)) == p;
929}
930
Peter Williams2dd73a42006-06-27 02:54:34 -0700931/* Used instead of source_load when we know the type == 0 */
932unsigned long weighted_cpuload(const int cpu)
933{
934 return cpu_rq(cpu)->raw_weighted_load;
935}
936
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937#ifdef CONFIG_SMP
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938typedef struct {
939 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941 task_t *task;
942 int dest_cpu;
943
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 struct completion done;
945} migration_req_t;
946
947/*
948 * The task's runqueue lock must be held.
949 * Returns true if you have to wait for migration thread.
950 */
951static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
952{
953 runqueue_t *rq = task_rq(p);
954
955 /*
956 * If the task is not on a runqueue (and not running), then
957 * it is sufficient to simply update the task's cpu field.
958 */
959 if (!p->array && !task_running(rq, p)) {
960 set_task_cpu(p, dest_cpu);
961 return 0;
962 }
963
964 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965 req->task = p;
966 req->dest_cpu = dest_cpu;
967 list_add(&req->list, &rq->migration_queue);
968 return 1;
969}
970
971/*
972 * wait_task_inactive - wait for a thread to unschedule.
973 *
974 * The caller must ensure that the task *will* unschedule sometime soon,
975 * else this function might spin for a *long* time. This function can't
976 * be called with interrupts off, or it may introduce deadlock with
977 * smp_call_function() if an IPI is sent by the same process we are
978 * waiting to become inactive.
979 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -0700980void wait_task_inactive(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981{
982 unsigned long flags;
983 runqueue_t *rq;
984 int preempted;
985
986repeat:
987 rq = task_rq_lock(p, &flags);
988 /* Must be off runqueue entirely, not preempted. */
989 if (unlikely(p->array || task_running(rq, p))) {
990 /* If it's preempted, we yield. It could be a while. */
991 preempted = !task_running(rq, p);
992 task_rq_unlock(rq, &flags);
993 cpu_relax();
994 if (preempted)
995 yield();
996 goto repeat;
997 }
998 task_rq_unlock(rq, &flags);
999}
1000
1001/***
1002 * kick_process - kick a running thread to enter/exit the kernel
1003 * @p: the to-be-kicked thread
1004 *
1005 * Cause a process which is running on another CPU to enter
1006 * kernel-mode, without any delay. (to get signals handled.)
1007 *
1008 * NOTE: this function doesnt have to take the runqueue lock,
1009 * because all it wants to ensure is that the remote task enters
1010 * the kernel. If the IPI races and the task has been migrated
1011 * to another CPU then no harm is done and the purpose has been
1012 * achieved as well.
1013 */
1014void kick_process(task_t *p)
1015{
1016 int cpu;
1017
1018 preempt_disable();
1019 cpu = task_cpu(p);
1020 if ((cpu != smp_processor_id()) && task_curr(p))
1021 smp_send_reschedule(cpu);
1022 preempt_enable();
1023}
1024
1025/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001026 * Return a low guess at the load of a migration-source cpu weighted
1027 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028 *
1029 * We want to under-estimate the load of migration sources, to
1030 * balance conservatively.
1031 */
Con Kolivasb9104722005-11-08 21:38:55 -08001032static inline unsigned long source_load(int cpu, int type)
1033{
Nick Piggina2000572006-02-10 01:51:02 -08001034 runqueue_t *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001035
Peter Williams2dd73a42006-06-27 02:54:34 -07001036 if (type == 0)
1037 return rq->raw_weighted_load;
1038
1039 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040}
1041
1042/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001043 * Return a high guess at the load of a migration-target cpu weighted
1044 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045 */
Con Kolivasb9104722005-11-08 21:38:55 -08001046static inline unsigned long target_load(int cpu, int type)
1047{
Nick Piggina2000572006-02-10 01:51:02 -08001048 runqueue_t *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001049
Peter Williams2dd73a42006-06-27 02:54:34 -07001050 if (type == 0)
1051 return rq->raw_weighted_load;
1052
1053 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1054}
1055
1056/*
1057 * Return the average load per task on the cpu's run queue
1058 */
1059static inline unsigned long cpu_avg_load_per_task(int cpu)
1060{
1061 runqueue_t *rq = cpu_rq(cpu);
1062 unsigned long n = rq->nr_running;
1063
1064 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065}
1066
Nick Piggin147cbb42005-06-25 14:57:19 -07001067/*
1068 * find_idlest_group finds and returns the least busy CPU group within the
1069 * domain.
1070 */
1071static struct sched_group *
1072find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1073{
1074 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1075 unsigned long min_load = ULONG_MAX, this_load = 0;
1076 int load_idx = sd->forkexec_idx;
1077 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1078
1079 do {
1080 unsigned long load, avg_load;
1081 int local_group;
1082 int i;
1083
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001084 /* Skip over this group if it has no CPUs allowed */
1085 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1086 goto nextgroup;
1087
Nick Piggin147cbb42005-06-25 14:57:19 -07001088 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001089
1090 /* Tally up the load of all CPUs in the group */
1091 avg_load = 0;
1092
1093 for_each_cpu_mask(i, group->cpumask) {
1094 /* Bias balancing toward cpus of our domain */
1095 if (local_group)
1096 load = source_load(i, load_idx);
1097 else
1098 load = target_load(i, load_idx);
1099
1100 avg_load += load;
1101 }
1102
1103 /* Adjust by relative CPU power of the group */
1104 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1105
1106 if (local_group) {
1107 this_load = avg_load;
1108 this = group;
1109 } else if (avg_load < min_load) {
1110 min_load = avg_load;
1111 idlest = group;
1112 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001113nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001114 group = group->next;
1115 } while (group != sd->groups);
1116
1117 if (!idlest || 100*this_load < imbalance*min_load)
1118 return NULL;
1119 return idlest;
1120}
1121
1122/*
1123 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1124 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001125static int
1126find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001127{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001128 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001129 unsigned long load, min_load = ULONG_MAX;
1130 int idlest = -1;
1131 int i;
1132
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001133 /* Traverse only the allowed CPUs */
1134 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1135
1136 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001137 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001138
1139 if (load < min_load || (load == min_load && i == this_cpu)) {
1140 min_load = load;
1141 idlest = i;
1142 }
1143 }
1144
1145 return idlest;
1146}
1147
Nick Piggin476d1392005-06-25 14:57:29 -07001148/*
1149 * sched_balance_self: balance the current task (running on cpu) in domains
1150 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1151 * SD_BALANCE_EXEC.
1152 *
1153 * Balance, ie. select the least loaded group.
1154 *
1155 * Returns the target CPU number, or the same CPU if no balancing is needed.
1156 *
1157 * preempt must be disabled.
1158 */
1159static int sched_balance_self(int cpu, int flag)
1160{
1161 struct task_struct *t = current;
1162 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001163
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001164 for_each_domain(cpu, tmp) {
Nick Piggin476d1392005-06-25 14:57:29 -07001165 if (tmp->flags & flag)
1166 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001167 }
Nick Piggin476d1392005-06-25 14:57:29 -07001168
1169 while (sd) {
1170 cpumask_t span;
1171 struct sched_group *group;
1172 int new_cpu;
1173 int weight;
1174
1175 span = sd->span;
1176 group = find_idlest_group(sd, t, cpu);
1177 if (!group)
1178 goto nextlevel;
1179
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001180 new_cpu = find_idlest_cpu(group, t, cpu);
Nick Piggin476d1392005-06-25 14:57:29 -07001181 if (new_cpu == -1 || new_cpu == cpu)
1182 goto nextlevel;
1183
1184 /* Now try balancing at a lower domain level */
1185 cpu = new_cpu;
1186nextlevel:
1187 sd = NULL;
1188 weight = cpus_weight(span);
1189 for_each_domain(cpu, tmp) {
1190 if (weight <= cpus_weight(tmp->span))
1191 break;
1192 if (tmp->flags & flag)
1193 sd = tmp;
1194 }
1195 /* while loop will break here if sd == NULL */
1196 }
1197
1198 return cpu;
1199}
1200
1201#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202
1203/*
1204 * wake_idle() will wake a task on an idle cpu if task->cpu is
1205 * not idle and an idle cpu is available. The span of cpus to
1206 * search starts with cpus closest then further out as needed,
1207 * so we always favor a closer, idle cpu.
1208 *
1209 * Returns the CPU we should wake onto.
1210 */
1211#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1212static int wake_idle(int cpu, task_t *p)
1213{
1214 cpumask_t tmp;
1215 struct sched_domain *sd;
1216 int i;
1217
1218 if (idle_cpu(cpu))
1219 return cpu;
1220
1221 for_each_domain(cpu, sd) {
1222 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001223 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224 for_each_cpu_mask(i, tmp) {
1225 if (idle_cpu(i))
1226 return i;
1227 }
1228 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001229 else
1230 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001231 }
1232 return cpu;
1233}
1234#else
1235static inline int wake_idle(int cpu, task_t *p)
1236{
1237 return cpu;
1238}
1239#endif
1240
1241/***
1242 * try_to_wake_up - wake up a thread
1243 * @p: the to-be-woken-up thread
1244 * @state: the mask of task states that can be woken
1245 * @sync: do a synchronous wakeup?
1246 *
1247 * Put it on the run-queue if it's not already there. The "current"
1248 * thread is always on the run-queue (except when the actual
1249 * re-schedule is in progress), and as such you're allowed to do
1250 * the simpler "current->state = TASK_RUNNING" to mark yourself
1251 * runnable without the overhead of this.
1252 *
1253 * returns failure only if the task is already active.
1254 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001255static int try_to_wake_up(task_t *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256{
1257 int cpu, this_cpu, success = 0;
1258 unsigned long flags;
1259 long old_state;
1260 runqueue_t *rq;
1261#ifdef CONFIG_SMP
1262 unsigned long load, this_load;
Nick Piggin78979862005-06-25 14:57:13 -07001263 struct sched_domain *sd, *this_sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001264 int new_cpu;
1265#endif
1266
1267 rq = task_rq_lock(p, &flags);
1268 old_state = p->state;
1269 if (!(old_state & state))
1270 goto out;
1271
1272 if (p->array)
1273 goto out_running;
1274
1275 cpu = task_cpu(p);
1276 this_cpu = smp_processor_id();
1277
1278#ifdef CONFIG_SMP
1279 if (unlikely(task_running(rq, p)))
1280 goto out_activate;
1281
Nick Piggin78979862005-06-25 14:57:13 -07001282 new_cpu = cpu;
1283
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284 schedstat_inc(rq, ttwu_cnt);
1285 if (cpu == this_cpu) {
1286 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001287 goto out_set_cpu;
1288 }
1289
1290 for_each_domain(this_cpu, sd) {
1291 if (cpu_isset(cpu, sd->span)) {
1292 schedstat_inc(sd, ttwu_wake_remote);
1293 this_sd = sd;
1294 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 }
1296 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297
Nick Piggin78979862005-06-25 14:57:13 -07001298 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 goto out_set_cpu;
1300
Linus Torvalds1da177e2005-04-16 15:20:36 -07001301 /*
Nick Piggin78979862005-06-25 14:57:13 -07001302 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001303 */
Nick Piggin78979862005-06-25 14:57:13 -07001304 if (this_sd) {
1305 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001307
Nick Piggina3f21bc2005-06-25 14:57:15 -07001308 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1309
Nick Piggin78979862005-06-25 14:57:13 -07001310 load = source_load(cpu, idx);
1311 this_load = target_load(this_cpu, idx);
1312
Nick Piggin78979862005-06-25 14:57:13 -07001313 new_cpu = this_cpu; /* Wake to this CPU if we can */
1314
Nick Piggina3f21bc2005-06-25 14:57:15 -07001315 if (this_sd->flags & SD_WAKE_AFFINE) {
1316 unsigned long tl = this_load;
Peter Williams2dd73a42006-06-27 02:54:34 -07001317 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1318
Linus Torvalds1da177e2005-04-16 15:20:36 -07001319 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001320 * If sync wakeup then subtract the (maximum possible)
1321 * effect of the currently running task from the load
1322 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001323 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001324 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001325 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001326
1327 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001328 tl + target_load(cpu, idx) <= tl_per_task) ||
1329 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001330 /*
1331 * This domain has SD_WAKE_AFFINE and
1332 * p is cache cold in this domain, and
1333 * there is no bad imbalance.
1334 */
1335 schedstat_inc(this_sd, ttwu_move_affine);
1336 goto out_set_cpu;
1337 }
1338 }
1339
1340 /*
1341 * Start passive balancing when half the imbalance_pct
1342 * limit is reached.
1343 */
1344 if (this_sd->flags & SD_WAKE_BALANCE) {
1345 if (imbalance*this_load <= 100*load) {
1346 schedstat_inc(this_sd, ttwu_move_balance);
1347 goto out_set_cpu;
1348 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349 }
1350 }
1351
1352 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1353out_set_cpu:
1354 new_cpu = wake_idle(new_cpu, p);
1355 if (new_cpu != cpu) {
1356 set_task_cpu(p, new_cpu);
1357 task_rq_unlock(rq, &flags);
1358 /* might preempt at this point */
1359 rq = task_rq_lock(p, &flags);
1360 old_state = p->state;
1361 if (!(old_state & state))
1362 goto out;
1363 if (p->array)
1364 goto out_running;
1365
1366 this_cpu = smp_processor_id();
1367 cpu = task_cpu(p);
1368 }
1369
1370out_activate:
1371#endif /* CONFIG_SMP */
1372 if (old_state == TASK_UNINTERRUPTIBLE) {
1373 rq->nr_uninterruptible--;
1374 /*
1375 * Tasks on involuntary sleep don't earn
1376 * sleep_avg beyond just interactive state.
1377 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001378 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001379 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380
1381 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001382 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001383 * woken up with their sleep average not weighted in an
1384 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001385 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001386 if (old_state & TASK_NONINTERACTIVE)
1387 p->sleep_type = SLEEP_NONINTERACTIVE;
1388
1389
1390 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001391 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392 * Sync wakeups (i.e. those types of wakeups where the waker
1393 * has indicated that it will leave the CPU in short order)
1394 * don't trigger a preemption, if the woken up task will run on
1395 * this cpu. (in this case the 'I will reschedule' promise of
1396 * the waker guarantees that the freshly woken up task is going
1397 * to be considered on this CPU.)
1398 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399 if (!sync || cpu != this_cpu) {
1400 if (TASK_PREEMPTS_CURR(p, rq))
1401 resched_task(rq->curr);
1402 }
1403 success = 1;
1404
1405out_running:
1406 p->state = TASK_RUNNING;
1407out:
1408 task_rq_unlock(rq, &flags);
1409
1410 return success;
1411}
1412
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001413int fastcall wake_up_process(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001414{
1415 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1416 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1417}
1418
1419EXPORT_SYMBOL(wake_up_process);
1420
1421int fastcall wake_up_state(task_t *p, unsigned int state)
1422{
1423 return try_to_wake_up(p, state, 0);
1424}
1425
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426/*
1427 * Perform scheduler related setup for a newly forked process p.
1428 * p is forked by current.
1429 */
Nick Piggin476d1392005-06-25 14:57:29 -07001430void fastcall sched_fork(task_t *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431{
Nick Piggin476d1392005-06-25 14:57:29 -07001432 int cpu = get_cpu();
1433
1434#ifdef CONFIG_SMP
1435 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1436#endif
1437 set_task_cpu(p, cpu);
1438
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439 /*
1440 * We mark the process as running here, but have not actually
1441 * inserted it onto the runqueue yet. This guarantees that
1442 * nobody will actually run it, and a signal or other external
1443 * event cannot wake it up and insert it on the runqueue either.
1444 */
1445 p->state = TASK_RUNNING;
1446 INIT_LIST_HEAD(&p->run_list);
1447 p->array = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448#ifdef CONFIG_SCHEDSTATS
1449 memset(&p->sched_info, 0, sizeof(p->sched_info));
1450#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001451#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001452 p->oncpu = 0;
1453#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001455 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001456 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457#endif
1458 /*
1459 * Share the timeslice between parent and child, thus the
1460 * total amount of pending timeslices in the system doesn't change,
1461 * resulting in more scheduling fairness.
1462 */
1463 local_irq_disable();
1464 p->time_slice = (current->time_slice + 1) >> 1;
1465 /*
1466 * The remainder of the first timeslice might be recovered by
1467 * the parent if the child exits early enough.
1468 */
1469 p->first_time_slice = 1;
1470 current->time_slice >>= 1;
1471 p->timestamp = sched_clock();
1472 if (unlikely(!current->time_slice)) {
1473 /*
1474 * This case is rare, it happens when the parent has only
1475 * a single jiffy left from its timeslice. Taking the
1476 * runqueue lock is not a problem.
1477 */
1478 current->time_slice = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479 scheduler_tick();
Nick Piggin476d1392005-06-25 14:57:29 -07001480 }
1481 local_irq_enable();
1482 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001483}
1484
1485/*
1486 * wake_up_new_task - wake up a newly created task for the first time.
1487 *
1488 * This function will do some initial scheduler statistics housekeeping
1489 * that must be done for every newly created context, then puts the task
1490 * on the runqueue and wakes it.
1491 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001492void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001493{
1494 unsigned long flags;
1495 int this_cpu, cpu;
1496 runqueue_t *rq, *this_rq;
1497
1498 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001499 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001500 this_cpu = smp_processor_id();
1501 cpu = task_cpu(p);
1502
Linus Torvalds1da177e2005-04-16 15:20:36 -07001503 /*
1504 * We decrease the sleep average of forking parents
1505 * and children as well, to keep max-interactive tasks
1506 * from forking tasks that are max-interactive. The parent
1507 * (current) is done further down, under its lock.
1508 */
1509 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1510 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1511
1512 p->prio = effective_prio(p);
1513
1514 if (likely(cpu == this_cpu)) {
1515 if (!(clone_flags & CLONE_VM)) {
1516 /*
1517 * The VM isn't cloned, so we're in a good position to
1518 * do child-runs-first in anticipation of an exec. This
1519 * usually avoids a lot of COW overhead.
1520 */
1521 if (unlikely(!current->array))
1522 __activate_task(p, rq);
1523 else {
1524 p->prio = current->prio;
1525 list_add_tail(&p->run_list, &current->run_list);
1526 p->array = current->array;
1527 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001528 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001529 }
1530 set_need_resched();
1531 } else
1532 /* Run child last */
1533 __activate_task(p, rq);
1534 /*
1535 * We skip the following code due to cpu == this_cpu
1536 *
1537 * task_rq_unlock(rq, &flags);
1538 * this_rq = task_rq_lock(current, &flags);
1539 */
1540 this_rq = rq;
1541 } else {
1542 this_rq = cpu_rq(this_cpu);
1543
1544 /*
1545 * Not the local CPU - must adjust timestamp. This should
1546 * get optimised away in the !CONFIG_SMP case.
1547 */
1548 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1549 + rq->timestamp_last_tick;
1550 __activate_task(p, rq);
1551 if (TASK_PREEMPTS_CURR(p, rq))
1552 resched_task(rq->curr);
1553
1554 /*
1555 * Parent and child are on different CPUs, now get the
1556 * parent runqueue to update the parent's ->sleep_avg:
1557 */
1558 task_rq_unlock(rq, &flags);
1559 this_rq = task_rq_lock(current, &flags);
1560 }
1561 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1562 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1563 task_rq_unlock(this_rq, &flags);
1564}
1565
1566/*
1567 * Potentially available exiting-child timeslices are
1568 * retrieved here - this way the parent does not get
1569 * penalized for creating too many threads.
1570 *
1571 * (this cannot be used to 'generate' timeslices
1572 * artificially, because any timeslice recovered here
1573 * was given away by the parent in the first place.)
1574 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001575void fastcall sched_exit(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001576{
1577 unsigned long flags;
1578 runqueue_t *rq;
1579
1580 /*
1581 * If the child was a (relative-) CPU hog then decrease
1582 * the sleep_avg of the parent as well.
1583 */
1584 rq = task_rq_lock(p->parent, &flags);
Oleg Nesterov889dfaf2005-11-04 18:54:30 +03001585 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586 p->parent->time_slice += p->time_slice;
1587 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1588 p->parent->time_slice = task_timeslice(p);
1589 }
1590 if (p->sleep_avg < p->parent->sleep_avg)
1591 p->parent->sleep_avg = p->parent->sleep_avg /
1592 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1593 (EXIT_WEIGHT + 1);
1594 task_rq_unlock(rq, &flags);
1595}
1596
1597/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001598 * prepare_task_switch - prepare to switch tasks
1599 * @rq: the runqueue preparing to switch
1600 * @next: the task we are going to switch to.
1601 *
1602 * This is called with the rq lock held and interrupts off. It must
1603 * be paired with a subsequent finish_task_switch after the context
1604 * switch.
1605 *
1606 * prepare_task_switch sets up locking and calls architecture specific
1607 * hooks.
1608 */
1609static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1610{
1611 prepare_lock_switch(rq, next);
1612 prepare_arch_switch(next);
1613}
1614
1615/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001616 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001617 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618 * @prev: the thread we just switched away from.
1619 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001620 * finish_task_switch must be called after the context switch, paired
1621 * with a prepare_task_switch call before the context switch.
