/* * linux/drivers/message/fusion/mptbase.c * This is the Fusion MPT base driver which supports multiple * (SCSI + LAN) specialized protocol drivers. * For use with LSI Logic PCI chip/adapter(s) * running LSI Logic Fusion MPT (Message Passing Technology) firmware. * * Copyright (c) 1999-2005 LSI Logic Corporation * (mailto:mpt_linux_developer@lsil.com) * */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. NO WARRANTY THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of using and distributing the Program and assumes all risks associated with its exercise of rights under this Agreement, including but not limited to the risks and costs of program errors, damage to or loss of data, programs or equipment, and unavailability or interruption of operations. DISCLAIMER OF LIABILITY NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ #include #include #include #include #include #include #include #include #include #include #include #include /* needed for in_interrupt() proto */ #include #include #ifdef CONFIG_MTRR #include #endif #ifdef __sparc__ #include /* needed for __irq_itoa() proto */ #endif #include "mptbase.h" /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ #define my_NAME "Fusion MPT base driver" #define my_VERSION MPT_LINUX_VERSION_COMMON #define MYNAM "mptbase" MODULE_AUTHOR(MODULEAUTHOR); MODULE_DESCRIPTION(my_NAME); MODULE_LICENSE("GPL"); /* * cmd line parameters */ static int mpt_msi_enable; module_param(mpt_msi_enable, int, 0); MODULE_PARM_DESC(mpt_msi_enable, " MSI Support Enable (default=0)"); #ifdef MFCNT static int mfcounter = 0; #define PRINT_MF_COUNT 20000 #endif /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * Public data... */ int mpt_lan_index = -1; int mpt_stm_index = -1; struct proc_dir_entry *mpt_proc_root_dir; #define WHOINIT_UNKNOWN 0xAA /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * Private data... */ /* Adapter link list */ LIST_HEAD(ioc_list); /* Callback lookup table */ static MPT_CALLBACK MptCallbacks[MPT_MAX_PROTOCOL_DRIVERS]; /* Protocol driver class lookup table */ static int MptDriverClass[MPT_MAX_PROTOCOL_DRIVERS]; /* Event handler lookup table */ static MPT_EVHANDLER MptEvHandlers[MPT_MAX_PROTOCOL_DRIVERS]; /* Reset handler lookup table */ static MPT_RESETHANDLER MptResetHandlers[MPT_MAX_PROTOCOL_DRIVERS]; static struct mpt_pci_driver *MptDeviceDriverHandlers[MPT_MAX_PROTOCOL_DRIVERS]; static int mpt_base_index = -1; static int last_drv_idx = -1; static DECLARE_WAIT_QUEUE_HEAD(mpt_waitq); /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * Forward protos... */ static irqreturn_t mpt_interrupt(int irq, void *bus_id, struct pt_regs *r); static int mpt_base_reply(MPT_ADAPTER *ioc, MPT_FRAME_HDR *req, MPT_FRAME_HDR *reply); static int mpt_handshake_req_reply_wait(MPT_ADAPTER *ioc, int reqBytes, u32 *req, int replyBytes, u16 *u16reply, int maxwait, int sleepFlag); static int mpt_do_ioc_recovery(MPT_ADAPTER *ioc, u32 reason, int sleepFlag); static void mpt_detect_bound_ports(MPT_ADAPTER *ioc, struct pci_dev *pdev); static void mpt_adapter_disable(MPT_ADAPTER *ioc); static void mpt_adapter_dispose(MPT_ADAPTER *ioc); static void MptDisplayIocCapabilities(MPT_ADAPTER *ioc); static int MakeIocReady(MPT_ADAPTER *ioc, int force, int sleepFlag); static int GetIocFacts(MPT_ADAPTER *ioc, int sleepFlag, int reason); static int GetPortFacts(MPT_ADAPTER *ioc, int portnum, int sleepFlag); static int SendIocInit(MPT_ADAPTER *ioc, int sleepFlag); static int SendPortEnable(MPT_ADAPTER *ioc, int portnum, int sleepFlag); static int mpt_do_upload(MPT_ADAPTER *ioc, int sleepFlag); static int mpt_downloadboot(MPT_ADAPTER *ioc, MpiFwHeader_t *pFwHeader, int sleepFlag); static int mpt_diag_reset(MPT_ADAPTER *ioc, int ignore, int sleepFlag); static int KickStart(MPT_ADAPTER *ioc, int ignore, int sleepFlag); static int SendIocReset(MPT_ADAPTER *ioc, u8 reset_type, int sleepFlag); static int PrimeIocFifos(MPT_ADAPTER *ioc); static int WaitForDoorbellAck(MPT_ADAPTER *ioc, int howlong, int sleepFlag); static int WaitForDoorbellInt(MPT_ADAPTER *ioc, int howlong, int sleepFlag); static int WaitForDoorbellReply(MPT_ADAPTER *ioc, int howlong, int sleepFlag); static int GetLanConfigPages(MPT_ADAPTER *ioc); static int GetIoUnitPage2(MPT_ADAPTER *ioc); int mptbase_sas_persist_operation(MPT_ADAPTER *ioc, u8 persist_opcode); static int mpt_GetScsiPortSettings(MPT_ADAPTER *ioc, int portnum); static int mpt_readScsiDevicePageHeaders(MPT_ADAPTER *ioc, int portnum); static void mpt_read_ioc_pg_1(MPT_ADAPTER *ioc); static void mpt_read_ioc_pg_4(MPT_ADAPTER *ioc); static void mpt_timer_expired(unsigned long data); static int SendEventNotification(MPT_ADAPTER *ioc, u8 EvSwitch); static int SendEventAck(MPT_ADAPTER *ioc, EventNotificationReply_t *evnp); static int mpt_host_page_access_control(MPT_ADAPTER *ioc, u8 access_control_value, int sleepFlag); static int mpt_host_page_alloc(MPT_ADAPTER *ioc, pIOCInit_t ioc_init); #ifdef CONFIG_PROC_FS static int procmpt_summary_read(char *buf, char **start, off_t offset, int request, int *eof, void *data); static int procmpt_version_read(char *buf, char **start, off_t offset, int request, int *eof, void *data); static int procmpt_iocinfo_read(char *buf, char **start, off_t offset, int request, int *eof, void *data); #endif static void mpt_get_fw_exp_ver(char *buf, MPT_ADAPTER *ioc); //int mpt_HardResetHandler(MPT_ADAPTER *ioc, int sleepFlag); static int ProcessEventNotification(MPT_ADAPTER *ioc, EventNotificationReply_t *evReply, int *evHandlers); static void mpt_sp_ioc_info(MPT_ADAPTER *ioc, u32 ioc_status, MPT_FRAME_HDR *mf); static void mpt_fc_log_info(MPT_ADAPTER *ioc, u32 log_info); static void mpt_spi_log_info(MPT_ADAPTER *ioc, u32 log_info); static void mpt_sas_log_info(MPT_ADAPTER *ioc, u32 log_info); static int mpt_read_ioc_pg_3(MPT_ADAPTER *ioc); /* module entry point */ static int __init fusion_init (void); static void __exit fusion_exit (void); #define CHIPREG_READ32(addr) readl_relaxed(addr) #define CHIPREG_READ32_dmasync(addr) readl(addr) #define CHIPREG_WRITE32(addr,val) writel(val, addr) #define CHIPREG_PIO_WRITE32(addr,val) outl(val, (unsigned long)addr) #define CHIPREG_PIO_READ32(addr) inl((unsigned long)addr) static void pci_disable_io_access(struct pci_dev *pdev) { u16 command_reg; pci_read_config_word(pdev, PCI_COMMAND, &command_reg); command_reg &= ~1; pci_write_config_word(pdev, PCI_COMMAND, command_reg); } static void pci_enable_io_access(struct pci_dev *pdev) { u16 command_reg; pci_read_config_word(pdev, PCI_COMMAND, &command_reg); command_reg |= 1; pci_write_config_word(pdev, PCI_COMMAND, command_reg); } /* * Process turbo (context) reply... */ static void mpt_turbo_reply(MPT_ADAPTER *ioc, u32 pa) { MPT_FRAME_HDR *mf = NULL; MPT_FRAME_HDR *mr = NULL; int req_idx = 0; int cb_idx; dmfprintk((MYIOC_s_INFO_FMT "Got TURBO reply req_idx=%08x\n", ioc->name, pa)); switch (pa >> MPI_CONTEXT_REPLY_TYPE_SHIFT) { case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: req_idx = pa & 0x0000FFFF; cb_idx = (pa & 0x00FF0000) >> 16; mf = MPT_INDEX_2_MFPTR(ioc, req_idx); break; case MPI_CONTEXT_REPLY_TYPE_LAN: cb_idx = mpt_lan_index; /* * Blind set of mf to NULL here was fatal * after lan_reply says "freeme" * Fix sort of combined with an optimization here; * added explicit check for case where lan_reply * was just returning 1 and doing nothing else. * For this case skip the callback, but set up * proper mf value first here:-) */ if ((pa & 0x58000000) == 0x58000000) { req_idx = pa & 0x0000FFFF; mf = MPT_INDEX_2_MFPTR(ioc, req_idx); mpt_free_msg_frame(ioc, mf); mb(); return; break; } mr = (MPT_FRAME_HDR *) CAST_U32_TO_PTR(pa); break; case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: cb_idx = mpt_stm_index; mr = (MPT_FRAME_HDR *) CAST_U32_TO_PTR(pa); break; default: cb_idx = 0; BUG(); } /* Check for (valid) IO callback! */ if (cb_idx < 1 || cb_idx >= MPT_MAX_PROTOCOL_DRIVERS || MptCallbacks[cb_idx] == NULL) { printk(MYIOC_s_WARN_FMT "%s: Invalid cb_idx (%d)!\n", __FUNCTION__, ioc->name, cb_idx); goto out; } if (MptCallbacks[cb_idx](ioc, mf, mr)) mpt_free_msg_frame(ioc, mf); out: mb(); } static void mpt_reply(MPT_ADAPTER *ioc, u32 pa) { MPT_FRAME_HDR *mf; MPT_FRAME_HDR *mr; int req_idx; int cb_idx; int freeme; u32 reply_dma_low; u16 ioc_stat; /* non-TURBO reply! Hmmm, something may be up... * Newest turbo reply mechanism; get address * via left shift 1 (get rid of MPI_ADDRESS_REPLY_A_BIT)! */ /* Map DMA address of reply header to cpu address. * pa is 32 bits - but the dma address may be 32 or 64 bits * get offset based only only the low addresses */ reply_dma_low = (pa <<= 1); mr = (MPT_FRAME_HDR *)((u8 *)ioc->reply_frames + (reply_dma_low - ioc->reply_frames_low_dma)); req_idx = le16_to_cpu(mr->u.frame.hwhdr.msgctxu.fld.req_idx); cb_idx = mr->u.frame.hwhdr.msgctxu.fld.cb_idx; mf = MPT_INDEX_2_MFPTR(ioc, req_idx); dmfprintk((MYIOC_s_INFO_FMT "Got non-TURBO reply=%p req_idx=%x cb_idx=%x Function=%x\n", ioc->name, mr, req_idx, cb_idx, mr->u.hdr.Function)); DBG_DUMP_REPLY_FRAME(mr) /* Check/log IOC log info */ ioc_stat = le16_to_cpu(mr->u.reply.IOCStatus); if (ioc_stat & MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { u32 log_info = le32_to_cpu(mr->u.reply.IOCLogInfo); if (ioc->bus_type == FC) mpt_fc_log_info(ioc, log_info); else if (ioc->bus_type == SPI) mpt_spi_log_info(ioc, log_info); else if (ioc->bus_type == SAS) mpt_sas_log_info(ioc, log_info); } if (ioc_stat & MPI_IOCSTATUS_MASK) { if (ioc->bus_type == SPI && cb_idx != mpt_stm_index && cb_idx != mpt_lan_index) mpt_sp_ioc_info(ioc, (u32)ioc_stat, mf); } /* Check for (valid) IO callback! */ if (cb_idx < 1 || cb_idx >= MPT_MAX_PROTOCOL_DRIVERS || MptCallbacks[cb_idx] == NULL) { printk(MYIOC_s_WARN_FMT "%s: Invalid cb_idx (%d)!\n", __FUNCTION__, ioc->name, cb_idx); freeme = 0; goto out; } freeme = MptCallbacks[cb_idx](ioc, mf, mr); out: /* Flush (non-TURBO) reply with a WRITE! */ CHIPREG_WRITE32(&ioc->chip->ReplyFifo, pa); if (freeme) mpt_free_msg_frame(ioc, mf); mb(); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_interrupt - MPT adapter (IOC) specific interrupt handler. * @irq: irq number (not used) * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure * @r: pt_regs pointer (not used) * * This routine is registered via the request_irq() kernel API call, * and handles all interrupts generated from a specific MPT adapter * (also referred to as a IO Controller or IOC). * This routine must clear the interrupt from the adapter and does * so by reading the reply FIFO. Multiple replies may be processed * per single call to this routine. * * This routine handles register-level access of the adapter but * dispatches (calls) a protocol-specific callback routine to handle * the protocol-specific details of the MPT request completion. */ static irqreturn_t mpt_interrupt(int irq, void *bus_id, struct pt_regs *r) { MPT_ADAPTER *ioc = bus_id; u32 pa; /* * Drain the reply FIFO! */ while (1) { pa = CHIPREG_READ32_dmasync(&ioc->chip->ReplyFifo); if (pa == 0xFFFFFFFF) return IRQ_HANDLED; else if (pa & MPI_ADDRESS_REPLY_A_BIT) mpt_reply(ioc, pa); else mpt_turbo_reply(ioc, pa); } return IRQ_HANDLED; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_base_reply - MPT base driver's callback routine; all base driver * "internal" request/reply processing is routed here. * Currently used for EventNotification and EventAck handling. * @ioc: Pointer to MPT_ADAPTER structure * @mf: Pointer to original MPT request frame * @reply: Pointer to MPT reply frame (NULL if TurboReply) * * Returns 1 indicating original alloc'd request frame ptr * should be freed, or 0 if it shouldn't. */ static int mpt_base_reply(MPT_ADAPTER *ioc, MPT_FRAME_HDR *mf, MPT_FRAME_HDR *reply) { int freereq = 1; u8 func; dmfprintk((MYIOC_s_INFO_FMT "mpt_base_reply() called\n", ioc->name)); #if defined(MPT_DEBUG_MSG_FRAME) if (!(reply->u.hdr.MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY)) { dmfprintk((KERN_INFO MYNAM ": Original request frame (@%p) header\n", mf)); DBG_DUMP_REQUEST_FRAME_HDR(mf) } #endif func = reply->u.hdr.Function; dmfprintk((MYIOC_s_INFO_FMT "mpt_base_reply, Function=%02Xh\n", ioc->name, func)); if (func == MPI_FUNCTION_EVENT_NOTIFICATION) { EventNotificationReply_t *pEvReply = (EventNotificationReply_t *) reply; int evHandlers = 0; int results; results = ProcessEventNotification(ioc, pEvReply, &evHandlers); if (results != evHandlers) { /* CHECKME! Any special handling needed here? */ devtverboseprintk((MYIOC_s_WARN_FMT "Called %d event handlers, sum results = %d\n", ioc->name, evHandlers, results)); } /* * Hmmm... It seems that EventNotificationReply is an exception * to the rule of one reply per request. */ if (pEvReply->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) { freereq = 0; devtverboseprintk((MYIOC_s_WARN_FMT "EVENT_NOTIFICATION reply %p does not return Request frame\n", ioc->name, pEvReply)); } else { devtverboseprintk((MYIOC_s_WARN_FMT "EVENT_NOTIFICATION reply %p returns Request frame\n", ioc->name, pEvReply)); } #ifdef CONFIG_PROC_FS // LogEvent(ioc, pEvReply); #endif } else if (func == MPI_FUNCTION_EVENT_ACK) { dprintk((MYIOC_s_INFO_FMT "mpt_base_reply, EventAck reply received\n", ioc->name)); } else if (func == MPI_FUNCTION_CONFIG) { CONFIGPARMS *pCfg; unsigned long flags; dcprintk((MYIOC_s_INFO_FMT "config_complete (mf=%p,mr=%p)\n", ioc->name, mf, reply)); pCfg = * ((CONFIGPARMS **)((u8 *) mf + ioc->req_sz - sizeof(void *))); if (pCfg) { /* disable timer and remove from linked list */ del_timer(&pCfg->timer); spin_lock_irqsave(&ioc->FreeQlock, flags); list_del(&pCfg->linkage); spin_unlock_irqrestore(&ioc->FreeQlock, flags); /* * If IOC Status is SUCCESS, save the header * and set the status code to GOOD. */ pCfg->status = MPT_CONFIG_ERROR; if (reply) { ConfigReply_t *pReply = (ConfigReply_t *)reply; u16 status; status = le16_to_cpu(pReply->IOCStatus) & MPI_IOCSTATUS_MASK; dcprintk((KERN_NOTICE " IOCStatus=%04xh, IOCLogInfo=%08xh\n", status, le32_to_cpu(pReply->IOCLogInfo))); pCfg->status = status; if (status == MPI_IOCSTATUS_SUCCESS) { if ((pReply->Header.PageType & MPI_CONFIG_PAGETYPE_MASK) == MPI_CONFIG_PAGETYPE_EXTENDED) { pCfg->cfghdr.ehdr->ExtPageLength = le16_to_cpu(pReply->ExtPageLength); pCfg->cfghdr.ehdr->ExtPageType = pReply->ExtPageType; } pCfg->cfghdr.hdr->PageVersion = pReply->Header.PageVersion; /* If this is a regular header, save PageLength. */ /* LMP Do this better so not using a reserved field! */ pCfg->cfghdr.hdr->PageLength = pReply->Header.PageLength; pCfg->cfghdr.hdr->PageNumber = pReply->Header.PageNumber; pCfg->cfghdr.hdr->PageType = pReply->Header.PageType; } } /* * Wake up the original calling thread */ pCfg->wait_done = 1; wake_up(&mpt_waitq); } } else if (func == MPI_FUNCTION_SAS_IO_UNIT_CONTROL) { /* we should be always getting a reply frame */ memcpy(ioc->persist_reply_frame, reply, min(MPT_DEFAULT_FRAME_SIZE, 4*reply->u.reply.MsgLength)); del_timer(&ioc->persist_timer); ioc->persist_wait_done = 1; wake_up(&mpt_waitq); } else { printk(MYIOC_s_ERR_FMT "Unexpected msg function (=%02Xh) reply received!\n", ioc->name, func); } /* * Conditionally tell caller to free the original * EventNotification/EventAck/unexpected request frame! */ return freereq; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_register - Register protocol-specific main callback handler. * @cbfunc: callback function pointer * @dclass: Protocol driver's class (%MPT_DRIVER_CLASS enum value) * * This routine is called by a protocol-specific driver (SCSI host, * LAN, SCSI target) to register it's reply callback routine. Each * protocol-specific driver must do this before it will be able to * use any IOC resources, such as obtaining request frames. * * NOTES: The SCSI protocol driver currently calls this routine thrice * in order to register separate callbacks; one for "normal" SCSI IO; * one for MptScsiTaskMgmt requests; one for Scan/DV requests. * * Returns a positive integer valued "handle" in the * range (and S.O.D. order) {N,...,7,6,5,...,1} if successful. * Any non-positive return value (including zero!) should be considered * an error by the caller. */ int mpt_register(MPT_CALLBACK cbfunc, MPT_DRIVER_CLASS dclass) { int i; last_drv_idx = -1; /* * Search for empty callback slot in this order: {N,...,7,6,5,...,1} * (slot/handle 0 is reserved!) */ for (i = MPT_MAX_PROTOCOL_DRIVERS-1; i; i--) { if (MptCallbacks[i] == NULL) { MptCallbacks[i] = cbfunc; MptDriverClass[i] = dclass; MptEvHandlers[i] = NULL; last_drv_idx = i; break; } } return last_drv_idx; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_deregister - Deregister a protocol drivers resources. * @cb_idx: previously registered callback handle * * Each protocol-specific driver should call this routine when it's * module is unloaded. */ void mpt_deregister(int cb_idx) { if ((cb_idx >= 0) && (cb_idx < MPT_MAX_PROTOCOL_DRIVERS)) { MptCallbacks[cb_idx] = NULL; MptDriverClass[cb_idx] = MPTUNKNOWN_DRIVER; MptEvHandlers[cb_idx] = NULL; last_drv_idx++; } } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_event_register - Register protocol-specific event callback * handler. * @cb_idx: previously registered (via mpt_register) callback handle * @ev_cbfunc: callback function * * This routine can be called by one or more protocol-specific drivers * if/when they choose to be notified of MPT events. * * Returns 0 for success. */ int mpt_event_register(int cb_idx, MPT_EVHANDLER ev_cbfunc) { if (cb_idx < 1 || cb_idx >= MPT_MAX_PROTOCOL_DRIVERS) return -1; MptEvHandlers[cb_idx] = ev_cbfunc; return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_event_deregister - Deregister protocol-specific event callback * handler. * @cb_idx: previously registered callback handle * * Each protocol-specific driver should call this routine * when it does not (or can no longer) handle events, * or when it's module is unloaded. */ void mpt_event_deregister(int cb_idx) { if (cb_idx < 1 || cb_idx >= MPT_MAX_PROTOCOL_DRIVERS) return; MptEvHandlers[cb_idx] = NULL; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_reset_register - Register protocol-specific IOC reset handler. * @cb_idx: previously registered (via mpt_register) callback handle * @reset_func: reset function * * This routine can be called by one or more protocol-specific drivers * if/when they choose to be notified of IOC resets. * * Returns 0 for success. */ int mpt_reset_register(int cb_idx, MPT_RESETHANDLER reset_func) { if (cb_idx < 1 || cb_idx >= MPT_MAX_PROTOCOL_DRIVERS) return -1; MptResetHandlers[cb_idx] = reset_func; return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_reset_deregister - Deregister protocol-specific IOC reset handler. * @cb_idx: previously registered callback handle * * Each protocol-specific driver should call this routine * when it does not (or can no longer) handle IOC reset handling, * or when it's module is unloaded. */ void mpt_reset_deregister(int cb_idx) { if (cb_idx < 1 || cb_idx >= MPT_MAX_PROTOCOL_DRIVERS) return; MptResetHandlers[cb_idx] = NULL; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_device_driver_register - Register device driver hooks */ int mpt_device_driver_register(struct mpt_pci_driver * dd_cbfunc, int cb_idx) { MPT_ADAPTER *ioc; if (cb_idx < 1 || cb_idx >= MPT_MAX_PROTOCOL_DRIVERS) { return -EINVAL; } MptDeviceDriverHandlers[cb_idx] = dd_cbfunc; /* call per pci device probe entry point */ list_for_each_entry(ioc, &ioc_list, list) { if(dd_cbfunc->probe) { dd_cbfunc->probe(ioc->pcidev, ioc->pcidev->driver->id_table); } } return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_device_driver_deregister - DeRegister device driver hooks */ void mpt_device_driver_deregister(int cb_idx) { struct mpt_pci_driver *dd_cbfunc; MPT_ADAPTER *ioc; if (cb_idx < 1 || cb_idx >= MPT_MAX_PROTOCOL_DRIVERS) return; dd_cbfunc = MptDeviceDriverHandlers[cb_idx]; list_for_each_entry(ioc, &ioc_list, list) { if (dd_cbfunc->remove) dd_cbfunc->remove(ioc->pcidev); } MptDeviceDriverHandlers[cb_idx] = NULL; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_get_msg_frame - Obtain a MPT request frame from the pool (of 1024) * allocated per MPT adapter. * @handle: Handle of registered MPT protocol driver * @ioc: Pointer to MPT adapter structure * * Returns pointer to a MPT request frame or %NULL if none are available * or IOC is not active. */ MPT_FRAME_HDR* mpt_get_msg_frame(int handle, MPT_ADAPTER *ioc) { MPT_FRAME_HDR *mf; unsigned long flags; u16 req_idx; /* Request index */ /* validate handle and ioc identifier */ #ifdef MFCNT if (!ioc->active) printk(KERN_WARNING "IOC Not Active! mpt_get_msg_frame returning NULL!