/* -*- linux-c -*- * INET 802.1Q VLAN * Ethernet-type device handling. * * Authors: Ben Greear * Please send support related email to: vlan@scry.wanfear.com * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html * * Fixes: Mar 22 2001: Martin Bokaemper * - reset skb->pkt_type on incoming packets when MAC was changed * - see that changed MAC is saddr for outgoing packets * Oct 20, 2001: Ard van Breeman: * - Fix MC-list, finally. * - Flush MC-list on VLAN destroy. * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include /* for copy_from_user */ #include #include #include #include #include #include #include "vlan.h" #include "vlanproc.h" #include #include /* * Rebuild the Ethernet MAC header. This is called after an ARP * (or in future other address resolution) has completed on this * sk_buff. We now let ARP fill in the other fields. * * This routine CANNOT use cached dst->neigh! * Really, it is used only when dst->neigh is wrong. * * TODO: This needs a checkup, I'm ignorant here. --BLG */ int vlan_dev_rebuild_header(struct sk_buff *skb) { struct net_device *dev = skb->dev; struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); switch (veth->h_vlan_encapsulated_proto) { #ifdef CONFIG_INET case __constant_htons(ETH_P_IP): /* TODO: Confirm this will work with VLAN headers... */ return arp_find(veth->h_dest, skb); #endif default: printk(VLAN_DBG "%s: unable to resolve type %X addresses.\n", dev->name, (int)veth->h_vlan_encapsulated_proto); memcpy(veth->h_source, dev->dev_addr, ETH_ALEN); break; }; return 0; } static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb) { if (VLAN_DEV_INFO(skb->dev)->flags & 1) { if (skb_shared(skb) || skb_cloned(skb)) { struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); kfree_skb(skb); skb = nskb; } if (skb) { /* Lifted from Gleb's VLAN code... */ memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 12); skb->mac.raw += VLAN_HLEN; } } return skb; } /* * Determine the packet's protocol ID. The rule here is that we * assume 802.3 if the type field is short enough to be a length. * This is normal practice and works for any 'now in use' protocol. * * Also, at this point we assume that we ARE dealing exclusively with * VLAN packets, or packets that should be made into VLAN packets based * on a default VLAN ID. * * NOTE: Should be similar to ethernet/eth.c. * * SANITY NOTE: This method is called when a packet is moving up the stack * towards userland. To get here, it would have already passed * through the ethernet/eth.c eth_type_trans() method. * SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be * stored UNALIGNED in the memory. RISC systems don't like * such cases very much... * SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be aligned, * so there doesn't need to be any of the unaligned stuff. It has * been commented out now... --Ben * */ int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev, struct packet_type* ptype, struct net_device *orig_dev) { unsigned char *rawp = NULL; struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data); unsigned short vid; struct net_device_stats *stats; unsigned short vlan_TCI; __be16 proto; /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */ vlan_TCI = ntohs(vhdr->h_vlan_TCI); vid = (vlan_TCI & VLAN_VID_MASK); #ifdef VLAN_DEBUG printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n", __FUNCTION__, skb, vid); #endif /* Ok, we will find the correct VLAN device, strip the header, * and then go on as usual. */ /* We have 12 bits of vlan ID. * * We must not drop allow preempt until we hold a * reference to the device (netif_rx does that) or we * fail. */ rcu_read_lock(); skb->dev = __find_vlan_dev(dev, vid); if (!skb->dev) { rcu_read_unlock(); #ifdef VLAN_DEBUG printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n", __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex); #endif kfree_skb(skb); return -1; } skb->dev->last_rx = jiffies; /* Bump the rx counters for the VLAN device. */ stats = vlan_dev_get_stats(skb->dev); stats->rx_packets++; stats->rx_bytes += skb->len; skb_pull(skb, VLAN_HLEN); /* take off the VLAN header (4 bytes currently) */ /* Ok, lets check to make sure the device (dev) we * came in on is what this VLAN is attached to. */ if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) { rcu_read_unlock(); #ifdef