1622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1623 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001624 *
1625 * Note that we may have delayed dropping an mm in context_switch(). If
1626 * so, we finish that here outside of the runqueue lock. (Doing it
1627 * with the lock held can cause deadlocks; see schedule() for
1628 * details.)
1629 */
Nick Piggin4866cde2005-06-25 14:57:23 -07001630static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631 __releases(rq->lock)
1632{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633 struct mm_struct *mm = rq->prev_mm;
1634 unsigned long prev_task_flags;
1635
1636 rq->prev_mm = NULL;
1637
1638 /*
1639 * A task struct has one reference for the use as "current".
1640 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1641 * calls schedule one last time. The schedule call will never return,
1642 * and the scheduled task must drop that reference.
1643 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1644 * still held, otherwise prev could be scheduled on another cpu, die
1645 * there before we look at prev->state, and then the reference would
1646 * be dropped twice.
1647 * Manfred Spraul <manfred@colorfullife.com>
1648 */
1649 prev_task_flags = prev->flags;
Nick Piggin4866cde2005-06-25 14:57:23 -07001650 finish_arch_switch(prev);
1651 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652 if (mm)
1653 mmdrop(mm);
bibo maoc6fd91f2006-03-26 01:38:20 -08001654 if (unlikely(prev_task_flags & PF_DEAD)) {
1655 /*
1656 * Remove function-return probe instances associated with this
1657 * task and put them back on the free list.
1658 */
1659 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001661 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662}
1663
1664/**
1665 * schedule_tail - first thing a freshly forked thread must call.
1666 * @prev: the thread we just switched away from.
1667 */
1668asmlinkage void schedule_tail(task_t *prev)
1669 __releases(rq->lock)
1670{
Nick Piggin4866cde2005-06-25 14:57:23 -07001671 runqueue_t *rq = this_rq();
1672 finish_task_switch(rq, prev);
1673#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1674 /* In this case, finish_task_switch does not reenable preemption */
1675 preempt_enable();
1676#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677 if (current->set_child_tid)
1678 put_user(current->pid, current->set_child_tid);
1679}
1680
1681/*
1682 * context_switch - switch to the new MM and the new
1683 * thread's register state.
1684 */
1685static inline
1686task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1687{
1688 struct mm_struct *mm = next->mm;
1689 struct mm_struct *oldmm = prev->active_mm;
1690
1691 if (unlikely(!mm)) {
1692 next->active_mm = oldmm;
1693 atomic_inc(&oldmm->mm_count);
1694 enter_lazy_tlb(oldmm, next);
1695 } else
1696 switch_mm(oldmm, mm, next);
1697
1698 if (unlikely(!prev->mm)) {
1699 prev->active_mm = NULL;
1700 WARN_ON(rq->prev_mm);
1701 rq->prev_mm = oldmm;
1702 }
1703
1704 /* Here we just switch the register state and the stack. */
1705 switch_to(prev, next, prev);
1706
1707 return prev;
1708}
1709
1710/*
1711 * nr_running, nr_uninterruptible and nr_context_switches:
1712 *
1713 * externally visible scheduler statistics: current number of runnable
1714 * threads, current number of uninterruptible-sleeping threads, total
1715 * number of context switches performed since bootup.
1716 */
1717unsigned long nr_running(void)
1718{
1719 unsigned long i, sum = 0;
1720
1721 for_each_online_cpu(i)
1722 sum += cpu_rq(i)->nr_running;
1723
1724 return sum;
1725}
1726
1727unsigned long nr_uninterruptible(void)
1728{
1729 unsigned long i, sum = 0;
1730
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001731 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732 sum += cpu_rq(i)->nr_uninterruptible;
1733
1734 /*
1735 * Since we read the counters lockless, it might be slightly
1736 * inaccurate. Do not allow it to go below zero though:
1737 */
1738 if (unlikely((long)sum < 0))
1739 sum = 0;
1740
1741 return sum;
1742}
1743
1744unsigned long long nr_context_switches(void)
1745{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001746 int i;
1747 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001748
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001749 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750 sum += cpu_rq(i)->nr_switches;
1751
1752 return sum;
1753}
1754
1755unsigned long nr_iowait(void)
1756{
1757 unsigned long i, sum = 0;
1758
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001759 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001760 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1761
1762 return sum;
1763}
1764
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001765unsigned long nr_active(void)
1766{
1767 unsigned long i, running = 0, uninterruptible = 0;
1768
1769 for_each_online_cpu(i) {
1770 running += cpu_rq(i)->nr_running;
1771 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1772 }
1773
1774 if (unlikely((long)uninterruptible < 0))
1775 uninterruptible = 0;
1776
1777 return running + uninterruptible;
1778}
1779
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780#ifdef CONFIG_SMP
1781
1782/*
1783 * double_rq_lock - safely lock two runqueues
1784 *
1785 * Note this does not disable interrupts like task_rq_lock,
1786 * you need to do so manually before calling.
1787 */
1788static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1789 __acquires(rq1->lock)
1790 __acquires(rq2->lock)
1791{
1792 if (rq1 == rq2) {
1793 spin_lock(&rq1->lock);
1794 __acquire(rq2->lock); /* Fake it out ;) */
1795 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001796 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 spin_lock(&rq1->lock);
1798 spin_lock(&rq2->lock);
1799 } else {
1800 spin_lock(&rq2->lock);
1801 spin_lock(&rq1->lock);
1802 }
1803 }
1804}
1805
1806/*
1807 * double_rq_unlock - safely unlock two runqueues
1808 *
1809 * Note this does not restore interrupts like task_rq_unlock,
1810 * you need to do so manually after calling.
1811 */
1812static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1813 __releases(rq1->lock)
1814 __releases(rq2->lock)
1815{
1816 spin_unlock(&rq1->lock);
1817 if (rq1 != rq2)
1818 spin_unlock(&rq2->lock);
1819 else
1820 __release(rq2->lock);
1821}
1822
1823/*
1824 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1825 */
1826static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1827 __releases(this_rq->lock)
1828 __acquires(busiest->lock)
1829 __acquires(this_rq->lock)
1830{
1831 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001832 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001833 spin_unlock(&this_rq->lock);
1834 spin_lock(&busiest->lock);
1835 spin_lock(&this_rq->lock);
1836 } else
1837 spin_lock(&busiest->lock);
1838 }
1839}
1840
1841/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 * If dest_cpu is allowed for this process, migrate the task to it.
1843 * This is accomplished by forcing the cpu_allowed mask to only
1844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1845 * the cpu_allowed mask is restored.
1846 */
1847static void sched_migrate_task(task_t *p, int dest_cpu)
1848{
1849 migration_req_t req;
1850 runqueue_t *rq;
1851 unsigned long flags;
1852
1853 rq = task_rq_lock(p, &flags);
1854 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1855 || unlikely(cpu_is_offline(dest_cpu)))
1856 goto out;
1857
1858 /* force the process onto the specified CPU */
1859 if (migrate_task(p, dest_cpu, &req)) {
1860 /* Need to wait for migration thread (might exit: take ref). */
1861 struct task_struct *mt = rq->migration_thread;
1862 get_task_struct(mt);
1863 task_rq_unlock(rq, &flags);
1864 wake_up_process(mt);
1865 put_task_struct(mt);
1866 wait_for_completion(&req.done);
1867 return;
1868 }
1869out:
1870 task_rq_unlock(rq, &flags);
1871}
1872
1873/*
Nick Piggin476d1392005-06-25 14:57:29 -07001874 * sched_exec - execve() is a valuable balancing opportunity, because at
1875 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001876 */
1877void sched_exec(void)
1878{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001879 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07001880 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001881 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07001882 if (new_cpu != this_cpu)
1883 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884}
1885
1886/*
1887 * pull_task - move a task from a remote runqueue to the local runqueue.
1888 * Both runqueues must be locked.
1889 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001890static
Linus Torvalds1da177e2005-04-16 15:20:36 -07001891void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1892 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1893{
1894 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07001895 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001896 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001897 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001898 enqueue_task(p, this_array);
1899 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1900 + this_rq->timestamp_last_tick;
1901 /*
1902 * Note that idle threads have a prio of MAX_PRIO, for this test
1903 * to be always true for them.
1904 */
1905 if (TASK_PREEMPTS_CURR(p, this_rq))
1906 resched_task(this_rq->curr);
1907}
1908
1909/*
1910 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1911 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001912static
Linus Torvalds1da177e2005-04-16 15:20:36 -07001913int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001914 struct sched_domain *sd, enum idle_type idle,
1915 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001916{
1917 /*
1918 * We do not migrate tasks that are:
1919 * 1) running (obviously), or
1920 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1921 * 3) are cache-hot on their current CPU.
1922 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001923 if (!cpu_isset(this_cpu, p->cpus_allowed))
1924 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07001925 *all_pinned = 0;
1926
1927 if (task_running(rq, p))
1928 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929
1930 /*
1931 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07001932 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07001933 * 2) too many balance attempts have failed.
1934 */
1935
Nick Piggincafb20c2005-06-25 14:57:17 -07001936 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001937 return 1;
1938
1939 if (task_hot(p, rq->timestamp_last_tick, sd))
Nick Piggin81026792005-06-25 14:57:07 -07001940 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001941 return 1;
1942}
1943
1944/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001945 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
1946 * load from busiest to this_rq, as part of a balancing operation within
1947 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001948 *
1949 * Called with both runqueues locked.
1950 */
1951static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07001952 unsigned long max_nr_move, unsigned long max_load_move,
1953 struct sched_domain *sd, enum idle_type idle,
1954 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955{
1956 prio_array_t *array, *dst_array;
1957 struct list_head *head, *curr;
Peter Williams50ddd962006-06-27 02:54:36 -07001958 int idx, pulled = 0, pinned = 0, this_min_prio;
Peter Williams2dd73a42006-06-27 02:54:34 -07001959 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960 task_t *tmp;
1961
Peter Williams2dd73a42006-06-27 02:54:34 -07001962 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001963 goto out;
1964
Peter Williams2dd73a42006-06-27 02:54:34 -07001965 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07001966 pinned = 1;
Peter Williams50ddd962006-06-27 02:54:36 -07001967 this_min_prio = this_rq->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07001968
Linus Torvalds1da177e2005-04-16 15:20:36 -07001969 /*
1970 * We first consider expired tasks. Those will likely not be
1971 * executed in the near future, and they are most likely to
1972 * be cache-cold, thus switching CPUs has the least effect
1973 * on them.
1974 */
1975 if (busiest->expired->nr_active) {
1976 array = busiest->expired;
1977 dst_array = this_rq->expired;
1978 } else {
1979 array = busiest->active;
1980 dst_array = this_rq->active;
1981 }
1982
1983new_array:
1984 /* Start searching at priority 0: */
1985 idx = 0;
1986skip_bitmap:
1987 if (!idx)
1988 idx = sched_find_first_bit(array->bitmap);
1989 else
1990 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1991 if (idx >= MAX_PRIO) {
1992 if (array == busiest->expired && busiest->active->nr_active) {
1993 array = busiest->active;
1994 dst_array = this_rq->active;
1995 goto new_array;
1996 }
1997 goto out;
1998 }
1999
2000 head = array->queue + idx;
2001 curr = head->prev;
2002skip_queue:
2003 tmp = list_entry(curr, task_t, run_list);
2004
2005 curr = curr->prev;
2006
Peter Williams50ddd962006-06-27 02:54:36 -07002007 /*
2008 * To help distribute high priority tasks accross CPUs we don't
2009 * skip a task if it will be the highest priority task (i.e. smallest
2010 * prio value) on its new queue regardless of its load weight
2011 */
2012 if ((idx >= this_min_prio && tmp->load_weight > rem_load_move) ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002013 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002014 if (curr != head)
2015 goto skip_queue;
2016 idx++;
2017 goto skip_bitmap;
2018 }
2019
2020#ifdef CONFIG_SCHEDSTATS
2021 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2022 schedstat_inc(sd, lb_hot_gained[idle]);
2023#endif
2024
2025 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2026 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002027 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002028
Peter Williams2dd73a42006-06-27 02:54:34 -07002029 /*
2030 * We only want to steal up to the prescribed number of tasks
2031 * and the prescribed amount of weighted load.
2032 */
2033 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams50ddd962006-06-27 02:54:36 -07002034 if (idx < this_min_prio)
2035 this_min_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002036 if (curr != head)
2037 goto skip_queue;
2038 idx++;
2039 goto skip_bitmap;
2040 }
2041out:
2042 /*
2043 * Right now, this is the only place pull_task() is called,
2044 * so we can safely collect pull_task() stats here rather than
2045 * inside pull_task().
2046 */
2047 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002048
2049 if (all_pinned)
2050 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002051 return pulled;
2052}
2053
2054/*
2055 * find_busiest_group finds and returns the busiest CPU group within the
Peter Williams2dd73a42006-06-27 02:54:34 -07002056 * domain. It calculates and returns the amount of weighted load which should be
Linus Torvalds1da177e2005-04-16 15:20:36 -07002057 * moved to restore balance via the imbalance parameter.
2058 */
2059static struct sched_group *
2060find_busiest_group(struct sched_domain *sd, int this_cpu,
Nick Piggin5969fe02005-09-10 00:26:19 -07002061 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002062{
2063 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2064 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002065 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002066 unsigned long busiest_load_per_task, busiest_nr_running;
2067 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002068 int load_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002069
2070 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002071 busiest_load_per_task = busiest_nr_running = 0;
2072 this_load_per_task = this_nr_running = 0;
Nick Piggin78979862005-06-25 14:57:13 -07002073 if (idle == NOT_IDLE)
2074 load_idx = sd->busy_idx;
2075 else if (idle == NEWLY_IDLE)
2076 load_idx = sd->newidle_idx;
2077 else
2078 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002079
2080 do {
2081 unsigned long load;
2082 int local_group;
2083 int i;
Peter Williams2dd73a42006-06-27 02:54:34 -07002084 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002085
2086 local_group = cpu_isset(this_cpu, group->cpumask);
2087
2088 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002089 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090
2091 for_each_cpu_mask(i, group->cpumask) {
Peter Williams2dd73a42006-06-27 02:54:34 -07002092 runqueue_t *rq = cpu_rq(i);
2093
Nick Piggin5969fe02005-09-10 00:26:19 -07002094 if (*sd_idle && !idle_cpu(i))
2095 *sd_idle = 0;
2096
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097 /* Bias balancing toward cpus of our domain */
2098 if (local_group)
Nick Piggina2000572006-02-10 01:51:02 -08002099 load = target_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002100 else
Nick Piggina2000572006-02-10 01:51:02 -08002101 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102
2103 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002104 sum_nr_running += rq->nr_running;
2105 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002106 }
2107
2108 total_load += avg_load;
2109 total_pwr += group->cpu_power;
2110
2111 /* Adjust by relative CPU power of the group */
2112 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2113
2114 if (local_group) {
2115 this_load = avg_load;
2116 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002117 this_nr_running = sum_nr_running;
2118 this_load_per_task = sum_weighted_load;
2119 } else if (avg_load > max_load &&
2120 sum_nr_running > group->cpu_power / SCHED_LOAD_SCALE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002121 max_load = avg_load;
2122 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002123 busiest_nr_running = sum_nr_running;
2124 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002125 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126 group = group->next;
2127 } while (group != sd->groups);
2128
Peter Williams2dd73a42006-06-27 02:54:34 -07002129 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130 goto out_balanced;
2131
2132 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2133
2134 if (this_load >= avg_load ||
2135 100*max_load <= sd->imbalance_pct*this_load)
2136 goto out_balanced;
2137
Peter Williams2dd73a42006-06-27 02:54:34 -07002138 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139 /*
2140 * We're trying to get all the cpus to the average_load, so we don't
2141 * want to push ourselves above the average load, nor do we wish to
2142 * reduce the max loaded cpu below the average load, as either of these
2143 * actions would just result in more rebalancing later, and ping-pong
2144 * tasks around. Thus we look for the minimum possible imbalance.
2145 * Negative imbalances (*we* are more loaded than anyone else) will
2146 * be counted as no imbalance for these purposes -- we can't fix that
2147 * by pulling tasks to us. Be careful of negative numbers as they'll
2148 * appear as very large values with unsigned longs.
2149 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002150 if (max_load <= busiest_load_per_task)
2151 goto out_balanced;
2152
2153 /*
2154 * In the presence of smp nice balancing, certain scenarios can have
2155 * max load less than avg load(as we skip the groups at or below
2156 * its cpu_power, while calculating max_load..)
2157 */
2158 if (max_load < avg_load) {
2159 *imbalance = 0;
2160 goto small_imbalance;
2161 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002162
2163 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002164 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002165
Linus Torvalds1da177e2005-04-16 15:20:36 -07002166 /* How much load to actually move to equalise the imbalance */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002167 *imbalance = min(max_pull * busiest->cpu_power,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002168 (avg_load - this_load) * this->cpu_power)
2169 / SCHED_LOAD_SCALE;
2170
Peter Williams2dd73a42006-06-27 02:54:34 -07002171 /*
2172 * if *imbalance is less than the average load per runnable task
2173 * there is no gaurantee that any tasks will be moved so we'll have
2174 * a think about bumping its value to force at least one task to be
2175 * moved
2176 */
2177 if (*imbalance < busiest_load_per_task) {
2178 unsigned long pwr_now, pwr_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179 unsigned long tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002180 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002181
Peter Williams2dd73a42006-06-27 02:54:34 -07002182small_imbalance:
2183 pwr_move = pwr_now = 0;
2184 imbn = 2;
2185 if (this_nr_running) {
2186 this_load_per_task /= this_nr_running;
2187 if (busiest_load_per_task > this_load_per_task)
2188 imbn = 1;
2189 } else
2190 this_load_per_task = SCHED_LOAD_SCALE;
2191
2192 if (max_load - this_load >= busiest_load_per_task * imbn) {
2193 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002194 return busiest;
2195 }
2196
2197 /*
2198 * OK, we don't have enough imbalance to justify moving tasks,
2199 * however we may be able to increase total CPU power used by
2200 * moving them.
2201 */
2202
Peter Williams2dd73a42006-06-27 02:54:34 -07002203 pwr_now += busiest->cpu_power *
2204 min(busiest_load_per_task, max_load);
2205 pwr_now += this->cpu_power *
2206 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002207 pwr_now /= SCHED_LOAD_SCALE;
2208
2209 /* Amount of load we'd subtract */
Peter Williams2dd73a42006-06-27 02:54:34 -07002210 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002211 if (max_load > tmp)
Peter Williams2dd73a42006-06-27 02:54:34 -07002212 pwr_move += busiest->cpu_power *
2213 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002214
2215 /* Amount of load we'd add */
2216 if (max_load*busiest->cpu_power <
Peter Williams2dd73a42006-06-27 02:54:34 -07002217 busiest_load_per_task*SCHED_LOAD_SCALE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002218 tmp = max_load*busiest->cpu_power/this->cpu_power;
2219 else
Peter Williams2dd73a42006-06-27 02:54:34 -07002220 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2221 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002222 pwr_move /= SCHED_LOAD_SCALE;
2223
2224 /* Move if we gain throughput */
2225 if (pwr_move <= pwr_now)
2226 goto out_balanced;
2227
Peter Williams2dd73a42006-06-27 02:54:34 -07002228 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229 }
2230
Linus Torvalds1da177e2005-04-16 15:20:36 -07002231 return busiest;
2232
2233out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234
2235 *imbalance = 0;
2236 return NULL;
2237}
2238
2239/*
2240 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2241 */
Con Kolivasb9104722005-11-08 21:38:55 -08002242static runqueue_t *find_busiest_queue(struct sched_group *group,
Peter Williams2dd73a42006-06-27 02:54:34 -07002243 enum idle_type idle, unsigned long imbalance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002244{
Peter Williams2dd73a42006-06-27 02:54:34 -07002245 unsigned long max_load = 0;
2246 runqueue_t *busiest = NULL, *rqi;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002247 int i;
2248
2249 for_each_cpu_mask(i, group->cpumask) {
Peter Williams2dd73a42006-06-27 02:54:34 -07002250 rqi = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002251
Peter Williams2dd73a42006-06-27 02:54:34 -07002252 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2253 continue;
2254
2255 if (rqi->raw_weighted_load > max_load) {
2256 max_load = rqi->raw_weighted_load;
2257 busiest = rqi;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002258 }
2259 }
2260
2261 return busiest;
2262}
2263
2264/*
Nick Piggin77391d72005-06-25 14:57:30 -07002265 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2266 * so long as it is large enough.
2267 */
2268#define MAX_PINNED_INTERVAL 512
2269
Peter Williams2dd73a42006-06-27 02:54:34 -07002270#define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
Nick Piggin77391d72005-06-25 14:57:30 -07002271/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2273 * tasks if there is an imbalance.
2274 *
2275 * Called with this_rq unlocked.