\n"); #endif /* If interrupts are not attached, do not return a request frame */ if (!ioc->active) return NULL; spin_lock_irqsave(&ioc->FreeQlock, flags); if (!list_empty(&ioc->FreeQ)) { int req_offset; mf = list_entry(ioc->FreeQ.next, MPT_FRAME_HDR, u.frame.linkage.list); list_del(&mf->u.frame.linkage.list); mf->u.frame.linkage.arg1 = 0; mf->u.frame.hwhdr.msgctxu.fld.cb_idx = handle; /* byte */ req_offset = (u8 *)mf - (u8 *)ioc->req_frames; /* u16! */ req_idx = req_offset / ioc->req_sz; mf->u.frame.hwhdr.msgctxu.fld.req_idx = cpu_to_le16(req_idx); mf->u.frame.hwhdr.msgctxu.fld.rsvd = 0; ioc->RequestNB[req_idx] = ioc->NB_for_64_byte_frame; /* Default, will be changed if necessary in SG generation */ #ifdef MFCNT ioc->mfcnt++; #endif } else mf = NULL; spin_unlock_irqrestore(&ioc->FreeQlock, flags); #ifdef MFCNT if (mf == NULL) printk(KERN_WARNING "IOC Active. No free Msg Frames! Count 0x%x Max 0x%x\n", ioc->mfcnt, ioc->req_depth); mfcounter++; if (mfcounter == PRINT_MF_COUNT) printk(KERN_INFO "MF Count 0x%x Max 0x%x \n", ioc->mfcnt, ioc->req_depth); #endif dmfprintk((KERN_INFO MYNAM ": %s: mpt_get_msg_frame(%d,%d), got mf=%p\n", ioc->name, handle, ioc->id, mf)); return mf; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_put_msg_frame - Send a protocol specific MPT request frame * to a IOC. * @handle: Handle of registered MPT protocol driver * @ioc: Pointer to MPT adapter structure * @mf: Pointer to MPT request frame * * This routine posts a MPT request frame to the request post FIFO of a * specific MPT adapter. */ void mpt_put_msg_frame(int handle, MPT_ADAPTER *ioc, MPT_FRAME_HDR *mf) { u32 mf_dma_addr; int req_offset; u16 req_idx; /* Request index */ /* ensure values are reset properly! */ mf->u.frame.hwhdr.msgctxu.fld.cb_idx = handle; /* byte */ req_offset = (u8 *)mf - (u8 *)ioc->req_frames; /* u16! */ req_idx = req_offset / ioc->req_sz; mf->u.frame.hwhdr.msgctxu.fld.req_idx = cpu_to_le16(req_idx); mf->u.frame.hwhdr.msgctxu.fld.rsvd = 0; #ifdef MPT_DEBUG_MSG_FRAME { u32 *m = mf->u.frame.hwhdr.__hdr; int ii, n; printk(KERN_INFO MYNAM ": %s: About to Put msg frame @ %p:\n" KERN_INFO " ", ioc->name, m); n = ioc->req_sz/4 - 1; while (m[n] == 0) n--; for (ii=0; ii<=n; ii++) { if (ii && ((ii%8)==0)) printk("\n" KERN_INFO " "); printk(" %08x", le32_to_cpu(m[ii])); } printk("\n"); } #endif mf_dma_addr = (ioc->req_frames_low_dma + req_offset) | ioc->RequestNB[req_idx]; dsgprintk((MYIOC_s_INFO_FMT "mf_dma_addr=%x req_idx=%d RequestNB=%x\n", ioc->name, mf_dma_addr, req_idx, ioc->RequestNB[req_idx])); CHIPREG_WRITE32(&ioc->chip->RequestFifo, mf_dma_addr); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_free_msg_frame - Place MPT request frame back on FreeQ. * @handle: Handle of registered MPT protocol driver * @ioc: Pointer to MPT adapter structure * @mf: Pointer to MPT request frame * * This routine places a MPT request frame back on the MPT adapter's * FreeQ. */ void mpt_free_msg_frame(MPT_ADAPTER *ioc, MPT_FRAME_HDR *mf) { unsigned long flags; /* Put Request back on FreeQ! */ spin_lock_irqsave(&ioc->FreeQlock, flags); mf->u.frame.linkage.arg1 = 0xdeadbeaf; /* signature to know if this mf is freed */ list_add_tail(&mf->u.frame.linkage.list, &ioc->FreeQ); #ifdef MFCNT ioc->mfcnt--; #endif spin_unlock_irqrestore(&ioc->FreeQlock, flags); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_add_sge - Place a simple SGE at address pAddr. * @pAddr: virtual address for SGE * @flagslength: SGE flags and data transfer length * @dma_addr: Physical address * * This routine places a MPT request frame back on the MPT adapter's * FreeQ. */ void mpt_add_sge(char *pAddr, u32 flagslength, dma_addr_t dma_addr) { if (sizeof(dma_addr_t) == sizeof(u64)) { SGESimple64_t *pSge = (SGESimple64_t *) pAddr; u32 tmp = dma_addr & 0xFFFFFFFF; pSge->FlagsLength = cpu_to_le32(flagslength); pSge->Address.Low = cpu_to_le32(tmp); tmp = (u32) ((u64)dma_addr >> 32); pSge->Address.High = cpu_to_le32(tmp); } else { SGESimple32_t *pSge = (SGESimple32_t *) pAddr; pSge->FlagsLength = cpu_to_le32(flagslength); pSge->Address = cpu_to_le32(dma_addr); } } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_send_handshake_request - Send MPT request via doorbell * handshake method. * @handle: Handle of registered MPT protocol driver * @ioc: Pointer to MPT adapter structure * @reqBytes: Size of the request in bytes * @req: Pointer to MPT request frame * @sleepFlag: Use schedule if CAN_SLEEP else use udelay. * * This routine is used exclusively to send MptScsiTaskMgmt * requests since they are required to be sent via doorbell handshake. * * NOTE: It is the callers responsibility to byte-swap fields in the * request which are greater than 1 byte in size. * * Returns 0 for success, non-zero for failure. */ int mpt_send_handshake_request(int handle, MPT_ADAPTER *ioc, int reqBytes, u32 *req, int sleepFlag) { int r = 0; u8 *req_as_bytes; int ii; /* State is known to be good upon entering * this function so issue the bus reset * request. */ /* * Emulate what mpt_put_msg_frame() does /wrt to sanity * setting cb_idx/req_idx. But ONLY if this request * is in proper (pre-alloc'd) request buffer range... */ ii = MFPTR_2_MPT_INDEX(ioc,(MPT_FRAME_HDR*)req); if (reqBytes >= 12 && ii >= 0 && ii < ioc->req_depth) { MPT_FRAME_HDR *mf = (MPT_FRAME_HDR*)req; mf->u.frame.hwhdr.msgctxu.fld.req_idx = cpu_to_le16(ii); mf->u.frame.hwhdr.msgctxu.fld.cb_idx = handle; } /* Make sure there are no doorbells */ CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); CHIPREG_WRITE32(&ioc->chip->Doorbell, ((MPI_FUNCTION_HANDSHAKE<chip->Doorbell) & MPI_DOORBELL_ACTIVE)) return -5; dhsprintk((KERN_INFO MYNAM ": %s: mpt_send_handshake_request start, WaitCnt=%d\n", ioc->name, ii)); CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); if ((r = WaitForDoorbellAck(ioc, 5, sleepFlag)) < 0) { return -2; } /* Send request via doorbell handshake */ req_as_bytes = (u8 *) req; for (ii = 0; ii < reqBytes/4; ii++) { u32 word; word = ((req_as_bytes[(ii*4) + 0] << 0) | (req_as_bytes[(ii*4) + 1] << 8) | (req_as_bytes[(ii*4) + 2] << 16) | (req_as_bytes[(ii*4) + 3] << 24)); CHIPREG_WRITE32(&ioc->chip->Doorbell, word); if ((r = WaitForDoorbellAck(ioc, 5, sleepFlag)) < 0) { r = -3; break; } } if (r >= 0 && WaitForDoorbellInt(ioc, 10, sleepFlag) >= 0) r = 0; else r = -4; /* Make sure there are no doorbells */ CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); return r; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_host_page_access_control - provides mechanism for the host * driver to control the IOC's Host Page Buffer access. * @ioc: Pointer to MPT adapter structure * @access_control_value: define bits below * * Access Control Value - bits[15:12] * 0h Reserved * 1h Enable Access { MPI_DB_HPBAC_ENABLE_ACCESS } * 2h Disable Access { MPI_DB_HPBAC_DISABLE_ACCESS } * 3h Free Buffer { MPI_DB_HPBAC_FREE_BUFFER } * * Returns 0 for success, non-zero for failure. */ static int mpt_host_page_access_control(MPT_ADAPTER *ioc, u8 access_control_value, int sleepFlag) { int r = 0; /* return if in use */ if (CHIPREG_READ32(&ioc->chip->Doorbell) & MPI_DOORBELL_ACTIVE) return -1; CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); CHIPREG_WRITE32(&ioc->chip->Doorbell, ((MPI_FUNCTION_HOST_PAGEBUF_ACCESS_CONTROL <HostPageBuffer) { host_page_buffer_sz = le32_to_cpu(ioc->facts.HostPageBufferSGE.FlagsLength) & 0xFFFFFF; if(!host_page_buffer_sz) return 0; /* fw doesn't need any host buffers */ /* spin till we get enough memory */ while(host_page_buffer_sz > 0) { if((ioc->HostPageBuffer = pci_alloc_consistent( ioc->pcidev, host_page_buffer_sz, &ioc->HostPageBuffer_dma)) != NULL) { dinitprintk((MYIOC_s_INFO_FMT "host_page_buffer @ %p, dma @ %x, sz=%d bytes\n", ioc->name, ioc->HostPageBuffer, ioc->HostPageBuffer_dma, host_page_buffer_sz)); ioc->alloc_total += host_page_buffer_sz; ioc->HostPageBuffer_sz = host_page_buffer_sz; break; } host_page_buffer_sz -= (4*1024); } } if(!ioc->HostPageBuffer) { printk(MYIOC_s_ERR_FMT "Failed to alloc memory for host_page_buffer!\n", ioc->name); return -999; } psge = (char *)&ioc_init->HostPageBufferSGE; flags_length = MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_SYSTEM_ADDRESS | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_HOST_TO_IOC | MPI_SGE_FLAGS_END_OF_BUFFER; if (sizeof(dma_addr_t) == sizeof(u64)) { flags_length |= MPI_SGE_FLAGS_64_BIT_ADDRESSING; } flags_length = flags_length << MPI_SGE_FLAGS_SHIFT; flags_length |= ioc->HostPageBuffer_sz; mpt_add_sge(psge, flags_length, ioc->HostPageBuffer_dma); ioc->facts.HostPageBufferSGE = ioc_init->HostPageBufferSGE; return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_verify_adapter - Given a unique IOC identifier, set pointer to * the associated MPT adapter structure. * @iocid: IOC unique identifier (integer) * @iocpp: Pointer to pointer to IOC adapter * * Returns iocid and sets iocpp. */ int mpt_verify_adapter(int iocid, MPT_ADAPTER **iocpp) { MPT_ADAPTER *ioc; list_for_each_entry(ioc,&ioc_list,list) { if (ioc->id == iocid) { *iocpp =ioc; return iocid; } } *iocpp = NULL; return -1; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_attach - Install a PCI intelligent MPT adapter. * @pdev: Pointer to pci_dev structure * * This routine performs all the steps necessary to bring the IOC of * a MPT adapter to a OPERATIONAL state. This includes registering * memory regions, registering the interrupt, and allocating request * and reply memory pools. * * This routine also pre-fetches the LAN MAC address of a Fibre Channel * MPT adapter. * * Returns 0 for success, non-zero for failure. * * TODO: Add support for polled controllers */ int mpt_attach(struct pci_dev *pdev, const struct pci_device_id *id) { MPT_ADAPTER *ioc; u8 __iomem *mem; unsigned long mem_phys; unsigned long port; u32 msize; u32 psize; int ii; int r = -ENODEV; u8 revision; u8 pcixcmd; static int mpt_ids = 0; #ifdef CONFIG_PROC_FS struct proc_dir_entry *dent, *ent; #endif if (pci_enable_device(pdev)) return r; dinitprintk((KERN_WARNING MYNAM ": mpt_adapter_install\n")); if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { dprintk((KERN_INFO MYNAM ": 64 BIT PCI BUS DMA ADDRESSING SUPPORTED\n")); } else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { printk(KERN_WARNING MYNAM ": 32 BIT PCI BUS DMA ADDRESSING NOT SUPPORTED\n"); return r; } if (!pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) dprintk((KERN_INFO MYNAM ": Using 64 bit consistent mask\n")); else dprintk((KERN_INFO MYNAM ": Not using 64 bit consistent mask\n")); ioc = kzalloc(sizeof(MPT_ADAPTER), GFP_ATOMIC); if (ioc == NULL) { printk(KERN_ERR MYNAM ": ERROR - Insufficient memory to add adapter!\n"); return -ENOMEM; } ioc->alloc_total = sizeof(MPT_ADAPTER); ioc->req_sz = MPT_DEFAULT_FRAME_SIZE; /* avoid div by zero! */ ioc->reply_sz = MPT_REPLY_FRAME_SIZE; ioc->pcidev = pdev; ioc->diagPending = 0; spin_lock_init(&ioc->diagLock); spin_lock_init(&ioc->fc_rescan_work_lock); spin_lock_init(&ioc->initializing_hba_lock); /* Initialize the event logging. */ ioc->eventTypes = 0; /* None */ ioc->eventContext = 0; ioc->eventLogSize = 0; ioc->events = NULL; #ifdef MFCNT ioc->mfcnt = 0; #endif ioc->cached_fw = NULL; /* Initilize SCSI Config Data structure */ memset(&ioc->spi_data, 0, sizeof(SpiCfgData)); /* Initialize the running configQ head. */ INIT_LIST_HEAD(&ioc->configQ); /* Initialize the fc rport list head. */ INIT_LIST_HEAD(&ioc->fc_rports); /* Find lookup slot. */ INIT_LIST_HEAD(&ioc->list); ioc->id = mpt_ids++; mem_phys = msize = 0; port = psize = 0; for (ii=0; ii < DEVICE_COUNT_RESOURCE; ii++) { if (pci_resource_flags(pdev, ii) & PCI_BASE_ADDRESS_SPACE_IO) { /* Get I/O space! */ port = pci_resource_start(pdev, ii); psize = pci_resource_len(pdev,ii); } else { /* Get memmap */ mem_phys = pci_resource_start(pdev, ii); msize = pci_resource_len(pdev,ii); break; } } ioc->mem_size = msize; if (ii == DEVICE_COUNT_RESOURCE) { printk(KERN_ERR MYNAM ": ERROR - MPT adapter has no memory regions defined!\n"); kfree(ioc); return -EINVAL; } dinitprintk((KERN_INFO MYNAM ": MPT adapter @ %lx, msize=%dd bytes\n", mem_phys, msize)); dinitprintk((KERN_INFO MYNAM ": (port i/o @ %lx, psize=%dd bytes)\n", port, psize)); mem = NULL; /* Get logical ptr for PciMem0 space */ /*mem = ioremap(mem_phys, msize);*/ mem = ioremap(mem_phys, 0x100); if (mem == NULL) { printk(KERN_ERR MYNAM ": ERROR - Unable to map adapter memory!\n"); kfree(ioc); return -EINVAL; } ioc->memmap = mem; dinitprintk((KERN_INFO MYNAM ": mem = %p, mem_phys = %lx\n", mem, mem_phys)); dinitprintk((KERN_INFO MYNAM ": facts @ %p, pfacts[0] @ %p\n", &ioc->facts, &ioc->pfacts[0])); ioc->mem_phys = mem_phys; ioc->chip = (SYSIF_REGS __iomem *)mem; /* Save Port IO values in case we need to do downloadboot */ { u8 *pmem = (u8*)port; ioc->pio_mem_phys = port; ioc->pio_chip = (SYSIF_REGS __iomem *)pmem; } if (pdev->device == MPI_MANUFACTPAGE_DEVICEID_FC909) { ioc->prod_name = "LSIFC909"; ioc->bus_type = FC; } else if (pdev->device == MPI_MANUFACTPAGE_DEVICEID_FC929) { ioc->prod_name = "LSIFC929"; ioc->bus_type = FC; } else if (pdev->device == MPI_MANUFACTPAGE_DEVICEID_FC919) { ioc->prod_name = "LSIFC919"; ioc->bus_type = FC; } else if (pdev->device == MPI_MANUFACTPAGE_DEVICEID_FC929X) { pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision); ioc->bus_type = FC; if (revision < XL_929) { ioc->prod_name = "LSIFC929X"; /* 929X Chip Fix. Set Split transactions level * for PCIX. Set MOST bits to zero. */ pci_read_config_byte(pdev, 0x6a, &pcixcmd); pcixcmd &= 0x8F; pci_write_config_byte(pdev, 0x6a, pcixcmd); } else { ioc->prod_name = "LSIFC929XL"; /* 929XL Chip Fix. Set MMRBC to 0x08. */ pci_read_config_byte(pdev, 0x6a, &pcixcmd); pcixcmd |= 0x08; pci_write_config_byte(pdev, 0x6a, pcixcmd); } } else if (pdev->device == MPI_MANUFACTPAGE_DEVICEID_FC919X) { ioc->prod_name = "LSIFC919X"; ioc->bus_type = FC; /* 919X Chip Fix. Set Split transactions level * for PCIX. Set MOST bits to zero. */ pci_read_config_byte(pdev, 0x6a, &pcixcmd); pcixcmd &= 0x8F; pci_write_config_byte(pdev, 0x6a, pcixcmd); } else if (pdev->device == MPI_MANUFACTPAGE_DEVICEID_FC939X) { ioc->prod_name = "LSIFC939X"; ioc->bus_type = FC; ioc->errata_flag_1064 = 1; } else if (pdev->device == MPI_MANUFACTPAGE_DEVICEID_FC949X) { ioc->prod_name = "LSIFC949X"; ioc->bus_type = FC; ioc->errata_flag_1064 = 1; } else if (pdev->device == MPI_MANUFACTPAGE_DEVICEID_FC949E) { ioc->prod_name = "LSIFC949E"; ioc->bus_type = FC; } else if (pdev->device == MPI_MANUFACTPAGE_DEVID_53C1030) { ioc->prod_name = "LSI53C1030"; ioc->bus_type = SPI; /* 1030 Chip Fix. Disable Split transactions * for PCIX. Set MOST bits to zero if Rev < C0( = 8). */ pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision); if (revision < C0_1030) { pci_read_config_byte(pdev, 0x6a, &pcixcmd); pcixcmd &= 0x8F; pci_write_config_byte(pdev, 0x6a, pcixcmd); } } else if (pdev->device == MPI_MANUFACTPAGE_DEVID_1030_53C1035) { ioc->prod_name = "LSI53C1035"; ioc->bus_type = SPI; } else if (pdev->device == MPI_MANUFACTPAGE_DEVID_SAS1064) { ioc->prod_name = "LSISAS1064"; ioc->bus_type = SAS; ioc->errata_flag_1064 = 1; } else if (pdev->device == MPI_MANUFACTPAGE_DEVID_SAS1066) { ioc->prod_name = "LSISAS1066"; ioc->bus_type = SAS; ioc->errata_flag_1064 = 1; } else if (pdev->device == MPI_MANUFACTPAGE_DEVID_SAS1068) { ioc->prod_name = "LSISAS1068"; ioc->bus_type = SAS; ioc->errata_flag_1064 = 1; } else if (pdev->device == MPI_MANUFACTPAGE_DEVID_SAS1064E) { ioc->prod_name = "LSISAS1064E"; ioc->bus_type = SAS; } else if (pdev->device == MPI_MANUFACTPAGE_DEVID_SAS1066E) { ioc->prod_name = "LSISAS1066E"; ioc->bus_type = SAS; } else if (pdev->device == MPI_MANUFACTPAGE_DEVID_SAS1068E) { ioc->prod_name = "LSISAS1068E"; ioc->bus_type = SAS; } if (ioc->errata_flag_1064) pci_disable_io_access(pdev); sprintf(ioc->name, "ioc%d", ioc->id); spin_lock_init(&ioc->FreeQlock); /* Disable all! */ CHIPREG_WRITE32(&ioc->chip->IntMask, 0xFFFFFFFF); ioc->active = 0; CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); /* Set lookup ptr. */ list_add_tail(&ioc->list, &ioc_list); ioc->pci_irq = -1; if (pdev->irq) { if (mpt_msi_enable && !pci_enable_msi(pdev)) printk(MYIOC_s_INFO_FMT "PCI-MSI enabled\n", ioc->name); r = request_irq(pdev->irq, mpt_interrupt, SA_SHIRQ, ioc->name, ioc); if (r < 0) { #ifndef __sparc__ printk(MYIOC_s_ERR_FMT "Unable to allocate interrupt %d!\n", ioc->name, pdev->irq); #else printk(MYIOC_s_ERR_FMT "Unable to allocate interrupt %s!