VLAN_DEBUG printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s real_dev: %s, skb_dev: %s\n", __FUNCTION__, skb, dev->name, VLAN_DEV_INFO(skb->dev)->real_dev->name, skb->dev->name); #endif kfree_skb(skb); stats->rx_errors++; return -1; } /* * Deal with ingress priority mapping. */ skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI)); #ifdef VLAN_DEBUG printk(VLAN_DBG "%s: priority: %lu for TCI: %hu (hbo)\n", __FUNCTION__, (unsigned long)(skb->priority), ntohs(vhdr->h_vlan_TCI)); #endif /* The ethernet driver already did the pkt_type calculations * for us... */ switch (skb->pkt_type) { case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ // stats->broadcast ++; // no such counter :-( break; case PACKET_MULTICAST: stats->multicast++; break; case PACKET_OTHERHOST: /* Our lower layer thinks this is not local, let's make sure. * This allows the VLAN to have a different MAC than the underlying * device, and still route correctly. */ if (memcmp(eth_hdr(skb)->h_dest, skb->dev->dev_addr, ETH_ALEN) == 0) { /* It is for our (changed) MAC-address! */ skb->pkt_type = PACKET_HOST; } break; default: break; }; /* Was a VLAN packet, grab the encapsulated protocol, which the layer * three protocols care about. */ /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */ proto = vhdr->h_vlan_encapsulated_proto; skb->protocol = proto; if (ntohs(proto) >= 1536) { /* place it back on the queue to be handled by * true layer 3 protocols. */ /* See if we are configured to re-write the VLAN header * to make it look like ethernet... */ skb = vlan_check_reorder_header(skb); /* Can be null if skb-clone fails when re-ordering */ if (skb) { netif_rx(skb); } else { /* TODO: Add a more specific counter here. */ stats->rx_errors++; } rcu_read_unlock(); return 0; } rawp = skb->data; /* * This is a magic hack to spot IPX packets. Older Novell breaks * the protocol design and runs IPX over 802.3 without an 802.2 LLC * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This * won't work for fault tolerant netware but does for the rest. */ if (*(unsigned short *)rawp == 0xFFFF) { skb->protocol = __constant_htons(ETH_P_802_3); /* place it back on the queue to be handled by true layer 3 protocols. */ /* See if we are configured to re-write the VLAN header * to make it look like ethernet... */ skb = vlan_check_reorder_header(skb); /* Can be null if skb-clone fails when re-ordering */ if (skb) { netif_rx(skb); } else { /* TODO: Add a more specific counter here. */ stats->rx_errors++; } rcu_read_unlock(); return 0; } /* * Real 802.2 LLC */ skb->protocol = __constant_htons(ETH_P_802_2); /* place it back on the queue to be handled by upper layer protocols. */ /* See if we are configured to re-write the VLAN header * to make it look like ethernet... */ skb = vlan_check_reorder_header(skb); /* Can be null if skb-clone fails when re-ordering */ if (skb) { netif_rx(skb); } else { /* TODO: Add a more specific counter here. */ stats->rx_errors++; } rcu_read_unlock(); return 0; } static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev, struct sk_buff* skb) { struct vlan_priority_tci_mapping *mp = VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)]; while (mp) { if (mp->priority == skb->priority) { return mp->vlan_qos; /* This should already be shifted to mask * correctly with the VLAN's TCI */ } mp = mp->next; } return 0; } /* * Create the VLAN header for an arbitrary protocol layer * * saddr=NULL means use device source address * daddr=NULL means leave destination address (eg unresolved arp) * * This is called when the SKB is moving down the stack towards the * physical devices. */ int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, void *daddr, void *saddr, unsigned len) { struct vlan_hdr *vhdr; unsigned short veth_TCI = 0; int rc = 0; int build_vlan_header = 0; struct net_device *vdev = dev; /* save this for the bottom of the method */ #ifdef VLAN_DEBUG printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n", __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr); #endif /* build vlan header only if re_order_header flag is NOT set. This * fixes some programs that get confused when they see a VLAN device * sending a frame that is VLAN encoded (the consensus is that the VLAN * device should look completely