2276 */
2277static int load_balance(int this_cpu, runqueue_t *this_rq,
2278 struct sched_domain *sd, enum idle_type idle)
2279{
2280 struct sched_group *group;
2281 runqueue_t *busiest;
2282 unsigned long imbalance;
Nick Piggin77391d72005-06-25 14:57:30 -07002283 int nr_moved, all_pinned = 0;
Nick Piggin81026792005-06-25 14:57:07 -07002284 int active_balance = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002285 int sd_idle = 0;
2286
2287 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2288 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002289
Linus Torvalds1da177e2005-04-16 15:20:36 -07002290 schedstat_inc(sd, lb_cnt[idle]);
2291
Nick Piggin5969fe02005-09-10 00:26:19 -07002292 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002293 if (!group) {
2294 schedstat_inc(sd, lb_nobusyg[idle]);
2295 goto out_balanced;
2296 }
2297
Peter Williams2dd73a42006-06-27 02:54:34 -07002298 busiest = find_busiest_queue(group, idle, imbalance);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002299 if (!busiest) {
2300 schedstat_inc(sd, lb_nobusyq[idle]);
2301 goto out_balanced;
2302 }
2303
Nick Piggindb935db2005-06-25 14:57:11 -07002304 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305
2306 schedstat_add(sd, lb_imbalance[idle], imbalance);
2307
2308 nr_moved = 0;
2309 if (busiest->nr_running > 1) {
2310 /*
2311 * Attempt to move tasks. If find_busiest_group has found
2312 * an imbalance but busiest->nr_running <= 1, the group is
2313 * still unbalanced. nr_moved simply stays zero, so it is
2314 * correctly treated as an imbalance.
2315 */
Nick Piggine17224b2005-09-10 00:26:18 -07002316 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002317 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002318 minus_1_or_zero(busiest->nr_running),
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002319 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002320 double_rq_unlock(this_rq, busiest);
Nick Piggin81026792005-06-25 14:57:07 -07002321
2322 /* All tasks on this runqueue were pinned by CPU affinity */
2323 if (unlikely(all_pinned))
2324 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002325 }
Nick Piggin81026792005-06-25 14:57:07 -07002326
Linus Torvalds1da177e2005-04-16 15:20:36 -07002327 if (!nr_moved) {
2328 schedstat_inc(sd, lb_failed[idle]);
2329 sd->nr_balance_failed++;
2330
2331 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332
2333 spin_lock(&busiest->lock);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002334
2335 /* don't kick the migration_thread, if the curr
2336 * task on busiest cpu can't be moved to this_cpu
2337 */
2338 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2339 spin_unlock(&busiest->lock);
2340 all_pinned = 1;
2341 goto out_one_pinned;
2342 }
2343
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344 if (!busiest->active_balance) {
2345 busiest->active_balance = 1;
2346 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002347 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002348 }
2349 spin_unlock(&busiest->lock);
Nick Piggin81026792005-06-25 14:57:07 -07002350 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351 wake_up_process(busiest->migration_thread);
2352
2353 /*
2354 * We've kicked active balancing, reset the failure
2355 * counter.
2356 */
Nick Piggin39507452005-06-25 14:57:09 -07002357 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358 }
Nick Piggin81026792005-06-25 14:57:07 -07002359 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360 sd->nr_balance_failed = 0;
2361
Nick Piggin81026792005-06-25 14:57:07 -07002362 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002363 /* We were unbalanced, so reset the balancing interval */
2364 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002365 } else {
2366 /*
2367 * If we've begun active balancing, start to back off. This
2368 * case may not be covered by the all_pinned logic if there
2369 * is only 1 task on the busy runqueue (because we don't call
2370 * move_tasks).
2371 */
2372 if (sd->balance_interval < sd->max_interval)
2373 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002374 }
2375
Nick Piggin5969fe02005-09-10 00:26:19 -07002376 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2377 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002378 return nr_moved;
2379
2380out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002381 schedstat_inc(sd, lb_balanced[idle]);
2382
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002383 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002384
2385out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002386 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002387 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2388 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 sd->balance_interval *= 2;
2390
Nick Piggin5969fe02005-09-10 00:26:19 -07002391 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2392 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002393 return 0;
2394}
2395
2396/*
2397 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2398 * tasks if there is an imbalance.
2399 *
2400 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2401 * this_rq is locked.
2402 */
2403static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2404 struct sched_domain *sd)
2405{
2406 struct sched_group *group;
2407 runqueue_t *busiest = NULL;
2408 unsigned long imbalance;
2409 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002410 int sd_idle = 0;
2411
2412 if (sd->flags & SD_SHARE_CPUPOWER)
2413 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002414
2415 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002416 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002417 if (!group) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002419 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002420 }
2421
Peter Williams2dd73a42006-06-27 02:54:34 -07002422 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
Nick Piggindb935db2005-06-25 14:57:11 -07002423 if (!busiest) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002424 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002425 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426 }
2427
Nick Piggindb935db2005-06-25 14:57:11 -07002428 BUG_ON(busiest == this_rq);
2429
Linus Torvalds1da177e2005-04-16 15:20:36 -07002430 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002431
2432 nr_moved = 0;
2433 if (busiest->nr_running > 1) {
2434 /* Attempt to move tasks */
2435 double_lock_balance(this_rq, busiest);
2436 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002437 minus_1_or_zero(busiest->nr_running),
Nick Piggin81026792005-06-25 14:57:07 -07002438 imbalance, sd, NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002439 spin_unlock(&busiest->lock);
2440 }
2441
Nick Piggin5969fe02005-09-10 00:26:19 -07002442 if (!nr_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002443 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002444 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2445 return -1;
2446 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002447 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448
Linus Torvalds1da177e2005-04-16 15:20:36 -07002449 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002450
2451out_balanced:
2452 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002453 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2454 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002455 sd->nr_balance_failed = 0;
2456 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002457}
2458
2459/*
2460 * idle_balance is called by schedule() if this_cpu is about to become
2461 * idle. Attempts to pull tasks from other CPUs.
2462 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002463static void idle_balance(int this_cpu, runqueue_t *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002464{
2465 struct sched_domain *sd;
2466
2467 for_each_domain(this_cpu, sd) {
2468 if (sd->flags & SD_BALANCE_NEWIDLE) {
2469 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2470 /* We've pulled tasks over so stop searching */
2471 break;
2472 }
2473 }
2474 }
2475}
2476
2477/*
2478 * active_load_balance is run by migration threads. It pushes running tasks
2479 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2480 * running on each physical CPU where possible, and avoids physical /
2481 * logical imbalances.
2482 *
2483 * Called with busiest_rq locked.
2484 */
2485static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2486{
2487 struct sched_domain *sd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002488 runqueue_t *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002489 int target_cpu = busiest_rq->push_cpu;
2490
2491 if (busiest_rq->nr_running <= 1)
2492 /* no task to move */
2493 return;
2494
2495 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002496
2497 /*
Nick Piggin39507452005-06-25 14:57:09 -07002498 * This condition is "impossible", if it occurs
2499 * we need to fix it. Originally reported by
2500 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002501 */
Nick Piggin39507452005-06-25 14:57:09 -07002502 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002503
Nick Piggin39507452005-06-25 14:57:09 -07002504 /* move a task from busiest_rq to target_rq */
2505 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002506
Nick Piggin39507452005-06-25 14:57:09 -07002507 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002508 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002509 if ((sd->flags & SD_LOAD_BALANCE) &&
2510 cpu_isset(busiest_cpu, sd->span))
2511 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002512 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002513
Nick Piggin39507452005-06-25 14:57:09 -07002514 if (unlikely(sd == NULL))
2515 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002516
Nick Piggin39507452005-06-25 14:57:09 -07002517 schedstat_inc(sd, alb_cnt);
2518
Peter Williams2dd73a42006-06-27 02:54:34 -07002519 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2520 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
Nick Piggin39507452005-06-25 14:57:09 -07002521 schedstat_inc(sd, alb_pushed);
2522 else
2523 schedstat_inc(sd, alb_failed);
2524out:
2525 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002526}
2527
2528/*
2529 * rebalance_tick will get called every timer tick, on every CPU.
2530 *
2531 * It checks each scheduling domain to see if it is due to be balanced,
2532 * and initiates a balancing operation if so.
2533 *
2534 * Balancing parameters are set up in arch_init_sched_domains.
2535 */
2536
2537/* Don't have all balancing operations going off at once */
2538#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2539
2540static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2541 enum idle_type idle)
2542{
2543 unsigned long old_load, this_load;
2544 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2545 struct sched_domain *sd;
Nick Piggin78979862005-06-25 14:57:13 -07002546 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002547
Peter Williams2dd73a42006-06-27 02:54:34 -07002548 this_load = this_rq->raw_weighted_load;
Nick Piggin78979862005-06-25 14:57:13 -07002549 /* Update our load */
2550 for (i = 0; i < 3; i++) {
2551 unsigned long new_load = this_load;
2552 int scale = 1 << i;
2553 old_load = this_rq->cpu_load[i];
2554 /*
2555 * Round up the averaging division if load is increasing. This
2556 * prevents us from getting stuck on 9 if the load is 10, for
2557 * example.
2558 */
2559 if (new_load > old_load)
2560 new_load += scale-1;
2561 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2562 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002563
2564 for_each_domain(this_cpu, sd) {
2565 unsigned long interval;
2566
2567 if (!(sd->flags & SD_LOAD_BALANCE))
2568 continue;
2569
2570 interval = sd->balance_interval;
2571 if (idle != SCHED_IDLE)
2572 interval *= sd->busy_factor;
2573
2574 /* scale ms to jiffies */
2575 interval = msecs_to_jiffies(interval);
2576 if (unlikely(!interval))
2577 interval = 1;
2578
2579 if (j - sd->last_balance >= interval) {
2580 if (load_balance(this_cpu, this_rq, sd, idle)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002581 /*
2582 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07002583 * longer idle, or one of our SMT siblings is
2584 * not idle.
2585 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002586 idle = NOT_IDLE;
2587 }
2588 sd->last_balance += interval;
2589 }
2590 }
2591}
2592#else
2593/*
2594 * on UP we do not need to balance between CPUs:
2595 */
2596static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2597{
2598}
2599static inline void idle_balance(int cpu, runqueue_t *rq)
2600{
2601}
2602#endif
2603
2604static inline int wake_priority_sleeper(runqueue_t *rq)
2605{
2606 int ret = 0;
2607#ifdef CONFIG_SCHED_SMT
2608 spin_lock(&rq->lock);
2609 /*
2610 * If an SMT sibling task has been put to sleep for priority
2611 * reasons reschedule the idle task to see if it can now run.
2612 */
2613 if (rq->nr_running) {
2614 resched_task(rq->idle);
2615 ret = 1;
2616 }
2617 spin_unlock(&rq->lock);
2618#endif
2619 return ret;
2620}
2621
2622DEFINE_PER_CPU(struct kernel_stat, kstat);
2623
2624EXPORT_PER_CPU_SYMBOL(kstat);
2625
2626/*
2627 * This is called on clock ticks and on context switches.
2628 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2629 */
2630static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2631 unsigned long long now)
2632{
2633 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2634 p->sched_time += now - last;
2635}
2636
2637/*
2638 * Return current->sched_time plus any more ns on the sched_clock
2639 * that have not yet been banked.
2640 */
2641unsigned long long current_sched_time(const task_t *tsk)
2642{
2643 unsigned long long ns;
2644 unsigned long flags;
2645 local_irq_save(flags);
2646 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2647 ns = tsk->sched_time + (sched_clock() - ns);
2648 local_irq_restore(flags);
2649 return ns;
2650}
2651
2652/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07002653 * We place interactive tasks back into the active array, if possible.
2654 *
2655 * To guarantee that this does not starve expired tasks we ignore the
2656 * interactivity of a task if the first expired task had to wait more
2657 * than a 'reasonable' amount of time. This deadline timeout is
2658 * load-dependent, as the frequency of array switched decreases with
2659 * increasing number of running tasks. We also ignore the interactivity
2660 * if a better static_prio task has expired:
2661 */
2662#define EXPIRED_STARVING(rq) \
2663 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2664 (jiffies - (rq)->expired_timestamp >= \
2665 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2666 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2667
2668/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002669 * Account user cpu time to a process.
2670 * @p: the process that the cpu time gets accounted to
2671 * @hardirq_offset: the offset to subtract from hardirq_count()
2672 * @cputime: the cpu time spent in user space since the last update
2673 */
2674void account_user_time(struct task_struct *p, cputime_t cputime)
2675{
2676 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2677 cputime64_t tmp;
2678
2679 p->utime = cputime_add(p->utime, cputime);
2680
2681 /* Add user time to cpustat. */
2682 tmp = cputime_to_cputime64(cputime);
2683 if (TASK_NICE(p) > 0)
2684 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2685 else
2686 cpustat->user = cputime64_add(cpustat->user, tmp);
2687}
2688
2689/*
2690 * Account system cpu time to a process.
2691 * @p: the process that the cpu time gets accounted to
2692 * @hardirq_offset: the offset to subtract from hardirq_count()
2693 * @cputime: the cpu time spent in kernel space since the last update
2694 */
2695void account_system_time(struct task_struct *p, int hardirq_offset,
2696 cputime_t cputime)
2697{
2698 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2699 runqueue_t *rq = this_rq();
2700 cputime64_t tmp;
2701
2702 p->stime = cputime_add(p->stime, cputime);
2703
2704 /* Add system time to cpustat. */
2705 tmp = cputime_to_cputime64(cputime);
2706 if (hardirq_count() - hardirq_offset)
2707 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2708 else if (softirq_count())
2709 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2710 else if (p != rq->idle)
2711 cpustat->system = cputime64_add(cpustat->system, tmp);
2712 else if (atomic_read(&rq->nr_iowait) > 0)
2713 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2714 else
2715 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2716 /* Account for system time used */
2717 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002718}
2719
2720/*
2721 * Account for involuntary wait time.
2722 * @p: the process from which the cpu time has been stolen
2723 * @steal: the cpu time spent in involuntary wait
2724 */
2725void account_steal_time(struct task_struct *p, cputime_t steal)
2726{
2727 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2728 cputime64_t tmp = cputime_to_cputime64(steal);
2729 runqueue_t *rq = this_rq();
2730
2731 if (p == rq->idle) {
2732 p->stime = cputime_add(p->stime, steal);
2733 if (atomic_read(&rq->nr_iowait) > 0)
2734 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2735 else
2736 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2737 } else
2738 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2739}
2740
2741/*
2742 * This function gets called by the timer code, with HZ frequency.
2743 * We call it with interrupts disabled.
2744 *
2745 * It also gets called by the fork code, when changing the parent's
2746 * timeslices.
2747 */
2748void scheduler_tick(void)
2749{
2750 int cpu = smp_processor_id();
2751 runqueue_t *rq = this_rq();
2752 task_t *p = current;
2753 unsigned long long now = sched_clock();
2754
2755 update_cpu_clock(p, rq, now);
2756
2757 rq->timestamp_last_tick = now;
2758
2759 if (p == rq->idle) {
2760 if (wake_priority_sleeper(rq))
2761 goto out;
2762 rebalance_tick(cpu, rq, SCHED_IDLE);
2763 return;
2764 }
2765
2766 /* Task might have expired already, but not scheduled off yet */
2767 if (p->array != rq->active) {
2768 set_tsk_need_resched(p);
2769 goto out;
2770 }
2771 spin_lock(&rq->lock);
2772 /*
2773 * The task was running during this tick - update the
2774 * time slice counter. Note: we do not update a thread's
2775 * priority until it either goes to sleep or uses up its
2776 * timeslice. This makes it possible for interactive tasks
2777 * to use up their timeslices at their highest priority levels.
2778 */
2779 if (rt_task(p)) {
2780 /*
2781 * RR tasks need a special form of timeslice management.
2782 * FIFO tasks have no timeslices.
2783 */
2784 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2785 p->time_slice = task_timeslice(p);
2786 p->first_time_slice = 0;
2787 set_tsk_need_resched(p);
2788
2789 /* put it at the end of the queue: */
2790 requeue_task(p, rq->active);
2791 }
2792 goto out_unlock;
2793 }
2794 if (!--p->time_slice) {
2795 dequeue_task(p, rq->active);
2796 set_tsk_need_resched(p);
2797 p->prio = effective_prio(p);
2798 p->time_slice = task_timeslice(p);
2799 p->first_time_slice = 0;
2800
2801 if (!rq->expired_timestamp)
2802 rq->expired_timestamp = jiffies;
Linus Torvaldsf1adad72006-05-21 18:54:09 -07002803 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002804 enqueue_task(p, rq->expired);
2805 if (p->static_prio < rq->best_expired_prio)
2806 rq->best_expired_prio = p->static_prio;
2807 } else
2808 enqueue_task(p, rq->active);
2809 } else {
2810 /*
2811 * Prevent a too long timeslice allowing a task to monopolize
2812 * the CPU. We do this by splitting up the timeslice into
2813 * smaller pieces.
2814 *
2815 * Note: this does not mean the task's timeslices expire or
2816 * get lost in any way, they just might be preempted by
2817 * another task of equal priority. (one with higher
2818 * priority would have preempted this task already.) We
2819 * requeue this task to the end of the list on this priority
2820 * level, which is in essence a round-robin of tasks with
2821 * equal priority.
2822 *
2823 * This only applies to tasks in the interactive
2824 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2825 */
2826 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2827 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2828 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2829 (p->array == rq->active)) {
2830
2831 requeue_task(p, rq->active);
2832 set_tsk_need_resched(p);
2833 }
2834 }
2835out_unlock:
2836 spin_unlock(&rq->lock);
2837out:
2838 rebalance_tick(cpu, rq, NOT_IDLE);
2839}
2840
2841#ifdef CONFIG_SCHED_SMT
Con Kolivasfc38ed72005-09-10 00:26:08 -07002842static inline void wakeup_busy_runqueue(runqueue_t *rq)
2843{
2844 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2845 if (rq->curr == rq->idle && rq->nr_running)
2846 resched_task(rq->idle);
2847}
2848
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002849/*
2850 * Called with interrupt disabled and this_rq's runqueue locked.
2851 */
2852static void wake_sleeping_dependent(int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853{
Nick Piggin41c7ce92005-06-25 14:57:24 -07002854 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002855 int i;
2856
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002857 for_each_domain(this_cpu, tmp) {
2858 if (tmp->flags & SD_SHARE_CPUPOWER) {
Nick Piggin41c7ce92005-06-25 14:57:24 -07002859 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002860 break;
2861 }
2862 }
Nick Piggin41c7ce92005-06-25 14:57:24 -07002863
2864 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865 return;
2866
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002867 for_each_cpu_mask(i, sd->span) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868 runqueue_t *smt_rq = cpu_rq(i);
2869
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002870 if (i == this_cpu)
2871 continue;
2872 if (unlikely(!spin_trylock(&smt_rq->lock)))
2873 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002874
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002875 wakeup_busy_runqueue(smt_rq);
2876 spin_unlock(&smt_rq->lock);
2877 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002878}
2879
Ingo Molnar67f9a612005-09-10 00:26:16 -07002880/*
2881 * number of 'lost' timeslices this task wont be able to fully
2882 * utilize, if another task runs on a sibling. This models the
2883 * slowdown effect of other tasks running on siblings:
2884 */
2885static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2886{
2887 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2888}
2889
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002890/*
2891 * To minimise lock contention and not have to drop this_rq's runlock we only
2892 * trylock the sibling runqueues and bypass those runqueues if we fail to
2893 * acquire their lock. As we only trylock the normal locking order does not
2894 * need to be obeyed.
2895 */
2896static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002897{
Nick Piggin41c7ce92005-06-25 14:57:24 -07002898 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002899 int ret = 0, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002900
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002901 /* kernel/rt threads do not participate in dependent sleeping */
2902 if (!p->mm || rt_task(p))
2903 return 0;
2904
2905 for_each_domain(this_cpu, tmp) {
2906 if (tmp->flags & SD_SHARE_CPUPOWER) {
Nick Piggin41c7ce92005-06-25 14:57:24 -07002907 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002908 break;
2909 }
2910 }
Nick Piggin41c7ce92005-06-25 14:57:24 -07002911
2912 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913 return 0;
2914
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002915 for_each_cpu_mask(i, sd->span) {
2916 runqueue_t *smt_rq;
2917 task_t *smt_curr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002919 if (i == this_cpu)
2920 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002921
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002922 smt_rq = cpu_rq(i);
2923 if (unlikely(!spin_trylock(&smt_rq->lock)))
2924 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002925
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002926 smt_curr = smt_rq->curr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002927
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002928 if (!smt_curr->mm)
2929 goto unlock;
Con Kolivasfc38ed72005-09-10 00:26:08 -07002930
Linus Torvalds1da177e2005-04-16 15:20:36 -07002931 /*
2932 * If a user task with lower static priority than the
2933 * running task on the SMT sibling is trying to schedule,
2934 * delay it till there is proportionately less timeslice
2935 * left of the sibling task to prevent a lower priority
2936 * task from using an unfair proportion of the
2937 * physical cpu's resources. -ck
2938 */
Con Kolivasfc38ed72005-09-10 00:26:08 -07002939 if (rt_task(smt_curr)) {
2940 /*
2941 * With real time tasks we run non-rt tasks only
2942 * per_cpu_gain% of the time.