\n", ioc->name, __irq_itoa(pdev->irq)); #endif list_del(&ioc->list); iounmap(mem); kfree(ioc); return -EBUSY; } ioc->pci_irq = pdev->irq; pci_set_master(pdev); /* ?? */ pci_set_drvdata(pdev, ioc); #ifndef __sparc__ dprintk((KERN_INFO MYNAM ": %s installed at interrupt %d\n", ioc->name, pdev->irq)); #else dprintk((KERN_INFO MYNAM ": %s installed at interrupt %s\n", ioc->name, __irq_itoa(pdev->irq))); #endif } /* Check for "bound ports" (929, 929X, 1030, 1035) to reduce redundant resets. */ mpt_detect_bound_ports(ioc, pdev); if ((r = mpt_do_ioc_recovery(ioc, MPT_HOSTEVENT_IOC_BRINGUP, CAN_SLEEP)) != 0){ printk(KERN_WARNING MYNAM ": WARNING - %s did not initialize properly! (%d)\n", ioc->name, r); list_del(&ioc->list); free_irq(ioc->pci_irq, ioc); if (mpt_msi_enable) pci_disable_msi(pdev); if (ioc->alt_ioc) ioc->alt_ioc->alt_ioc = NULL; iounmap(mem); kfree(ioc); pci_set_drvdata(pdev, NULL); return r; } /* call per device driver probe entry point */ for(ii=0; iiprobe) { MptDeviceDriverHandlers[ii]->probe(pdev,id); } } #ifdef CONFIG_PROC_FS /* * Create "/proc/mpt/iocN" subdirectory entry for each MPT adapter. */ dent = proc_mkdir(ioc->name, mpt_proc_root_dir); if (dent) { ent = create_proc_entry("info", S_IFREG|S_IRUGO, dent); if (ent) { ent->read_proc = procmpt_iocinfo_read; ent->data = ioc; } ent = create_proc_entry("summary", S_IFREG|S_IRUGO, dent); if (ent) { ent->read_proc = procmpt_summary_read; ent->data = ioc; } } #endif return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_detach - Remove a PCI intelligent MPT adapter. * @pdev: Pointer to pci_dev structure * */ void mpt_detach(struct pci_dev *pdev) { MPT_ADAPTER *ioc = pci_get_drvdata(pdev); char pname[32]; int ii; sprintf(pname, MPT_PROCFS_MPTBASEDIR "/%s/summary", ioc->name); remove_proc_entry(pname, NULL); sprintf(pname, MPT_PROCFS_MPTBASEDIR "/%s/info", ioc->name); remove_proc_entry(pname, NULL); sprintf(pname, MPT_PROCFS_MPTBASEDIR "/%s", ioc->name); remove_proc_entry(pname, NULL); /* call per device driver remove entry point */ for(ii=0; iiremove) { MptDeviceDriverHandlers[ii]->remove(pdev); } } /* Disable interrupts! */ CHIPREG_WRITE32(&ioc->chip->IntMask, 0xFFFFFFFF); ioc->active = 0; synchronize_irq(pdev->irq); /* Clear any lingering interrupt */ CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); CHIPREG_READ32(&ioc->chip->IntStatus); mpt_adapter_dispose(ioc); pci_set_drvdata(pdev, NULL); } /************************************************************************** * Power Management */ #ifdef CONFIG_PM /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_suspend - Fusion MPT base driver suspend routine. * * */ int mpt_suspend(struct pci_dev *pdev, pm_message_t state) { u32 device_state; MPT_ADAPTER *ioc = pci_get_drvdata(pdev); device_state=pci_choose_state(pdev, state); printk(MYIOC_s_INFO_FMT "pci-suspend: pdev=0x%p, slot=%s, Entering operating state [D%d]\n", ioc->name, pdev, pci_name(pdev), device_state); pci_save_state(pdev); /* put ioc into READY_STATE */ if(SendIocReset(ioc, MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET, CAN_SLEEP)) { printk(MYIOC_s_ERR_FMT "pci-suspend: IOC msg unit reset failed!\n", ioc->name); } /* disable interrupts */ CHIPREG_WRITE32(&ioc->chip->IntMask, 0xFFFFFFFF); ioc->active = 0; /* Clear any lingering interrupt */ CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); pci_disable_device(pdev); pci_set_power_state(pdev, device_state); return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_resume - Fusion MPT base driver resume routine. * * */ int mpt_resume(struct pci_dev *pdev) { MPT_ADAPTER *ioc = pci_get_drvdata(pdev); u32 device_state = pdev->current_state; int recovery_state; printk(MYIOC_s_INFO_FMT "pci-resume: pdev=0x%p, slot=%s, Previous operating state [D%d]\n", ioc->name, pdev, pci_name(pdev), device_state); pci_set_power_state(pdev, 0); pci_restore_state(pdev); pci_enable_device(pdev); /* enable interrupts */ CHIPREG_WRITE32(&ioc->chip->IntMask, MPI_HIM_DIM); ioc->active = 1; printk(MYIOC_s_INFO_FMT "pci-resume: ioc-state=0x%x,doorbell=0x%x\n", ioc->name, (mpt_GetIocState(ioc, 1) >> MPI_IOC_STATE_SHIFT), CHIPREG_READ32(&ioc->chip->Doorbell)); /* bring ioc to operational state */ if ((recovery_state = mpt_do_ioc_recovery(ioc, MPT_HOSTEVENT_IOC_RECOVER, CAN_SLEEP)) != 0) { printk(MYIOC_s_INFO_FMT "pci-resume: Cannot recover, error:[%x]\n", ioc->name, recovery_state); } else { printk(MYIOC_s_INFO_FMT "pci-resume: success\n", ioc->name); } return 0; } #endif static int mpt_signal_reset(int index, MPT_ADAPTER *ioc, int reset_phase) { if ((MptDriverClass[index] == MPTSPI_DRIVER && ioc->bus_type != SPI) || (MptDriverClass[index] == MPTFC_DRIVER && ioc->bus_type != FC) || (MptDriverClass[index] == MPTSAS_DRIVER && ioc->bus_type != SAS)) /* make sure we only call the relevant reset handler * for the bus */ return 0; return (MptResetHandlers[index])(ioc, reset_phase); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_do_ioc_recovery - Initialize or recover MPT adapter. * @ioc: Pointer to MPT adapter structure * @reason: Event word / reason * @sleepFlag: Use schedule if CAN_SLEEP else use udelay. * * This routine performs all the steps necessary to bring the IOC * to a OPERATIONAL state. * * This routine also pre-fetches the LAN MAC address of a Fibre Channel * MPT adapter. * * Returns: * 0 for success * -1 if failed to get board READY * -2 if READY but IOCFacts Failed * -3 if READY but PrimeIOCFifos Failed * -4 if READY but IOCInit Failed */ static int mpt_do_ioc_recovery(MPT_ADAPTER *ioc, u32 reason, int sleepFlag) { int hard_reset_done = 0; int alt_ioc_ready = 0; int hard; int rc=0; int ii; int handlers; int ret = 0; int reset_alt_ioc_active = 0; printk(KERN_INFO MYNAM ": Initiating %s %s\n", ioc->name, reason==MPT_HOSTEVENT_IOC_BRINGUP ? "bringup" : "recovery"); /* Disable reply interrupts (also blocks FreeQ) */ CHIPREG_WRITE32(&ioc->chip->IntMask, 0xFFFFFFFF); ioc->active = 0; if (ioc->alt_ioc) { if (ioc->alt_ioc->active) reset_alt_ioc_active = 1; /* Disable alt-IOC's reply interrupts (and FreeQ) for a bit ... */ CHIPREG_WRITE32(&ioc->alt_ioc->chip->IntMask, 0xFFFFFFFF); ioc->alt_ioc->active = 0; } hard = 1; if (reason == MPT_HOSTEVENT_IOC_BRINGUP) hard = 0; if ((hard_reset_done = MakeIocReady(ioc, hard, sleepFlag)) < 0) { if (hard_reset_done == -4) { printk(KERN_WARNING MYNAM ": %s Owned by PEER..skipping!\n", ioc->name); if (reset_alt_ioc_active && ioc->alt_ioc) { /* (re)Enable alt-IOC! (reply interrupt, FreeQ) */ dprintk((KERN_INFO MYNAM ": alt-%s reply irq re-enabled\n", ioc->alt_ioc->name)); CHIPREG_WRITE32(&ioc->alt_ioc->chip->IntMask, MPI_HIM_DIM); ioc->alt_ioc->active = 1; } } else { printk(KERN_WARNING MYNAM ": %s NOT READY WARNING!\n", ioc->name); } return -1; } /* hard_reset_done = 0 if a soft reset was performed * and 1 if a hard reset was performed. */ if (hard_reset_done && reset_alt_ioc_active && ioc->alt_ioc) { if ((rc = MakeIocReady(ioc->alt_ioc, 0, sleepFlag)) == 0) alt_ioc_ready = 1; else printk(KERN_WARNING MYNAM ": alt-%s: Not ready WARNING!\n", ioc->alt_ioc->name); } for (ii=0; ii<5; ii++) { /* Get IOC facts! Allow 5 retries */ if ((rc = GetIocFacts(ioc, sleepFlag, reason)) == 0) break; } if (ii == 5) { dinitprintk((MYIOC_s_INFO_FMT "Retry IocFacts failed rc=%x\n", ioc->name, rc)); ret = -2; } else if (reason == MPT_HOSTEVENT_IOC_BRINGUP) { MptDisplayIocCapabilities(ioc); } if (alt_ioc_ready) { if ((rc = GetIocFacts(ioc->alt_ioc, sleepFlag, reason)) != 0) { dinitprintk((MYIOC_s_INFO_FMT "Initial Alt IocFacts failed rc=%x\n", ioc->name, rc)); /* Retry - alt IOC was initialized once */ rc = GetIocFacts(ioc->alt_ioc, sleepFlag, reason); } if (rc) { dinitprintk((MYIOC_s_INFO_FMT "Retry Alt IocFacts failed rc=%x\n", ioc->name, rc)); alt_ioc_ready = 0; reset_alt_ioc_active = 0; } else if (reason == MPT_HOSTEVENT_IOC_BRINGUP) { MptDisplayIocCapabilities(ioc->alt_ioc); } } /* Prime reply & request queues! * (mucho alloc's) Must be done prior to * init as upper addresses are needed for init. * If fails, continue with alt-ioc processing */ if ((ret == 0) && ((rc = PrimeIocFifos(ioc)) != 0)) ret = -3; /* May need to check/upload firmware & data here! * If fails, continue with alt-ioc processing */ if ((ret == 0) && ((rc = SendIocInit(ioc, sleepFlag)) != 0)) ret = -4; // NEW! if (alt_ioc_ready && ((rc = PrimeIocFifos(ioc->alt_ioc)) != 0)) { printk(KERN_WARNING MYNAM ": alt-%s: (%d) FIFO mgmt alloc WARNING!\n", ioc->alt_ioc->name, rc); alt_ioc_ready = 0; reset_alt_ioc_active = 0; } if (alt_ioc_ready) { if ((rc = SendIocInit(ioc->alt_ioc, sleepFlag)) != 0) { alt_ioc_ready = 0; reset_alt_ioc_active = 0; printk(KERN_WARNING MYNAM ": alt-%s: (%d) init failure WARNING!\n", ioc->alt_ioc->name, rc); } } if (reason == MPT_HOSTEVENT_IOC_BRINGUP){ if (ioc->upload_fw) { ddlprintk((MYIOC_s_INFO_FMT "firmware upload required!\n", ioc->name)); /* Controller is not operational, cannot do upload */ if (ret == 0) { rc = mpt_do_upload(ioc, sleepFlag); if (rc == 0) { if (ioc->alt_ioc && ioc->alt_ioc->cached_fw) { /* * Maintain only one pointer to FW memory * so there will not be two attempt to * downloadboot onboard dual function * chips (mpt_adapter_disable, * mpt_diag_reset) */ ioc->cached_fw = NULL; ddlprintk((MYIOC_s_INFO_FMT ": mpt_upload: alt_%s has cached_fw=%p \n", ioc->name, ioc->alt_ioc->name, ioc->alt_ioc->cached_fw)); } } else { printk(KERN_WARNING MYNAM ": firmware upload failure!\n"); ret = -5; } } } } if (ret == 0) { /* Enable! (reply interrupt) */ CHIPREG_WRITE32(&ioc->chip->IntMask, MPI_HIM_DIM); ioc->active = 1; } if (reset_alt_ioc_active && ioc->alt_ioc) { /* (re)Enable alt-IOC! (reply interrupt) */ dinitprintk((KERN_INFO MYNAM ": alt-%s reply irq re-enabled\n", ioc->alt_ioc->name)); CHIPREG_WRITE32(&ioc->alt_ioc->chip->IntMask, MPI_HIM_DIM); ioc->alt_ioc->active = 1; } /* Enable MPT base driver management of EventNotification * and EventAck handling. */ if ((ret == 0) && (!ioc->facts.EventState)) (void) SendEventNotification(ioc, 1); /* 1=Enable EventNotification */ if (ioc->alt_ioc && alt_ioc_ready && !ioc->alt_ioc->facts.EventState) (void) SendEventNotification(ioc->alt_ioc, 1); /* 1=Enable EventNotification */ /* Add additional "reason" check before call to GetLanConfigPages * (combined with GetIoUnitPage2 call). This prevents a somewhat * recursive scenario; GetLanConfigPages times out, timer expired * routine calls HardResetHandler, which calls into here again, * and we try GetLanConfigPages again... */ if ((ret == 0) && (reason == MPT_HOSTEVENT_IOC_BRINGUP)) { if (ioc->bus_type == SAS) { /* clear persistency table */ if(ioc->facts.IOCExceptions & MPI_IOCFACTS_EXCEPT_PERSISTENT_TABLE_FULL) { ret = mptbase_sas_persist_operation(ioc, MPI_SAS_OP_CLEAR_NOT_PRESENT); if(ret != 0) return -1; } /* Find IM volumes */ mpt_findImVolumes(ioc); } else if (ioc->bus_type == FC) { /* * Pre-fetch FC port WWN and stuff... * (FCPortPage0_t stuff) */ for (ii=0; ii < ioc->facts.NumberOfPorts; ii++) { (void) mptbase_GetFcPortPage0(ioc, ii); } if ((ioc->pfacts[0].ProtocolFlags & MPI_PORTFACTS_PROTOCOL_LAN) && (ioc->lan_cnfg_page0.Header.PageLength == 0)) { /* * Pre-fetch the ports LAN MAC address! * (LANPage1_t stuff) */ (void) GetLanConfigPages(ioc); #ifdef MPT_DEBUG { u8 *a = (u8*)&ioc->lan_cnfg_page1.HardwareAddressLow; dprintk((MYIOC_s_INFO_FMT "LanAddr = %02X:%02X:%02X:%02X:%02X:%02X\n", ioc->name, a[5], a[4], a[3], a[2], a[1], a[0] )); } #endif } } else { /* Get NVRAM and adapter maximums from SPP 0 and 2 */ mpt_GetScsiPortSettings(ioc, 0); /* Get version and length of SDP 1 */ mpt_readScsiDevicePageHeaders(ioc, 0); /* Find IM volumes */ if (ioc->facts.MsgVersion >= MPI_VERSION_01_02) mpt_findImVolumes(ioc); /* Check, and possibly reset, the coalescing value */ mpt_read_ioc_pg_1(ioc); mpt_read_ioc_pg_4(ioc); } GetIoUnitPage2(ioc); } /* * Call each currently registered protocol IOC reset handler * with post-reset indication. * NOTE: If we're doing _IOC_BRINGUP, there can be no * MptResetHandlers[] registered yet. */ if (hard_reset_done) { rc = handlers = 0; for (ii=MPT_MAX_PROTOCOL_DRIVERS-1; ii; ii--) { if ((ret == 0) && MptResetHandlers[ii]) { dprintk((MYIOC_s_INFO_FMT "Calling IOC post_reset handler #%d\n", ioc->name, ii)); rc += mpt_signal_reset(ii, ioc, MPT_IOC_POST_RESET); handlers++; } if (alt_ioc_ready && MptResetHandlers[ii]) { drsprintk((MYIOC_s_INFO_FMT "Calling alt-%s post_reset handler #%d\n", ioc->name, ioc->alt_ioc->name, ii)); rc += mpt_signal_reset(ii, ioc->alt_ioc, MPT_IOC_POST_RESET); handlers++; } } /* FIXME? Examine results here? */ } return ret; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_detect_bound_ports - Search for PCI bus/dev_function * which matches PCI bus/dev_function (+/-1) for newly discovered 929, * 929X, 1030 or 1035. * @ioc: Pointer to MPT adapter structure * @pdev: Pointer to (struct pci_dev) structure * * If match on PCI dev_function +/-1 is found, bind the two MPT adapters * using alt_ioc pointer fields in their %MPT_ADAPTER structures. */ static void mpt_detect_bound_ports(MPT_ADAPTER *ioc, struct pci_dev *pdev) { struct pci_dev *peer=NULL; unsigned int slot = PCI_SLOT(pdev->devfn); unsigned int func = PCI_FUNC(pdev->devfn); MPT_ADAPTER *ioc_srch; dprintk((MYIOC_s_INFO_FMT "PCI device %s devfn=%x/%x," " searching for devfn match on %x or %x\n", ioc->name, pci_name(pdev), pdev->bus->number, pdev->devfn, func-1, func+1)); peer = pci_get_slot(pdev->bus, PCI_DEVFN(slot,func-1)); if (!peer) { peer = pci_get_slot(pdev->bus, PCI_DEVFN(slot,func+1)); if (!peer) return; } list_for_each_entry(ioc_srch, &ioc_list, list) { struct pci_dev *_pcidev = ioc_srch->pcidev; if (_pcidev == peer) { /* Paranoia checks */ if (ioc->alt_ioc != NULL) { printk(KERN_WARNING MYNAM ": Oops, already bound (%s <==> %s)!\n", ioc->name, ioc->alt_ioc->name); break; } else if (ioc_srch->alt_ioc != NULL) { printk(KERN_WARNING MYNAM ": Oops, already bound (%s <==> %s)!\n", ioc_srch->name, ioc_srch->alt_ioc->name); break; } dprintk((KERN_INFO MYNAM ": FOUND! binding %s <==> %s\n", ioc->name, ioc_srch->name)); ioc_srch->alt_ioc = ioc; ioc->alt_ioc = ioc_srch; } } pci_dev_put(peer); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_adapter_disable - Disable misbehaving MPT adapter. * @this: Pointer to MPT adapter structure */ static void mpt_adapter_disable(MPT_ADAPTER *ioc) { int sz; int ret; if (ioc->cached_fw != NULL) { ddlprintk((KERN_INFO MYNAM ": mpt_adapter_disable: Pushing FW onto adapter\n")); if ((ret = mpt_downloadboot(ioc, (MpiFwHeader_t *)ioc->cached_fw, NO_SLEEP)) < 0) { printk(KERN_WARNING MYNAM ": firmware downloadboot failure (%d)!\n", ret); } } /* Disable adapter interrupts! */ CHIPREG_WRITE32(&ioc->chip->IntMask, 0xFFFFFFFF); ioc->active = 0; /* Clear any lingering interrupt */ CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); if (ioc->alloc != NULL) { sz = ioc->alloc_sz; dexitprintk((KERN_INFO MYNAM ": %s.free @ %p, sz=%d bytes\n", ioc->name, ioc->alloc, ioc->alloc_sz)); pci_free_consistent(ioc->pcidev, sz, ioc->alloc, ioc->alloc_dma); ioc->reply_frames = NULL; ioc->req_frames = NULL; ioc->alloc = NULL; ioc->alloc_total -= sz; } if (ioc->sense_buf_pool != NULL) { sz = (ioc->req_depth * MPT_SENSE_BUFFER_ALLOC); pci_free_consistent(ioc->pcidev, sz, ioc->sense_buf_pool, ioc->sense_buf_pool_dma); ioc->sense_buf_pool = NULL; ioc->alloc_total -= sz; } if (ioc->events != NULL){ sz = MPTCTL_EVENT_LOG_SIZE * sizeof(MPT_IOCTL_EVENTS); kfree(ioc->events); ioc->events = NULL; ioc->alloc_total -= sz; } if (ioc->cached_fw != NULL) { sz = ioc->facts.FWImageSize; pci_free_consistent(ioc->pcidev, sz, ioc->cached_fw, ioc->cached_fw_dma); ioc->cached_fw = NULL; ioc->alloc_total -= sz; } kfree(ioc->spi_data.nvram); kfree(ioc->raid_data.pIocPg3); ioc->spi_data.nvram = NULL; ioc->raid_data.pIocPg3 = NULL; if (ioc->spi_data.pIocPg4 != NULL) { sz = ioc->spi_data.IocPg4Sz; pci_free_consistent(ioc->pcidev, sz, ioc->spi_data.pIocPg4, ioc->spi_data.IocPg4_dma); ioc->spi_data.pIocPg4 = NULL; ioc->alloc_total -= sz; } if (ioc->ReqToChain != NULL) { kfree(ioc->ReqToChain); kfree(ioc->RequestNB); ioc->ReqToChain = NULL; } kfree(ioc->ChainToChain); ioc->ChainToChain = NULL; if (ioc->HostPageBuffer != NULL) { if((ret = mpt_host_page_access_control(ioc, MPI_DB_HPBAC_FREE_BUFFER, NO_SLEEP)) != 0) { printk(KERN_ERR MYNAM ": %s: host page buffers free failed (%d)!\n", __FUNCTION__, ret); } dexitprintk((KERN_INFO MYNAM ": %s HostPageBuffer free @ %p, sz=%d bytes\n", ioc->name, ioc->HostPageBuffer, ioc->HostPageBuffer_sz)); pci_free_consistent(ioc->pcidev, ioc->HostPageBuffer_sz, ioc->HostPageBuffer, ioc->HostPageBuffer_dma); ioc->HostPageBuffer = NULL; ioc->HostPageBuffer_sz = 0; ioc->alloc_total -= ioc->HostPageBuffer_sz; } } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_adapter_dispose - Free all resources associated with a MPT * adapter. * @ioc: Pointer to MPT adapter structure * * This routine unregisters h/w resources and frees all alloc'd memory * associated with a MPT adapter structure. */ static void mpt_adapter_dispose(MPT_ADAPTER *ioc) { int sz_first, sz_last; if (ioc == NULL) return; sz_first = ioc->alloc_total; mpt_adapter_disable(ioc); if (ioc->pci_irq != -1) { free_irq(ioc->pci_irq, ioc); if (mpt_msi_enable) pci_disable_msi(ioc->pcidev); ioc->pci_irq = -1; } if (ioc->memmap != NULL) { iounmap(ioc->memmap); ioc->memmap = NULL; } #if defined(CONFIG_MTRR) && 0 if (ioc->mtrr_reg > 0) { mtrr_del(ioc->mtrr_reg, 0, 0); dprintk((KERN_INFO MYNAM ": %s: MTRR region de-registered\n", ioc->name)); } #endif /* Zap the adapter lookup ptr! */ list_del(&ioc->list); sz_last = ioc->alloc_total; dprintk((KERN_INFO MYNAM ": %s: free'd %d of %d bytes\n", ioc->name, sz_first-sz_last+(int)sizeof(*ioc), sz_first)); if (ioc->alt_ioc) ioc->alt_ioc->alt_ioc = NULL; kfree(ioc); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * MptDisplayIocCapabilities - Disply IOC's capacilities. * @ioc: Pointer to MPT adapter structure */ static void MptDisplayIocCapabilities(MPT_ADAPTER *ioc) { int i = 0; printk(KERN_INFO "%s: ", ioc->name); if (ioc->prod_name && strlen(ioc->prod_name) > 3) printk("%s: ", ioc->prod_name+3); printk("Capabilities={"); if (ioc->pfacts[0].ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { printk("Initiator"); i++; } if (ioc->pfacts[0].ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { printk("%sTarget", i ? "," : ""); i++; } if (ioc->pfacts[0].ProtocolFlags & MPI_PORTFACTS_PROTOCOL_LAN) { printk("%sLAN", i ? "," : ""); i++; } #if 0 /* * This would probably evoke more questions than it's worth */ if (ioc->pfacts[0].ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { printk("%sLogBusAddr", i ? "," : ""); i++; } #endif printk("}\n"); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * MakeIocReady - Get IOC to a READY state, using KickStart if needed. * @ioc: Pointer to MPT_ADAPTER structure * @force: Force hard KickStart of IOC * @sleepFlag: Specifies whether the process can sleep * * Returns: * 1 - DIAG reset and READY * 0 - READY initially OR soft reset and READY * -1 - Any failure on KickStart * -2 - Msg Unit Reset Failed * -3 - IO Unit Reset Failed * -4 - IOC owned by a PEER */ static int MakeIocReady(MPT_ADAPTER *ioc, int force, int sleepFlag) { u32 ioc_state; int statefault = 0; int cntdn; int hard_reset_done = 0; int r; int ii; int whoinit; /* Get current [raw] IOC state */ ioc_state = mpt_GetIocState(ioc, 0); dhsprintk((KERN_INFO MYNAM "::MakeIocReady, %s [raw] state=%08x\n", ioc->name, ioc_state)); /* * Check to see if IOC got left/stuck in doorbell handshake * grip of death. If so, hard reset the IOC. */ if (ioc_state & MPI_DOORBELL_ACTIVE) { statefault = 1; printk(MYIOC_s_WARN_FMT "Unexpected doorbell active!