like an Ethernet device when the * REORDER_HEADER flag is set) The drawback to this is some extra * header shuffling in the hard_start_xmit. Users can turn off this * REORDER behaviour with the vconfig tool. */ build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0); if (build_vlan_header) { vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN); /* build the four bytes that make this a VLAN header. */ /* Now, construct the second two bytes. This field looks something * like: * usr_priority: 3 bits (high bits) * CFI 1 bit * VLAN ID 12 bits (low bits) * */ veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); vhdr->h_vlan_TCI = htons(veth_TCI); /* * Set the protocol type. * For a packet of type ETH_P_802_3 we put the length in here instead. * It is up to the 802.2 layer to carry protocol information. */ if (type != ETH_P_802_3) { vhdr->h_vlan_encapsulated_proto = htons(type); } else { vhdr->h_vlan_encapsulated_proto = htons(len); } } /* Before delegating work to the lower layer, enter our MAC-address */ if (saddr == NULL) saddr = dev->dev_addr; dev = VLAN_DEV_INFO(dev)->real_dev; /* MPLS can send us skbuffs w/out enough space. This check will grow the * skb if it doesn't have enough headroom. Not a beautiful solution, so * I'll tick a counter so that users can know it's happening... If they * care... */ /* NOTE: This may still break if the underlying device is not the final * device (and thus there are more headers to add...) It should work for * good-ole-ethernet though. */ if (skb_headroom(skb) < dev->hard_header_len) { struct sk_buff *sk_tmp = skb; skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len); kfree_skb(sk_tmp); if (skb == NULL) { struct net_device_stats *stats = vlan_dev_get_stats(vdev); stats->tx_dropped++; return -ENOMEM; } VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++; #ifdef VLAN_DEBUG printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name); #endif } if (build_vlan_header) { /* Now make the underlying real hard header */ rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN); if (rc > 0) { rc += VLAN_HLEN; } else if (rc < 0) { rc -= VLAN_HLEN; } } else { /* If here, then we'll just make a normal looking ethernet frame, * but, the hard_start_xmit method will insert the tag (it has to * be able to do this for bridged and other skbs that don't come * down the protocol stack in an orderly manner. */ rc = dev->hard_header(skb, dev, type, daddr, saddr, len); } return rc; } int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct net_device_stats *stats = vlan_dev_get_stats(dev); struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); /* Handle non-VLAN frames if they are sent to us, for example by DHCP. * * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... */ if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) { int orig_headroom = skb_headroom(skb); unsigned short veth_TCI; /* This is not a VLAN frame...but we can fix that! */ VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++; #ifdef VLAN_DEBUG printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n", __FUNCTION__, htons(veth->h_vlan_proto)); #endif /* Construct the second two bytes. This field looks something * like: * usr_priority: 3 bits (high bits) * CFI 1 bit * VLAN ID 12 bits (low bits) */ veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); skb = __vlan_put_tag(skb, veth_TCI); if (!skb) { stats->tx_dropped++; return 0; } if (orig_headroom < VLAN_HLEN) { VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++; } } #ifdef VLAN_DEBUG printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n", __FUNCTION__, skb, skb->dev->name); printk(VLAN_DBG " %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n", veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5], veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5], veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto); #endif stats->tx_packets++; /* for statics only */ stats->tx_bytes += skb->len; skb->dev = VLAN_DEV_INFO(dev)->real_dev; dev_queue_xmit(skb); return 0; } int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct net_device_stats *stats = vlan_dev_get_stats(dev); unsigned short veth_TCI; /* Construct the second two bytes. This field looks something * like: * usr_priority: 3 bits (high bits) * CFI 1 bit * VLAN ID 