2943 */
2944 if ((jiffies % DEF_TIMESLICE) >
2945 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2946 ret = 1;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002947 } else {
Ingo Molnar67f9a612005-09-10 00:26:16 -07002948 if (smt_curr->static_prio < p->static_prio &&
2949 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2950 smt_slice(smt_curr, sd) > task_timeslice(p))
Con Kolivasfc38ed72005-09-10 00:26:08 -07002951 ret = 1;
Con Kolivasfc38ed72005-09-10 00:26:08 -07002952 }
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002953unlock:
2954 spin_unlock(&smt_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002955 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002956 return ret;
2957}
2958#else
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002959static inline void wake_sleeping_dependent(int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002960{
2961}
2962
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002963static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
2964 task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002965{
2966 return 0;
2967}
2968#endif
2969
2970#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2971
2972void fastcall add_preempt_count(int val)
2973{
2974 /*
2975 * Underflow?
2976 */
Jesper Juhlbe5b4fb2005-06-23 00:09:09 -07002977 BUG_ON((preempt_count() < 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002978 preempt_count() += val;
2979 /*
2980 * Spinlock count overflowing soon?
2981 */
2982 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2983}
2984EXPORT_SYMBOL(add_preempt_count);
2985
2986void fastcall sub_preempt_count(int val)
2987{
2988 /*
2989 * Underflow?
2990 */
2991 BUG_ON(val > preempt_count());
2992 /*
2993 * Is the spinlock portion underflowing?
2994 */
2995 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2996 preempt_count() -= val;
2997}
2998EXPORT_SYMBOL(sub_preempt_count);
2999
3000#endif
3001
Con Kolivas3dee3862006-03-31 02:31:23 -08003002static inline int interactive_sleep(enum sleep_type sleep_type)
3003{
3004 return (sleep_type == SLEEP_INTERACTIVE ||
3005 sleep_type == SLEEP_INTERRUPTED);
3006}
3007
Linus Torvalds1da177e2005-04-16 15:20:36 -07003008/*
3009 * schedule() is the main scheduler function.
3010 */
3011asmlinkage void __sched schedule(void)
3012{
3013 long *switch_count;
3014 task_t *prev, *next;
3015 runqueue_t *rq;
3016 prio_array_t *array;
3017 struct list_head *queue;
3018 unsigned long long now;
3019 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07003020 int cpu, idx, new_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003021
3022 /*
3023 * Test if we are atomic. Since do_exit() needs to call into
3024 * schedule() atomically, we ignore that path for now.
3025 * Otherwise, whine if we are scheduling when we should not be.
3026 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003027 if (unlikely(in_atomic() && !current->exit_state)) {
3028 printk(KERN_ERR "BUG: scheduling while atomic: "
3029 "%s/0x%08x/%d\n",
3030 current->comm, preempt_count(), current->pid);
3031 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003032 }
3033 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3034
3035need_resched:
3036 preempt_disable();
3037 prev = current;
3038 release_kernel_lock(prev);
3039need_resched_nonpreemptible:
3040 rq = this_rq();
3041
3042 /*
3043 * The idle thread is not allowed to schedule!
3044 * Remove this check after it has been exercised a bit.
3045 */
3046 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3047 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3048 dump_stack();
3049 }
3050
3051 schedstat_inc(rq, sched_cnt);
3052 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003053 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003054 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003055 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003056 run_time = 0;
3057 } else
3058 run_time = NS_MAX_SLEEP_AVG;
3059
3060 /*
3061 * Tasks charged proportionately less run_time at high sleep_avg to
3062 * delay them losing their interactive status
3063 */
3064 run_time /= (CURRENT_BONUS(prev) ? : 1);
3065
3066 spin_lock_irq(&rq->lock);
3067
3068 if (unlikely(prev->flags & PF_DEAD))
3069 prev->state = EXIT_DEAD;
3070
3071 switch_count = &prev->nivcsw;
3072 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3073 switch_count = &prev->nvcsw;
3074 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3075 unlikely(signal_pending(prev))))
3076 prev->state = TASK_RUNNING;
3077 else {
3078 if (prev->state == TASK_UNINTERRUPTIBLE)
3079 rq->nr_uninterruptible++;
3080 deactivate_task(prev, rq);
3081 }
3082 }
3083
3084 cpu = smp_processor_id();
3085 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003086 idle_balance(cpu, rq);
3087 if (!rq->nr_running) {
3088 next = rq->idle;
3089 rq->expired_timestamp = 0;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003090 wake_sleeping_dependent(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003091 goto switch_tasks;
3092 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003093 }
3094
3095 array = rq->active;
3096 if (unlikely(!array->nr_active)) {
3097 /*
3098 * Switch the active and expired arrays.
3099 */
3100 schedstat_inc(rq, sched_switch);
3101 rq->active = rq->expired;
3102 rq->expired = array;
3103 array = rq->active;
3104 rq->expired_timestamp = 0;
3105 rq->best_expired_prio = MAX_PRIO;
3106 }
3107
3108 idx = sched_find_first_bit(array->bitmap);
3109 queue = array->queue + idx;
3110 next = list_entry(queue->next, task_t, run_list);
3111
Con Kolivas3dee3862006-03-31 02:31:23 -08003112 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003113 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003114 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003115 delta = 0;
3116
Con Kolivas3dee3862006-03-31 02:31:23 -08003117 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003118 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3119
3120 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003121 new_prio = recalc_task_prio(next, next->timestamp + delta);
3122
3123 if (unlikely(next->prio != new_prio)) {
3124 dequeue_task(next, array);
3125 next->prio = new_prio;
3126 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003127 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003128 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003129 next->sleep_type = SLEEP_NORMAL;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003130 if (dependent_sleeper(cpu, rq, next))
3131 next = rq->idle;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003132switch_tasks:
3133 if (next == rq->idle)
3134 schedstat_inc(rq, sched_goidle);
3135 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003136 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003137 clear_tsk_need_resched(prev);
3138 rcu_qsctr_inc(task_cpu(prev));
3139
3140 update_cpu_clock(prev, rq, now);
3141
3142 prev->sleep_avg -= run_time;
3143 if ((long)prev->sleep_avg <= 0)
3144 prev->sleep_avg = 0;
3145 prev->timestamp = prev->last_ran = now;
3146
3147 sched_info_switch(prev, next);
3148 if (likely(prev != next)) {
3149 next->timestamp = now;
3150 rq->nr_switches++;
3151 rq->curr = next;
3152 ++*switch_count;
3153
Nick Piggin4866cde2005-06-25 14:57:23 -07003154 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003155 prev = context_switch(rq, prev, next);
3156 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003157 /*
3158 * this_rq must be evaluated again because prev may have moved
3159 * CPUs since it called schedule(), thus the 'rq' on its stack
3160 * frame will be invalid.
3161 */
3162 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003163 } else
3164 spin_unlock_irq(&rq->lock);
3165
3166 prev = current;
3167 if (unlikely(reacquire_kernel_lock(prev) < 0))
3168 goto need_resched_nonpreemptible;
3169 preempt_enable_no_resched();
3170 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3171 goto need_resched;
3172}
3173
3174EXPORT_SYMBOL(schedule);
3175
3176#ifdef CONFIG_PREEMPT
3177/*
3178 * this is is the entry point to schedule() from in-kernel preemption
3179 * off of preempt_enable. Kernel preemptions off return from interrupt
3180 * occur there and call schedule directly.
3181 */
3182asmlinkage void __sched preempt_schedule(void)
3183{
3184 struct thread_info *ti = current_thread_info();
3185#ifdef CONFIG_PREEMPT_BKL
3186 struct task_struct *task = current;
3187 int saved_lock_depth;
3188#endif
3189 /*
3190 * If there is a non-zero preempt_count or interrupts are disabled,
3191 * we do not want to preempt the current task. Just return..
3192 */
3193 if (unlikely(ti->preempt_count || irqs_disabled()))
3194 return;
3195
3196need_resched:
3197 add_preempt_count(PREEMPT_ACTIVE);
3198 /*
3199 * We keep the big kernel semaphore locked, but we
3200 * clear ->lock_depth so that schedule() doesnt
3201 * auto-release the semaphore:
3202 */
3203#ifdef CONFIG_PREEMPT_BKL
3204 saved_lock_depth = task->lock_depth;
3205 task->lock_depth = -1;
3206#endif
3207 schedule();
3208#ifdef CONFIG_PREEMPT_BKL
3209 task->lock_depth = saved_lock_depth;
3210#endif
3211 sub_preempt_count(PREEMPT_ACTIVE);
3212
3213 /* we could miss a preemption opportunity between schedule and now */
3214 barrier();
3215 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3216 goto need_resched;
3217}
3218
3219EXPORT_SYMBOL(preempt_schedule);
3220
3221/*
3222 * this is is the entry point to schedule() from kernel preemption
3223 * off of irq context.
3224 * Note, that this is called and return with irqs disabled. This will
3225 * protect us against recursive calling from irq.
3226 */
3227asmlinkage void __sched preempt_schedule_irq(void)
3228{
3229 struct thread_info *ti = current_thread_info();
3230#ifdef CONFIG_PREEMPT_BKL
3231 struct task_struct *task = current;
3232 int saved_lock_depth;
3233#endif
3234 /* Catch callers which need to be fixed*/
3235 BUG_ON(ti->preempt_count || !irqs_disabled());
3236
3237need_resched:
3238 add_preempt_count(PREEMPT_ACTIVE);
3239 /*
3240 * We keep the big kernel semaphore locked, but we
3241 * clear ->lock_depth so that schedule() doesnt
3242 * auto-release the semaphore:
3243 */
3244#ifdef CONFIG_PREEMPT_BKL
3245 saved_lock_depth = task->lock_depth;
3246 task->lock_depth = -1;
3247#endif
3248 local_irq_enable();
3249 schedule();
3250 local_irq_disable();
3251#ifdef CONFIG_PREEMPT_BKL
3252 task->lock_depth = saved_lock_depth;
3253#endif
3254 sub_preempt_count(PREEMPT_ACTIVE);
3255
3256 /* we could miss a preemption opportunity between schedule and now */
3257 barrier();
3258 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3259 goto need_resched;
3260}
3261
3262#endif /* CONFIG_PREEMPT */
3263
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003264int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3265 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003266{
Benjamin LaHaisec43dc2f2005-06-23 00:10:27 -07003267 task_t *p = curr->private;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003268 return try_to_wake_up(p, mode, sync);
3269}
3270
3271EXPORT_SYMBOL(default_wake_function);
3272
3273/*
3274 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3275 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3276 * number) then we wake all the non-exclusive tasks and one exclusive task.
3277 *
3278 * There are circumstances in which we can try to wake a task which has already
3279 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3280 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3281 */
3282static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3283 int nr_exclusive, int sync, void *key)
3284{
3285 struct list_head *tmp, *next;
3286
3287 list_for_each_safe(tmp, next, &q->task_list) {
3288 wait_queue_t *curr;
3289 unsigned flags;
3290 curr = list_entry(tmp, wait_queue_t, task_list);
3291 flags = curr->flags;
3292 if (curr->func(curr, mode, sync, key) &&
3293 (flags & WQ_FLAG_EXCLUSIVE) &&
3294 !--nr_exclusive)
3295 break;
3296 }
3297}
3298
3299/**
3300 * __wake_up - wake up threads blocked on a waitqueue.
3301 * @q: the waitqueue
3302 * @mode: which threads
3303 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003304 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003305 */
3306void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003307 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003308{
3309 unsigned long flags;
3310
3311 spin_lock_irqsave(&q->lock, flags);
3312 __wake_up_common(q, mode, nr_exclusive, 0, key);
3313 spin_unlock_irqrestore(&q->lock, flags);
3314}
3315
3316EXPORT_SYMBOL(__wake_up);
3317
3318/*
3319 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3320 */
3321void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3322{
3323 __wake_up_common(q, mode, 1, 0, NULL);
3324}
3325
3326/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003327 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003328 * @q: the waitqueue
3329 * @mode: which threads
3330 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3331 *
3332 * The sync wakeup differs that the waker knows that it will schedule
3333 * away soon, so while the target thread will be woken up, it will not
3334 * be migrated to another CPU - ie. the two threads are 'synchronized'
3335 * with each other. This can prevent needless bouncing between CPUs.
3336 *
3337 * On UP it can prevent extra preemption.
3338 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003339void fastcall
3340__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003341{
3342 unsigned long flags;
3343 int sync = 1;
3344
3345 if (unlikely(!q))
3346 return;
3347
3348 if (unlikely(!nr_exclusive))
3349 sync = 0;
3350
3351 spin_lock_irqsave(&q->lock, flags);
3352 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3353 spin_unlock_irqrestore(&q->lock, flags);
3354}
3355EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3356
3357void fastcall complete(struct completion *x)
3358{
3359 unsigned long flags;
3360
3361 spin_lock_irqsave(&x->wait.lock, flags);
3362 x->done++;
3363 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3364 1, 0, NULL);
3365 spin_unlock_irqrestore(&x->wait.lock, flags);
3366}
3367EXPORT_SYMBOL(complete);
3368
3369void fastcall complete_all(struct completion *x)
3370{
3371 unsigned long flags;
3372
3373 spin_lock_irqsave(&x->wait.lock, flags);
3374 x->done += UINT_MAX/2;
3375 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3376 0, 0, NULL);
3377 spin_unlock_irqrestore(&x->wait.lock, flags);
3378}
3379EXPORT_SYMBOL(complete_all);
3380
3381void fastcall __sched wait_for_completion(struct completion *x)
3382{
3383 might_sleep();
3384 spin_lock_irq(&x->wait.lock);
3385 if (!x->done) {
3386 DECLARE_WAITQUEUE(wait, current);
3387
3388 wait.flags |= WQ_FLAG_EXCLUSIVE;
3389 __add_wait_queue_tail(&x->wait, &wait);
3390 do {
3391 __set_current_state(TASK_UNINTERRUPTIBLE);
3392 spin_unlock_irq(&x->wait.lock);
3393 schedule();
3394 spin_lock_irq(&x->wait.lock);
3395 } while (!x->done);
3396 __remove_wait_queue(&x->wait, &wait);
3397 }
3398 x->done--;
3399 spin_unlock_irq(&x->wait.lock);
3400}
3401EXPORT_SYMBOL(wait_for_completion);
3402
3403unsigned long fastcall __sched
3404wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3405{
3406 might_sleep();
3407
3408 spin_lock_irq(&x->wait.lock);
3409 if (!x->done) {
3410 DECLARE_WAITQUEUE(wait, current);
3411
3412 wait.flags |= WQ_FLAG_EXCLUSIVE;
3413 __add_wait_queue_tail(&x->wait, &wait);
3414 do {
3415 __set_current_state(TASK_UNINTERRUPTIBLE);
3416 spin_unlock_irq(&x->wait.lock);
3417 timeout = schedule_timeout(timeout);
3418 spin_lock_irq(&x->wait.lock);
3419 if (!timeout) {
3420 __remove_wait_queue(&x->wait, &wait);
3421 goto out;
3422 }
3423 } while (!x->done);
3424 __remove_wait_queue(&x->wait, &wait);
3425 }
3426 x->done--;
3427out:
3428 spin_unlock_irq(&x->wait.lock);
3429 return timeout;
3430}
3431EXPORT_SYMBOL(wait_for_completion_timeout);
3432
3433int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3434{
3435 int ret = 0;
3436
3437 might_sleep();
3438
3439 spin_lock_irq(&x->wait.lock);
3440 if (!x->done) {
3441 DECLARE_WAITQUEUE(wait, current);
3442
3443 wait.flags |= WQ_FLAG_EXCLUSIVE;
3444 __add_wait_queue_tail(&x->wait, &wait);
3445 do {
3446 if (signal_pending(current)) {
3447 ret = -ERESTARTSYS;
3448 __remove_wait_queue(&x->wait, &wait);
3449 goto out;
3450 }
3451 __set_current_state(TASK_INTERRUPTIBLE);
3452 spin_unlock_irq(&x->wait.lock);
3453 schedule();
3454 spin_lock_irq(&x->wait.lock);
3455 } while (!x->done);
3456 __remove_wait_queue(&x->wait, &wait);
3457 }
3458 x->done--;
3459out:
3460 spin_unlock_irq(&x->wait.lock);
3461
3462 return ret;
3463}
3464EXPORT_SYMBOL(wait_for_completion_interruptible);
3465
3466unsigned long fastcall __sched
3467wait_for_completion_interruptible_timeout(struct completion *x,
3468 unsigned long timeout)
3469{
3470 might_sleep();
3471
3472 spin_lock_irq(&x->wait.lock);
3473 if (!x->done) {
3474 DECLARE_WAITQUEUE(wait, current);
3475
3476 wait.flags |= WQ_FLAG_EXCLUSIVE;
3477 __add_wait_queue_tail(&x->wait, &wait);
3478 do {
3479 if (signal_pending(current)) {
3480 timeout = -ERESTARTSYS;
3481 __remove_wait_queue(&x->wait, &wait);
3482 goto out;
3483 }
3484 __set_current_state(TASK_INTERRUPTIBLE);
3485 spin_unlock_irq(&x->wait.lock);
3486 timeout = schedule_timeout(timeout);
3487 spin_lock_irq(&x->wait.lock);
3488 if (!timeout) {
3489 __remove_wait_queue(&x->wait, &wait);
3490 goto out;
3491 }
3492 } while (!x->done);
3493 __remove_wait_queue(&x->wait, &wait);
3494 }
3495 x->done--;
3496out:
3497 spin_unlock_irq(&x->wait.lock);
3498 return timeout;
3499}
3500EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3501
3502
3503#define SLEEP_ON_VAR \
3504 unsigned long flags; \
3505 wait_queue_t wait; \
3506 init_waitqueue_entry(&wait, current);
3507
3508#define SLEEP_ON_HEAD \
3509 spin_lock_irqsave(&q->lock,flags); \
3510 __add_wait_queue(q, &wait); \
3511 spin_unlock(&q->lock);
3512
3513#define SLEEP_ON_TAIL \
3514 spin_lock_irq(&q->lock); \
3515 __remove_wait_queue(q, &wait); \
3516 spin_unlock_irqrestore(&q->lock, flags);
3517
3518void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3519{
3520 SLEEP_ON_VAR
3521
3522 current->state = TASK_INTERRUPTIBLE;
3523
3524 SLEEP_ON_HEAD
3525 schedule();
3526 SLEEP_ON_TAIL
3527}
3528
3529EXPORT_SYMBOL(interruptible_sleep_on);
3530
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003531long fastcall __sched
3532interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003533{
3534 SLEEP_ON_VAR
3535
3536 current->state = TASK_INTERRUPTIBLE;
3537
3538 SLEEP_ON_HEAD
3539 timeout = schedule_timeout(timeout);
3540 SLEEP_ON_TAIL
3541
3542 return timeout;
3543}
3544
3545EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3546
3547void fastcall __sched sleep_on(wait_queue_head_t *q)
3548{
3549 SLEEP_ON_VAR
3550
3551 current->state = TASK_UNINTERRUPTIBLE;
3552
3553 SLEEP_ON_HEAD
3554 schedule();
3555 SLEEP_ON_TAIL
3556}
3557
3558EXPORT_SYMBOL(sleep_on);
3559
3560long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3561{
3562 SLEEP_ON_VAR
3563
3564 current->state = TASK_UNINTERRUPTIBLE;
3565
3566 SLEEP_ON_HEAD
3567 timeout = schedule_timeout(timeout);
3568 SLEEP_ON_TAIL
3569
3570 return timeout;
3571}
3572
3573EXPORT_SYMBOL(sleep_on_timeout);
3574
3575void set_user_nice(task_t *p, long nice)
3576{
3577 unsigned long flags;
3578 prio_array_t *array;
3579 runqueue_t *rq;
3580 int old_prio, new_prio, delta;
3581
3582 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3583 return;
3584 /*
3585 * We have to be careful, if called from sys_setpriority(),
3586 * the task might be in the middle of scheduling on another CPU.
3587 */
3588 rq = task_rq_lock(p, &flags);
3589 /*
3590 * The RT priorities are set via sched_setscheduler(), but we still
3591 * allow the 'normal' nice value to be set - but as expected
3592 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08003593 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594 */
3595 if (rt_task(p)) {
3596 p->static_prio = NICE_TO_PRIO(nice);
3597 goto out_unlock;
3598 }
3599 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07003600 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003601 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07003602 dec_raw_weighted_load(rq, p);
3603 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003604
3605 old_prio = p->prio;
3606 new_prio = NICE_TO_PRIO(nice);
3607 delta = new_prio - old_prio;
3608 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07003609 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003610 p->prio += delta;
3611
3612 if (array) {
3613 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07003614 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003615 /*
3616 * If the task increased its priority or is running and
3617 * lowered its priority, then reschedule its CPU:
3618 */
3619 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3620 resched_task(rq->curr);
3621 }
3622out_unlock:
3623 task_rq_unlock(rq, &flags);
3624}
3625
3626EXPORT_SYMBOL(set_user_nice);
3627
Matt Mackalle43379f2005-05-01 08:59:00 -07003628/*
3629 * can_nice - check if a task can reduce its nice value
3630 * @p: task
3631 * @nice: nice value
3632 */
3633int can_nice(const task_t *p, const int nice)
3634{
Matt Mackall024f4742005-08-18 11:24:19 -07003635 /* convert nice value [19,-20] to rlimit style value [1,40] */
3636 int nice_rlim = 20 - nice;
Matt Mackalle43379f2005-05-01 08:59:00 -07003637 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3638 capable(CAP_SYS_NICE));
3639}
3640
Linus Torvalds1da177e2005-04-16 15:20:36 -07003641#ifdef __ARCH_WANT_SYS_NICE
3642
3643/*
3644 * sys_nice - change the priority of the current process.