\n", ioc->name); } /* Is it already READY? */ if (!statefault && (ioc_state & MPI_IOC_STATE_MASK) == MPI_IOC_STATE_READY) return 0; /* * Check to see if IOC is in FAULT state. */ if ((ioc_state & MPI_IOC_STATE_MASK) == MPI_IOC_STATE_FAULT) { statefault = 2; printk(MYIOC_s_WARN_FMT "IOC is in FAULT state!!!\n", ioc->name); printk(KERN_WARNING " FAULT code = %04xh\n", ioc_state & MPI_DOORBELL_DATA_MASK); } /* * Hmmm... Did it get left operational? */ if ((ioc_state & MPI_IOC_STATE_MASK) == MPI_IOC_STATE_OPERATIONAL) { dinitprintk((MYIOC_s_INFO_FMT "IOC operational unexpected\n", ioc->name)); /* Check WhoInit. * If PCI Peer, exit. * Else, if no fault conditions are present, issue a MessageUnitReset * Else, fall through to KickStart case */ whoinit = (ioc_state & MPI_DOORBELL_WHO_INIT_MASK) >> MPI_DOORBELL_WHO_INIT_SHIFT; dinitprintk((KERN_INFO MYNAM ": whoinit 0x%x statefault %d force %d\n", whoinit, statefault, force)); if (whoinit == MPI_WHOINIT_PCI_PEER) return -4; else { if ((statefault == 0 ) && (force == 0)) { if ((r = SendIocReset(ioc, MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET, sleepFlag)) == 0) return 0; } statefault = 3; } } hard_reset_done = KickStart(ioc, statefault||force, sleepFlag); if (hard_reset_done < 0) return -1; /* * Loop here waiting for IOC to come READY. */ ii = 0; cntdn = ((sleepFlag == CAN_SLEEP) ? HZ : 1000) * 5; /* 5 seconds */ while ((ioc_state = mpt_GetIocState(ioc, 1)) != MPI_IOC_STATE_READY) { if (ioc_state == MPI_IOC_STATE_OPERATIONAL) { /* * BIOS or previous driver load left IOC in OP state. * Reset messaging FIFOs. */ if ((r = SendIocReset(ioc, MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET, sleepFlag)) != 0) { printk(MYIOC_s_ERR_FMT "IOC msg unit reset failed!\n", ioc->name); return -2; } } else if (ioc_state == MPI_IOC_STATE_RESET) { /* * Something is wrong. Try to get IOC back * to a known state. */ if ((r = SendIocReset(ioc, MPI_FUNCTION_IO_UNIT_RESET, sleepFlag)) != 0) { printk(MYIOC_s_ERR_FMT "IO unit reset failed!\n", ioc->name); return -3; } } ii++; cntdn--; if (!cntdn) { printk(MYIOC_s_ERR_FMT "Wait IOC_READY state timeout(%d)!\n", ioc->name, (int)((ii+5)/HZ)); return -ETIME; } if (sleepFlag == CAN_SLEEP) { msleep_interruptible(1); } else { mdelay (1); /* 1 msec delay */ } } if (statefault < 3) { printk(MYIOC_s_INFO_FMT "Recovered from %s\n", ioc->name, statefault==1 ? "stuck handshake" : "IOC FAULT"); } return hard_reset_done; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_GetIocState - Get the current state of a MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @cooked: Request raw or cooked IOC state * * Returns all IOC Doorbell register bits if cooked==0, else just the * Doorbell bits in MPI_IOC_STATE_MASK. */ u32 mpt_GetIocState(MPT_ADAPTER *ioc, int cooked) { u32 s, sc; /* Get! */ s = CHIPREG_READ32(&ioc->chip->Doorbell); // dprintk((MYIOC_s_INFO_FMT "raw state = %08x\n", ioc->name, s)); sc = s & MPI_IOC_STATE_MASK; /* Save! */ ioc->last_state = sc; return cooked ? sc : s; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * GetIocFacts - Send IOCFacts request to MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @sleepFlag: Specifies whether the process can sleep * @reason: If recovery, only update facts. * * Returns 0 for success, non-zero for failure. */ static int GetIocFacts(MPT_ADAPTER *ioc, int sleepFlag, int reason) { IOCFacts_t get_facts; IOCFactsReply_t *facts; int r; int req_sz; int reply_sz; int sz; u32 status, vv; u8 shiftFactor=1; /* IOC *must* NOT be in RESET state! */ if (ioc->last_state == MPI_IOC_STATE_RESET) { printk(KERN_ERR MYNAM ": ERROR - Can't get IOCFacts, %s NOT READY! (%08x)\n", ioc->name, ioc->last_state ); return -44; } facts = &ioc->facts; /* Destination (reply area)... */ reply_sz = sizeof(*facts); memset(facts, 0, reply_sz); /* Request area (get_facts on the stack right now!) */ req_sz = sizeof(get_facts); memset(&get_facts, 0, req_sz); get_facts.Function = MPI_FUNCTION_IOC_FACTS; /* Assert: All other get_facts fields are zero! */ dinitprintk((MYIOC_s_INFO_FMT "Sending get IocFacts request req_sz=%d reply_sz=%d\n", ioc->name, req_sz, reply_sz)); /* No non-zero fields in the get_facts request are greater than * 1 byte in size, so we can just fire it off as is. */ r = mpt_handshake_req_reply_wait(ioc, req_sz, (u32*)&get_facts, reply_sz, (u16*)facts, 5 /*seconds*/, sleepFlag); if (r != 0) return r; /* * Now byte swap (GRRR) the necessary fields before any further * inspection of reply contents. * * But need to do some sanity checks on MsgLength (byte) field * to make sure we don't zero IOC's req_sz! */ /* Did we get a valid reply? */ if (facts->MsgLength > offsetof(IOCFactsReply_t, RequestFrameSize)/sizeof(u32)) { if (reason == MPT_HOSTEVENT_IOC_BRINGUP) { /* * If not been here, done that, save off first WhoInit value */ if (ioc->FirstWhoInit == WHOINIT_UNKNOWN) ioc->FirstWhoInit = facts->WhoInit; } facts->MsgVersion = le16_to_cpu(facts->MsgVersion); facts->MsgContext = le32_to_cpu(facts->MsgContext); facts->IOCExceptions = le16_to_cpu(facts->IOCExceptions); facts->IOCStatus = le16_to_cpu(facts->IOCStatus); facts->IOCLogInfo = le32_to_cpu(facts->IOCLogInfo); status = le16_to_cpu(facts->IOCStatus) & MPI_IOCSTATUS_MASK; /* CHECKME! IOCStatus, IOCLogInfo */ facts->ReplyQueueDepth = le16_to_cpu(facts->ReplyQueueDepth); facts->RequestFrameSize = le16_to_cpu(facts->RequestFrameSize); /* * FC f/w version changed between 1.1 and 1.2 * Old: u16{Major(4),Minor(4),SubMinor(8)} * New: u32{Major(8),Minor(8),Unit(8),Dev(8)} */ if (facts->MsgVersion < 0x0102) { /* * Handle old FC f/w style, convert to new... */ u16 oldv = le16_to_cpu(facts->Reserved_0101_FWVersion); facts->FWVersion.Word = ((oldv<<12) & 0xFF000000) | ((oldv<<8) & 0x000FFF00); } else facts->FWVersion.Word = le32_to_cpu(facts->FWVersion.Word); facts->ProductID = le16_to_cpu(facts->ProductID); facts->CurrentHostMfaHighAddr = le32_to_cpu(facts->CurrentHostMfaHighAddr); facts->GlobalCredits = le16_to_cpu(facts->GlobalCredits); facts->CurrentSenseBufferHighAddr = le32_to_cpu(facts->CurrentSenseBufferHighAddr); facts->CurReplyFrameSize = le16_to_cpu(facts->CurReplyFrameSize); facts->IOCCapabilities = le32_to_cpu(facts->IOCCapabilities); /* * Handle NEW (!) IOCFactsReply fields in MPI-1.01.xx * Older MPI-1.00.xx struct had 13 dwords, and enlarged * to 14 in MPI-1.01.0x. */ if (facts->MsgLength >= (offsetof(IOCFactsReply_t,FWImageSize) + 7)/4 && facts->MsgVersion > 0x0100) { facts->FWImageSize = le32_to_cpu(facts->FWImageSize); } sz = facts->FWImageSize; if ( sz & 0x01 ) sz += 1; if ( sz & 0x02 ) sz += 2; facts->FWImageSize = sz; if (!facts->RequestFrameSize) { /* Something is wrong! */ printk(MYIOC_s_ERR_FMT "IOC reported invalid 0 request size!\n", ioc->name); return -55; } r = sz = facts->BlockSize; vv = ((63 / (sz * 4)) + 1) & 0x03; ioc->NB_for_64_byte_frame = vv; while ( sz ) { shiftFactor++; sz = sz >> 1; } ioc->NBShiftFactor = shiftFactor; dinitprintk((MYIOC_s_INFO_FMT "NB_for_64_byte_frame=%x NBShiftFactor=%x BlockSize=%x\n", ioc->name, vv, shiftFactor, r)); if (reason == MPT_HOSTEVENT_IOC_BRINGUP) { /* * Set values for this IOC's request & reply frame sizes, * and request & reply queue depths... */ ioc->req_sz = min(MPT_DEFAULT_FRAME_SIZE, facts->RequestFrameSize * 4); ioc->req_depth = min_t(int, MPT_MAX_REQ_DEPTH, facts->GlobalCredits); ioc->reply_sz = MPT_REPLY_FRAME_SIZE; ioc->reply_depth = min_t(int, MPT_DEFAULT_REPLY_DEPTH, facts->ReplyQueueDepth); dinitprintk((MYIOC_s_INFO_FMT "reply_sz=%3d, reply_depth=%4d\n", ioc->name, ioc->reply_sz, ioc->reply_depth)); dinitprintk((MYIOC_s_INFO_FMT "req_sz =%3d, req_depth =%4d\n", ioc->name, ioc->req_sz, ioc->req_depth)); /* Get port facts! */ if ( (r = GetPortFacts(ioc, 0, sleepFlag)) != 0 ) return r; } } else { printk(MYIOC_s_ERR_FMT "Invalid IOC facts reply, msgLength=%d offsetof=%zd!\n", ioc->name, facts->MsgLength, (offsetof(IOCFactsReply_t, RequestFrameSize)/sizeof(u32))); return -66; } return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * GetPortFacts - Send PortFacts request to MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @portnum: Port number * @sleepFlag: Specifies whether the process can sleep * * Returns 0 for success, non-zero for failure. */ static int GetPortFacts(MPT_ADAPTER *ioc, int portnum, int sleepFlag) { PortFacts_t get_pfacts; PortFactsReply_t *pfacts; int ii; int req_sz; int reply_sz; /* IOC *must* NOT be in RESET state! */ if (ioc->last_state == MPI_IOC_STATE_RESET) { printk(KERN_ERR MYNAM ": ERROR - Can't get PortFacts, %s NOT READY! (%08x)\n", ioc->name, ioc->last_state ); return -4; } pfacts = &ioc->pfacts[portnum]; /* Destination (reply area)... */ reply_sz = sizeof(*pfacts); memset(pfacts, 0, reply_sz); /* Request area (get_pfacts on the stack right now!) */ req_sz = sizeof(get_pfacts); memset(&get_pfacts, 0, req_sz); get_pfacts.Function = MPI_FUNCTION_PORT_FACTS; get_pfacts.PortNumber = portnum; /* Assert: All other get_pfacts fields are zero! */ dinitprintk((MYIOC_s_INFO_FMT "Sending get PortFacts(%d) request\n", ioc->name, portnum)); /* No non-zero fields in the get_pfacts request are greater than * 1 byte in size, so we can just fire it off as is. */ ii = mpt_handshake_req_reply_wait(ioc, req_sz, (u32*)&get_pfacts, reply_sz, (u16*)pfacts, 5 /*seconds*/, sleepFlag); if (ii != 0) return ii; /* Did we get a valid reply? */ /* Now byte swap the necessary fields in the response. */ pfacts->MsgContext = le32_to_cpu(pfacts->MsgContext); pfacts->IOCStatus = le16_to_cpu(pfacts->IOCStatus); pfacts->IOCLogInfo = le32_to_cpu(pfacts->IOCLogInfo); pfacts->MaxDevices = le16_to_cpu(pfacts->MaxDevices); pfacts->PortSCSIID = le16_to_cpu(pfacts->PortSCSIID); pfacts->ProtocolFlags = le16_to_cpu(pfacts->ProtocolFlags); pfacts->MaxPostedCmdBuffers = le16_to_cpu(pfacts->MaxPostedCmdBuffers); pfacts->MaxPersistentIDs = le16_to_cpu(pfacts->MaxPersistentIDs); pfacts->MaxLanBuckets = le16_to_cpu(pfacts->MaxLanBuckets); return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * SendIocInit - Send IOCInit request to MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @sleepFlag: Specifies whether the process can sleep * * Send IOCInit followed by PortEnable to bring IOC to OPERATIONAL state. * * Returns 0 for success, non-zero for failure. */ static int SendIocInit(MPT_ADAPTER *ioc, int sleepFlag) { IOCInit_t ioc_init; MPIDefaultReply_t init_reply; u32 state; int r; int count; int cntdn; memset(&ioc_init, 0, sizeof(ioc_init)); memset(&init_reply, 0, sizeof(init_reply)); ioc_init.WhoInit = MPI_WHOINIT_HOST_DRIVER; ioc_init.Function = MPI_FUNCTION_IOC_INIT; /* If we are in a recovery mode and we uploaded the FW image, * then this pointer is not NULL. Skip the upload a second time. * Set this flag if cached_fw set for either IOC. */ if (ioc->facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) ioc->upload_fw = 1; else ioc->upload_fw = 0; ddlprintk((MYIOC_s_INFO_FMT "upload_fw %d facts.Flags=%x\n", ioc->name, ioc->upload_fw, ioc->facts.Flags)); if(ioc->bus_type == SAS) ioc_init.MaxDevices = ioc->facts.MaxDevices; else if(ioc->bus_type == FC) ioc_init.MaxDevices = MPT_MAX_FC_DEVICES; else ioc_init.MaxDevices = MPT_MAX_SCSI_DEVICES; ioc_init.MaxBuses = MPT_MAX_BUS; dinitprintk((MYIOC_s_INFO_FMT "facts.MsgVersion=%x\n", ioc->name, ioc->facts.MsgVersion)); if (ioc->facts.MsgVersion >= MPI_VERSION_01_05) { // set MsgVersion and HeaderVersion host driver was built with ioc_init.MsgVersion = cpu_to_le16(MPI_VERSION); ioc_init.HeaderVersion = cpu_to_le16(MPI_HEADER_VERSION); if (ioc->facts.Flags & MPI_IOCFACTS_FLAGS_HOST_PAGE_BUFFER_PERSISTENT) { ioc_init.HostPageBufferSGE = ioc->facts.HostPageBufferSGE; } else if(mpt_host_page_alloc(ioc, &ioc_init)) return -99; } ioc_init.ReplyFrameSize = cpu_to_le16(ioc->reply_sz); /* in BYTES */ if (sizeof(dma_addr_t) == sizeof(u64)) { /* Save the upper 32-bits of the request * (reply) and sense buffers. */ ioc_init.HostMfaHighAddr = cpu_to_le32((u32)((u64)ioc->alloc_dma >> 32)); ioc_init.SenseBufferHighAddr = cpu_to_le32((u32)((u64)ioc->sense_buf_pool_dma >> 32)); } else { /* Force 32-bit addressing */ ioc_init.HostMfaHighAddr = cpu_to_le32(0); ioc_init.SenseBufferHighAddr = cpu_to_le32(0); } ioc->facts.CurrentHostMfaHighAddr = ioc_init.HostMfaHighAddr; ioc->facts.CurrentSenseBufferHighAddr = ioc_init.SenseBufferHighAddr; ioc->facts.MaxDevices = ioc_init.MaxDevices; ioc->facts.MaxBuses = ioc_init.MaxBuses; dhsprintk((MYIOC_s_INFO_FMT "Sending IOCInit (req @ %p)\n", ioc->name, &ioc_init)); r = mpt_handshake_req_reply_wait(ioc, sizeof(IOCInit_t), (u32*)&ioc_init, sizeof(MPIDefaultReply_t), (u16*)&init_reply, 10 /*seconds*/, sleepFlag); if (r != 0) { printk(MYIOC_s_ERR_FMT "Sending IOCInit failed(%d)!\n",ioc->name, r); return r; } /* No need to byte swap the multibyte fields in the reply * since we don't even look at it's contents. */ dhsprintk((MYIOC_s_INFO_FMT "Sending PortEnable (req @ %p)\n", ioc->name, &ioc_init)); if ((r = SendPortEnable(ioc, 0, sleepFlag)) != 0) { printk(MYIOC_s_ERR_FMT "Sending PortEnable failed(%d)!\n",ioc->name, r); return r; } /* YIKES! SUPER IMPORTANT!!! * Poll IocState until _OPERATIONAL while IOC is doing * LoopInit and TargetDiscovery! */ count = 0; cntdn = ((sleepFlag == CAN_SLEEP) ? HZ : 1000) * 60; /* 60 seconds */ state = mpt_GetIocState(ioc, 1); while (state != MPI_IOC_STATE_OPERATIONAL && --cntdn) { if (sleepFlag == CAN_SLEEP) { msleep_interruptible(1); } else { mdelay(1); } if (!cntdn) { printk(MYIOC_s_ERR_FMT "Wait IOC_OP state timeout(%d)!\n", ioc->name, (int)((count+5)/HZ)); return -9; } state = mpt_GetIocState(ioc, 1); count++; } dinitprintk((MYIOC_s_INFO_FMT "INFO - Wait IOC_OPERATIONAL state (cnt=%d)\n", ioc->name, count)); return r; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * SendPortEnable - Send PortEnable request to MPT adapter port. * @ioc: Pointer to MPT_ADAPTER structure * @portnum: Port number to enable * @sleepFlag: Specifies whether the process can sleep * * Send PortEnable to bring IOC to OPERATIONAL state. * * Returns 0 for success, non-zero for failure. */ static int SendPortEnable(MPT_ADAPTER *ioc, int portnum, int sleepFlag) { PortEnable_t port_enable; MPIDefaultReply_t reply_buf; int rc; int req_sz; int reply_sz; /* Destination... */ reply_sz = sizeof(MPIDefaultReply_t); memset(&reply_buf, 0, reply_sz); req_sz = sizeof(PortEnable_t); memset(&port_enable, 0, req_sz); port_enable.Function = MPI_FUNCTION_PORT_ENABLE; port_enable.PortNumber = portnum; /* port_enable.ChainOffset = 0; */ /* port_enable.MsgFlags = 0; */ /* port_enable.MsgContext = 0; */ dinitprintk((MYIOC_s_INFO_FMT "Sending Port(%d)Enable (req @ %p)\n", ioc->name, portnum, &port_enable)); /* RAID FW may take a long time to enable */ if (((ioc->facts.ProductID & MPI_FW_HEADER_PID_PROD_MASK) > MPI_FW_HEADER_PID_PROD_TARGET_SCSI) || (ioc->bus_type == SAS)) { rc = mpt_handshake_req_reply_wait(ioc, req_sz, (u32*)&port_enable, reply_sz, (u16*)&reply_buf, 300 /*seconds*/, sleepFlag); } else { rc = mpt_handshake_req_reply_wait(ioc, req_sz, (u32*)&port_enable, reply_sz, (u16*)&reply_buf, 30 /*seconds*/, sleepFlag); } return rc; } /* * ioc: Pointer to MPT_ADAPTER structure * size - total FW bytes */ void mpt_alloc_fw_memory(MPT_ADAPTER *ioc, int size) { if (ioc->cached_fw) return; /* use already allocated memory */ if (ioc->alt_ioc && ioc->alt_ioc->cached_fw) { ioc->cached_fw = ioc->alt_ioc->cached_fw; /* use alt_ioc's memory */ ioc->cached_fw_dma = ioc->alt_ioc->cached_fw_dma; } else { if ( (ioc->cached_fw = pci_alloc_consistent(ioc->pcidev, size, &ioc->cached_fw_dma) ) ) ioc->alloc_total += size; } } /* * If alt_img is NULL, delete from ioc structure. * Else, delete a secondary image in same format. */ void mpt_free_fw_memory(MPT_ADAPTER *ioc) { int sz; sz = ioc->facts.FWImageSize; dinitprintk((KERN_INFO MYNAM "free_fw_memory: FW Image @ %p[%p], sz=%d[%x] bytes\n", ioc->cached_fw, (void *)(ulong)ioc->cached_fw_dma, sz, sz)); pci_free_consistent(ioc->pcidev, sz, ioc->cached_fw, ioc->cached_fw_dma); ioc->cached_fw = NULL; return; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_do_upload - Construct and Send FWUpload request to MPT adapter port. * @ioc: Pointer to MPT_ADAPTER structure * @sleepFlag: Specifies whether the process can sleep * * Returns 0 for success, >0 for handshake failure * <0 for fw upload failure. * * Remark: If bound IOC and a successful FWUpload was performed * on the bound IOC, the second image is discarded * and memory is free'd. Both channels must upload to prevent * IOC from running in degraded mode. */ static int mpt_do_upload(MPT_ADAPTER *ioc, int sleepFlag) { u8 request[ioc->req_sz]; u8 reply[sizeof(FWUploadReply_t)]; FWUpload_t *prequest; FWUploadReply_t *preply; FWUploadTCSGE_t *ptcsge; int sgeoffset; u32 flagsLength; int ii, sz, reply_sz; int cmdStatus; /* If the image size is 0, we are done. */ if ((sz = ioc->facts.FWImageSize) == 0) return 0; mpt_alloc_fw_memory(ioc, sz); dinitprintk((KERN_INFO MYNAM ": FW Image @ %p[%p], sz=%d[%x] bytes\n", ioc->cached_fw, (void *)(ulong)ioc->cached_fw_dma, sz, sz)); if (ioc->cached_fw == NULL) { /* Major Failure. */ return -ENOMEM; } prequest = (FWUpload_t *)&request; preply = (FWUploadReply_t *)&reply; /* Destination... */ memset(prequest, 0, ioc->req_sz); reply_sz = sizeof(reply); memset(preply, 0, reply_sz); prequest->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; prequest->Function = MPI_FUNCTION_FW_UPLOAD; ptcsge = (FWUploadTCSGE_t *) &prequest->SGL; ptcsge->DetailsLength = 12; ptcsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; ptcsge->ImageSize = cpu_to_le32(sz); sgeoffset = sizeof(FWUpload_t) - sizeof(SGE_MPI_UNION) + sizeof(FWUploadTCSGE_t); flagsLength = MPT_SGE_FLAGS_SSIMPLE_READ | sz; mpt_add_sge(&request[sgeoffset], flagsLength, ioc->cached_fw_dma); sgeoffset += sizeof(u32) + sizeof(dma_addr_t); dinitprintk((KERN_INFO MYNAM ": Sending FW Upload (req @ %p) sgeoffset=%d \n", prequest, sgeoffset)); DBG_DUMP_FW_REQUEST_FRAME(prequest) ii = mpt_handshake_req_reply_wait(ioc, sgeoffset, (u32*)prequest, reply_sz, (u16*)preply, 65 /*seconds*/, sleepFlag); dinitprintk((KERN_INFO MYNAM ": FW Upload completed rc=%x \n", ii)); cmdStatus = -EFAULT; if (ii == 0) { /* Handshake transfer was complete and successful. * Check the Reply Frame. */ int status, transfer_sz; status = le16_to_cpu(preply->IOCStatus); if (status == MPI_IOCSTATUS_SUCCESS) { transfer_sz = le32_to_cpu(preply->ActualImageSize); if (transfer_sz == sz) cmdStatus = 0; } } dinitprintk((MYIOC_s_INFO_FMT ": do_upload cmdStatus=%d \n", ioc->name, cmdStatus)); if (cmdStatus) { ddlprintk((MYIOC_s_INFO_FMT ": fw upload failed, freeing image \n", ioc->name)); mpt_free_fw_memory(ioc); } return cmdStatus; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_downloadboot - DownloadBoot code * @ioc: Pointer to MPT_ADAPTER structure * @flag: Specify which part of IOC memory is to be uploaded. * @sleepFlag: Specifies whether the process can sleep * * FwDownloadBoot requires Programmed IO access. * * Returns 0 for success * -1 FW Image size is 0 * -2 No valid cached_fw Pointer * <0 for fw upload failure. */ static int mpt_downloadboot(MPT_ADAPTER *ioc, MpiFwHeader_t *pFwHeader, int sleepFlag) { MpiExtImageHeader_t *pExtImage; u32 fwSize; u32 diag0val; int count; u32 *ptrFw; u32 diagRwData; u32 nextImage; u32 load_addr; u32 ioc_state=0; ddlprintk((MYIOC_s_INFO_FMT "downloadboot: fw size 0x%x (%d), FW Ptr %p\n", ioc->name, pFwHeader->ImageSize, pFwHeader->ImageSize, pFwHeader)); CHIPREG_WRITE32(&ioc->chip->WriteSequence, 0xFF); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_1ST_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_2ND_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_3RD_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_4TH_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_5TH_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->Diagnostic, (MPI_DIAG_PREVENT_IOC_BOOT | MPI_DIAG_DISABLE_ARM)); /* wait 1 msec */ if (sleepFlag == CAN_SLEEP) { msleep_interruptible(1); } else { mdelay (1); } diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); CHIPREG_WRITE32(&ioc->chip->Diagnostic, diag0val | MPI_DIAG_RESET_ADAPTER); for (count = 0; count < 30; count ++) { diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); if (!