12 bits (low bits) */ veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); skb = __vlan_hwaccel_put_tag(skb, veth_TCI); stats->tx_packets++; stats->tx_bytes += skb->len; skb->dev = VLAN_DEV_INFO(dev)->real_dev; dev_queue_xmit(skb); return 0; } int vlan_dev_change_mtu(struct net_device *dev, int new_mtu) { /* TODO: gotta make sure the underlying layer can handle it, * maybe an IFF_VLAN_CAPABLE flag for devices? */ if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu) return -ERANGE; dev->mtu = new_mtu; return 0; } int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) { struct net_device *dev = dev_get_by_name(dev_name); if (dev) { if (dev->priv_flags & IFF_802_1Q_VLAN) { /* see if a priority mapping exists.. */ VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio; dev_put(dev); return 0; } dev_put(dev); } return -EINVAL; } int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) { struct net_device *dev = dev_get_by_name(dev_name); struct vlan_priority_tci_mapping *mp = NULL; struct vlan_priority_tci_mapping *np; if (dev) { if (dev->priv_flags & IFF_802_1Q_VLAN) { /* See if a priority mapping exists.. */ mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; while (mp) { if (mp->priority == skb_prio) { mp->vlan_qos = ((vlan_prio << 13) & 0xE000); dev_put(dev); return 0; } mp = mp->next; } /* Create a new mapping then. */ mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL); if (np) { np->next = mp; np->priority = skb_prio; np->vlan_qos = ((vlan_prio << 13) & 0xE000); VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np; dev_put(dev); return 0; } else { dev_put(dev); return -ENOBUFS; } } dev_put(dev); } return -EINVAL; } /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */ int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val) { struct net_device *dev = dev_get_by_name(dev_name); if (dev) { if (dev->priv_flags & IFF_802_1Q_VLAN) { /* verify flag is supported */ if (flag == 1) { if (flag_val) { VLAN_DEV_INFO(dev)->flags |= 1; } else { VLAN_DEV_INFO(dev)->flags &= ~1; } dev_put(dev); return 0; } else { printk(KERN_ERR "%s: flag %i is not valid.\n", __FUNCTION__, (int)(flag)); dev_put(dev); return -EINVAL; } } else { printk(KERN_ERR "%s: %s is not a vlan device, priv_flags: %hX.\n", __FUNCTION__, dev->name, dev->priv_flags); dev_put(dev); } } else { printk(KERN_ERR "%s: Could not find device: %s\n", __FUNCTION__, dev_name); } return -EINVAL; } int vlan_dev_get_realdev_name(const char *dev_name, char* result) { struct net_device *dev = dev_get_by_name(dev_name); int rv = 0; if (dev) { if (dev->priv_flags & IFF_802_1Q_VLAN) { strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23); rv = 0; } else { rv = -EINVAL; } dev_put(dev); } else { rv = -ENODEV; } return rv; } int vlan_dev_get_vid(const char *dev_name, unsigned short* result) { struct net_device *dev = dev_get_by_name(dev_name); int rv = 0; if (dev) { if (dev->priv_flags & IFF_802_1Q_VLAN) { *result = VLAN_DEV_INFO(dev)->vlan_id; rv = 0; } else { rv = -EINVAL; } dev_put(dev); } else { rv = -ENODEV; } return rv; } int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p) { struct sockaddr *addr = (struct sockaddr *)(addr_struct_p); int i; if (netif_running(dev)) return -EBUSY; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); printk("%s: Setting MAC address to ", dev->name); for (i = 0; i < 6; i++) printk(" %2.2x", dev->dev_addr[i]); printk(".\n"); if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr, dev->dev_addr, dev->addr_len) != 0) { if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) { int flgs = VLAN_DEV_INFO(dev)->real_dev->flags; /* Increment our in-use promiscuity counter */ dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1); /* Make PROMISC visible to the user. */ flgs |= IFF_PROMISC; printk("VLAN (%s): Setting underlying device (%s) to promiscious mode.\n", dev->name, VLAN_DEV_INFO(dev)->real_dev->name); dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs); } } else { printk("VLAN (%s): Underlying device (%s) has same MAC, not checking promiscious mode.