3645 * @increment: priority increment
3646 *
3647 * sys_setpriority is a more generic, but much slower function that
3648 * does similar things.
3649 */
3650asmlinkage long sys_nice(int increment)
3651{
3652 int retval;
3653 long nice;
3654
3655 /*
3656 * Setpriority might change our priority at the same moment.
3657 * We don't have to worry. Conceptually one call occurs first
3658 * and we have a single winner.
3659 */
Matt Mackalle43379f2005-05-01 08:59:00 -07003660 if (increment < -40)
3661 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003662 if (increment > 40)
3663 increment = 40;
3664
3665 nice = PRIO_TO_NICE(current->static_prio) + increment;
3666 if (nice < -20)
3667 nice = -20;
3668 if (nice > 19)
3669 nice = 19;
3670
Matt Mackalle43379f2005-05-01 08:59:00 -07003671 if (increment < 0 && !can_nice(current, nice))
3672 return -EPERM;
3673
Linus Torvalds1da177e2005-04-16 15:20:36 -07003674 retval = security_task_setnice(current, nice);
3675 if (retval)
3676 return retval;
3677
3678 set_user_nice(current, nice);
3679 return 0;
3680}
3681
3682#endif
3683
3684/**
3685 * task_prio - return the priority value of a given task.
3686 * @p: the task in question.
3687 *
3688 * This is the priority value as seen by users in /proc.
3689 * RT tasks are offset by -200. Normal tasks are centered
3690 * around 0, value goes from -16 to +15.
3691 */
3692int task_prio(const task_t *p)
3693{
3694 return p->prio - MAX_RT_PRIO;
3695}
3696
3697/**
3698 * task_nice - return the nice value of a given task.
3699 * @p: the task in question.
3700 */
3701int task_nice(const task_t *p)
3702{
3703 return TASK_NICE(p);
3704}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003705EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003706
3707/**
3708 * idle_cpu - is a given cpu idle currently?
3709 * @cpu: the processor in question.
3710 */
3711int idle_cpu(int cpu)
3712{
3713 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3714}
3715
Linus Torvalds1da177e2005-04-16 15:20:36 -07003716/**
3717 * idle_task - return the idle task for a given cpu.
3718 * @cpu: the processor in question.
3719 */
3720task_t *idle_task(int cpu)
3721{
3722 return cpu_rq(cpu)->idle;
3723}
3724
3725/**
3726 * find_process_by_pid - find a process with a matching PID value.
3727 * @pid: the pid in question.
3728 */
3729static inline task_t *find_process_by_pid(pid_t pid)
3730{
3731 return pid ? find_task_by_pid(pid) : current;
3732}
3733
3734/* Actually do priority change: must hold rq lock. */
3735static void __setscheduler(struct task_struct *p, int policy, int prio)
3736{
3737 BUG_ON(p->array);
3738 p->policy = policy;
3739 p->rt_priority = prio;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003740 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
Steven Rostedtd46523e2005-07-25 16:28:39 -04003741 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003742 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003743 p->prio = p->static_prio;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003744 /*
3745 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3746 */
3747 if (policy == SCHED_BATCH)
3748 p->sleep_avg = 0;
3749 }
Peter Williams2dd73a42006-06-27 02:54:34 -07003750 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003751}
3752
3753/**
3754 * sched_setscheduler - change the scheduling policy and/or RT priority of
3755 * a thread.
3756 * @p: the task in question.
3757 * @policy: new policy.
3758 * @param: structure containing the new RT priority.
3759 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003760int sched_setscheduler(struct task_struct *p, int policy,
3761 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003762{
3763 int retval;
3764 int oldprio, oldpolicy = -1;
3765 prio_array_t *array;
3766 unsigned long flags;
3767 runqueue_t *rq;
3768
3769recheck:
3770 /* double check policy once rq lock held */
3771 if (policy < 0)
3772 policy = oldpolicy = p->policy;
3773 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08003774 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3775 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003776 /*
3777 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08003778 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3779 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003780 */
3781 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003782 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04003783 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003784 return -EINVAL;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003785 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3786 != (param->sched_priority == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003787 return -EINVAL;
3788
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003789 /*
3790 * Allow unprivileged RT tasks to decrease priority:
3791 */
3792 if (!capable(CAP_SYS_NICE)) {
Ingo Molnarb0a94992006-01-14 13:20:41 -08003793 /*
3794 * can't change policy, except between SCHED_NORMAL
3795 * and SCHED_BATCH:
3796 */
3797 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3798 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3799 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003800 return -EPERM;
3801 /* can't increase priority */
Ingo Molnarb0a94992006-01-14 13:20:41 -08003802 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003803 param->sched_priority > p->rt_priority &&
3804 param->sched_priority >
3805 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3806 return -EPERM;
3807 /* can't change other user's priorities */
3808 if ((current->euid != p->euid) &&
3809 (current->euid != p->uid))
3810 return -EPERM;
3811 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003812
3813 retval = security_task_setscheduler(p, policy, param);
3814 if (retval)
3815 return retval;
3816 /*
3817 * To be able to change p->policy safely, the apropriate
3818 * runqueue lock must be held.
3819 */
3820 rq = task_rq_lock(p, &flags);
3821 /* recheck policy now with rq lock held */
3822 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3823 policy = oldpolicy = -1;
3824 task_rq_unlock(rq, &flags);
3825 goto recheck;
3826 }
3827 array = p->array;
3828 if (array)
3829 deactivate_task(p, rq);
3830 oldprio = p->prio;
3831 __setscheduler(p, policy, param->sched_priority);
3832 if (array) {
3833 __activate_task(p, rq);
3834 /*
3835 * Reschedule if we are currently running on this runqueue and
3836 * our priority decreased, or if we are not currently running on
3837 * this runqueue and our priority is higher than the current's
3838 */
3839 if (task_running(rq, p)) {
3840 if (p->prio > oldprio)
3841 resched_task(rq->curr);
3842 } else if (TASK_PREEMPTS_CURR(p, rq))
3843 resched_task(rq->curr);
3844 }
3845 task_rq_unlock(rq, &flags);
3846 return 0;
3847}
3848EXPORT_SYMBOL_GPL(sched_setscheduler);
3849
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003850static int
3851do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003852{
3853 int retval;
3854 struct sched_param lparam;
3855 struct task_struct *p;
3856
3857 if (!param || pid < 0)
3858 return -EINVAL;
3859 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3860 return -EFAULT;
3861 read_lock_irq(&tasklist_lock);
3862 p = find_process_by_pid(pid);
3863 if (!p) {
3864 read_unlock_irq(&tasklist_lock);
3865 return -ESRCH;
3866 }
3867 retval = sched_setscheduler(p, policy, &lparam);
3868 read_unlock_irq(&tasklist_lock);
3869 return retval;
3870}
3871
3872/**
3873 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3874 * @pid: the pid in question.
3875 * @policy: new policy.
3876 * @param: structure containing the new RT priority.
3877 */
3878asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3879 struct sched_param __user *param)
3880{
Jason Baronc21761f2006-01-18 17:43:03 -08003881 /* negative values for policy are not valid */
3882 if (policy < 0)
3883 return -EINVAL;
3884
Linus Torvalds1da177e2005-04-16 15:20:36 -07003885 return do_sched_setscheduler(pid, policy, param);
3886}
3887
3888/**
3889 * sys_sched_setparam - set/change the RT priority of a thread
3890 * @pid: the pid in question.
3891 * @param: structure containing the new RT priority.
3892 */
3893asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3894{
3895 return do_sched_setscheduler(pid, -1, param);
3896}
3897
3898/**
3899 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3900 * @pid: the pid in question.
3901 */
3902asmlinkage long sys_sched_getscheduler(pid_t pid)
3903{
3904 int retval = -EINVAL;
3905 task_t *p;
3906
3907 if (pid < 0)
3908 goto out_nounlock;
3909
3910 retval = -ESRCH;
3911 read_lock(&tasklist_lock);
3912 p = find_process_by_pid(pid);
3913 if (p) {
3914 retval = security_task_getscheduler(p);
3915 if (!retval)
3916 retval = p->policy;
3917 }
3918 read_unlock(&tasklist_lock);
3919
3920out_nounlock:
3921 return retval;
3922}
3923
3924/**
3925 * sys_sched_getscheduler - get the RT priority of a thread
3926 * @pid: the pid in question.
3927 * @param: structure containing the RT priority.
3928 */
3929asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3930{
3931 struct sched_param lp;
3932 int retval = -EINVAL;
3933 task_t *p;
3934
3935 if (!param || pid < 0)
3936 goto out_nounlock;
3937
3938 read_lock(&tasklist_lock);
3939 p = find_process_by_pid(pid);
3940 retval = -ESRCH;
3941 if (!p)
3942 goto out_unlock;
3943
3944 retval = security_task_getscheduler(p);
3945 if (retval)
3946 goto out_unlock;
3947
3948 lp.sched_priority = p->rt_priority;
3949 read_unlock(&tasklist_lock);
3950
3951 /*
3952 * This one might sleep, we cannot do it with a spinlock held ...
3953 */
3954 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3955
3956out_nounlock:
3957 return retval;
3958
3959out_unlock:
3960 read_unlock(&tasklist_lock);
3961 return retval;
3962}
3963
3964long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3965{
3966 task_t *p;
3967 int retval;
3968 cpumask_t cpus_allowed;
3969
3970 lock_cpu_hotplug();
3971 read_lock(&tasklist_lock);
3972
3973 p = find_process_by_pid(pid);
3974 if (!p) {
3975 read_unlock(&tasklist_lock);
3976 unlock_cpu_hotplug();
3977 return -ESRCH;
3978 }
3979
3980 /*
3981 * It is not safe to call set_cpus_allowed with the
3982 * tasklist_lock held. We will bump the task_struct's
3983 * usage count and then drop tasklist_lock.
3984 */
3985 get_task_struct(p);
3986 read_unlock(&tasklist_lock);
3987
3988 retval = -EPERM;
3989 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3990 !capable(CAP_SYS_NICE))
3991 goto out_unlock;
3992
David Quigleye7834f82006-06-23 02:03:59 -07003993 retval = security_task_setscheduler(p, 0, NULL);
3994 if (retval)
3995 goto out_unlock;
3996
Linus Torvalds1da177e2005-04-16 15:20:36 -07003997 cpus_allowed = cpuset_cpus_allowed(p);
3998 cpus_and(new_mask, new_mask, cpus_allowed);
3999 retval = set_cpus_allowed(p, new_mask);
4000
4001out_unlock:
4002 put_task_struct(p);
4003 unlock_cpu_hotplug();
4004 return retval;
4005}
4006
4007static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4008 cpumask_t *new_mask)
4009{
4010 if (len < sizeof(cpumask_t)) {
4011 memset(new_mask, 0, sizeof(cpumask_t));
4012 } else if (len > sizeof(cpumask_t)) {
4013 len = sizeof(cpumask_t);
4014 }
4015 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4016}
4017
4018/**
4019 * sys_sched_setaffinity - set the cpu affinity of a process
4020 * @pid: pid of the process
4021 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4022 * @user_mask_ptr: user-space pointer to the new cpu mask
4023 */
4024asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4025 unsigned long __user *user_mask_ptr)
4026{
4027 cpumask_t new_mask;
4028 int retval;
4029
4030 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4031 if (retval)
4032 return retval;
4033
4034 return sched_setaffinity(pid, new_mask);
4035}
4036
4037/*
4038 * Represents all cpu's present in the system
4039 * In systems capable of hotplug, this map could dynamically grow
4040 * as new cpu's are detected in the system via any platform specific
4041 * method, such as ACPI for e.g.
4042 */
4043
Andi Kleen4cef0c62006-01-11 22:44:57 +01004044cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004045EXPORT_SYMBOL(cpu_present_map);
4046
4047#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004048cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4049cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004050#endif
4051
4052long sched_getaffinity(pid_t pid, cpumask_t *mask)
4053{
4054 int retval;
4055 task_t *p;
4056
4057 lock_cpu_hotplug();
4058 read_lock(&tasklist_lock);
4059
4060 retval = -ESRCH;
4061 p = find_process_by_pid(pid);
4062 if (!p)
4063 goto out_unlock;
4064
David Quigleye7834f82006-06-23 02:03:59 -07004065 retval = security_task_getscheduler(p);
4066 if (retval)
4067 goto out_unlock;
4068
Jack Steiner2f7016d2006-02-01 03:05:18 -08004069 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004070
4071out_unlock:
4072 read_unlock(&tasklist_lock);
4073 unlock_cpu_hotplug();
4074 if (retval)
4075 return retval;
4076
4077 return 0;
4078}
4079
4080/**
4081 * sys_sched_getaffinity - get the cpu affinity of a process
4082 * @pid: pid of the process
4083 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4084 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4085 */
4086asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4087 unsigned long __user *user_mask_ptr)
4088{
4089 int ret;
4090 cpumask_t mask;
4091
4092 if (len < sizeof(cpumask_t))
4093 return -EINVAL;
4094
4095 ret = sched_getaffinity(pid, &mask);
4096 if (ret < 0)
4097 return ret;
4098
4099 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4100 return -EFAULT;
4101
4102 return sizeof(cpumask_t);
4103}
4104
4105/**
4106 * sys_sched_yield - yield the current processor to other threads.
4107 *
4108 * this function yields the current CPU by moving the calling thread
4109 * to the expired array. If there are no other threads running on this
4110 * CPU then this function will return.
4111 */
4112asmlinkage long sys_sched_yield(void)
4113{
4114 runqueue_t *rq = this_rq_lock();
4115 prio_array_t *array = current->array;
4116 prio_array_t *target = rq->expired;
4117
4118 schedstat_inc(rq, yld_cnt);
4119 /*
4120 * We implement yielding by moving the task into the expired
4121 * queue.
4122 *
4123 * (special rule: RT tasks will just roundrobin in the active
4124 * array.)
4125 */
4126 if (rt_task(current))
4127 target = rq->active;
4128
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004129 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004130 schedstat_inc(rq, yld_act_empty);
4131 if (!rq->expired->nr_active)
4132 schedstat_inc(rq, yld_both_empty);
4133 } else if (!rq->expired->nr_active)
4134 schedstat_inc(rq, yld_exp_empty);
4135
4136 if (array != target) {
4137 dequeue_task(current, array);
4138 enqueue_task(current, target);
4139 } else
4140 /*
4141 * requeue_task is cheaper so perform that if possible.
4142 */
4143 requeue_task(current, array);
4144
4145 /*
4146 * Since we are going to call schedule() anyway, there's
4147 * no need to preempt or enable interrupts:
4148 */
4149 __release(rq->lock);
4150 _raw_spin_unlock(&rq->lock);
4151 preempt_enable_no_resched();
4152
4153 schedule();
4154
4155 return 0;
4156}
4157
4158static inline void __cond_resched(void)
4159{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004160#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4161 __might_sleep(__FILE__, __LINE__);
4162#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004163 /*
4164 * The BKS might be reacquired before we have dropped
4165 * PREEMPT_ACTIVE, which could trigger a second
4166 * cond_resched() call.
4167 */
4168 if (unlikely(preempt_count()))
4169 return;
Linus Torvalds8ba7b0a2006-03-06 17:38:49 -08004170 if (unlikely(system_state != SYSTEM_RUNNING))
4171 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004172 do {
4173 add_preempt_count(PREEMPT_ACTIVE);
4174 schedule();
4175 sub_preempt_count(PREEMPT_ACTIVE);
4176 } while (need_resched());
4177}
4178
4179int __sched cond_resched(void)
4180{
4181 if (need_resched()) {
4182 __cond_resched();
4183 return 1;
4184 }
4185 return 0;
4186}
4187
4188EXPORT_SYMBOL(cond_resched);
4189
4190/*
4191 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4192 * call schedule, and on return reacquire the lock.
4193 *
4194 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4195 * operations here to prevent schedule() from being called twice (once via
4196 * spin_unlock(), once by hand).
4197 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004198int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004199{
Jan Kara6df3cec2005-06-13 15:52:32 -07004200 int ret = 0;
4201
Linus Torvalds1da177e2005-04-16 15:20:36 -07004202 if (need_lockbreak(lock)) {
4203 spin_unlock(lock);
4204 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004205 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004206 spin_lock(lock);
4207 }
4208 if (need_resched()) {
4209 _raw_spin_unlock(lock);
4210 preempt_enable_no_resched();
4211 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004212 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004213 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004214 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004215 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004216}
4217
4218EXPORT_SYMBOL(cond_resched_lock);
4219
4220int __sched cond_resched_softirq(void)
4221{
4222 BUG_ON(!in_softirq());
4223
4224 if (need_resched()) {
4225 __local_bh_enable();
4226 __cond_resched();
4227 local_bh_disable();
4228 return 1;
4229 }
4230 return 0;
4231}
4232
4233EXPORT_SYMBOL(cond_resched_softirq);
4234
4235
4236/**
4237 * yield - yield the current processor to other threads.
4238 *
4239 * this is a shortcut for kernel-space yielding - it marks the
4240 * thread runnable and calls sys_sched_yield().
4241 */
4242void __sched yield(void)
4243{
4244 set_current_state(TASK_RUNNING);
4245 sys_sched_yield();
4246}
4247
4248EXPORT_SYMBOL(yield);
4249
4250/*
4251 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4252 * that process accounting knows that this is a task in IO wait state.
4253 *
4254 * But don't do that if it is a deliberate, throttling IO wait (this task
4255 * has set its backing_dev_info: the queue against which it should throttle)
4256 */
4257void __sched io_schedule(void)
4258{
Paul Mackerrasbfe5d832006-06-25 05:47:14 -07004259 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004260
4261 atomic_inc(&rq->nr_iowait);
4262 schedule();
4263 atomic_dec(&rq->nr_iowait);
4264}
4265
4266EXPORT_SYMBOL(io_schedule);
4267
4268long __sched io_schedule_timeout(long timeout)
4269{
Paul Mackerrasbfe5d832006-06-25 05:47:14 -07004270 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004271 long ret;
4272
4273 atomic_inc(&rq->nr_iowait);
4274 ret = schedule_timeout(timeout);
4275 atomic_dec(&rq->nr_iowait);
4276 return ret;
4277}
4278
4279/**
4280 * sys_sched_get_priority_max - return maximum RT priority.
4281 * @policy: scheduling class.
4282 *
4283 * this syscall returns the maximum rt_priority that can be used
4284 * by a given scheduling class.
4285 */
4286asmlinkage long sys_sched_get_priority_max(int policy)
4287{
4288 int ret = -EINVAL;
4289
4290 switch (policy) {
4291 case SCHED_FIFO:
4292 case SCHED_RR:
4293 ret = MAX_USER_RT_PRIO-1;
4294 break;
4295 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004296 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004297 ret = 0;
4298 break;
4299 }
4300 return ret;
4301}
4302
4303/**
4304 * sys_sched_get_priority_min - return minimum RT priority.
4305 * @policy: scheduling class.
4306 *
4307 * this syscall returns the minimum rt_priority that can be used
4308 * by a given scheduling class.
4309 */
4310asmlinkage long sys_sched_get_priority_min(int policy)
4311{
4312 int ret = -EINVAL;
4313
4314 switch (policy) {
4315 case SCHED_FIFO:
4316 case SCHED_RR:
4317 ret = 1;
4318 break;
4319 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004320 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004321 ret = 0;
4322 }
4323 return ret;
4324}
4325
4326/**
4327 * sys_sched_rr_get_interval - return the default timeslice of a process.
4328 * @pid: pid of the process.
4329 * @interval: userspace pointer to the timeslice value.
4330 *
4331 * this syscall writes the default timeslice value of a given process
4332 * into the user-space timespec buffer. A value of '0' means infinity.