(diag0val & MPI_DIAG_RESET_ADAPTER)) { ddlprintk((MYIOC_s_INFO_FMT "RESET_ADAPTER cleared, count=%d\n", ioc->name, count)); break; } /* wait .1 sec */ if (sleepFlag == CAN_SLEEP) { msleep_interruptible (100); } else { mdelay (100); } } if ( count == 30 ) { ddlprintk((MYIOC_s_INFO_FMT "downloadboot failed! " "Unable to get MPI_DIAG_DRWE mode, diag0val=%x\n", ioc->name, diag0val)); return -3; } CHIPREG_WRITE32(&ioc->chip->WriteSequence, 0xFF); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_1ST_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_2ND_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_3RD_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_4TH_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_5TH_KEY_VALUE); /* Set the DiagRwEn and Disable ARM bits */ CHIPREG_WRITE32(&ioc->chip->Diagnostic, (MPI_DIAG_RW_ENABLE | MPI_DIAG_DISABLE_ARM)); fwSize = (pFwHeader->ImageSize + 3)/4; ptrFw = (u32 *) pFwHeader; /* Write the LoadStartAddress to the DiagRw Address Register * using Programmed IO */ if (ioc->errata_flag_1064) pci_enable_io_access(ioc->pcidev); CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwAddress, pFwHeader->LoadStartAddress); ddlprintk((MYIOC_s_INFO_FMT "LoadStart addr written 0x%x \n", ioc->name, pFwHeader->LoadStartAddress)); ddlprintk((MYIOC_s_INFO_FMT "Write FW Image: 0x%x bytes @ %p\n", ioc->name, fwSize*4, ptrFw)); while (fwSize--) { CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwData, *ptrFw++); } nextImage = pFwHeader->NextImageHeaderOffset; while (nextImage) { pExtImage = (MpiExtImageHeader_t *) ((char *)pFwHeader + nextImage); load_addr = pExtImage->LoadStartAddress; fwSize = (pExtImage->ImageSize + 3) >> 2; ptrFw = (u32 *)pExtImage; ddlprintk((MYIOC_s_INFO_FMT "Write Ext Image: 0x%x (%d) bytes @ %p load_addr=%x\n", ioc->name, fwSize*4, fwSize*4, ptrFw, load_addr)); CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwAddress, load_addr); while (fwSize--) { CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwData, *ptrFw++); } nextImage = pExtImage->NextImageHeaderOffset; } /* Write the IopResetVectorRegAddr */ ddlprintk((MYIOC_s_INFO_FMT "Write IopResetVector Addr=%x! \n", ioc->name, pFwHeader->IopResetRegAddr)); CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwAddress, pFwHeader->IopResetRegAddr); /* Write the IopResetVectorValue */ ddlprintk((MYIOC_s_INFO_FMT "Write IopResetVector Value=%x! \n", ioc->name, pFwHeader->IopResetVectorValue)); CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwData, pFwHeader->IopResetVectorValue); /* Clear the internal flash bad bit - autoincrementing register, * so must do two writes. */ if (ioc->bus_type == SPI) { /* * 1030 and 1035 H/W errata, workaround to access * the ClearFlashBadSignatureBit */ CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwAddress, 0x3F000000); diagRwData = CHIPREG_PIO_READ32(&ioc->pio_chip->DiagRwData); diagRwData |= 0x40000000; CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwAddress, 0x3F000000); CHIPREG_PIO_WRITE32(&ioc->pio_chip->DiagRwData, diagRwData); } else /* if((ioc->bus_type == SAS) || (ioc->bus_type == FC)) */ { diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); CHIPREG_WRITE32(&ioc->chip->Diagnostic, diag0val | MPI_DIAG_CLEAR_FLASH_BAD_SIG); /* wait 1 msec */ if (sleepFlag == CAN_SLEEP) { msleep_interruptible (1); } else { mdelay (1); } } if (ioc->errata_flag_1064) pci_disable_io_access(ioc->pcidev); diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); ddlprintk((MYIOC_s_INFO_FMT "downloadboot diag0val=%x, " "turning off PREVENT_IOC_BOOT, DISABLE_ARM, RW_ENABLE\n", ioc->name, diag0val)); diag0val &= ~(MPI_DIAG_PREVENT_IOC_BOOT | MPI_DIAG_DISABLE_ARM | MPI_DIAG_RW_ENABLE); ddlprintk((MYIOC_s_INFO_FMT "downloadboot now diag0val=%x\n", ioc->name, diag0val)); CHIPREG_WRITE32(&ioc->chip->Diagnostic, diag0val); /* Write 0xFF to reset the sequencer */ CHIPREG_WRITE32(&ioc->chip->WriteSequence, 0xFF); if (ioc->bus_type == SAS) { ioc_state = mpt_GetIocState(ioc, 0); if ( (GetIocFacts(ioc, sleepFlag, MPT_HOSTEVENT_IOC_BRINGUP)) != 0 ) { ddlprintk((MYIOC_s_INFO_FMT "GetIocFacts failed: IocState=%x\n", ioc->name, ioc_state)); return -EFAULT; } } for (count=0; countname, count, ioc_state)); if (ioc->bus_type == SAS) { return 0; } if ((SendIocInit(ioc, sleepFlag)) != 0) { ddlprintk((MYIOC_s_INFO_FMT "downloadboot: SendIocInit failed\n", ioc->name)); return -EFAULT; } ddlprintk((MYIOC_s_INFO_FMT "downloadboot: SendIocInit successful\n", ioc->name)); return 0; } if (sleepFlag == CAN_SLEEP) { msleep_interruptible (10); } else { mdelay (10); } } ddlprintk((MYIOC_s_INFO_FMT "downloadboot failed! IocState=%x\n", ioc->name, ioc_state)); return -EFAULT; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * KickStart - Perform hard reset of MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @force: Force hard reset * @sleepFlag: Specifies whether the process can sleep * * This routine places MPT adapter in diagnostic mode via the * WriteSequence register, and then performs a hard reset of adapter * via the Diagnostic register. * * Inputs: sleepflag - CAN_SLEEP (non-interrupt thread) * or NO_SLEEP (interrupt thread, use mdelay) * force - 1 if doorbell active, board fault state * board operational, IOC_RECOVERY or * IOC_BRINGUP and there is an alt_ioc. * 0 else * * Returns: * 1 - hard reset, READY * 0 - no reset due to History bit, READY * -1 - no reset due to History bit but not READY * OR reset but failed to come READY * -2 - no reset, could not enter DIAG mode * -3 - reset but bad FW bit */ static int KickStart(MPT_ADAPTER *ioc, int force, int sleepFlag) { int hard_reset_done = 0; u32 ioc_state=0; int cnt,cntdn; dinitprintk((KERN_WARNING MYNAM ": KickStarting %s!\n", ioc->name)); if (ioc->bus_type == SPI) { /* Always issue a Msg Unit Reset first. This will clear some * SCSI bus hang conditions. */ SendIocReset(ioc, MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET, sleepFlag); if (sleepFlag == CAN_SLEEP) { msleep_interruptible (1000); } else { mdelay (1000); } } hard_reset_done = mpt_diag_reset(ioc, force, sleepFlag); if (hard_reset_done < 0) return hard_reset_done; dinitprintk((MYIOC_s_INFO_FMT "Diagnostic reset successful!\n", ioc->name)); cntdn = ((sleepFlag == CAN_SLEEP) ? HZ : 1000) * 2; /* 2 seconds */ for (cnt=0; cntname, cnt)); return hard_reset_done; } if (sleepFlag == CAN_SLEEP) { msleep_interruptible (10); } else { mdelay (10); } } printk(MYIOC_s_ERR_FMT "Failed to come READY after reset! IocState=%x\n", ioc->name, ioc_state); return -1; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_diag_reset - Perform hard reset of the adapter. * @ioc: Pointer to MPT_ADAPTER structure * @ignore: Set if to honor and clear to ignore * the reset history bit * @sleepflag: CAN_SLEEP if called in a non-interrupt thread, * else set to NO_SLEEP (use mdelay instead) * * This routine places the adapter in diagnostic mode via the * WriteSequence register and then performs a hard reset of adapter * via the Diagnostic register. Adapter should be in ready state * upon successful completion. * * Returns: 1 hard reset successful * 0 no reset performed because reset history bit set * -2 enabling diagnostic mode failed * -3 diagnostic reset failed */ static int mpt_diag_reset(MPT_ADAPTER *ioc, int ignore, int sleepFlag) { u32 diag0val; u32 doorbell; int hard_reset_done = 0; int count = 0; #ifdef MPT_DEBUG u32 diag1val = 0; #endif /* Clear any existing interrupts */ CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); /* Use "Diagnostic reset" method! (only thing available!) */ diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); #ifdef MPT_DEBUG if (ioc->alt_ioc) diag1val = CHIPREG_READ32(&ioc->alt_ioc->chip->Diagnostic); dprintk((MYIOC_s_INFO_FMT "DbG1: diag0=%08x, diag1=%08x\n", ioc->name, diag0val, diag1val)); #endif /* Do the reset if we are told to ignore the reset history * or if the reset history is 0 */ if (ignore || !(diag0val & MPI_DIAG_RESET_HISTORY)) { while ((diag0val & MPI_DIAG_DRWE) == 0) { /* Write magic sequence to WriteSequence register * Loop until in diagnostic mode */ CHIPREG_WRITE32(&ioc->chip->WriteSequence, 0xFF); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_1ST_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_2ND_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_3RD_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_4TH_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_5TH_KEY_VALUE); /* wait 100 msec */ if (sleepFlag == CAN_SLEEP) { msleep_interruptible (100); } else { mdelay (100); } count++; if (count > 20) { printk(MYIOC_s_ERR_FMT "Enable Diagnostic mode FAILED! (%02xh)\n", ioc->name, diag0val); return -2; } diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); dprintk((MYIOC_s_INFO_FMT "Wrote magic DiagWriteEn sequence (%x)\n", ioc->name, diag0val)); } #ifdef MPT_DEBUG if (ioc->alt_ioc) diag1val = CHIPREG_READ32(&ioc->alt_ioc->chip->Diagnostic); dprintk((MYIOC_s_INFO_FMT "DbG2: diag0=%08x, diag1=%08x\n", ioc->name, diag0val, diag1val)); #endif /* * Disable the ARM (Bug fix) * */ CHIPREG_WRITE32(&ioc->chip->Diagnostic, diag0val | MPI_DIAG_DISABLE_ARM); mdelay(1); /* * Now hit the reset bit in the Diagnostic register * (THE BIG HAMMER!) (Clears DRWE bit). */ CHIPREG_WRITE32(&ioc->chip->Diagnostic, diag0val | MPI_DIAG_RESET_ADAPTER); hard_reset_done = 1; dprintk((MYIOC_s_INFO_FMT "Diagnostic reset performed\n", ioc->name)); /* * Call each currently registered protocol IOC reset handler * with pre-reset indication. * NOTE: If we're doing _IOC_BRINGUP, there can be no * MptResetHandlers[] registered yet. */ { int ii; int r = 0; for (ii=MPT_MAX_PROTOCOL_DRIVERS-1; ii; ii--) { if (MptResetHandlers[ii]) { dprintk((MYIOC_s_INFO_FMT "Calling IOC pre_reset handler #%d\n", ioc->name, ii)); r += mpt_signal_reset(ii, ioc, MPT_IOC_PRE_RESET); if (ioc->alt_ioc) { dprintk((MYIOC_s_INFO_FMT "Calling alt-%s pre_reset handler #%d\n", ioc->name, ioc->alt_ioc->name, ii)); r += mpt_signal_reset(ii, ioc->alt_ioc, MPT_IOC_PRE_RESET); } } } /* FIXME? Examine results here? */ } if (ioc->cached_fw) { /* If the DownloadBoot operation fails, the * IOC will be left unusable. This is a fatal error * case. _diag_reset will return < 0 */ for (count = 0; count < 30; count ++) { diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); if (!(diag0val & MPI_DIAG_RESET_ADAPTER)) { break; } /* wait 1 sec */ if (sleepFlag == CAN_SLEEP) { msleep_interruptible (1000); } else { mdelay (1000); } } if ((count = mpt_downloadboot(ioc, (MpiFwHeader_t *)ioc->cached_fw, sleepFlag)) < 0) { printk(KERN_WARNING MYNAM ": firmware downloadboot failure (%d)!\n", count); } } else { /* Wait for FW to reload and for board * to go to the READY state. * Maximum wait is 60 seconds. * If fail, no error will check again * with calling program. */ for (count = 0; count < 60; count ++) { doorbell = CHIPREG_READ32(&ioc->chip->Doorbell); doorbell &= MPI_IOC_STATE_MASK; if (doorbell == MPI_IOC_STATE_READY) { break; } /* wait 1 sec */ if (sleepFlag == CAN_SLEEP) { msleep_interruptible (1000); } else { mdelay (1000); } } } } diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); #ifdef MPT_DEBUG if (ioc->alt_ioc) diag1val = CHIPREG_READ32(&ioc->alt_ioc->chip->Diagnostic); dprintk((MYIOC_s_INFO_FMT "DbG3: diag0=%08x, diag1=%08x\n", ioc->name, diag0val, diag1val)); #endif /* Clear RESET_HISTORY bit! Place board in the * diagnostic mode to update the diag register. */ diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); count = 0; while ((diag0val & MPI_DIAG_DRWE) == 0) { /* Write magic sequence to WriteSequence register * Loop until in diagnostic mode */ CHIPREG_WRITE32(&ioc->chip->WriteSequence, 0xFF); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_1ST_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_2ND_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_3RD_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_4TH_KEY_VALUE); CHIPREG_WRITE32(&ioc->chip->WriteSequence, MPI_WRSEQ_5TH_KEY_VALUE); /* wait 100 msec */ if (sleepFlag == CAN_SLEEP) { msleep_interruptible (100); } else { mdelay (100); } count++; if (count > 20) { printk(MYIOC_s_ERR_FMT "Enable Diagnostic mode FAILED! (%02xh)\n", ioc->name, diag0val); break; } diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); } diag0val &= ~MPI_DIAG_RESET_HISTORY; CHIPREG_WRITE32(&ioc->chip->Diagnostic, diag0val); diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); if (diag0val & MPI_DIAG_RESET_HISTORY) { printk(MYIOC_s_WARN_FMT "ResetHistory bit failed to clear!\n", ioc->name); } /* Disable Diagnostic Mode */ CHIPREG_WRITE32(&ioc->chip->WriteSequence, 0xFFFFFFFF); /* Check FW reload status flags. */ diag0val = CHIPREG_READ32(&ioc->chip->Diagnostic); if (diag0val & (MPI_DIAG_FLASH_BAD_SIG | MPI_DIAG_RESET_ADAPTER | MPI_DIAG_DISABLE_ARM)) { printk(MYIOC_s_ERR_FMT "Diagnostic reset FAILED! (%02xh)\n", ioc->name, diag0val); return -3; } #ifdef MPT_DEBUG if (ioc->alt_ioc) diag1val = CHIPREG_READ32(&ioc->alt_ioc->chip->Diagnostic); dprintk((MYIOC_s_INFO_FMT "DbG4: diag0=%08x, diag1=%08x\n", ioc->name, diag0val, diag1val)); #endif /* * Reset flag that says we've enabled event notification */ ioc->facts.EventState = 0; if (ioc->alt_ioc) ioc->alt_ioc->facts.EventState = 0; return hard_reset_done; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * SendIocReset - Send IOCReset request to MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @reset_type: reset type, expected values are * %MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET or %MPI_FUNCTION_IO_UNIT_RESET * * Send IOCReset request to the MPT adapter. * * Returns 0 for success, non-zero for failure. */ static int SendIocReset(MPT_ADAPTER *ioc, u8 reset_type, int sleepFlag) { int r; u32 state; int cntdn, count; drsprintk((KERN_INFO MYNAM ": %s: Sending IOC reset(0x%02x)!\n", ioc->name, reset_type)); CHIPREG_WRITE32(&ioc->chip->Doorbell, reset_type<name, (int)((count+5)/HZ)); return -ETIME; } if (sleepFlag == CAN_SLEEP) { msleep_interruptible(1); } else { mdelay (1); /* 1 msec delay */ } } /* TODO! * Cleanup all event stuff for this IOC; re-issue EventNotification * request if needed. */ if (ioc->facts.Function) ioc->facts.EventState = 0; return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * initChainBuffers - Allocate memory for and initialize * chain buffers, chain buffer control arrays and spinlock. * @hd: Pointer to MPT_SCSI_HOST structure * @init: If set, initialize the spin lock. */ static int initChainBuffers(MPT_ADAPTER *ioc) { u8 *mem; int sz, ii, num_chain; int scale, num_sge, numSGE; /* ReqToChain size must equal the req_depth * index = req_idx */ if (ioc->ReqToChain == NULL) { sz = ioc->req_depth * sizeof(int); mem = kmalloc(sz, GFP_ATOMIC); if (mem == NULL) return -1; ioc->ReqToChain = (int *) mem; dinitprintk((KERN_INFO MYNAM ": %s ReqToChain alloc @ %p, sz=%d bytes\n", ioc->name, mem, sz)); mem = kmalloc(sz, GFP_ATOMIC); if (mem == NULL) return -1; ioc->RequestNB = (int *) mem; dinitprintk((KERN_INFO MYNAM ": %s RequestNB alloc @ %p, sz=%d bytes\n", ioc->name, mem, sz)); } for (ii = 0; ii < ioc->req_depth; ii++) { ioc->ReqToChain[ii] = MPT_HOST_NO_CHAIN; } /* ChainToChain size must equal the total number * of chain buffers to be allocated. * index = chain_idx * * Calculate the number of chain buffers needed(plus 1) per I/O * then multiply the the maximum number of simultaneous cmds * * num_sge = num sge in request frame + last chain buffer * scale = num sge per chain buffer if no chain element */ scale = ioc->req_sz/(sizeof(dma_addr_t) + sizeof(u32)); if (sizeof(dma_addr_t) == sizeof(u64)) num_sge = scale + (ioc->req_sz - 60) / (sizeof(dma_addr_t) + sizeof(u32)); else num_sge = 1+ scale + (ioc->req_sz - 64) / (sizeof(dma_addr_t) + sizeof(u32)); if (sizeof(dma_addr_t) == sizeof(u64)) { numSGE = (scale - 1) * (ioc->facts.MaxChainDepth-1) + scale + (ioc->req_sz - 60) / (sizeof(dma_addr_t) + sizeof(u32)); } else { numSGE = 1 + (scale - 1) * (ioc->facts.MaxChainDepth-1) + scale + (ioc->req_sz - 64) / (sizeof(dma_addr_t) + sizeof(u32)); } dinitprintk((KERN_INFO MYNAM ": %s num_sge=%d numSGE=%d\n", ioc->name, num_sge, numSGE)); if ( numSGE > MPT_SCSI_SG_DEPTH ) numSGE = MPT_SCSI_SG_DEPTH; num_chain = 1; while (numSGE - num_sge > 0) { num_chain++; num_sge += (scale - 1); } num_chain++; dinitprintk((KERN_INFO MYNAM ": %s Now numSGE=%d num_sge=%d num_chain=%d\n", ioc->name, numSGE, num_sge, num_chain)); if (ioc->bus_type == SPI) num_chain *= MPT_SCSI_CAN_QUEUE; else num_chain *= MPT_FC_CAN_QUEUE; ioc->num_chain = num_chain; sz = num_chain * sizeof(int); if (ioc->ChainToChain == NULL) { mem = kmalloc(sz, GFP_ATOMIC); if (mem == NULL) return -1; ioc->ChainToChain = (int *) mem; dinitprintk((KERN_INFO MYNAM ": %s ChainToChain alloc @ %p, sz=%d bytes\n", ioc->name, mem, sz)); } else { mem = (u8 *) ioc->ChainToChain; } memset(mem, 0xFF, sz); return num_chain; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * PrimeIocFifos - Initialize IOC request and reply FIFOs. * @ioc: Pointer to MPT_ADAPTER structure * * This routine allocates memory for the MPT reply and request frame * pools (if necessary), and primes the IOC reply FIFO with * reply frames. * * Returns 0 for success, non-zero for failure. */ static int PrimeIocFifos(MPT_ADAPTER *ioc) { MPT_FRAME_HDR *mf; unsigned long flags; dma_addr_t alloc_dma; u8 *mem; int i, reply_sz, sz, total_size, num_chain; /* Prime reply FIFO... */ if (ioc->reply_frames == NULL) { if ( (num_chain = initChainBuffers(ioc)) < 0) return -1; total_size = reply_sz = (ioc->reply_sz * ioc->reply_depth); dinitprintk((KERN_INFO MYNAM ": %s.ReplyBuffer sz=%d bytes, ReplyDepth=%d\n", ioc->name, ioc->reply_sz, ioc->reply_depth)); dinitprintk((KERN_INFO MYNAM ": %s.ReplyBuffer sz=%d[%x] bytes\n", ioc->name, reply_sz, reply_sz)); sz = (ioc->req_sz * ioc->req_depth); dinitprintk((KERN_INFO MYNAM ": %s.RequestBuffer sz=%d bytes, RequestDepth=%d\n", ioc->name, ioc->req_sz, ioc->req_depth)); dinitprintk((KERN_INFO MYNAM ": %s.RequestBuffer sz=%d[%x] bytes\n", ioc->name, sz, sz)); total_size += sz; sz = num_chain * ioc->req_sz; /* chain buffer pool size */ dinitprintk((KERN_INFO MYNAM ": %s.ChainBuffer sz=%d bytes, ChainDepth=%d\n", ioc->name, ioc->req_sz, num_chain)); dinitprintk((KERN_INFO MYNAM ": %s.ChainBuffer sz=%d[%x] bytes num_chain=%d\n", ioc->name, sz, sz, num_chain)); total_size += sz; mem = pci_alloc_consistent(ioc->pcidev, total_size, &alloc_dma); if (mem == NULL) { printk(MYIOC_s_ERR_FMT "Unable to allocate Reply, Request, Chain Buffers!