\n", dev->name, VLAN_DEV_INFO(dev)->real_dev->name); } return 0; } static inline int vlan_dmi_equals(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) { return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) && (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0)); } /** dmi is a single entry into a dev_mc_list, a single node. mc_list is * an entire list, and we'll iterate through it. */ static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) { struct dev_mc_list *idmi; for (idmi = mc_list; idmi != NULL; ) { if (vlan_dmi_equals(dmi, idmi)) { if (dmi->dmi_users > idmi->dmi_users) return 1; else return 0; } else { idmi = idmi->next; } } return 1; } static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list) { struct dev_mc_list *dmi = mc_list; struct dev_mc_list *next; while(dmi) { next = dmi->next; kfree(dmi); dmi = next; } } static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info) { struct dev_mc_list *dmi, *new_dmi; vlan_destroy_mc_list(vlan_info->old_mc_list); vlan_info->old_mc_list = NULL; for (dmi = mc_list; dmi != NULL; dmi = dmi->next) { new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC); if (new_dmi == NULL) { printk(KERN_ERR "vlan: cannot allocate memory. " "Multicast may not work properly from now.\n"); return; } /* Copy whole structure, then make new 'next' pointer */ *new_dmi = *dmi; new_dmi->next = vlan_info->old_mc_list; vlan_info->old_mc_list = new_dmi; } } static void vlan_flush_mc_list(struct net_device *dev) { struct dev_mc_list *dmi = dev->mc_list; while (dmi) { printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n", dev->name, dmi->dmi_addr[0], dmi->dmi_addr[1], dmi->dmi_addr[2], dmi->dmi_addr[3], dmi->dmi_addr[4], dmi->dmi_addr[5]); dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); dmi = dev->mc_list; } /* dev->mc_list is NULL by the time we get here. */ vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list); VLAN_DEV_INFO(dev)->old_mc_list = NULL; } int vlan_dev_open(struct net_device *dev) { if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP)) return -ENETDOWN; return 0; } int vlan_dev_stop(struct net_device *dev) { vlan_flush_mc_list(dev); return 0; } int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev; struct ifreq ifrr; int err = -EOPNOTSUPP; strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ); ifrr.ifr_ifru = ifr->ifr_ifru; switch(cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: if (real_dev->do_ioctl && netif_device_present(real_dev)) err = real_dev->do_ioctl(real_dev, &ifrr, cmd); break; case SIOCETHTOOL: err = dev_ethtool(&ifrr); } if (!err) ifr->ifr_ifru = ifrr.ifr_ifru; return err; } /** Taken from Gleb + Lennert's VLAN code, and modified... */ void vlan_dev_set_multicast_list(struct net_device *vlan_dev) { struct dev_mc_list *dmi; struct net_device *real_dev; int inc; if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) { /* Then it's a real vlan device, as far as we can tell.. */ real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev; /* compare the current promiscuity to the last promisc we had.. */ inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity; if (inc) { printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n", vlan_dev->name, inc); dev_set_promiscuity(real_dev, inc); /* found in dev.c */ VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity; } inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti; if (inc) { printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n", vlan_dev->name, inc); dev_set_allmulti(real_dev, inc); /* dev.c */ VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti; } /* looking for addresses to add to master's list */ for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) { if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) { dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n", vlan_dev->name, dmi->dmi_addr[0], dmi->dmi_addr[1], dmi->dmi_addr[2], dmi->dmi_addr[3], dmi->dmi_addr[4], dmi->dmi_addr[5]); } } /* looking for addresses to delete from master's list */ for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) { if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) { /* if we think we should add it to the new list, then we should really * delete it from the real list on the underlying device. */ dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n", vlan_dev->name, dmi->dmi_addr[0], dmi->dmi_addr[1], dmi->dmi_addr[2], dmi->dmi_addr[3], dmi->dmi_addr[4], dmi->dmi_addr[5]); } } /* save multicast list */ vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev)); } }