4333 */
4334asmlinkage
4335long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4336{
4337 int retval = -EINVAL;
4338 struct timespec t;
4339 task_t *p;
4340
4341 if (pid < 0)
4342 goto out_nounlock;
4343
4344 retval = -ESRCH;
4345 read_lock(&tasklist_lock);
4346 p = find_process_by_pid(pid);
4347 if (!p)
4348 goto out_unlock;
4349
4350 retval = security_task_getscheduler(p);
4351 if (retval)
4352 goto out_unlock;
4353
Peter Williamsb78709c2006-06-26 16:58:00 +10004354 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004355 0 : task_timeslice(p), &t);
4356 read_unlock(&tasklist_lock);
4357 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4358out_nounlock:
4359 return retval;
4360out_unlock:
4361 read_unlock(&tasklist_lock);
4362 return retval;
4363}
4364
4365static inline struct task_struct *eldest_child(struct task_struct *p)
4366{
4367 if (list_empty(&p->children)) return NULL;
4368 return list_entry(p->children.next,struct task_struct,sibling);
4369}
4370
4371static inline struct task_struct *older_sibling(struct task_struct *p)
4372{
4373 if (p->sibling.prev==&p->parent->children) return NULL;
4374 return list_entry(p->sibling.prev,struct task_struct,sibling);
4375}
4376
4377static inline struct task_struct *younger_sibling(struct task_struct *p)
4378{
4379 if (p->sibling.next==&p->parent->children) return NULL;
4380 return list_entry(p->sibling.next,struct task_struct,sibling);
4381}
4382
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004383static void show_task(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004384{
4385 task_t *relative;
4386 unsigned state;
4387 unsigned long free = 0;
4388 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4389
4390 printk("%-13.13s ", p->comm);
4391 state = p->state ? __ffs(p->state) + 1 : 0;
4392 if (state < ARRAY_SIZE(stat_nam))
4393 printk(stat_nam[state]);
4394 else
4395 printk("?");
4396#if (BITS_PER_LONG == 32)
4397 if (state == TASK_RUNNING)
4398 printk(" running ");
4399 else
4400 printk(" %08lX ", thread_saved_pc(p));
4401#else
4402 if (state == TASK_RUNNING)
4403 printk(" running task ");
4404 else
4405 printk(" %016lx ", thread_saved_pc(p));
4406#endif
4407#ifdef CONFIG_DEBUG_STACK_USAGE
4408 {
Al Viro10ebffd2005-11-13 16:06:56 -08004409 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004410 while (!*n)
4411 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004412 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004413 }
4414#endif
4415 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4416 if ((relative = eldest_child(p)))
4417 printk("%5d ", relative->pid);
4418 else
4419 printk(" ");
4420 if ((relative = younger_sibling(p)))
4421 printk("%7d", relative->pid);
4422 else
4423 printk(" ");
4424 if ((relative = older_sibling(p)))
4425 printk(" %5d", relative->pid);
4426 else
4427 printk(" ");
4428 if (!p->mm)
4429 printk(" (L-TLB)\n");
4430 else
4431 printk(" (NOTLB)\n");
4432
4433 if (state != TASK_RUNNING)
4434 show_stack(p, NULL);
4435}
4436
4437void show_state(void)
4438{
4439 task_t *g, *p;
4440
4441#if (BITS_PER_LONG == 32)
4442 printk("\n"
4443 " sibling\n");
4444 printk(" task PC pid father child younger older\n");
4445#else
4446 printk("\n"
4447 " sibling\n");
4448 printk(" task PC pid father child younger older\n");
4449#endif
4450 read_lock(&tasklist_lock);
4451 do_each_thread(g, p) {
4452 /*
4453 * reset the NMI-timeout, listing all files on a slow
4454 * console might take alot of time:
4455 */
4456 touch_nmi_watchdog();
4457 show_task(p);
4458 } while_each_thread(g, p);
4459
4460 read_unlock(&tasklist_lock);
Ingo Molnarde5097c2006-01-09 15:59:21 -08004461 mutex_debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004462}
4463
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004464/**
4465 * init_idle - set up an idle thread for a given CPU
4466 * @idle: task in question
4467 * @cpu: cpu the idle task belongs to
4468 *
4469 * NOTE: this function does not set the idle thread's NEED_RESCHED
4470 * flag, to make booting more robust.
4471 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004472void __devinit init_idle(task_t *idle, int cpu)
4473{
4474 runqueue_t *rq = cpu_rq(cpu);
4475 unsigned long flags;
4476
Ingo Molnar81c29a82006-03-07 21:55:27 -08004477 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004478 idle->sleep_avg = 0;
4479 idle->array = NULL;
4480 idle->prio = MAX_PRIO;
4481 idle->state = TASK_RUNNING;
4482 idle->cpus_allowed = cpumask_of_cpu(cpu);
4483 set_task_cpu(idle, cpu);
4484
4485 spin_lock_irqsave(&rq->lock, flags);
4486 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004487#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4488 idle->oncpu = 1;
4489#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004490 spin_unlock_irqrestore(&rq->lock, flags);
4491
4492 /* Set the preempt count _outside_ the spinlocks! */
4493#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004494 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004495#else
Al Viroa1261f52005-11-13 16:06:55 -08004496 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004497#endif
4498}
4499
4500/*
4501 * In a system that switches off the HZ timer nohz_cpu_mask
4502 * indicates which cpus entered this state. This is used
4503 * in the rcu update to wait only for active cpus. For system
4504 * which do not switch off the HZ timer nohz_cpu_mask should
4505 * always be CPU_MASK_NONE.
4506 */
4507cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4508
4509#ifdef CONFIG_SMP
4510/*
4511 * This is how migration works:
4512 *
4513 * 1) we queue a migration_req_t structure in the source CPU's
4514 * runqueue and wake up that CPU's migration thread.
4515 * 2) we down() the locked semaphore => thread blocks.
4516 * 3) migration thread wakes up (implicitly it forces the migrated
4517 * thread off the CPU)
4518 * 4) it gets the migration request and checks whether the migrated
4519 * task is still in the wrong runqueue.
4520 * 5) if it's in the wrong runqueue then the migration thread removes
4521 * it and puts it into the right queue.
4522 * 6) migration thread up()s the semaphore.
4523 * 7) we wake up and the migration is done.
4524 */
4525
4526/*
4527 * Change a given task's CPU affinity. Migrate the thread to a
4528 * proper CPU and schedule it away if the CPU it's executing on
4529 * is removed from the allowed bitmask.
4530 *
4531 * NOTE: the caller must have a valid reference to the task, the
4532 * task must not exit() & deallocate itself prematurely. The
4533 * call is not atomic; no spinlocks may be held.
4534 */
4535int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4536{
4537 unsigned long flags;
4538 int ret = 0;
4539 migration_req_t req;
4540 runqueue_t *rq;
4541
4542 rq = task_rq_lock(p, &flags);
4543 if (!cpus_intersects(new_mask, cpu_online_map)) {
4544 ret = -EINVAL;
4545 goto out;
4546 }
4547
4548 p->cpus_allowed = new_mask;
4549 /* Can the task run on the task's current CPU? If so, we're done */
4550 if (cpu_isset(task_cpu(p), new_mask))
4551 goto out;
4552
4553 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4554 /* Need help from migration thread: drop lock and wait. */
4555 task_rq_unlock(rq, &flags);
4556 wake_up_process(rq->migration_thread);
4557 wait_for_completion(&req.done);
4558 tlb_migrate_finish(p->mm);
4559 return 0;
4560 }
4561out:
4562 task_rq_unlock(rq, &flags);
4563 return ret;
4564}
4565
4566EXPORT_SYMBOL_GPL(set_cpus_allowed);
4567
4568/*
4569 * Move (not current) task off this cpu, onto dest cpu. We're doing
4570 * this because either it can't run here any more (set_cpus_allowed()
4571 * away from this CPU, or CPU going down), or because we're
4572 * attempting to rebalance this task on exec (sched_exec).
4573 *
4574 * So we race with normal scheduler movements, but that's OK, as long
4575 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07004576 *
4577 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004578 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07004579static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004580{
4581 runqueue_t *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07004582 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004583
4584 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07004585 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004586
4587 rq_src = cpu_rq(src_cpu);
4588 rq_dest = cpu_rq(dest_cpu);
4589
4590 double_rq_lock(rq_src, rq_dest);
4591 /* Already moved. */
4592 if (task_cpu(p) != src_cpu)
4593 goto out;
4594 /* Affinity changed (again). */
4595 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4596 goto out;
4597
4598 set_task_cpu(p, dest_cpu);
4599 if (p->array) {
4600 /*
4601 * Sync timestamp with rq_dest's before activating.
4602 * The same thing could be achieved by doing this step
4603 * afterwards, and pretending it was a local activate.
4604 * This way is cleaner and logically correct.
4605 */
4606 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4607 + rq_dest->timestamp_last_tick;
4608 deactivate_task(p, rq_src);
4609 activate_task(p, rq_dest, 0);
4610 if (TASK_PREEMPTS_CURR(p, rq_dest))
4611 resched_task(rq_dest->curr);
4612 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07004613 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004614out:
4615 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07004616 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004617}
4618
4619/*
4620 * migration_thread - this is a highprio system thread that performs
4621 * thread migration by bumping thread off CPU then 'pushing' onto
4622 * another runqueue.
4623 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004624static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004625{
4626 runqueue_t *rq;
4627 int cpu = (long)data;
4628
4629 rq = cpu_rq(cpu);
4630 BUG_ON(rq->migration_thread != current);
4631
4632 set_current_state(TASK_INTERRUPTIBLE);
4633 while (!kthread_should_stop()) {
4634 struct list_head *head;
4635 migration_req_t *req;
4636
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07004637 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004638
4639 spin_lock_irq(&rq->lock);
4640
4641 if (cpu_is_offline(cpu)) {
4642 spin_unlock_irq(&rq->lock);
4643 goto wait_to_die;
4644 }
4645
4646 if (rq->active_balance) {
4647 active_load_balance(rq, cpu);
4648 rq->active_balance = 0;
4649 }
4650
4651 head = &rq->migration_queue;
4652
4653 if (list_empty(head)) {
4654 spin_unlock_irq(&rq->lock);
4655 schedule();
4656 set_current_state(TASK_INTERRUPTIBLE);
4657 continue;
4658 }
4659 req = list_entry(head->next, migration_req_t, list);
4660 list_del_init(head->next);
4661
Nick Piggin674311d2005-06-25 14:57:27 -07004662 spin_unlock(&rq->lock);
4663 __migrate_task(req->task, cpu, req->dest_cpu);
4664 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004665
4666 complete(&req->done);
4667 }
4668 __set_current_state(TASK_RUNNING);
4669 return 0;
4670
4671wait_to_die:
4672 /* Wait for kthread_stop */
4673 set_current_state(TASK_INTERRUPTIBLE);
4674 while (!kthread_should_stop()) {
4675 schedule();
4676 set_current_state(TASK_INTERRUPTIBLE);
4677 }
4678 __set_current_state(TASK_RUNNING);
4679 return 0;
4680}
4681
4682#ifdef CONFIG_HOTPLUG_CPU
4683/* Figure out where task on dead CPU should go, use force if neccessary. */
4684static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4685{
Kirill Korotaevefc30812006-06-27 02:54:32 -07004686 runqueue_t *rq;
4687 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004688 int dest_cpu;
4689 cpumask_t mask;
4690
Kirill Korotaevefc30812006-06-27 02:54:32 -07004691restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004692 /* On same node? */
4693 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4694 cpus_and(mask, mask, tsk->cpus_allowed);
4695 dest_cpu = any_online_cpu(mask);
4696
4697 /* On any allowed CPU? */
4698 if (dest_cpu == NR_CPUS)
4699 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4700
4701 /* No more Mr. Nice Guy. */
4702 if (dest_cpu == NR_CPUS) {
Kirill Korotaevefc30812006-06-27 02:54:32 -07004703 rq = task_rq_lock(tsk, &flags);
Paul Jacksonb39c4fa2005-05-20 13:59:15 -07004704 cpus_setall(tsk->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004705 dest_cpu = any_online_cpu(tsk->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07004706 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004707
4708 /*
4709 * Don't tell them about moving exiting tasks or
4710 * kernel threads (both mm NULL), since they never
4711 * leave kernel.
4712 */
4713 if (tsk->mm && printk_ratelimit())
4714 printk(KERN_INFO "process %d (%s) no "
4715 "longer affine to cpu%d\n",
4716 tsk->pid, tsk->comm, dead_cpu);
4717 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07004718 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4719 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004720}
4721
4722/*
4723 * While a dead CPU has no uninterruptible tasks queued at this point,
4724 * it might still have a nonzero ->nr_uninterruptible counter, because
4725 * for performance reasons the counter is not stricly tracking tasks to
4726 * their home CPUs. So we just add the counter to another CPU's counter,
4727 * to keep the global sum constant after CPU-down:
4728 */
4729static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4730{
4731 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4732 unsigned long flags;
4733
4734 local_irq_save(flags);
4735 double_rq_lock(rq_src, rq_dest);
4736 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4737 rq_src->nr_uninterruptible = 0;
4738 double_rq_unlock(rq_src, rq_dest);
4739 local_irq_restore(flags);
4740}
4741
4742/* Run through task list and migrate tasks from the dead cpu. */
4743static void migrate_live_tasks(int src_cpu)
4744{
4745 struct task_struct *tsk, *t;
4746
4747 write_lock_irq(&tasklist_lock);
4748
4749 do_each_thread(t, tsk) {
4750 if (tsk == current)
4751 continue;
4752
4753 if (task_cpu(tsk) == src_cpu)
4754 move_task_off_dead_cpu(src_cpu, tsk);
4755 } while_each_thread(t, tsk);
4756
4757 write_unlock_irq(&tasklist_lock);
4758}
4759
4760/* Schedules idle task to be the next runnable task on current CPU.
4761 * It does so by boosting its priority to highest possible and adding it to
4762 * the _front_ of runqueue. Used by CPU offline code.
4763 */
4764void sched_idle_next(void)
4765{
4766 int cpu = smp_processor_id();
4767 runqueue_t *rq = this_rq();
4768 struct task_struct *p = rq->idle;
4769 unsigned long flags;
4770
4771 /* cpu has to be offline */
4772 BUG_ON(cpu_online(cpu));
4773
4774 /* Strictly not necessary since rest of the CPUs are stopped by now
4775 * and interrupts disabled on current cpu.
4776 */
4777 spin_lock_irqsave(&rq->lock, flags);
4778
4779 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4780 /* Add idle task to _front_ of it's priority queue */
4781 __activate_idle_task(p, rq);
4782
4783 spin_unlock_irqrestore(&rq->lock, flags);
4784}
4785
4786/* Ensures that the idle task is using init_mm right before its cpu goes
4787 * offline.
4788 */
4789void idle_task_exit(void)
4790{
4791 struct mm_struct *mm = current->active_mm;
4792
4793 BUG_ON(cpu_online(smp_processor_id()));
4794
4795 if (mm != &init_mm)
4796 switch_mm(mm, &init_mm, current);
4797 mmdrop(mm);
4798}
4799
4800static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4801{
4802 struct runqueue *rq = cpu_rq(dead_cpu);
4803
4804 /* Must be exiting, otherwise would be on tasklist. */
4805 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4806
4807 /* Cannot have done final schedule yet: would have vanished. */
4808 BUG_ON(tsk->flags & PF_DEAD);
4809
4810 get_task_struct(tsk);
4811
4812 /*
4813 * Drop lock around migration; if someone else moves it,
4814 * that's OK. No task can be added to this CPU, so iteration is
4815 * fine.
4816 */
4817 spin_unlock_irq(&rq->lock);
4818 move_task_off_dead_cpu(dead_cpu, tsk);
4819 spin_lock_irq(&rq->lock);
4820
4821 put_task_struct(tsk);
4822}
4823
4824/* release_task() removes task from tasklist, so we won't find dead tasks. */
4825static void migrate_dead_tasks(unsigned int dead_cpu)
4826{
4827 unsigned arr, i;
4828 struct runqueue *rq = cpu_rq(dead_cpu);
4829
4830 for (arr = 0; arr < 2; arr++) {
4831 for (i = 0; i < MAX_PRIO; i++) {
4832 struct list_head *list = &rq->arrays[arr].queue[i];
4833 while (!list_empty(list))
4834 migrate_dead(dead_cpu,
4835 list_entry(list->next, task_t,
4836 run_list));
4837 }
4838 }
4839}
4840#endif /* CONFIG_HOTPLUG_CPU */
4841
4842/*
4843 * migration_call - callback that gets triggered when a CPU is added.
4844 * Here we can start up the necessary migration thread for the new CPU.
4845 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07004846static int __cpuinit migration_call(struct notifier_block *nfb,
4847 unsigned long action,
4848 void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004849{
4850 int cpu = (long)hcpu;
4851 struct task_struct *p;
4852 struct runqueue *rq;
4853 unsigned long flags;
4854
4855 switch (action) {
4856 case CPU_UP_PREPARE:
4857 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4858 if (IS_ERR(p))
4859 return NOTIFY_BAD;
4860 p->flags |= PF_NOFREEZE;
4861 kthread_bind(p, cpu);
4862 /* Must be high prio: stop_machine expects to yield to it. */
4863 rq = task_rq_lock(p, &flags);
4864 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4865 task_rq_unlock(rq, &flags);
4866 cpu_rq(cpu)->migration_thread = p;
4867 break;
4868 case CPU_ONLINE:
4869 /* Strictly unneccessary, as first user will wake it. */
4870 wake_up_process(cpu_rq(cpu)->migration_thread);
4871 break;
4872#ifdef CONFIG_HOTPLUG_CPU
4873 case CPU_UP_CANCELED:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07004874 if (!cpu_rq(cpu)->migration_thread)
4875 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004876 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08004877 kthread_bind(cpu_rq(cpu)->migration_thread,
4878 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004879 kthread_stop(cpu_rq(cpu)->migration_thread);
4880 cpu_rq(cpu)->migration_thread = NULL;
4881 break;
4882 case CPU_DEAD:
4883 migrate_live_tasks(cpu);
4884 rq = cpu_rq(cpu);
4885 kthread_stop(rq->migration_thread);
4886 rq->migration_thread = NULL;
4887 /* Idle task back to normal (off runqueue, low prio) */
4888 rq = task_rq_lock(rq->idle, &flags);
4889 deactivate_task(rq->idle, rq);
4890 rq->idle->static_prio = MAX_PRIO;
4891 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4892 migrate_dead_tasks(cpu);
4893 task_rq_unlock(rq, &flags);
4894 migrate_nr_uninterruptible(rq);
4895 BUG_ON(rq->nr_running != 0);
4896
4897 /* No need to migrate the tasks: it was best-effort if
4898 * they didn't do lock_cpu_hotplug(). Just wake up
4899 * the requestors. */
4900 spin_lock_irq(&rq->lock);
4901 while (!list_empty(&rq->migration_queue)) {
4902 migration_req_t *req;
4903 req = list_entry(rq->migration_queue.next,
4904 migration_req_t, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004905 list_del_init(&req->list);
4906 complete(&req->done);
4907 }
4908 spin_unlock_irq(&rq->lock);
4909 break;
4910#endif
4911 }
4912 return NOTIFY_OK;
4913}
4914
4915/* Register at highest priority so that task migration (migrate_all_tasks)
4916 * happens before everything else.
4917 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07004918static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004919 .notifier_call = migration_call,
4920 .priority = 10
4921};
4922
4923int __init migration_init(void)
4924{
4925 void *cpu = (void *)(long)smp_processor_id();
4926 /* Start one for boot CPU. */
4927 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4928 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4929 register_cpu_notifier(&migration_notifier);
4930 return 0;
4931}
4932#endif
4933
4934#ifdef CONFIG_SMP
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004935#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07004936#ifdef SCHED_DOMAIN_DEBUG
4937static void sched_domain_debug(struct sched_domain *sd, int cpu)
4938{
4939 int level = 0;
4940
Nick Piggin41c7ce92005-06-25 14:57:24 -07004941 if (!sd) {
4942 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4943 return;
4944 }
4945
Linus Torvalds1da177e2005-04-16 15:20:36 -07004946 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4947
4948 do {
4949 int i;
4950 char str[NR_CPUS];
4951 struct sched_group *group = sd->groups;
4952 cpumask_t groupmask;
4953
4954 cpumask_scnprintf(str, NR_CPUS, sd->span);
4955 cpus_clear(groupmask);
4956
4957 printk(KERN_DEBUG);
4958 for (i = 0; i < level + 1; i++)
4959 printk(" ");
4960 printk("domain %d: ", level);
4961
4962 if (!(sd->flags & SD_LOAD_BALANCE)) {
4963 printk("does not load-balance\n");
4964 if (sd->parent)
4965 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4966 break;
4967 }
4968
4969 printk("span %s\n", str);
4970
4971 if (!cpu_isset(cpu, sd->span))
4972 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4973 if (!cpu_isset(cpu, group->cpumask))
4974 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4975
4976 printk(KERN_DEBUG);
4977 for (i = 0; i < level + 2; i++)
4978 printk(" ");
4979 printk("groups:");
4980 do {
4981 if (!group) {
4982 printk("\n");
4983 printk(KERN_ERR "ERROR: group is NULL\n");
4984 break;
4985 }
4986
4987 if (!group->cpu_power) {
4988 printk("\n");
4989 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4990 }
4991
4992 if (!cpus_weight(group->cpumask)) {
4993 printk("\n");
4994 printk(KERN_ERR "ERROR: empty group\n");
4995 }
4996
4997 if (cpus_intersects(groupmask, group->cpumask)) {
4998 printk("\n");
4999 printk(KERN_ERR "ERROR: repeated CPUs\n");
5000 }
5001
5002 cpus_or(groupmask, groupmask, group->cpumask);
5003
5004 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5005 printk(" %s", str);
5006
5007 group = group->next;
5008 } while (group != sd->groups);
5009 printk("\n");
5010
5011 if (!cpus_equal(sd->span, groupmask))
5012 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5013
5014 level++;
5015 sd = sd->parent;
5016
5017 if (sd) {
5018 if (!cpus_subset(groupmask, sd->span))
5019 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5020 }
5021
5022 } while (sd);
5023}
5024#else
5025#define sched_domain_debug(sd, cpu) {}
5026#endif
5027
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005028static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005029{
5030 if (cpus_weight(sd->span) == 1)
5031 return 1;
5032
5033 /* Following flags need at least 2 groups */
5034 if (sd->flags & (SD_LOAD_BALANCE |
5035 SD_BALANCE_NEWIDLE |
5036 SD_BALANCE_FORK |
5037 SD_BALANCE_EXEC)) {
5038 if (sd->groups != sd->groups->next)
5039 return 0;
5040 }
5041
5042 /* Following flags don't use groups */
5043 if (sd->flags & (SD_WAKE_IDLE |
5044 SD_WAKE_AFFINE |
5045 SD_WAKE_BALANCE))
5046 return 0;
5047
5048 return 1;
5049}
5050
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005051static int sd_parent_degenerate(struct sched_domain *sd,
Suresh Siddha245af2c2005-06-25 14:57:25 -07005052 struct sched_domain *parent)
5053{
5054 unsigned long cflags = sd->flags, pflags = parent->flags;
5055
5056 if (sd_degenerate(parent))
5057 return 1;
5058
5059 if (!cpus_equal(sd->span, parent->span))
5060 return 0;
5061
5062 /* Does parent contain flags not in child? */
5063 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5064 if (cflags & SD_WAKE_AFFINE)
5065 pflags &= ~SD_WAKE_BALANCE;
5066 /* Flags needing groups don't count if only 1 group in parent */
5067 if (parent->groups == parent->groups->next) {
5068 pflags &= ~(SD_LOAD_BALANCE |
5069 SD_BALANCE_NEWIDLE |
5070 SD_BALANCE_FORK |
5071 SD_BALANCE_EXEC);
5072 }
5073 if (~cflags & pflags)
5074 return 0;
5075
5076 return 1;
5077}
5078
Linus Torvalds1da177e2005-04-16 15:20:36 -07005079/*
5080 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5081 * hold the hotplug lock.