\n", ioc->name); goto out_fail; } dinitprintk((KERN_INFO MYNAM ": %s.Total alloc @ %p[%p], sz=%d[%x] bytes\n", ioc->name, mem, (void *)(ulong)alloc_dma, total_size, total_size)); memset(mem, 0, total_size); ioc->alloc_total += total_size; ioc->alloc = mem; ioc->alloc_dma = alloc_dma; ioc->alloc_sz = total_size; ioc->reply_frames = (MPT_FRAME_HDR *) mem; ioc->reply_frames_low_dma = (u32) (alloc_dma & 0xFFFFFFFF); dinitprintk((KERN_INFO MYNAM ": %s ReplyBuffers @ %p[%p]\n", ioc->name, ioc->reply_frames, (void *)(ulong)alloc_dma)); alloc_dma += reply_sz; mem += reply_sz; /* Request FIFO - WE manage this! */ ioc->req_frames = (MPT_FRAME_HDR *) mem; ioc->req_frames_dma = alloc_dma; dinitprintk((KERN_INFO MYNAM ": %s RequestBuffers @ %p[%p]\n", ioc->name, mem, (void *)(ulong)alloc_dma)); ioc->req_frames_low_dma = (u32) (alloc_dma & 0xFFFFFFFF); #if defined(CONFIG_MTRR) && 0 /* * Enable Write Combining MTRR for IOC's memory region. * (at least as much as we can; "size and base must be * multiples of 4 kiB" */ ioc->mtrr_reg = mtrr_add(ioc->req_frames_dma, sz, MTRR_TYPE_WRCOMB, 1); dprintk((MYIOC_s_INFO_FMT "MTRR region registered (base:size=%08x:%x)\n", ioc->name, ioc->req_frames_dma, sz)); #endif for (i = 0; i < ioc->req_depth; i++) { alloc_dma += ioc->req_sz; mem += ioc->req_sz; } ioc->ChainBuffer = mem; ioc->ChainBufferDMA = alloc_dma; dinitprintk((KERN_INFO MYNAM " :%s ChainBuffers @ %p(%p)\n", ioc->name, ioc->ChainBuffer, (void *)(ulong)ioc->ChainBufferDMA)); /* Initialize the free chain Q. */ INIT_LIST_HEAD(&ioc->FreeChainQ); /* Post the chain buffers to the FreeChainQ. */ mem = (u8 *)ioc->ChainBuffer; for (i=0; i < num_chain; i++) { mf = (MPT_FRAME_HDR *) mem; list_add_tail(&mf->u.frame.linkage.list, &ioc->FreeChainQ); mem += ioc->req_sz; } /* Initialize Request frames linked list */ alloc_dma = ioc->req_frames_dma; mem = (u8 *) ioc->req_frames; spin_lock_irqsave(&ioc->FreeQlock, flags); INIT_LIST_HEAD(&ioc->FreeQ); for (i = 0; i < ioc->req_depth; i++) { mf = (MPT_FRAME_HDR *) mem; /* Queue REQUESTs *internally*! */ list_add_tail(&mf->u.frame.linkage.list, &ioc->FreeQ); mem += ioc->req_sz; } spin_unlock_irqrestore(&ioc->FreeQlock, flags); sz = (ioc->req_depth * MPT_SENSE_BUFFER_ALLOC); ioc->sense_buf_pool = pci_alloc_consistent(ioc->pcidev, sz, &ioc->sense_buf_pool_dma); if (ioc->sense_buf_pool == NULL) { printk(MYIOC_s_ERR_FMT "Unable to allocate Sense Buffers!\n", ioc->name); goto out_fail; } ioc->sense_buf_low_dma = (u32) (ioc->sense_buf_pool_dma & 0xFFFFFFFF); ioc->alloc_total += sz; dinitprintk((KERN_INFO MYNAM ": %s.SenseBuffers @ %p[%p]\n", ioc->name, ioc->sense_buf_pool, (void *)(ulong)ioc->sense_buf_pool_dma)); } /* Post Reply frames to FIFO */ alloc_dma = ioc->alloc_dma; dinitprintk((KERN_INFO MYNAM ": %s.ReplyBuffers @ %p[%p]\n", ioc->name, ioc->reply_frames, (void *)(ulong)alloc_dma)); for (i = 0; i < ioc->reply_depth; i++) { /* Write each address to the IOC! */ CHIPREG_WRITE32(&ioc->chip->ReplyFifo, alloc_dma); alloc_dma += ioc->reply_sz; } return 0; out_fail: if (ioc->alloc != NULL) { sz = ioc->alloc_sz; pci_free_consistent(ioc->pcidev, sz, ioc->alloc, ioc->alloc_dma); ioc->reply_frames = NULL; ioc->req_frames = NULL; ioc->alloc_total -= sz; } if (ioc->sense_buf_pool != NULL) { sz = (ioc->req_depth * MPT_SENSE_BUFFER_ALLOC); pci_free_consistent(ioc->pcidev, sz, ioc->sense_buf_pool, ioc->sense_buf_pool_dma); ioc->sense_buf_pool = NULL; } return -1; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_handshake_req_reply_wait - Send MPT request to and receive reply * from IOC via doorbell handshake method. * @ioc: Pointer to MPT_ADAPTER structure * @reqBytes: Size of the request in bytes * @req: Pointer to MPT request frame * @replyBytes: Expected size of the reply in bytes * @u16reply: Pointer to area where reply should be written * @maxwait: Max wait time for a reply (in seconds) * @sleepFlag: Specifies whether the process can sleep * * NOTES: It is the callers responsibility to byte-swap fields in the * request which are greater than 1 byte in size. It is also the * callers responsibility to byte-swap response fields which are * greater than 1 byte in size. * * Returns 0 for success, non-zero for failure. */ static int mpt_handshake_req_reply_wait(MPT_ADAPTER *ioc, int reqBytes, u32 *req, int replyBytes, u16 *u16reply, int maxwait, int sleepFlag) { MPIDefaultReply_t *mptReply; int failcnt = 0; int t; /* * Get ready to cache a handshake reply */ ioc->hs_reply_idx = 0; mptReply = (MPIDefaultReply_t *) ioc->hs_reply; mptReply->MsgLength = 0; /* * Make sure there are no doorbells (WRITE 0 to IntStatus reg), * then tell IOC that we want to handshake a request of N words. * (WRITE u32val to Doorbell reg). */ CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); CHIPREG_WRITE32(&ioc->chip->Doorbell, ((MPI_FUNCTION_HANDSHAKE<name, reqBytes, t, failcnt ? " - MISSING DOORBELL HANDSHAKE!" : "")); /* Read doorbell and check for active bit */ if (!(CHIPREG_READ32(&ioc->chip->Doorbell) & MPI_DOORBELL_ACTIVE)) return -1; /* * Clear doorbell int (WRITE 0 to IntStatus reg), * then wait for IOC to ACKnowledge that it's ready for * our handshake request. */ CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); if (!failcnt && (t = WaitForDoorbellAck(ioc, 5, sleepFlag)) < 0) failcnt++; if (!failcnt) { int ii; u8 *req_as_bytes = (u8 *) req; /* * Stuff request words via doorbell handshake, * with ACK from IOC for each. */ for (ii = 0; !failcnt && ii < reqBytes/4; ii++) { u32 word = ((req_as_bytes[(ii*4) + 0] << 0) | (req_as_bytes[(ii*4) + 1] << 8) | (req_as_bytes[(ii*4) + 2] << 16) | (req_as_bytes[(ii*4) + 3] << 24)); CHIPREG_WRITE32(&ioc->chip->Doorbell, word); if ((t = WaitForDoorbellAck(ioc, 5, sleepFlag)) < 0) failcnt++; } dhsprintk((KERN_INFO MYNAM ": Handshake request frame (@%p) header\n", req)); DBG_DUMP_REQUEST_FRAME_HDR(req) dhsprintk((MYIOC_s_INFO_FMT "HandShake request post done, WaitCnt=%d%s\n", ioc->name, t, failcnt ? " - MISSING DOORBELL ACK!" : "")); /* * Wait for completion of doorbell handshake reply from the IOC */ if (!failcnt && (t = WaitForDoorbellReply(ioc, maxwait, sleepFlag)) < 0) failcnt++; dhsprintk((MYIOC_s_INFO_FMT "HandShake reply count=%d%s\n", ioc->name, t, failcnt ? " - MISSING DOORBELL REPLY!" : "")); /* * Copy out the cached reply... */ for (ii=0; ii < min(replyBytes/2,mptReply->MsgLength*2); ii++) u16reply[ii] = ioc->hs_reply[ii]; } else { return -99; } return -failcnt; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * WaitForDoorbellAck - Wait for IOC to clear the IOP_DOORBELL_STATUS bit * in it's IntStatus register. * @ioc: Pointer to MPT_ADAPTER structure * @howlong: How long to wait (in seconds) * @sleepFlag: Specifies whether the process can sleep * * This routine waits (up to ~2 seconds max) for IOC doorbell * handshake ACKnowledge. * * Returns a negative value on failure, else wait loop count. */ static int WaitForDoorbellAck(MPT_ADAPTER *ioc, int howlong, int sleepFlag) { int cntdn; int count = 0; u32 intstat=0; cntdn = 1000 * howlong; if (sleepFlag == CAN_SLEEP) { while (--cntdn) { intstat = CHIPREG_READ32(&ioc->chip->IntStatus); if (! (intstat & MPI_HIS_IOP_DOORBELL_STATUS)) break; msleep_interruptible (1); count++; } } else { while (--cntdn) { intstat = CHIPREG_READ32(&ioc->chip->IntStatus); if (! (intstat & MPI_HIS_IOP_DOORBELL_STATUS)) break; mdelay (1); count++; } } if (cntdn) { dprintk((MYIOC_s_INFO_FMT "WaitForDoorbell ACK (count=%d)\n", ioc->name, count)); return count; } printk(MYIOC_s_ERR_FMT "Doorbell ACK timeout (count=%d), IntStatus=%x!\n", ioc->name, count, intstat); return -1; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * WaitForDoorbellInt - Wait for IOC to set the HIS_DOORBELL_INTERRUPT bit * in it's IntStatus register. * @ioc: Pointer to MPT_ADAPTER structure * @howlong: How long to wait (in seconds) * @sleepFlag: Specifies whether the process can sleep * * This routine waits (up to ~2 seconds max) for IOC doorbell interrupt. * * Returns a negative value on failure, else wait loop count. */ static int WaitForDoorbellInt(MPT_ADAPTER *ioc, int howlong, int sleepFlag) { int cntdn; int count = 0; u32 intstat=0; cntdn = 1000 * howlong; if (sleepFlag == CAN_SLEEP) { while (--cntdn) { intstat = CHIPREG_READ32(&ioc->chip->IntStatus); if (intstat & MPI_HIS_DOORBELL_INTERRUPT) break; msleep_interruptible(1); count++; } } else { while (--cntdn) { intstat = CHIPREG_READ32(&ioc->chip->IntStatus); if (intstat & MPI_HIS_DOORBELL_INTERRUPT) break; mdelay(1); count++; } } if (cntdn) { dprintk((MYIOC_s_INFO_FMT "WaitForDoorbell INT (cnt=%d) howlong=%d\n", ioc->name, count, howlong)); return count; } printk(MYIOC_s_ERR_FMT "Doorbell INT timeout (count=%d), IntStatus=%x!\n", ioc->name, count, intstat); return -1; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * WaitForDoorbellReply - Wait for and capture a IOC handshake reply. * @ioc: Pointer to MPT_ADAPTER structure * @howlong: How long to wait (in seconds) * @sleepFlag: Specifies whether the process can sleep * * This routine polls the IOC for a handshake reply, 16 bits at a time. * Reply is cached to IOC private area large enough to hold a maximum * of 128 bytes of reply data. * * Returns a negative value on failure, else size of reply in WORDS. */ static int WaitForDoorbellReply(MPT_ADAPTER *ioc, int howlong, int sleepFlag) { int u16cnt = 0; int failcnt = 0; int t; u16 *hs_reply = ioc->hs_reply; volatile MPIDefaultReply_t *mptReply = (MPIDefaultReply_t *) ioc->hs_reply; u16 hword; hs_reply[0] = hs_reply[1] = hs_reply[7] = 0; /* * Get first two u16's so we can look at IOC's intended reply MsgLength */ u16cnt=0; if ((t = WaitForDoorbellInt(ioc, howlong, sleepFlag)) < 0) { failcnt++; } else { hs_reply[u16cnt++] = le16_to_cpu(CHIPREG_READ32(&ioc->chip->Doorbell) & 0x0000FFFF); CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); if ((t = WaitForDoorbellInt(ioc, 5, sleepFlag)) < 0) failcnt++; else { hs_reply[u16cnt++] = le16_to_cpu(CHIPREG_READ32(&ioc->chip->Doorbell) & 0x0000FFFF); CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); } } dhsprintk((MYIOC_s_INFO_FMT "WaitCnt=%d First handshake reply word=%08x%s\n", ioc->name, t, le32_to_cpu(*(u32 *)hs_reply), failcnt ? " - MISSING DOORBELL HANDSHAKE!" : "")); /* * If no error (and IOC said MsgLength is > 0), piece together * reply 16 bits at a time. */ for (u16cnt=2; !failcnt && u16cnt < (2 * mptReply->MsgLength); u16cnt++) { if ((t = WaitForDoorbellInt(ioc, 5, sleepFlag)) < 0) failcnt++; hword = le16_to_cpu(CHIPREG_READ32(&ioc->chip->Doorbell) & 0x0000FFFF); /* don't overflow our IOC hs_reply[] buffer! */ if (u16cnt < sizeof(ioc->hs_reply) / sizeof(ioc->hs_reply[0])) hs_reply[u16cnt] = hword; CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); } if (!failcnt && (t = WaitForDoorbellInt(ioc, 5, sleepFlag)) < 0) failcnt++; CHIPREG_WRITE32(&ioc->chip->IntStatus, 0); if (failcnt) { printk(MYIOC_s_ERR_FMT "Handshake reply failure!\n", ioc->name); return -failcnt; } #if 0 else if (u16cnt != (2 * mptReply->MsgLength)) { return -101; } else if ((mptReply->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { return -102; } #endif dhsprintk((MYIOC_s_INFO_FMT "Got Handshake reply:\n", ioc->name)); DBG_DUMP_REPLY_FRAME(mptReply) dhsprintk((MYIOC_s_INFO_FMT "WaitForDoorbell REPLY WaitCnt=%d (sz=%d)\n", ioc->name, t, u16cnt/2)); return u16cnt/2; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * GetLanConfigPages - Fetch LANConfig pages. * @ioc: Pointer to MPT_ADAPTER structure * * Return: 0 for success * -ENOMEM if no memory available * -EPERM if not allowed due to ISR context * -EAGAIN if no msg frames currently available * -EFAULT for non-successful reply or no reply (timeout) */ static int GetLanConfigPages(MPT_ADAPTER *ioc) { ConfigPageHeader_t hdr; CONFIGPARMS cfg; LANPage0_t *ppage0_alloc; dma_addr_t page0_dma; LANPage1_t *ppage1_alloc; dma_addr_t page1_dma; int rc = 0; int data_sz; int copy_sz; /* Get LAN Page 0 header */ hdr.PageVersion = 0; hdr.PageLength = 0; hdr.PageNumber = 0; hdr.PageType = MPI_CONFIG_PAGETYPE_LAN; cfg.cfghdr.hdr = &hdr; cfg.physAddr = -1; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.pageAddr = 0; cfg.timeout = 0; if ((rc = mpt_config(ioc, &cfg)) != 0) return rc; if (hdr.PageLength > 0) { data_sz = hdr.PageLength * 4; ppage0_alloc = (LANPage0_t *) pci_alloc_consistent(ioc->pcidev, data_sz, &page0_dma); rc = -ENOMEM; if (ppage0_alloc) { memset((u8 *)ppage0_alloc, 0, data_sz); cfg.physAddr = page0_dma; cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; if ((rc = mpt_config(ioc, &cfg)) == 0) { /* save the data */ copy_sz = min_t(int, sizeof(LANPage0_t), data_sz); memcpy(&ioc->lan_cnfg_page0, ppage0_alloc, copy_sz); } pci_free_consistent(ioc->pcidev, data_sz, (u8 *) ppage0_alloc, page0_dma); /* FIXME! * Normalize endianness of structure data, * by byte-swapping all > 1 byte fields! */ } if (rc) return rc; } /* Get LAN Page 1 header */ hdr.PageVersion = 0; hdr.PageLength = 0; hdr.PageNumber = 1; hdr.PageType = MPI_CONFIG_PAGETYPE_LAN; cfg.cfghdr.hdr = &hdr; cfg.physAddr = -1; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.pageAddr = 0; if ((rc = mpt_config(ioc, &cfg)) != 0) return rc; if (hdr.PageLength == 0) return 0; data_sz = hdr.PageLength * 4; rc = -ENOMEM; ppage1_alloc = (LANPage1_t *) pci_alloc_consistent(ioc->pcidev, data_sz, &page1_dma); if (ppage1_alloc) { memset((u8 *)ppage1_alloc, 0, data_sz); cfg.physAddr = page1_dma; cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; if ((rc = mpt_config(ioc, &cfg)) == 0) { /* save the data */ copy_sz = min_t(int, sizeof(LANPage1_t), data_sz); memcpy(&ioc->lan_cnfg_page1, ppage1_alloc, copy_sz); } pci_free_consistent(ioc->pcidev, data_sz, (u8 *) ppage1_alloc, page1_dma); /* FIXME! * Normalize endianness of structure data, * by byte-swapping all > 1 byte fields! */ } return rc; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mptbase_GetFcPortPage0 - Fetch FCPort config Page0. * @ioc: Pointer to MPT_ADAPTER structure * @portnum: IOC Port number * * Return: 0 for success * -ENOMEM if no memory available * -EPERM if not allowed due to ISR context * -EAGAIN if no msg frames currently available * -EFAULT for non-successful reply or no reply (timeout) */ int mptbase_GetFcPortPage0(MPT_ADAPTER *ioc, int portnum) { ConfigPageHeader_t hdr; CONFIGPARMS cfg; FCPortPage0_t *ppage0_alloc; FCPortPage0_t *pp0dest; dma_addr_t page0_dma; int data_sz; int copy_sz; int rc; int count = 400; /* Get FCPort Page 0 header */ hdr.PageVersion = 0; hdr.PageLength = 0; hdr.PageNumber = 0; hdr.PageType = MPI_CONFIG_PAGETYPE_FC_PORT; cfg.cfghdr.hdr = &hdr; cfg.physAddr = -1; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.pageAddr = portnum; cfg.timeout = 0; if ((rc = mpt_config(ioc, &cfg)) != 0) return rc; if (hdr.PageLength == 0) return 0; data_sz = hdr.PageLength * 4; rc = -ENOMEM; ppage0_alloc = (FCPortPage0_t *) pci_alloc_consistent(ioc->pcidev, data_sz, &page0_dma); if (ppage0_alloc) { try_again: memset((u8 *)ppage0_alloc, 0, data_sz); cfg.physAddr = page0_dma; cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; if ((rc = mpt_config(ioc, &cfg)) == 0) { /* save the data */ pp0dest = &ioc->fc_port_page0[portnum]; copy_sz = min_t(int, sizeof(FCPortPage0_t), data_sz); memcpy(pp0dest, ppage0_alloc, copy_sz); /* * Normalize endianness of structure data, * by byte-swapping all > 1 byte fields! */ pp0dest->Flags = le32_to_cpu(pp0dest->Flags); pp0dest->PortIdentifier = le32_to_cpu(pp0dest->PortIdentifier); pp0dest->WWNN.Low = le32_to_cpu(pp0dest->WWNN.Low); pp0dest->WWNN.High = le32_to_cpu(pp0dest->WWNN.High); pp0dest->WWPN.Low = le32_to_cpu(pp0dest->WWPN.Low); pp0dest->WWPN.High = le32_to_cpu(pp0dest->WWPN.High); pp0dest->SupportedServiceClass = le32_to_cpu(pp0dest->SupportedServiceClass); pp0dest->SupportedSpeeds = le32_to_cpu(pp0dest->SupportedSpeeds); pp0dest->CurrentSpeed = le32_to_cpu(pp0dest->CurrentSpeed); pp0dest->MaxFrameSize = le32_to_cpu(pp0dest->MaxFrameSize); pp0dest->FabricWWNN.Low = le32_to_cpu(pp0dest->FabricWWNN.Low); pp0dest->FabricWWNN.High = le32_to_cpu(pp0dest->FabricWWNN.High); pp0dest->FabricWWPN.Low = le32_to_cpu(pp0dest->FabricWWPN.Low); pp0dest->FabricWWPN.High = le32_to_cpu(pp0dest->FabricWWPN.High); pp0dest->DiscoveredPortsCount = le32_to_cpu(pp0dest->DiscoveredPortsCount); pp0dest->MaxInitiators = le32_to_cpu(pp0dest->MaxInitiators); /* * if still doing discovery, * hang loose a while until finished */ if (pp0dest->PortState == MPI_FCPORTPAGE0_PORTSTATE_UNKNOWN) { if (count-- > 0) { msleep_interruptible(100); goto try_again; } printk(MYIOC_s_INFO_FMT "Firmware discovery not" " complete.\n", ioc->name); } } pci_free_consistent(ioc->pcidev, data_sz, (u8 *) ppage0_alloc, page0_dma); } return rc; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mptbase_sas_persist_operation - Perform operation on SAS Persitent Table * @ioc: Pointer to MPT_ADAPTER structure * @sas_address: 64bit SAS Address for operation. * @target_id: specified target for operation * @bus: specified bus for operation * @persist_opcode: see below * * MPI_SAS_OP_CLEAR_NOT_PRESENT - Free all persist TargetID mappings for * devices not currently present. * MPI_SAS_OP_CLEAR_ALL_PERSISTENT - Clear al persist TargetID mappings * * NOTE: Don't use not this function during interrupt time. * * Returns: 0 for success, non-zero error */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ int mptbase_sas_persist_operation(MPT_ADAPTER *ioc, u8 persist_opcode) { SasIoUnitControlRequest_t *sasIoUnitCntrReq; SasIoUnitControlReply_t *sasIoUnitCntrReply; MPT_FRAME_HDR *mf = NULL; MPIHeader_t *mpi_hdr; /* insure garbage is not sent to fw */ switch(persist_opcode) { case MPI_SAS_OP_CLEAR_NOT_PRESENT: case MPI_SAS_OP_CLEAR_ALL_PERSISTENT: break; default: return -1; break; } printk("%s: persist_opcode=%x\n",__FUNCTION__, persist_opcode); /* Get a MF for this command. */ if ((mf = mpt_get_msg_frame(mpt_base_index, ioc)) == NULL) { printk("%s: no msg frames!