5082 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005083static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005084{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005085 runqueue_t *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005086 struct sched_domain *tmp;
5087
5088 /* Remove the sched domains which do not contribute to scheduling. */
5089 for (tmp = sd; tmp; tmp = tmp->parent) {
5090 struct sched_domain *parent = tmp->parent;
5091 if (!parent)
5092 break;
5093 if (sd_parent_degenerate(tmp, parent))
5094 tmp->parent = parent->parent;
5095 }
5096
5097 if (sd && sd_degenerate(sd))
5098 sd = sd->parent;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005099
5100 sched_domain_debug(sd, cpu);
5101
Nick Piggin674311d2005-06-25 14:57:27 -07005102 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005103}
5104
5105/* cpus with isolated domains */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005106static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005107
5108/* Setup the mask of cpus configured for isolated domains */
5109static int __init isolated_cpu_setup(char *str)
5110{
5111 int ints[NR_CPUS], i;
5112
5113 str = get_options(str, ARRAY_SIZE(ints), ints);
5114 cpus_clear(cpu_isolated_map);
5115 for (i = 1; i <= ints[0]; i++)
5116 if (ints[i] < NR_CPUS)
5117 cpu_set(ints[i], cpu_isolated_map);
5118 return 1;
5119}
5120
5121__setup ("isolcpus=", isolated_cpu_setup);
5122
5123/*
5124 * init_sched_build_groups takes an array of groups, the cpumask we wish
5125 * to span, and a pointer to a function which identifies what group a CPU
5126 * belongs to. The return value of group_fn must be a valid index into the
5127 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5128 * keep track of groups covered with a cpumask_t).
5129 *
5130 * init_sched_build_groups will build a circular linked list of the groups
5131 * covered by the given span, and will set each group's ->cpumask correctly,
5132 * and ->cpu_power to 0.
5133 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005134static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5135 int (*group_fn)(int cpu))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005136{
5137 struct sched_group *first = NULL, *last = NULL;
5138 cpumask_t covered = CPU_MASK_NONE;
5139 int i;
5140
5141 for_each_cpu_mask(i, span) {
5142 int group = group_fn(i);
5143 struct sched_group *sg = &groups[group];
5144 int j;
5145
5146 if (cpu_isset(i, covered))
5147 continue;
5148
5149 sg->cpumask = CPU_MASK_NONE;
5150 sg->cpu_power = 0;
5151
5152 for_each_cpu_mask(j, span) {
5153 if (group_fn(j) != group)
5154 continue;
5155
5156 cpu_set(j, covered);
5157 cpu_set(j, sg->cpumask);
5158 }
5159 if (!first)
5160 first = sg;
5161 if (last)
5162 last->next = sg;
5163 last = sg;
5164 }
5165 last->next = first;
5166}
5167
John Hawkes9c1cfda2005-09-06 15:18:14 -07005168#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005169
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005170/*
5171 * Self-tuning task migration cost measurement between source and target CPUs.
5172 *
5173 * This is done by measuring the cost of manipulating buffers of varying
5174 * sizes. For a given buffer-size here are the steps that are taken:
5175 *
5176 * 1) the source CPU reads+dirties a shared buffer
5177 * 2) the target CPU reads+dirties the same shared buffer
5178 *
5179 * We measure how long they take, in the following 4 scenarios:
5180 *
5181 * - source: CPU1, target: CPU2 | cost1
5182 * - source: CPU2, target: CPU1 | cost2
5183 * - source: CPU1, target: CPU1 | cost3
5184 * - source: CPU2, target: CPU2 | cost4
5185 *
5186 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5187 * the cost of migration.
5188 *
5189 * We then start off from a small buffer-size and iterate up to larger
5190 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5191 * doing a maximum search for the cost. (The maximum cost for a migration
5192 * normally occurs when the working set size is around the effective cache
5193 * size.)
5194 */
5195#define SEARCH_SCOPE 2
5196#define MIN_CACHE_SIZE (64*1024U)
5197#define DEFAULT_CACHE_SIZE (5*1024*1024U)
Ingo Molnar70b4d632006-01-30 20:24:38 +01005198#define ITERATIONS 1
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005199#define SIZE_THRESH 130
5200#define COST_THRESH 130
5201
5202/*
5203 * The migration cost is a function of 'domain distance'. Domain
5204 * distance is the number of steps a CPU has to iterate down its
5205 * domain tree to share a domain with the other CPU. The farther
5206 * two CPUs are from each other, the larger the distance gets.
5207 *
5208 * Note that we use the distance only to cache measurement results,
5209 * the distance value is not used numerically otherwise. When two
5210 * CPUs have the same distance it is assumed that the migration
5211 * cost is the same. (this is a simplification but quite practical)
5212 */
5213#define MAX_DOMAIN_DISTANCE 32
5214
5215static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
Ingo Molnar4bbf39c2006-02-17 13:52:44 -08005216 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5217/*
5218 * Architectures may override the migration cost and thus avoid
5219 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5220 * virtualized hardware:
5221 */
5222#ifdef CONFIG_DEFAULT_MIGRATION_COST
5223 CONFIG_DEFAULT_MIGRATION_COST
5224#else
5225 -1LL
5226#endif
5227};
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005228
5229/*
5230 * Allow override of migration cost - in units of microseconds.
5231 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5232 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5233 */
5234static int __init migration_cost_setup(char *str)
5235{
5236 int ints[MAX_DOMAIN_DISTANCE+1], i;
5237
5238 str = get_options(str, ARRAY_SIZE(ints), ints);
5239
5240 printk("#ints: %d\n", ints[0]);
5241 for (i = 1; i <= ints[0]; i++) {
5242 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5243 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5244 }
5245 return 1;
5246}
5247
5248__setup ("migration_cost=", migration_cost_setup);
5249
5250/*
5251 * Global multiplier (divisor) for migration-cutoff values,
5252 * in percentiles. E.g. use a value of 150 to get 1.5 times
5253 * longer cache-hot cutoff times.
5254 *
5255 * (We scale it from 100 to 128 to long long handling easier.)
5256 */
5257
5258#define MIGRATION_FACTOR_SCALE 128
5259
5260static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5261
5262static int __init setup_migration_factor(char *str)
5263{
5264 get_option(&str, &migration_factor);
5265 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5266 return 1;
5267}
5268
5269__setup("migration_factor=", setup_migration_factor);
5270
5271/*
5272 * Estimated distance of two CPUs, measured via the number of domains
5273 * we have to pass for the two CPUs to be in the same span:
5274 */
5275static unsigned long domain_distance(int cpu1, int cpu2)
5276{
5277 unsigned long distance = 0;
5278 struct sched_domain *sd;
5279
5280 for_each_domain(cpu1, sd) {
5281 WARN_ON(!cpu_isset(cpu1, sd->span));
5282 if (cpu_isset(cpu2, sd->span))
5283 return distance;
5284 distance++;
5285 }
5286 if (distance >= MAX_DOMAIN_DISTANCE) {
5287 WARN_ON(1);
5288 distance = MAX_DOMAIN_DISTANCE-1;
5289 }
5290
5291 return distance;
5292}
5293
5294static unsigned int migration_debug;
5295
5296static int __init setup_migration_debug(char *str)
5297{
5298 get_option(&str, &migration_debug);
5299 return 1;
5300}
5301
5302__setup("migration_debug=", setup_migration_debug);
5303
5304/*
5305 * Maximum cache-size that the scheduler should try to measure.
5306 * Architectures with larger caches should tune this up during
5307 * bootup. Gets used in the domain-setup code (i.e. during SMP
5308 * bootup).
5309 */
5310unsigned int max_cache_size;
5311
5312static int __init setup_max_cache_size(char *str)
5313{
5314 get_option(&str, &max_cache_size);
5315 return 1;
5316}
5317
5318__setup("max_cache_size=", setup_max_cache_size);
5319
5320/*
5321 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5322 * is the operation that is timed, so we try to generate unpredictable
5323 * cachemisses that still end up filling the L2 cache:
5324 */
5325static void touch_cache(void *__cache, unsigned long __size)
5326{
5327 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5328 chunk2 = 2*size/3;
5329 unsigned long *cache = __cache;
5330 int i;
5331
5332 for (i = 0; i < size/6; i += 8) {
5333 switch (i % 6) {
5334 case 0: cache[i]++;
5335 case 1: cache[size-1-i]++;
5336 case 2: cache[chunk1-i]++;
5337 case 3: cache[chunk1+i]++;
5338 case 4: cache[chunk2-i]++;
5339 case 5: cache[chunk2+i]++;
5340 }
5341 }
5342}
5343
5344/*
5345 * Measure the cache-cost of one task migration. Returns in units of nsec.
5346 */
5347static unsigned long long measure_one(void *cache, unsigned long size,
5348 int source, int target)
5349{
5350 cpumask_t mask, saved_mask;
5351 unsigned long long t0, t1, t2, t3, cost;
5352
5353 saved_mask = current->cpus_allowed;
5354
5355 /*
5356 * Flush source caches to RAM and invalidate them:
5357 */
5358 sched_cacheflush();
5359
5360 /*
5361 * Migrate to the source CPU:
5362 */
5363 mask = cpumask_of_cpu(source);
5364 set_cpus_allowed(current, mask);
5365 WARN_ON(smp_processor_id() != source);
5366
5367 /*
5368 * Dirty the working set:
5369 */
5370 t0 = sched_clock();
5371 touch_cache(cache, size);
5372 t1 = sched_clock();
5373
5374 /*
5375 * Migrate to the target CPU, dirty the L2 cache and access
5376 * the shared buffer. (which represents the working set
5377 * of a migrated task.)
5378 */
5379 mask = cpumask_of_cpu(target);
5380 set_cpus_allowed(current, mask);
5381 WARN_ON(smp_processor_id() != target);
5382
5383 t2 = sched_clock();
5384 touch_cache(cache, size);
5385 t3 = sched_clock();
5386
5387 cost = t1-t0 + t3-t2;
5388
5389 if (migration_debug >= 2)
5390 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5391 source, target, t1-t0, t1-t0, t3-t2, cost);
5392 /*
5393 * Flush target caches to RAM and invalidate them:
5394 */
5395 sched_cacheflush();
5396
5397 set_cpus_allowed(current, saved_mask);
5398
5399 return cost;
5400}
5401
5402/*
5403 * Measure a series of task migrations and return the average
5404 * result. Since this code runs early during bootup the system
5405 * is 'undisturbed' and the average latency makes sense.
5406 *
5407 * The algorithm in essence auto-detects the relevant cache-size,
5408 * so it will properly detect different cachesizes for different
5409 * cache-hierarchies, depending on how the CPUs are connected.
5410 *
5411 * Architectures can prime the upper limit of the search range via
5412 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5413 */
5414static unsigned long long
5415measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5416{
5417 unsigned long long cost1, cost2;
5418 int i;
5419
5420 /*
5421 * Measure the migration cost of 'size' bytes, over an
5422 * average of 10 runs:
5423 *
5424 * (We perturb the cache size by a small (0..4k)
5425 * value to compensate size/alignment related artifacts.
5426 * We also subtract the cost of the operation done on
5427 * the same CPU.)
5428 */
5429 cost1 = 0;
5430
5431 /*
5432 * dry run, to make sure we start off cache-cold on cpu1,
5433 * and to get any vmalloc pagefaults in advance:
5434 */
5435 measure_one(cache, size, cpu1, cpu2);
5436 for (i = 0; i < ITERATIONS; i++)
5437 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5438
5439 measure_one(cache, size, cpu2, cpu1);
5440 for (i = 0; i < ITERATIONS; i++)
5441 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5442
5443 /*
5444 * (We measure the non-migrating [cached] cost on both
5445 * cpu1 and cpu2, to handle CPUs with different speeds)
5446 */
5447 cost2 = 0;
5448
5449 measure_one(cache, size, cpu1, cpu1);
5450 for (i = 0; i < ITERATIONS; i++)
5451 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5452
5453 measure_one(cache, size, cpu2, cpu2);
5454 for (i = 0; i < ITERATIONS; i++)
5455 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5456
5457 /*
5458 * Get the per-iteration migration cost:
5459 */
5460 do_div(cost1, 2*ITERATIONS);
5461 do_div(cost2, 2*ITERATIONS);
5462
5463 return cost1 - cost2;
5464}
5465
5466static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5467{
5468 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5469 unsigned int max_size, size, size_found = 0;
5470 long long cost = 0, prev_cost;
5471 void *cache;
5472
5473 /*
5474 * Search from max_cache_size*5 down to 64K - the real relevant
5475 * cachesize has to lie somewhere inbetween.
5476 */
5477 if (max_cache_size) {
5478 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5479 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5480 } else {
5481 /*
5482 * Since we have no estimation about the relevant
5483 * search range
5484 */
5485 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5486 size = MIN_CACHE_SIZE;
5487 }
5488
5489 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5490 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5491 return 0;
5492 }
5493
5494 /*
5495 * Allocate the working set:
5496 */
5497 cache = vmalloc(max_size);
5498 if (!cache) {
5499 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5500 return 1000000; // return 1 msec on very small boxen
5501 }
5502
5503 while (size <= max_size) {
5504 prev_cost = cost;
5505 cost = measure_cost(cpu1, cpu2, cache, size);
5506
5507 /*
5508 * Update the max:
5509 */
5510 if (cost > 0) {
5511 if (max_cost < cost) {
5512 max_cost = cost;
5513 size_found = size;
5514 }
5515 }
5516 /*
5517 * Calculate average fluctuation, we use this to prevent
5518 * noise from triggering an early break out of the loop:
5519 */
5520 fluct = abs(cost - prev_cost);
5521 avg_fluct = (avg_fluct + fluct)/2;
5522
5523 if (migration_debug)
5524 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5525 cpu1, cpu2, size,
5526 (long)cost / 1000000,
5527 ((long)cost / 100000) % 10,
5528 (long)max_cost / 1000000,
5529 ((long)max_cost / 100000) % 10,
5530 domain_distance(cpu1, cpu2),
5531 cost, avg_fluct);
5532
5533 /*
5534 * If we iterated at least 20% past the previous maximum,
5535 * and the cost has dropped by more than 20% already,
5536 * (taking fluctuations into account) then we assume to
5537 * have found the maximum and break out of the loop early:
5538 */
5539 if (size_found && (size*100 > size_found*SIZE_THRESH))
5540 if (cost+avg_fluct <= 0 ||
5541 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5542
5543 if (migration_debug)
5544 printk("-> found max.\n");
5545 break;
5546 }
5547 /*
Ingo Molnar70b4d632006-01-30 20:24:38 +01005548 * Increase the cachesize in 10% steps:
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005549 */
Ingo Molnar70b4d632006-01-30 20:24:38 +01005550 size = size * 10 / 9;
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005551 }
5552
5553 if (migration_debug)
5554 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5555 cpu1, cpu2, size_found, max_cost);
5556
5557 vfree(cache);
5558
5559 /*
5560 * A task is considered 'cache cold' if at least 2 times
5561 * the worst-case cost of migration has passed.
5562 *
5563 * (this limit is only listened to if the load-balancing
5564 * situation is 'nice' - if there is a large imbalance we
5565 * ignore it for the sake of CPU utilization and
5566 * processing fairness.)
5567 */
5568 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5569}
5570
5571static void calibrate_migration_costs(const cpumask_t *cpu_map)
5572{
5573 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5574 unsigned long j0, j1, distance, max_distance = 0;
5575 struct sched_domain *sd;
5576
5577 j0 = jiffies;
5578
5579 /*
5580 * First pass - calculate the cacheflush times:
5581 */
5582 for_each_cpu_mask(cpu1, *cpu_map) {
5583 for_each_cpu_mask(cpu2, *cpu_map) {
5584 if (cpu1 == cpu2)
5585 continue;
5586 distance = domain_distance(cpu1, cpu2);
5587 max_distance = max(max_distance, distance);
5588 /*
5589 * No result cached yet?
5590 */
5591 if (migration_cost[distance] == -1LL)
5592 migration_cost[distance] =
5593 measure_migration_cost(cpu1, cpu2);
5594 }
5595 }
5596 /*
5597 * Second pass - update the sched domain hierarchy with
5598 * the new cache-hot-time estimations:
5599 */
5600 for_each_cpu_mask(cpu, *cpu_map) {
5601 distance = 0;
5602 for_each_domain(cpu, sd) {
5603 sd->cache_hot_time = migration_cost[distance];
5604 distance++;
5605 }
5606 }
5607 /*
5608 * Print the matrix:
5609 */
5610 if (migration_debug)
5611 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5612 max_cache_size,
5613#ifdef CONFIG_X86
5614 cpu_khz/1000
5615#else
5616 -1
5617#endif
5618 );
Chuck Ebbertbd576c92006-02-04 23:27:42 -08005619 if (system_state == SYSTEM_BOOTING) {
5620 printk("migration_cost=");
5621 for (distance = 0; distance <= max_distance; distance++) {
5622 if (distance)
5623 printk(",");
5624 printk("%ld", (long)migration_cost[distance] / 1000);
5625 }
5626 printk("\n");
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005627 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005628 j1 = jiffies;
5629 if (migration_debug)
5630 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5631
5632 /*
5633 * Move back to the original CPU. NUMA-Q gets confused
5634 * if we migrate to another quad during bootup.
5635 */
5636 if (raw_smp_processor_id() != orig_cpu) {
5637 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5638 saved_mask = current->cpus_allowed;
5639
5640 set_cpus_allowed(current, mask);
5641 set_cpus_allowed(current, saved_mask);
5642 }
5643}
5644
John Hawkes9c1cfda2005-09-06 15:18:14 -07005645#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005646
John Hawkes9c1cfda2005-09-06 15:18:14 -07005647/**
5648 * find_next_best_node - find the next node to include in a sched_domain
5649 * @node: node whose sched_domain we're building
5650 * @used_nodes: nodes already in the sched_domain
5651 *
5652 * Find the next node to include in a given scheduling domain. Simply
5653 * finds the closest node not already in the @used_nodes map.
5654 *
5655 * Should use nodemask_t.
5656 */
5657static int find_next_best_node(int node, unsigned long *used_nodes)
5658{
5659 int i, n, val, min_val, best_node = 0;
5660
5661 min_val = INT_MAX;
5662
5663 for (i = 0; i < MAX_NUMNODES; i++) {
5664 /* Start at @node */
5665 n = (node + i) % MAX_NUMNODES;
5666
5667 if (!nr_cpus_node(n))
5668 continue;
5669
5670 /* Skip already used nodes */
5671 if (test_bit(n, used_nodes))
5672 continue;
5673
5674 /* Simple min distance search */
5675 val = node_distance(node, n);
5676
5677 if (val < min_val) {
5678 min_val = val;
5679 best_node = n;
5680 }
5681 }
5682
5683 set_bit(best_node, used_nodes);
5684 return best_node;
5685}
5686
5687/**
5688 * sched_domain_node_span - get a cpumask for a node's sched_domain
5689 * @node: node whose cpumask we're constructing
5690 * @size: number of nodes to include in this span
5691 *
5692 * Given a node, construct a good cpumask for its sched_domain to span. It
5693 * should be one that prevents unnecessary balancing, but also spreads tasks
5694 * out optimally.