\n",__FUNCTION__); return -1; } mpi_hdr = (MPIHeader_t *) mf; sasIoUnitCntrReq = (SasIoUnitControlRequest_t *)mf; memset(sasIoUnitCntrReq,0,sizeof(SasIoUnitControlRequest_t)); sasIoUnitCntrReq->Function = MPI_FUNCTION_SAS_IO_UNIT_CONTROL; sasIoUnitCntrReq->MsgContext = mpi_hdr->MsgContext; sasIoUnitCntrReq->Operation = persist_opcode; init_timer(&ioc->persist_timer); ioc->persist_timer.data = (unsigned long) ioc; ioc->persist_timer.function = mpt_timer_expired; ioc->persist_timer.expires = jiffies + HZ*10 /* 10 sec */; ioc->persist_wait_done=0; add_timer(&ioc->persist_timer); mpt_put_msg_frame(mpt_base_index, ioc, mf); wait_event(mpt_waitq, ioc->persist_wait_done); sasIoUnitCntrReply = (SasIoUnitControlReply_t *)ioc->persist_reply_frame; if (le16_to_cpu(sasIoUnitCntrReply->IOCStatus) != MPI_IOCSTATUS_SUCCESS) { printk("%s: IOCStatus=0x%X IOCLogInfo=0x%X\n", __FUNCTION__, sasIoUnitCntrReply->IOCStatus, sasIoUnitCntrReply->IOCLogInfo); return -1; } printk("%s: success\n",__FUNCTION__); return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ static void mptbase_raid_process_event_data(MPT_ADAPTER *ioc, MpiEventDataRaid_t * pRaidEventData) { int volume; int reason; int disk; int status; int flags; int state; volume = pRaidEventData->VolumeID; reason = pRaidEventData->ReasonCode; disk = pRaidEventData->PhysDiskNum; status = le32_to_cpu(pRaidEventData->SettingsStatus); flags = (status >> 0) & 0xff; state = (status >> 8) & 0xff; if (reason == MPI_EVENT_RAID_RC_DOMAIN_VAL_NEEDED) { return; } if ((reason >= MPI_EVENT_RAID_RC_PHYSDISK_CREATED && reason <= MPI_EVENT_RAID_RC_PHYSDISK_STATUS_CHANGED) || (reason == MPI_EVENT_RAID_RC_SMART_DATA)) { printk(MYIOC_s_INFO_FMT "RAID STATUS CHANGE for PhysDisk %d\n", ioc->name, disk); } else { printk(MYIOC_s_INFO_FMT "RAID STATUS CHANGE for VolumeID %d\n", ioc->name, volume); } switch(reason) { case MPI_EVENT_RAID_RC_VOLUME_CREATED: printk(MYIOC_s_INFO_FMT " volume has been created\n", ioc->name); break; case MPI_EVENT_RAID_RC_VOLUME_DELETED: printk(MYIOC_s_INFO_FMT " volume has been deleted\n", ioc->name); break; case MPI_EVENT_RAID_RC_VOLUME_SETTINGS_CHANGED: printk(MYIOC_s_INFO_FMT " volume settings have been changed\n", ioc->name); break; case MPI_EVENT_RAID_RC_VOLUME_STATUS_CHANGED: printk(MYIOC_s_INFO_FMT " volume is now %s%s%s%s\n", ioc->name, state == MPI_RAIDVOL0_STATUS_STATE_OPTIMAL ? "optimal" : state == MPI_RAIDVOL0_STATUS_STATE_DEGRADED ? "degraded" : state == MPI_RAIDVOL0_STATUS_STATE_FAILED ? "failed" : "state unknown", flags & MPI_RAIDVOL0_STATUS_FLAG_ENABLED ? ", enabled" : "", flags & MPI_RAIDVOL0_STATUS_FLAG_QUIESCED ? ", quiesced" : "", flags & MPI_RAIDVOL0_STATUS_FLAG_RESYNC_IN_PROGRESS ? ", resync in progress" : "" ); break; case MPI_EVENT_RAID_RC_VOLUME_PHYSDISK_CHANGED: printk(MYIOC_s_INFO_FMT " volume membership of PhysDisk %d has changed\n", ioc->name, disk); break; case MPI_EVENT_RAID_RC_PHYSDISK_CREATED: printk(MYIOC_s_INFO_FMT " PhysDisk has been created\n", ioc->name); break; case MPI_EVENT_RAID_RC_PHYSDISK_DELETED: printk(MYIOC_s_INFO_FMT " PhysDisk has been deleted\n", ioc->name); break; case MPI_EVENT_RAID_RC_PHYSDISK_SETTINGS_CHANGED: printk(MYIOC_s_INFO_FMT " PhysDisk settings have been changed\n", ioc->name); break; case MPI_EVENT_RAID_RC_PHYSDISK_STATUS_CHANGED: printk(MYIOC_s_INFO_FMT " PhysDisk is now %s%s%s\n", ioc->name, state == MPI_PHYSDISK0_STATUS_ONLINE ? "online" : state == MPI_PHYSDISK0_STATUS_MISSING ? "missing" : state == MPI_PHYSDISK0_STATUS_NOT_COMPATIBLE ? "not compatible" : state == MPI_PHYSDISK0_STATUS_FAILED ? "failed" : state == MPI_PHYSDISK0_STATUS_INITIALIZING ? "initializing" : state == MPI_PHYSDISK0_STATUS_OFFLINE_REQUESTED ? "offline requested" : state == MPI_PHYSDISK0_STATUS_FAILED_REQUESTED ? "failed requested" : state == MPI_PHYSDISK0_STATUS_OTHER_OFFLINE ? "offline" : "state unknown", flags & MPI_PHYSDISK0_STATUS_FLAG_OUT_OF_SYNC ? ", out of sync" : "", flags & MPI_PHYSDISK0_STATUS_FLAG_QUIESCED ? ", quiesced" : "" ); break; case MPI_EVENT_RAID_RC_DOMAIN_VAL_NEEDED: printk(MYIOC_s_INFO_FMT " Domain Validation needed for PhysDisk %d\n", ioc->name, disk); break; case MPI_EVENT_RAID_RC_SMART_DATA: printk(MYIOC_s_INFO_FMT " SMART data received, ASC/ASCQ = %02xh/%02xh\n", ioc->name, pRaidEventData->ASC, pRaidEventData->ASCQ); break; case MPI_EVENT_RAID_RC_REPLACE_ACTION_STARTED: printk(MYIOC_s_INFO_FMT " replacement of PhysDisk %d has started\n", ioc->name, disk); break; } } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * GetIoUnitPage2 - Retrieve BIOS version and boot order information. * @ioc: Pointer to MPT_ADAPTER structure * * Returns: 0 for success * -ENOMEM if no memory available * -EPERM if not allowed due to ISR context * -EAGAIN if no msg frames currently available * -EFAULT for non-successful reply or no reply (timeout) */ static int GetIoUnitPage2(MPT_ADAPTER *ioc) { ConfigPageHeader_t hdr; CONFIGPARMS cfg; IOUnitPage2_t *ppage_alloc; dma_addr_t page_dma; int data_sz; int rc; /* Get the page header */ hdr.PageVersion = 0; hdr.PageLength = 0; hdr.PageNumber = 2; hdr.PageType = MPI_CONFIG_PAGETYPE_IO_UNIT; cfg.cfghdr.hdr = &hdr; cfg.physAddr = -1; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.pageAddr = 0; cfg.timeout = 0; if ((rc = mpt_config(ioc, &cfg)) != 0) return rc; if (hdr.PageLength == 0) return 0; /* Read the config page */ data_sz = hdr.PageLength * 4; rc = -ENOMEM; ppage_alloc = (IOUnitPage2_t *) pci_alloc_consistent(ioc->pcidev, data_sz, &page_dma); if (ppage_alloc) { memset((u8 *)ppage_alloc, 0, data_sz); cfg.physAddr = page_dma; cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; /* If Good, save data */ if ((rc = mpt_config(ioc, &cfg)) == 0) ioc->biosVersion = le32_to_cpu(ppage_alloc->BiosVersion); pci_free_consistent(ioc->pcidev, data_sz, (u8 *) ppage_alloc, page_dma); } return rc; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* mpt_GetScsiPortSettings - read SCSI Port Page 0 and 2 * @ioc: Pointer to a Adapter Strucutre * @portnum: IOC port number * * Return: -EFAULT if read of config page header fails * or if no nvram * If read of SCSI Port Page 0 fails, * NVRAM = MPT_HOST_NVRAM_INVALID (0xFFFFFFFF) * Adapter settings: async, narrow * Return 1 * If read of SCSI Port Page 2 fails, * Adapter settings valid * NVRAM = MPT_HOST_NVRAM_INVALID (0xFFFFFFFF) * Return 1 * Else * Both valid * Return 0 * CHECK - what type of locking mechanisms should be used???? */ static int mpt_GetScsiPortSettings(MPT_ADAPTER *ioc, int portnum) { u8 *pbuf; dma_addr_t buf_dma; CONFIGPARMS cfg; ConfigPageHeader_t header; int ii; int data, rc = 0; /* Allocate memory */ if (!ioc->spi_data.nvram) { int sz; u8 *mem; sz = MPT_MAX_SCSI_DEVICES * sizeof(int); mem = kmalloc(sz, GFP_ATOMIC); if (mem == NULL) return -EFAULT; ioc->spi_data.nvram = (int *) mem; dprintk((MYIOC_s_INFO_FMT "SCSI device NVRAM settings @ %p, sz=%d\n", ioc->name, ioc->spi_data.nvram, sz)); } /* Invalidate NVRAM information */ for (ii=0; ii < MPT_MAX_SCSI_DEVICES; ii++) { ioc->spi_data.nvram[ii] = MPT_HOST_NVRAM_INVALID; } /* Read SPP0 header, allocate memory, then read page. */ header.PageVersion = 0; header.PageLength = 0; header.PageNumber = 0; header.PageType = MPI_CONFIG_PAGETYPE_SCSI_PORT; cfg.cfghdr.hdr = &header; cfg.physAddr = -1; cfg.pageAddr = portnum; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.timeout = 0; /* use default */ if (mpt_config(ioc, &cfg) != 0) return -EFAULT; if (header.PageLength > 0) { pbuf = pci_alloc_consistent(ioc->pcidev, header.PageLength * 4, &buf_dma); if (pbuf) { cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; cfg.physAddr = buf_dma; if (mpt_config(ioc, &cfg) != 0) { ioc->spi_data.maxBusWidth = MPT_NARROW; ioc->spi_data.maxSyncOffset = 0; ioc->spi_data.minSyncFactor = MPT_ASYNC; ioc->spi_data.busType = MPT_HOST_BUS_UNKNOWN; rc = 1; ddvprintk((MYIOC_s_INFO_FMT "Unable to read PortPage0 minSyncFactor=%x\n", ioc->name, ioc->spi_data.minSyncFactor)); } else { /* Save the Port Page 0 data */ SCSIPortPage0_t *pPP0 = (SCSIPortPage0_t *) pbuf; pPP0->Capabilities = le32_to_cpu(pPP0->Capabilities); pPP0->PhysicalInterface = le32_to_cpu(pPP0->PhysicalInterface); if ( (pPP0->Capabilities & MPI_SCSIPORTPAGE0_CAP_QAS) == 0 ) { ioc->spi_data.noQas |= MPT_TARGET_NO_NEGO_QAS; ddvprintk((KERN_INFO MYNAM " :%s noQas due to Capabilities=%x\n", ioc->name, pPP0->Capabilities)); } ioc->spi_data.maxBusWidth = pPP0->Capabilities & MPI_SCSIPORTPAGE0_CAP_WIDE ? 1 : 0; data = pPP0->Capabilities & MPI_SCSIPORTPAGE0_CAP_MAX_SYNC_OFFSET_MASK; if (data) { ioc->spi_data.maxSyncOffset = (u8) (data >> 16); data = pPP0->Capabilities & MPI_SCSIPORTPAGE0_CAP_MIN_SYNC_PERIOD_MASK; ioc->spi_data.minSyncFactor = (u8) (data >> 8); ddvprintk((MYIOC_s_INFO_FMT "PortPage0 minSyncFactor=%x\n", ioc->name, ioc->spi_data.minSyncFactor)); } else { ioc->spi_data.maxSyncOffset = 0; ioc->spi_data.minSyncFactor = MPT_ASYNC; } ioc->spi_data.busType = pPP0->PhysicalInterface & MPI_SCSIPORTPAGE0_PHY_SIGNAL_TYPE_MASK; /* Update the minSyncFactor based on bus type. */ if ((ioc->spi_data.busType == MPI_SCSIPORTPAGE0_PHY_SIGNAL_HVD) || (ioc->spi_data.busType == MPI_SCSIPORTPAGE0_PHY_SIGNAL_SE)) { if (ioc->spi_data.minSyncFactor < MPT_ULTRA) { ioc->spi_data.minSyncFactor = MPT_ULTRA; ddvprintk((MYIOC_s_INFO_FMT "HVD or SE detected, minSyncFactor=%x\n", ioc->name, ioc->spi_data.minSyncFactor)); } } } if (pbuf) { pci_free_consistent(ioc->pcidev, header.PageLength * 4, pbuf, buf_dma); } } } /* SCSI Port Page 2 - Read the header then the page. */ header.PageVersion = 0; header.PageLength = 0; header.PageNumber = 2; header.PageType = MPI_CONFIG_PAGETYPE_SCSI_PORT; cfg.cfghdr.hdr = &header; cfg.physAddr = -1; cfg.pageAddr = portnum; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; if (mpt_config(ioc, &cfg) != 0) return -EFAULT; if (header.PageLength > 0) { /* Allocate memory and read SCSI Port Page 2 */ pbuf = pci_alloc_consistent(ioc->pcidev, header.PageLength * 4, &buf_dma); if (pbuf) { cfg.action = MPI_CONFIG_ACTION_PAGE_READ_NVRAM; cfg.physAddr = buf_dma; if (mpt_config(ioc, &cfg) != 0) { /* Nvram data is left with INVALID mark */ rc = 1; } else { SCSIPortPage2_t *pPP2 = (SCSIPortPage2_t *) pbuf; MpiDeviceInfo_t *pdevice = NULL; /* * Save "Set to Avoid SCSI Bus Resets" flag */ ioc->spi_data.bus_reset = (le32_to_cpu(pPP2->PortFlags) & MPI_SCSIPORTPAGE2_PORT_FLAGS_AVOID_SCSI_RESET) ? 0 : 1 ; /* Save the Port Page 2 data * (reformat into a 32bit quantity) */ data = le32_to_cpu(pPP2->PortFlags) & MPI_SCSIPORTPAGE2_PORT_FLAGS_DV_MASK; ioc->spi_data.PortFlags = data; for (ii=0; ii < MPT_MAX_SCSI_DEVICES; ii++) { pdevice = &pPP2->DeviceSettings[ii]; data = (le16_to_cpu(pdevice->DeviceFlags) << 16) | (pdevice->SyncFactor << 8) | pdevice->Timeout; ioc->spi_data.nvram[ii] = data; } } pci_free_consistent(ioc->pcidev, header.PageLength * 4, pbuf, buf_dma); } } /* Update Adapter limits with those from NVRAM * Comment: Don't need to do this. Target performance * parameters will never exceed the adapters limits. */ return rc; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* mpt_readScsiDevicePageHeaders - save version and length of SDP1 * @ioc: Pointer to a Adapter Strucutre * @portnum: IOC port number * * Return: -EFAULT if read of config page header fails * or 0 if success. */ static int mpt_readScsiDevicePageHeaders(MPT_ADAPTER *ioc, int portnum) { CONFIGPARMS cfg; ConfigPageHeader_t header; /* Read the SCSI Device Page 1 header */ header.PageVersion = 0; header.PageLength = 0; header.PageNumber = 1; header.PageType = MPI_CONFIG_PAGETYPE_SCSI_DEVICE; cfg.cfghdr.hdr = &header; cfg.physAddr = -1; cfg.pageAddr = portnum; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.timeout = 0; if (mpt_config(ioc, &cfg) != 0) return -EFAULT; ioc->spi_data.sdp1version = cfg.cfghdr.hdr->PageVersion; ioc->spi_data.sdp1length = cfg.cfghdr.hdr->PageLength; header.PageVersion = 0; header.PageLength = 0; header.PageNumber = 0; header.PageType = MPI_CONFIG_PAGETYPE_SCSI_DEVICE; if (mpt_config(ioc, &cfg) != 0) return -EFAULT; ioc->spi_data.sdp0version = cfg.cfghdr.hdr->PageVersion; ioc->spi_data.sdp0length = cfg.cfghdr.hdr->PageLength; dcprintk((MYIOC_s_INFO_FMT "Headers: 0: version %d length %d\n", ioc->name, ioc->spi_data.sdp0version, ioc->spi_data.sdp0length)); dcprintk((MYIOC_s_INFO_FMT "Headers: 1: version %d length %d\n", ioc->name, ioc->spi_data.sdp1version, ioc->spi_data.sdp1length)); return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_findImVolumes - Identify IDs of hidden disks and RAID Volumes * @ioc: Pointer to a Adapter Strucutre * @portnum: IOC port number * * Return: * 0 on success * -EFAULT if read of config page header fails or data pointer not NULL * -ENOMEM if pci_alloc failed */ int mpt_findImVolumes(MPT_ADAPTER *ioc) { IOCPage2_t *pIoc2; u8 *mem; ConfigPageIoc2RaidVol_t *pIocRv; dma_addr_t ioc2_dma; CONFIGPARMS cfg; ConfigPageHeader_t header; int jj; int rc = 0; int iocpage2sz; u8 nVols, nPhys; u8 vid, vbus, vioc; /* Read IOCP2 header then the page. */ header.PageVersion = 0; header.PageLength = 0; header.PageNumber = 2; header.PageType = MPI_CONFIG_PAGETYPE_IOC; cfg.cfghdr.hdr = &header; cfg.physAddr = -1; cfg.pageAddr = 0; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.timeout = 0; if (mpt_config(ioc, &cfg) != 0) return -EFAULT; if (header.PageLength == 0) return -EFAULT; iocpage2sz = header.PageLength * 4; pIoc2 = pci_alloc_consistent(ioc->pcidev, iocpage2sz, &ioc2_dma); if (!pIoc2) return -ENOMEM; cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; cfg.physAddr = ioc2_dma; if (mpt_config(ioc, &cfg) != 0) goto done_and_free; if ( (mem = (u8 *)ioc->raid_data.pIocPg2) == NULL ) { mem = kmalloc(iocpage2sz, GFP_ATOMIC); if (mem) { ioc->raid_data.pIocPg2 = (IOCPage2_t *) mem; } else { goto done_and_free; } } memcpy(mem, (u8 *)pIoc2, iocpage2sz); /* Identify RAID Volume Id's */ nVols = pIoc2->NumActiveVolumes; if ( nVols == 0) { /* No RAID Volume. */ goto done_and_free; } else { /* At least 1 RAID Volume */ pIocRv = pIoc2->RaidVolume; ioc->raid_data.isRaid = 0; for (jj = 0; jj < nVols; jj++, pIocRv++) { vid = pIocRv->VolumeID; vbus = pIocRv->VolumeBus; vioc = pIocRv->VolumeIOC; /* find the match */ if (vbus == 0) { ioc->raid_data.isRaid |= (1 << vid); } else { /* Error! Always bus 0 */ } } } /* Identify Hidden Physical Disk Id's */ nPhys = pIoc2->NumActivePhysDisks; if (nPhys == 0) { /* No physical disks. */ } else { mpt_read_ioc_pg_3(ioc); } done_and_free: pci_free_consistent(ioc->pcidev, iocpage2sz, pIoc2, ioc2_dma); return rc; } static int mpt_read_ioc_pg_3(MPT_ADAPTER *ioc) { IOCPage3_t *pIoc3; u8 *mem; CONFIGPARMS cfg; ConfigPageHeader_t header; dma_addr_t ioc3_dma; int iocpage3sz = 0; /* Free the old page */ kfree(ioc->raid_data.pIocPg3); ioc->raid_data.pIocPg3 = NULL; /* There is at least one physical disk. * Read and save IOC Page 3 */ header.PageVersion = 0; header.PageLength = 0; header.PageNumber = 3; header.PageType = MPI_CONFIG_PAGETYPE_IOC; cfg.cfghdr.hdr = &header; cfg.physAddr = -1; cfg.pageAddr = 0; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.timeout = 0; if (mpt_config(ioc, &cfg) != 0) return 0; if (header.PageLength == 0) return 0; /* Read Header good, alloc memory */ iocpage3sz = header.PageLength * 4; pIoc3 = pci_alloc_consistent(ioc->pcidev, iocpage3sz, &ioc3_dma); if (!pIoc3) return 0; /* Read the Page and save the data * into malloc'd memory. */ cfg.physAddr = ioc3_dma; cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; if (mpt_config(ioc, &cfg) == 0) { mem = kmalloc(iocpage3sz, GFP_ATOMIC); if (mem) { memcpy(mem, (u8 *)pIoc3, iocpage3sz); ioc->raid_data.pIocPg3 = (IOCPage3_t *) mem; } } pci_free_consistent(ioc->pcidev, iocpage3sz, pIoc3, ioc3_dma); return 0; } static void mpt_read_ioc_pg_4(MPT_ADAPTER *ioc) { IOCPage4_t *pIoc4; CONFIGPARMS cfg; ConfigPageHeader_t header; dma_addr_t ioc4_dma; int iocpage4sz; /* Read and save IOC Page 4 */ header.PageVersion = 0; header.PageLength = 0; header.PageNumber = 4; header.PageType = MPI_CONFIG_PAGETYPE_IOC; cfg.cfghdr.hdr = &header; cfg.physAddr = -1; cfg.pageAddr = 0; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.timeout = 0; if (mpt_config(ioc, &cfg) != 0) return; if (header.PageLength == 0) return; if ( (pIoc4 = ioc->spi_data.pIocPg4) == NULL ) { iocpage4sz = (header.PageLength + 4) * 4; /* Allow 4 additional SEP's */ pIoc4 = pci_alloc_consistent(ioc->pcidev, iocpage4sz, &ioc4_dma); if (!pIoc4) return; } else { ioc4_dma = ioc->spi_data.IocPg4_dma; iocpage4sz = ioc->spi_data.IocPg4Sz; } /* Read the Page into dma memory. */ cfg.physAddr = ioc4_dma; cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; if (mpt_config(ioc, &cfg) == 0) { ioc->spi_data.pIocPg4 = (IOCPage4_t *) pIoc4; ioc->spi_data.IocPg4_dma = ioc4_dma; ioc->spi_data.IocPg4Sz = iocpage4sz; } else { pci_free_consistent(ioc->pcidev, iocpage4sz, pIoc4, ioc4_dma); ioc->spi_data.pIocPg4 = NULL; } } static void mpt_read_ioc_pg_1(MPT_ADAPTER *ioc) { IOCPage1_t *pIoc1; CONFIGPARMS cfg; ConfigPageHeader_t header; dma_addr_t ioc1_dma; int iocpage1sz = 0; u32 tmp; /* Check the Coalescing Timeout in IOC Page 1 */ header.PageVersion = 0; header.PageLength = 0; header.PageNumber = 1; header.PageType = MPI_CONFIG_PAGETYPE_IOC; cfg.cfghdr.hdr = &header; cfg.physAddr = -1; cfg.pageAddr = 0; cfg.action = MPI_CONFIG_ACTION_PAGE_HEADER; cfg.dir = 0; cfg.timeout = 0; if (mpt_config(ioc, &cfg) != 0) return; if (header.PageLength == 0) return; /* Read Header good, alloc memory */ iocpage1sz = header.PageLength * 4; pIoc1 = pci_alloc_consistent(ioc->pcidev, iocpage1sz, &ioc1_dma); if (!pIoc1) return; /* Read the Page and check coalescing timeout */ cfg.physAddr = ioc1_dma; cfg.action = MPI_CONFIG_ACTION_PAGE_READ_CURRENT; if (mpt_config(ioc, &cfg) == 0) { tmp = le32_to_cpu(pIoc1->Flags) & MPI_IOCPAGE1_REPLY_COALESCING; if (tmp == MPI_IOCPAGE1_REPLY_COALESCING) { tmp = le32_to_cpu(pIoc1->CoalescingTimeout); dprintk((MYIOC_s_INFO_FMT "Coalescing Enabled Timeout = %d\n", ioc->name, tmp)); if (tmp > MPT_COALESCING_TIMEOUT) { pIoc1->CoalescingTimeout = cpu_to_le32(MPT_COALESCING_TIMEOUT); /* Write NVRAM and current */ cfg.dir = 1; cfg.action = MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT; if (mpt_config(ioc, &cfg) == 0) { dprintk((MYIOC_s_INFO_FMT "Reset Current Coalescing Timeout to = %d\n", ioc->name, MPT_COALESCING_TIMEOUT)); cfg.action = MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM; if (mpt_config(ioc, &cfg) == 0) { dprintk((MYIOC_s_INFO_FMT "Reset NVRAM Coalescing Timeout to = %d\n", ioc->name, MPT_COALESCING_TIMEOUT)); } else { dprintk((MYIOC_s_INFO_FMT "Reset NVRAM Coalescing Timeout Failed\n", ioc->name)); } } else { dprintk((MYIOC_s_WARN_FMT "Reset of Current Coalescing Timeout Failed!