5695 */
5696static cpumask_t sched_domain_node_span(int node)
5697{
5698 int i;
5699 cpumask_t span, nodemask;
5700 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5701
5702 cpus_clear(span);
5703 bitmap_zero(used_nodes, MAX_NUMNODES);
5704
5705 nodemask = node_to_cpumask(node);
5706 cpus_or(span, span, nodemask);
5707 set_bit(node, used_nodes);
5708
5709 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5710 int next_node = find_next_best_node(node, used_nodes);
5711 nodemask = node_to_cpumask(next_node);
5712 cpus_or(span, span, nodemask);
5713 }
5714
5715 return span;
5716}
5717#endif
5718
5719/*
5720 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5721 * can switch it on easily if needed.
5722 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005723#ifdef CONFIG_SCHED_SMT
5724static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5725static struct sched_group sched_group_cpus[NR_CPUS];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005726static int cpu_to_cpu_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005727{
5728 return cpu;
5729}
5730#endif
5731
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005732#ifdef CONFIG_SCHED_MC
5733static DEFINE_PER_CPU(struct sched_domain, core_domains);
5734static struct sched_group sched_group_core[NR_CPUS];
5735#endif
5736
5737#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5738static int cpu_to_core_group(int cpu)
5739{
5740 return first_cpu(cpu_sibling_map[cpu]);
5741}
5742#elif defined(CONFIG_SCHED_MC)
5743static int cpu_to_core_group(int cpu)
5744{
5745 return cpu;
5746}
5747#endif
5748
Linus Torvalds1da177e2005-04-16 15:20:36 -07005749static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5750static struct sched_group sched_group_phys[NR_CPUS];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005751static int cpu_to_phys_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005752{
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005753#if defined(CONFIG_SCHED_MC)
5754 cpumask_t mask = cpu_coregroup_map(cpu);
5755 return first_cpu(mask);
5756#elif defined(CONFIG_SCHED_SMT)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005757 return first_cpu(cpu_sibling_map[cpu]);
5758#else
5759 return cpu;
5760#endif
5761}
5762
5763#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005764/*
5765 * The init_sched_build_groups can't handle what we want to do with node
5766 * groups, so roll our own. Now each node has its own list of groups which
5767 * gets dynamically allocated.
5768 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005769static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005770static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005771
5772static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005773static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005774
5775static int cpu_to_allnodes_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005776{
5777 return cpu_to_node(cpu);
5778}
Siddha, Suresh B08069032006-03-27 01:15:23 -08005779static void init_numa_sched_groups_power(struct sched_group *group_head)
5780{
5781 struct sched_group *sg = group_head;
5782 int j;
5783
5784 if (!sg)
5785 return;
5786next_sg:
5787 for_each_cpu_mask(j, sg->cpumask) {
5788 struct sched_domain *sd;
5789
5790 sd = &per_cpu(phys_domains, j);
5791 if (j != first_cpu(sd->groups->cpumask)) {
5792 /*
5793 * Only add "power" once for each
5794 * physical package.
5795 */
5796 continue;
5797 }
5798
5799 sg->cpu_power += sd->groups->cpu_power;
5800 }
5801 sg = sg->next;
5802 if (sg != group_head)
5803 goto next_sg;
5804}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005805#endif
5806
Linus Torvalds1da177e2005-04-16 15:20:36 -07005807/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005808 * Build sched domains for a given set of cpus and attach the sched domains
5809 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005810 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005811void build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005812{
5813 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005814#ifdef CONFIG_NUMA
5815 struct sched_group **sched_group_nodes = NULL;
5816 struct sched_group *sched_group_allnodes = NULL;
5817
5818 /*
5819 * Allocate the per-node list of sched groups
5820 */
5821 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5822 GFP_ATOMIC);
5823 if (!sched_group_nodes) {
5824 printk(KERN_WARNING "Can not alloc sched group node list\n");
5825 return;
5826 }
5827 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5828#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005829
5830 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005831 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005832 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005833 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005834 int group;
5835 struct sched_domain *sd = NULL, *p;
5836 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5837
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005838 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005839
5840#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07005841 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005842 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkesd1b55132005-09-06 15:18:14 -07005843 if (!sched_group_allnodes) {
5844 sched_group_allnodes
5845 = kmalloc(sizeof(struct sched_group)
5846 * MAX_NUMNODES,
5847 GFP_KERNEL);
5848 if (!sched_group_allnodes) {
5849 printk(KERN_WARNING
5850 "Can not alloc allnodes sched group\n");
5851 break;
5852 }
5853 sched_group_allnodes_bycpu[i]
5854 = sched_group_allnodes;
5855 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005856 sd = &per_cpu(allnodes_domains, i);
5857 *sd = SD_ALLNODES_INIT;
5858 sd->span = *cpu_map;
5859 group = cpu_to_allnodes_group(i);
5860 sd->groups = &sched_group_allnodes[group];
5861 p = sd;
5862 } else
5863 p = NULL;
5864
Linus Torvalds1da177e2005-04-16 15:20:36 -07005865 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005866 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005867 sd->span = sched_domain_node_span(cpu_to_node(i));
5868 sd->parent = p;
5869 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005870#endif
5871
5872 p = sd;
5873 sd = &per_cpu(phys_domains, i);
5874 group = cpu_to_phys_group(i);
5875 *sd = SD_CPU_INIT;
5876 sd->span = nodemask;
5877 sd->parent = p;
5878 sd->groups = &sched_group_phys[group];
5879
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005880#ifdef CONFIG_SCHED_MC
5881 p = sd;
5882 sd = &per_cpu(core_domains, i);
5883 group = cpu_to_core_group(i);
5884 *sd = SD_MC_INIT;
5885 sd->span = cpu_coregroup_map(i);
5886 cpus_and(sd->span, sd->span, *cpu_map);
5887 sd->parent = p;
5888 sd->groups = &sched_group_core[group];
5889#endif
5890
Linus Torvalds1da177e2005-04-16 15:20:36 -07005891#ifdef CONFIG_SCHED_SMT
5892 p = sd;
5893 sd = &per_cpu(cpu_domains, i);
5894 group = cpu_to_cpu_group(i);
5895 *sd = SD_SIBLING_INIT;
5896 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005897 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005898 sd->parent = p;
5899 sd->groups = &sched_group_cpus[group];
5900#endif
5901 }
5902
5903#ifdef CONFIG_SCHED_SMT
5904 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005905 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005906 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005907 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005908 if (i != first_cpu(this_sibling_map))
5909 continue;
5910
5911 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5912 &cpu_to_cpu_group);
5913 }
5914#endif
5915
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005916#ifdef CONFIG_SCHED_MC
5917 /* Set up multi-core groups */
5918 for_each_cpu_mask(i, *cpu_map) {
5919 cpumask_t this_core_map = cpu_coregroup_map(i);
5920 cpus_and(this_core_map, this_core_map, *cpu_map);
5921 if (i != first_cpu(this_core_map))
5922 continue;
5923 init_sched_build_groups(sched_group_core, this_core_map,
5924 &cpu_to_core_group);
5925 }
5926#endif
5927
5928
Linus Torvalds1da177e2005-04-16 15:20:36 -07005929 /* Set up physical groups */
5930 for (i = 0; i < MAX_NUMNODES; i++) {
5931 cpumask_t nodemask = node_to_cpumask(i);
5932
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005933 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005934 if (cpus_empty(nodemask))
5935 continue;
5936
5937 init_sched_build_groups(sched_group_phys, nodemask,
5938 &cpu_to_phys_group);
5939 }
5940
5941#ifdef CONFIG_NUMA
5942 /* Set up node groups */
John Hawkesd1b55132005-09-06 15:18:14 -07005943 if (sched_group_allnodes)
5944 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5945 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005946
5947 for (i = 0; i < MAX_NUMNODES; i++) {
5948 /* Set up node groups */
5949 struct sched_group *sg, *prev;
5950 cpumask_t nodemask = node_to_cpumask(i);
5951 cpumask_t domainspan;
5952 cpumask_t covered = CPU_MASK_NONE;
5953 int j;
5954
5955 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07005956 if (cpus_empty(nodemask)) {
5957 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005958 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07005959 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005960
5961 domainspan = sched_domain_node_span(i);
5962 cpus_and(domainspan, domainspan, *cpu_map);
5963
5964 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5965 sched_group_nodes[i] = sg;
5966 for_each_cpu_mask(j, nodemask) {
5967 struct sched_domain *sd;
5968 sd = &per_cpu(node_domains, j);
5969 sd->groups = sg;
5970 if (sd->groups == NULL) {
5971 /* Turn off balancing if we have no groups */
5972 sd->flags = 0;
5973 }
5974 }
5975 if (!sg) {
5976 printk(KERN_WARNING
5977 "Can not alloc domain group for node %d\n", i);
5978 continue;
5979 }
5980 sg->cpu_power = 0;
5981 sg->cpumask = nodemask;
5982 cpus_or(covered, covered, nodemask);
5983 prev = sg;
5984
5985 for (j = 0; j < MAX_NUMNODES; j++) {
5986 cpumask_t tmp, notcovered;
5987 int n = (i + j) % MAX_NUMNODES;
5988
5989 cpus_complement(notcovered, covered);
5990 cpus_and(tmp, notcovered, *cpu_map);
5991 cpus_and(tmp, tmp, domainspan);
5992 if (cpus_empty(tmp))
5993 break;
5994
5995 nodemask = node_to_cpumask(n);
5996 cpus_and(tmp, tmp, nodemask);
5997 if (cpus_empty(tmp))
5998 continue;
5999
6000 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
6001 if (!sg) {
6002 printk(KERN_WARNING
6003 "Can not alloc domain group for node %d\n", j);
6004 break;
6005 }
6006 sg->cpu_power = 0;
6007 sg->cpumask = tmp;
6008 cpus_or(covered, covered, tmp);
6009 prev->next = sg;
6010 prev = sg;
6011 }
6012 prev->next = sched_group_nodes[i];
6013 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006014#endif
6015
6016 /* Calculate CPU power for physical packages and nodes */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006017 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006018 int power;
6019 struct sched_domain *sd;
6020#ifdef CONFIG_SCHED_SMT
6021 sd = &per_cpu(cpu_domains, i);
6022 power = SCHED_LOAD_SCALE;
6023 sd->groups->cpu_power = power;
6024#endif
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006025#ifdef CONFIG_SCHED_MC
6026 sd = &per_cpu(core_domains, i);
6027 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6028 * SCHED_LOAD_SCALE / 10;
6029 sd->groups->cpu_power = power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006030
6031 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006032
6033 /*
6034 * This has to be < 2 * SCHED_LOAD_SCALE
6035 * Lets keep it SCHED_LOAD_SCALE, so that
6036 * while calculating NUMA group's cpu_power
6037 * we can simply do
6038 * numa_group->cpu_power += phys_group->cpu_power;
6039 *
6040 * See "only add power once for each physical pkg"
6041 * comment below
6042 */
6043 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6044#else
6045 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006046 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
6047 (cpus_weight(sd->groups->cpumask)-1) / 10;
6048 sd->groups->cpu_power = power;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006049#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006050 }
6051
John Hawkes9c1cfda2005-09-06 15:18:14 -07006052#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006053 for (i = 0; i < MAX_NUMNODES; i++)
6054 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006055
Siddha, Suresh B08069032006-03-27 01:15:23 -08006056 init_numa_sched_groups_power(sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006057#endif
6058
Linus Torvalds1da177e2005-04-16 15:20:36 -07006059 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006060 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006061 struct sched_domain *sd;
6062#ifdef CONFIG_SCHED_SMT
6063 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006064#elif defined(CONFIG_SCHED_MC)
6065 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006066#else
6067 sd = &per_cpu(phys_domains, i);
6068#endif
6069 cpu_attach_domain(sd, i);
6070 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006071 /*
6072 * Tune cache-hot values:
6073 */
6074 calibrate_migration_costs(cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006075}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006076/*
6077 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6078 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006079static void arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006080{
6081 cpumask_t cpu_default_map;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006082
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006083 /*
6084 * Setup mask for cpus without special case scheduling requirements.
6085 * For now this just excludes isolated cpus, but could be used to
6086 * exclude other special cases in the future.
6087 */
6088 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6089
6090 build_sched_domains(&cpu_default_map);
6091}
6092
6093static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006094{
John Hawkes9c1cfda2005-09-06 15:18:14 -07006095#ifdef CONFIG_NUMA
6096 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07006097 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006098
John Hawkesd1b55132005-09-06 15:18:14 -07006099 for_each_cpu_mask(cpu, *cpu_map) {
6100 struct sched_group *sched_group_allnodes
6101 = sched_group_allnodes_bycpu[cpu];
6102 struct sched_group **sched_group_nodes
6103 = sched_group_nodes_bycpu[cpu];
6104
6105 if (sched_group_allnodes) {
6106 kfree(sched_group_allnodes);
6107 sched_group_allnodes_bycpu[cpu] = NULL;
6108 }
6109
6110 if (!sched_group_nodes)
John Hawkes9c1cfda2005-09-06 15:18:14 -07006111 continue;
6112
John Hawkesd1b55132005-09-06 15:18:14 -07006113 for (i = 0; i < MAX_NUMNODES; i++) {
6114 cpumask_t nodemask = node_to_cpumask(i);
6115 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6116
6117 cpus_and(nodemask, nodemask, *cpu_map);
6118 if (cpus_empty(nodemask))
6119 continue;
6120
6121 if (sg == NULL)
6122 continue;
6123 sg = sg->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006124next_sg:
John Hawkesd1b55132005-09-06 15:18:14 -07006125 oldsg = sg;
6126 sg = sg->next;
6127 kfree(oldsg);
6128 if (oldsg != sched_group_nodes[i])
6129 goto next_sg;
6130 }
6131 kfree(sched_group_nodes);
6132 sched_group_nodes_bycpu[cpu] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006133 }
6134#endif
6135}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006136
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006137/*
6138 * Detach sched domains from a group of cpus specified in cpu_map
6139 * These cpus will now be attached to the NULL domain
6140 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006141static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006142{
6143 int i;
6144
6145 for_each_cpu_mask(i, *cpu_map)
6146 cpu_attach_domain(NULL, i);
6147 synchronize_sched();
6148 arch_destroy_sched_domains(cpu_map);
6149}
6150
6151/*
6152 * Partition sched domains as specified by the cpumasks below.
6153 * This attaches all cpus from the cpumasks to the NULL domain,
6154 * waits for a RCU quiescent period, recalculates sched
6155 * domain information and then attaches them back to the
6156 * correct sched domains
6157 * Call with hotplug lock held
6158 */
6159void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6160{
6161 cpumask_t change_map;
6162
6163 cpus_and(*partition1, *partition1, cpu_online_map);
6164 cpus_and(*partition2, *partition2, cpu_online_map);
6165 cpus_or(change_map, *partition1, *partition2);
6166
6167 /* Detach sched domains from all of the affected cpus */
6168 detach_destroy_domains(&change_map);
6169 if (!cpus_empty(*partition1))
6170 build_sched_domains(partition1);
6171 if (!cpus_empty(*partition2))
6172 build_sched_domains(partition2);
6173}
6174
Linus Torvalds1da177e2005-04-16 15:20:36 -07006175#ifdef CONFIG_HOTPLUG_CPU
6176/*
6177 * Force a reinitialization of the sched domains hierarchy. The domains
6178 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006179 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006180 * which will prevent rebalancing while the sched domains are recalculated.
6181 */
6182static int update_sched_domains(struct notifier_block *nfb,
6183 unsigned long action, void *hcpu)
6184{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006185 switch (action) {
6186 case CPU_UP_PREPARE:
6187 case CPU_DOWN_PREPARE:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006188 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006189 return NOTIFY_OK;
6190
6191 case CPU_UP_CANCELED:
6192 case CPU_DOWN_FAILED:
6193 case CPU_ONLINE:
6194 case CPU_DEAD:
6195 /*
6196 * Fall through and re-initialise the domains.
6197 */
6198 break;
6199 default:
6200 return NOTIFY_DONE;
6201 }
6202
6203 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006204 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006205
6206 return NOTIFY_OK;
6207}
6208#endif
6209
6210void __init sched_init_smp(void)
6211{
6212 lock_cpu_hotplug();
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006213 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006214 unlock_cpu_hotplug();
6215 /* XXX: Theoretical race here - CPU may be hotplugged now */
6216 hotcpu_notifier(update_sched_domains, 0);
6217}
6218#else
6219void __init sched_init_smp(void)
6220{
6221}
6222#endif /* CONFIG_SMP */
6223
6224int in_sched_functions(unsigned long addr)
6225{
6226 /* Linker adds these: start and end of __sched functions */
6227 extern char __sched_text_start[], __sched_text_end[];
6228 return in_lock_functions(addr) ||
6229 (addr >= (unsigned long)__sched_text_start
6230 && addr < (unsigned long)__sched_text_end);
6231}
6232
6233void __init sched_init(void)
6234{
6235 runqueue_t *rq;
6236 int i, j, k;
6237
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006238 for_each_possible_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006239 prio_array_t *array;
6240
6241 rq = cpu_rq(i);
6242 spin_lock_init(&rq->lock);
Nick Piggin78979862005-06-25 14:57:13 -07006243 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006244 rq->active = rq->arrays;
6245 rq->expired = rq->arrays + 1;
6246 rq->best_expired_prio = MAX_PRIO;
6247
6248#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006249 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006250 for (j = 1; j < 3; j++)
6251 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006252 rq->active_balance = 0;
6253 rq->push_cpu = 0;
6254 rq->migration_thread = NULL;
6255 INIT_LIST_HEAD(&rq->migration_queue);
6256#endif
6257 atomic_set(&rq->nr_iowait, 0);
6258
6259 for (j = 0; j < 2; j++) {
6260 array = rq->arrays + j;
6261 for (k = 0; k < MAX_PRIO; k++) {
6262 INIT_LIST_HEAD(array->queue + k);
6263 __clear_bit(k, array->bitmap);
6264 }
6265 // delimiter for bitsearch
6266 __set_bit(MAX_PRIO, array->bitmap);
6267 }
6268 }
6269
Peter Williams2dd73a42006-06-27 02:54:34 -07006270 set_load_weight(&init_task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006271 /*
6272 * The boot idle thread does lazy MMU switching as well:
6273 */
6274 atomic_inc(&init_mm.mm_count);
6275 enter_lazy_tlb(&init_mm, current);
6276
6277 /*
6278 * Make us the idle thread. Technically, schedule() should not be
6279 * called from this thread, however somewhere below it might be,
6280 * but because we are the idle thread, we just pick up running again
6281 * when this runqueue becomes "idle".
6282 */
6283 init_idle(current, smp_processor_id());
6284}
6285
6286#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6287void __might_sleep(char *file, int line)
6288{
6289#if defined(in_atomic)
6290 static unsigned long prev_jiffy; /* ratelimiting */
6291
6292 if ((in_atomic() || irqs_disabled()) &&
6293 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6294 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6295 return;
6296 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006297 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006298 " context at %s:%d\n", file, line);
6299 printk("in_atomic():%d, irqs_disabled():%d\n",
6300 in_atomic(), irqs_disabled());
6301 dump_stack();
6302 }
6303#endif
6304}
6305EXPORT_SYMBOL(__might_sleep);
6306#endif
6307
6308#ifdef CONFIG_MAGIC_SYSRQ
6309void normalize_rt_tasks(void)
6310{
6311 struct task_struct *p;
6312 prio_array_t *array;
6313 unsigned long flags;
6314 runqueue_t *rq;
6315
6316 read_lock_irq(&tasklist_lock);
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07006317 for_each_process(p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006318 if (!rt_task(p))
6319 continue;
6320
6321 rq = task_rq_lock(p, &flags);
6322
6323 array = p->array;
6324 if (array)
6325 deactivate_task(p, task_rq(p));
6326 __setscheduler(p, SCHED_NORMAL, 0);
6327 if (array) {
6328 __activate_task(p, task_rq(p));
6329 resched_task(rq->curr);
6330 }
6331
6332 task_rq_unlock(rq, &flags);
6333 }
6334 read_unlock_irq(&tasklist_lock);
6335}
6336
6337#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006338
6339#ifdef CONFIG_IA64
6340/*
6341 * These functions are only useful for the IA64 MCA handling.
6342 *
6343 * They can only be called when the whole system has been
6344 * stopped - every CPU needs to be quiescent, and no scheduling
6345 * activity can take place. Using them for anything else would
6346 * be a serious bug, and as a result, they aren't even visible
6347 * under any other configuration.
6348 */
6349
6350/**
6351 * curr_task - return the current task for a given cpu.
6352 * @cpu: the processor in question.
6353 *
6354 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6355 */
6356task_t *curr_task(int cpu)
6357{
6358 return cpu_curr(cpu);
6359}
6360
6361/**
6362 * set_curr_task - set the current task for a given cpu.
6363 * @cpu: the processor in question.
6364 * @p: the task pointer to set.
6365 *
6366 * Description: This function must only be used when non-maskable interrupts
6367 * are serviced on a separate stack. It allows the architecture to switch the
6368 * notion of the current task on a cpu in a non-blocking manner. This function
6369 * must be called with all CPU's synchronized, and interrupts disabled, the
6370 * and caller must save the original value of the current task (see
6371 * curr_task() above) and restore that value before reenabling interrupts and
6372 * re-starting the system.
6373 *
6374 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6375 */
6376void set_curr_task(int cpu, task_t *p)
6377{
6378 cpu_curr(cpu) = p;
6379}
6380
6381#endif