\n", ioc->name)); } } } else { dprintk((MYIOC_s_WARN_FMT "Coalescing Disabled\n", ioc->name)); } } pci_free_consistent(ioc->pcidev, iocpage1sz, pIoc1, ioc1_dma); return; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * SendEventNotification - Send EventNotification (on or off) request * to MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @EvSwitch: Event switch flags */ static int SendEventNotification(MPT_ADAPTER *ioc, u8 EvSwitch) { EventNotification_t *evnp; evnp = (EventNotification_t *) mpt_get_msg_frame(mpt_base_index, ioc); if (evnp == NULL) { devtverboseprintk((MYIOC_s_WARN_FMT "Unable to allocate event request frame!\n", ioc->name)); return 0; } memset(evnp, 0, sizeof(*evnp)); devtverboseprintk((MYIOC_s_INFO_FMT "Sending EventNotification (%d) request %p\n", ioc->name, EvSwitch, evnp)); evnp->Function = MPI_FUNCTION_EVENT_NOTIFICATION; evnp->ChainOffset = 0; evnp->MsgFlags = 0; evnp->Switch = EvSwitch; mpt_put_msg_frame(mpt_base_index, ioc, (MPT_FRAME_HDR *)evnp); return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * SendEventAck - Send EventAck request to MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @evnp: Pointer to original EventNotification request */ static int SendEventAck(MPT_ADAPTER *ioc, EventNotificationReply_t *evnp) { EventAck_t *pAck; if ((pAck = (EventAck_t *) mpt_get_msg_frame(mpt_base_index, ioc)) == NULL) { printk(MYIOC_s_WARN_FMT "Unable to allocate event ACK " "request frame for Event=%x EventContext=%x EventData=%x!\n", ioc->name, evnp->Event, le32_to_cpu(evnp->EventContext), le32_to_cpu(evnp->Data[0])); return -1; } memset(pAck, 0, sizeof(*pAck)); dprintk((MYIOC_s_INFO_FMT "Sending EventAck\n", ioc->name)); pAck->Function = MPI_FUNCTION_EVENT_ACK; pAck->ChainOffset = 0; pAck->MsgFlags = 0; pAck->Event = evnp->Event; pAck->EventContext = evnp->EventContext; mpt_put_msg_frame(mpt_base_index, ioc, (MPT_FRAME_HDR *)pAck); return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_config - Generic function to issue config message * @ioc - Pointer to an adapter structure * @cfg - Pointer to a configuration structure. Struct contains * action, page address, direction, physical address * and pointer to a configuration page header * Page header is updated. * * Returns 0 for success * -EPERM if not allowed due to ISR context * -EAGAIN if no msg frames currently available * -EFAULT for non-successful reply or no reply (timeout) */ int mpt_config(MPT_ADAPTER *ioc, CONFIGPARMS *pCfg) { Config_t *pReq; ConfigExtendedPageHeader_t *pExtHdr = NULL; MPT_FRAME_HDR *mf; unsigned long flags; int ii, rc; int flagsLength; int in_isr; /* Prevent calling wait_event() (below), if caller happens * to be in ISR context, because that is fatal! */ in_isr = in_interrupt(); if (in_isr) { dcprintk((MYIOC_s_WARN_FMT "Config request not allowed in ISR context!\n", ioc->name)); return -EPERM; } /* Get and Populate a free Frame */ if ((mf = mpt_get_msg_frame(mpt_base_index, ioc)) == NULL) { dcprintk((MYIOC_s_WARN_FMT "mpt_config: no msg frames!\n", ioc->name)); return -EAGAIN; } pReq = (Config_t *)mf; pReq->Action = pCfg->action; pReq->Reserved = 0; pReq->ChainOffset = 0; pReq->Function = MPI_FUNCTION_CONFIG; /* Assume page type is not extended and clear "reserved" fields. */ pReq->ExtPageLength = 0; pReq->ExtPageType = 0; pReq->MsgFlags = 0; for (ii=0; ii < 8; ii++) pReq->Reserved2[ii] = 0; pReq->Header.PageVersion = pCfg->cfghdr.hdr->PageVersion; pReq->Header.PageLength = pCfg->cfghdr.hdr->PageLength; pReq->Header.PageNumber = pCfg->cfghdr.hdr->PageNumber; pReq->Header.PageType = (pCfg->cfghdr.hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); if ((pCfg->cfghdr.hdr->PageType & MPI_CONFIG_PAGETYPE_MASK) == MPI_CONFIG_PAGETYPE_EXTENDED) { pExtHdr = (ConfigExtendedPageHeader_t *)pCfg->cfghdr.ehdr; pReq->ExtPageLength = cpu_to_le16(pExtHdr->ExtPageLength); pReq->ExtPageType = pExtHdr->ExtPageType; pReq->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; /* Page Length must be treated as a reserved field for the extended header. */ pReq->Header.PageLength = 0; } pReq->PageAddress = cpu_to_le32(pCfg->pageAddr); /* Add a SGE to the config request. */ if (pCfg->dir) flagsLength = MPT_SGE_FLAGS_SSIMPLE_WRITE; else flagsLength = MPT_SGE_FLAGS_SSIMPLE_READ; if ((pCfg->cfghdr.hdr->PageType & MPI_CONFIG_PAGETYPE_MASK) == MPI_CONFIG_PAGETYPE_EXTENDED) { flagsLength |= pExtHdr->ExtPageLength * 4; dcprintk((MYIOC_s_INFO_FMT "Sending Config request type %d, page %d and action %d\n", ioc->name, pReq->ExtPageType, pReq->Header.PageNumber, pReq->Action)); } else { flagsLength |= pCfg->cfghdr.hdr->PageLength * 4; dcprintk((MYIOC_s_INFO_FMT "Sending Config request type %d, page %d and action %d\n", ioc->name, pReq->Header.PageType, pReq->Header.PageNumber, pReq->Action)); } mpt_add_sge((char *)&pReq->PageBufferSGE, flagsLength, pCfg->physAddr); /* Append pCfg pointer to end of mf */ *((void **) (((u8 *) mf) + (ioc->req_sz - sizeof(void *)))) = (void *) pCfg; /* Initalize the timer */ init_timer(&pCfg->timer); pCfg->timer.data = (unsigned long) ioc; pCfg->timer.function = mpt_timer_expired; pCfg->wait_done = 0; /* Set the timer; ensure 10 second minimum */ if (pCfg->timeout < 10) pCfg->timer.expires = jiffies + HZ*10; else pCfg->timer.expires = jiffies + HZ*pCfg->timeout; /* Add to end of Q, set timer and then issue this command */ spin_lock_irqsave(&ioc->FreeQlock, flags); list_add_tail(&pCfg->linkage, &ioc->configQ); spin_unlock_irqrestore(&ioc->FreeQlock, flags); add_timer(&pCfg->timer); mpt_put_msg_frame(mpt_base_index, ioc, mf); wait_event(mpt_waitq, pCfg->wait_done); /* mf has been freed - do not access */ rc = pCfg->status; return rc; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_timer_expired - Call back for timer process. * Used only internal config functionality. * @data: Pointer to MPT_SCSI_HOST recast as an unsigned long */ static void mpt_timer_expired(unsigned long data) { MPT_ADAPTER *ioc = (MPT_ADAPTER *) data; dcprintk((MYIOC_s_WARN_FMT "mpt_timer_expired! \n", ioc->name)); /* Perform a FW reload */ if (mpt_HardResetHandler(ioc, NO_SLEEP) < 0) printk(MYIOC_s_WARN_FMT "Firmware Reload FAILED!\n", ioc->name); /* No more processing. * Hard reset clean-up will wake up * process and free all resources. */ dcprintk((MYIOC_s_WARN_FMT "mpt_timer_expired complete!\n", ioc->name)); return; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_ioc_reset - Base cleanup for hard reset * @ioc: Pointer to the adapter structure * @reset_phase: Indicates pre- or post-reset functionality * * Remark: Free's resources with internally generated commands. */ static int mpt_ioc_reset(MPT_ADAPTER *ioc, int reset_phase) { CONFIGPARMS *pCfg; unsigned long flags; dprintk((KERN_WARNING MYNAM ": IOC %s_reset routed to MPT base driver!\n", reset_phase==MPT_IOC_SETUP_RESET ? "setup" : ( reset_phase==MPT_IOC_PRE_RESET ? "pre" : "post"))); if (reset_phase == MPT_IOC_SETUP_RESET) { ; } else if (reset_phase == MPT_IOC_PRE_RESET) { /* If the internal config Q is not empty - * delete timer. MF resources will be freed when * the FIFO's are primed. */ spin_lock_irqsave(&ioc->FreeQlock, flags); list_for_each_entry(pCfg, &ioc->configQ, linkage) del_timer(&pCfg->timer); spin_unlock_irqrestore(&ioc->FreeQlock, flags); } else { CONFIGPARMS *pNext; /* Search the configQ for internal commands. * Flush the Q, and wake up all suspended threads. */ spin_lock_irqsave(&ioc->FreeQlock, flags); list_for_each_entry_safe(pCfg, pNext, &ioc->configQ, linkage) { list_del(&pCfg->linkage); pCfg->status = MPT_CONFIG_ERROR; pCfg->wait_done = 1; wake_up(&mpt_waitq); } spin_unlock_irqrestore(&ioc->FreeQlock, flags); } return 1; /* currently means nothing really */ } #ifdef CONFIG_PROC_FS /* { */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * procfs (%MPT_PROCFS_MPTBASEDIR/...) support stuff... */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * procmpt_create - Create %MPT_PROCFS_MPTBASEDIR entries. * * Returns 0 for success, non-zero for failure. */ static int procmpt_create(void) { struct proc_dir_entry *ent; mpt_proc_root_dir = proc_mkdir(MPT_PROCFS_MPTBASEDIR, NULL); if (mpt_proc_root_dir == NULL) return -ENOTDIR; ent = create_proc_entry("summary", S_IFREG|S_IRUGO, mpt_proc_root_dir); if (ent) ent->read_proc = procmpt_summary_read; ent = create_proc_entry("version", S_IFREG|S_IRUGO, mpt_proc_root_dir); if (ent) ent->read_proc = procmpt_version_read; return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * procmpt_destroy - Tear down %MPT_PROCFS_MPTBASEDIR entries. * * Returns 0 for success, non-zero for failure. */ static void procmpt_destroy(void) { remove_proc_entry("version", mpt_proc_root_dir); remove_proc_entry("summary", mpt_proc_root_dir); remove_proc_entry(MPT_PROCFS_MPTBASEDIR, NULL); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * procmpt_summary_read - Handle read request from /proc/mpt/summary * or from /proc/mpt/iocN/summary. * @buf: Pointer to area to write information * @start: Pointer to start pointer * @offset: Offset to start writing * @request: * @eof: Pointer to EOF integer * @data: Pointer * * Returns number of characters written to process performing the read. */ static int procmpt_summary_read(char *buf, char **start, off_t offset, int request, int *eof, void *data) { MPT_ADAPTER *ioc; char *out = buf; int len; if (data) { int more = 0; ioc = data; mpt_print_ioc_summary(ioc, out, &more, 0, 1); out += more; } else { list_for_each_entry(ioc, &ioc_list, list) { int more = 0; mpt_print_ioc_summary(ioc, out, &more, 0, 1); out += more; if ((out-buf) >= request) break; } } len = out - buf; MPT_PROC_READ_RETURN(buf,start,offset,request,eof,len); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * procmpt_version_read - Handle read request from /proc/mpt/version. * @buf: Pointer to area to write information * @start: Pointer to start pointer * @offset: Offset to start writing * @request: * @eof: Pointer to EOF integer * @data: Pointer * * Returns number of characters written to process performing the read. */ static int procmpt_version_read(char *buf, char **start, off_t offset, int request, int *eof, void *data) { int ii; int scsi, fc, sas, lan, ctl, targ, dmp; char *drvname; int len; len = sprintf(buf, "%s-%s\n", "mptlinux", MPT_LINUX_VERSION_COMMON); len += sprintf(buf+len, " Fusion MPT base driver\n"); scsi = fc = sas = lan = ctl = targ = dmp = 0; for (ii=MPT_MAX_PROTOCOL_DRIVERS-1; ii; ii--) { drvname = NULL; if (MptCallbacks[ii]) { switch (MptDriverClass[ii]) { case MPTSPI_DRIVER: if (!scsi++) drvname = "SPI host"; break; case MPTFC_DRIVER: if (!fc++) drvname = "FC host"; break; case MPTSAS_DRIVER: if (!sas++) drvname = "SAS host"; break; case MPTLAN_DRIVER: if (!lan++) drvname = "LAN"; break; case MPTSTM_DRIVER: if (!targ++) drvname = "SCSI target"; break; case MPTCTL_DRIVER: if (!ctl++) drvname = "ioctl"; break; } if (drvname) len += sprintf(buf+len, " Fusion MPT %s driver\n", drvname); } } MPT_PROC_READ_RETURN(buf,start,offset,request,eof,len); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * procmpt_iocinfo_read - Handle read request from /proc/mpt/iocN/info. * @buf: Pointer to area to write information * @start: Pointer to start pointer * @offset: Offset to start writing * @request: * @eof: Pointer to EOF integer * @data: Pointer * * Returns number of characters written to process performing the read. */ static int procmpt_iocinfo_read(char *buf, char **start, off_t offset, int request, int *eof, void *data) { MPT_ADAPTER *ioc = data; int len; char expVer[32]; int sz; int p; mpt_get_fw_exp_ver(expVer, ioc); len = sprintf(buf, "%s:", ioc->name); if (ioc->facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) len += sprintf(buf+len, " (f/w download boot flag set)"); // if (ioc->facts.IOCExceptions & MPI_IOCFACTS_EXCEPT_CONFIG_CHECKSUM_FAIL) // len += sprintf(buf+len, " CONFIG_CHECKSUM_FAIL!"); len += sprintf(buf+len, "\n ProductID = 0x%04x (%s)\n", ioc->facts.ProductID, ioc->prod_name); len += sprintf(buf+len, " FWVersion = 0x%08x%s", ioc->facts.FWVersion.Word, expVer); if (ioc->facts.FWImageSize) len += sprintf(buf+len, " (fw_size=%d)", ioc->facts.FWImageSize); len += sprintf(buf+len, "\n MsgVersion = 0x%04x\n", ioc->facts.MsgVersion); len += sprintf(buf+len, " FirstWhoInit = 0x%02x\n", ioc->FirstWhoInit); len += sprintf(buf+len, " EventState = 0x%02x\n", ioc->facts.EventState); len += sprintf(buf+len, " CurrentHostMfaHighAddr = 0x%08x\n", ioc->facts.CurrentHostMfaHighAddr); len += sprintf(buf+len, " CurrentSenseBufferHighAddr = 0x%08x\n", ioc->facts.CurrentSenseBufferHighAddr); len += sprintf(buf+len, " MaxChainDepth = 0x%02x frames\n", ioc->facts.MaxChainDepth); len += sprintf(buf+len, " MinBlockSize = 0x%02x bytes\n", 4*ioc->facts.BlockSize); len += sprintf(buf+len, " RequestFrames @ 0x%p (Dma @ 0x%p)\n", (void *)ioc->req_frames, (void *)(ulong)ioc->req_frames_dma); /* * Rounding UP to nearest 4-kB boundary here... */ sz = (ioc->req_sz * ioc->req_depth) + 128; sz = ((sz + 0x1000UL - 1UL) / 0x1000) * 0x1000; len += sprintf(buf+len, " {CurReqSz=%d} x {CurReqDepth=%d} = %d bytes ^= 0x%x\n", ioc->req_sz, ioc->req_depth, ioc->req_sz*ioc->req_depth, sz); len += sprintf(buf+len, " {MaxReqSz=%d} {MaxReqDepth=%d}\n", 4*ioc->facts.RequestFrameSize, ioc->facts.GlobalCredits); len += sprintf(buf+len, " Frames @ 0x%p (Dma @ 0x%p)\n", (void *)ioc->alloc, (void *)(ulong)ioc->alloc_dma); sz = (ioc->reply_sz * ioc->reply_depth) + 128; len += sprintf(buf+len, " {CurRepSz=%d} x {CurRepDepth=%d} = %d bytes ^= 0x%x\n", ioc->reply_sz, ioc->reply_depth, ioc->reply_sz*ioc->reply_depth, sz); len += sprintf(buf+len, " {MaxRepSz=%d} {MaxRepDepth=%d}\n", ioc->facts.CurReplyFrameSize, ioc->facts.ReplyQueueDepth); len += sprintf(buf+len, " MaxDevices = %d\n", (ioc->facts.MaxDevices==0) ? 255 : ioc->facts.MaxDevices); len += sprintf(buf+len, " MaxBuses = %d\n", ioc->facts.MaxBuses); /* per-port info */ for (p=0; p < ioc->facts.NumberOfPorts; p++) { len += sprintf(buf+len, " PortNumber = %d (of %d)\n", p+1, ioc->facts.NumberOfPorts); if (ioc->bus_type == FC) { if (ioc->pfacts[p].ProtocolFlags & MPI_PORTFACTS_PROTOCOL_LAN) { u8 *a = (u8*)&ioc->lan_cnfg_page1.HardwareAddressLow; len += sprintf(buf+len, " LanAddr = %02X:%02X:%02X:%02X:%02X:%02X\n", a[5], a[4], a[3], a[2], a[1], a[0]); } len += sprintf(buf+len, " WWN = %08X%08X:%08X%08X\n", ioc->fc_port_page0[p].WWNN.High, ioc->fc_port_page0[p].WWNN.Low, ioc->fc_port_page0[p].WWPN.High, ioc->fc_port_page0[p].WWPN.Low); } } MPT_PROC_READ_RETURN(buf,start,offset,request,eof,len); } #endif /* CONFIG_PROC_FS } */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ static void mpt_get_fw_exp_ver(char *buf, MPT_ADAPTER *ioc) { buf[0] ='\0'; if ((ioc->facts.FWVersion.Word >> 24) == 0x0E) { sprintf(buf, " (Exp %02d%02d)", (ioc->facts.FWVersion.Word >> 16) & 0x00FF, /* Month */ (ioc->facts.FWVersion.Word >> 8) & 0x1F); /* Day */ /* insider hack! */ if ((ioc->facts.FWVersion.Word >> 8) & 0x80) strcat(buf, " [MDBG]"); } } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_print_ioc_summary - Write ASCII summary of IOC to a buffer. * @ioc: Pointer to MPT_ADAPTER structure * @buffer: Pointer to buffer where IOC summary info should be written * @size: Pointer to number of bytes we wrote (set by this routine) * @len: Offset at which to start writing in buffer * @showlan: Display LAN stuff? * * This routine writes (english readable) ASCII text, which represents * a summary of IOC information, to a buffer. */ void mpt_print_ioc_summary(MPT_ADAPTER *ioc, char *buffer, int *size, int len, int showlan) { char expVer[32]; int y; mpt_get_fw_exp_ver(expVer, ioc); /* * Shorter summary of attached ioc's... */ y = sprintf(buffer+len, "%s: %s, %s%08xh%s, Ports=%d, MaxQ=%d", ioc->name, ioc->prod_name, MPT_FW_REV_MAGIC_ID_STRING, /* "FwRev=" or somesuch */ ioc->facts.FWVersion.Word, expVer, ioc->facts.NumberOfPorts, ioc->req_depth); if (showlan && (ioc->pfacts[0].ProtocolFlags & MPI_PORTFACTS_PROTOCOL_LAN)) { u8 *a = (u8*)&ioc->lan_cnfg_page1.HardwareAddressLow; y += sprintf(buffer+len+y, ", LanAddr=%02X:%02X:%02X:%02X:%02X:%02X", a[5], a[4], a[3], a[2], a[1], a[0]); } #ifndef __sparc__ y += sprintf(buffer+len+y, ", IRQ=%d", ioc->pci_irq); #else y += sprintf(buffer+len+y, ", IRQ=%s", __irq_itoa(ioc->pci_irq)); #endif if (!ioc->active) y += sprintf(buffer+len+y, " (disabled)"); y += sprintf(buffer+len+y, "\n"); *size = y; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * Reset Handling */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /** * mpt_HardResetHandler - Generic reset handler, issue SCSI Task * Management call based on input arg values. If TaskMgmt fails, * return associated SCSI request. * @ioc: Pointer to MPT_ADAPTER structure * @sleepFlag: Indicates if sleep or schedule must be called. * * Remark: _HardResetHandler can be invoked from an interrupt thread (timer) * or a non-interrupt thread. In the former, must not call schedule(). * * Remark: A return of -1 is a FATAL error case, as it means a * FW reload/initialization failed. * * Returns 0 for SUCCESS or -1 if FAILED. */ int mpt_HardResetHandler(MPT_ADAPTER *ioc, int sleepFlag) { int rc; unsigned long flags; dtmprintk((MYIOC_s_INFO_FMT "HardResetHandler Entered!\n", ioc->name)); #ifdef MFCNT printk(MYIOC_s_INFO_FMT "HardResetHandler Entered!\n", ioc->name); printk("MF count 0x%x !\n", ioc->mfcnt); #endif /* Reset the adapter. Prevent more than 1 call to * mpt_do_ioc_recovery at any instant in time. */ spin_lock_irqsave(&ioc->diagLock, flags); if ((ioc->diagPending) || (ioc->alt_ioc && ioc->alt_ioc->diagPending)){ spin_unlock_irqrestore(&ioc->diagLock, flags); return 0; } else { ioc->diagPending = 1; } spin_unlock_irqrestore(&ioc->diagLock, flags); /* FIXME: If do_ioc_recovery fails, repeat.... */ /* The SCSI driver needs to adjust timeouts on all current * commands prior to the diagnostic reset being issued. * Prevents timeouts occuring during a diagnostic reset...very bad. * For all other protocol drivers, this is a no-op. */ { int ii; int r = 0; for (ii=MPT_MAX_PROTOCOL_DRIVERS-1; ii; ii--) { if (MptResetHandlers[ii]) { dtmprintk((MYIOC_s_INFO_FMT "Calling IOC reset_setup handler #%d\n", ioc->name, ii)); r += mpt_signal_reset(ii, ioc, MPT_IOC_SETUP_RESET); if (ioc->alt_ioc) { dtmprintk((MYIOC_s_INFO_FMT "Calling alt-%s setup reset handler #%d\n", ioc->name, ioc->alt_ioc->name, ii)); r += mpt_signal_reset(ii, ioc->alt_ioc, MPT_IOC_SETUP_RESET); } } } } if ((rc = mpt_do_ioc_recovery(ioc, MPT_HOSTEVENT_IOC_RECOVER, sleepFlag)) != 0) { printk(KERN_WARNING MYNAM ": WARNING - (%d) Cannot recover %s\n", rc, ioc->name); } ioc->reload_fw = 0; if (ioc->alt_ioc) ioc->alt_ioc->reload_fw = 0; spin_lock_irqsave(&ioc->diagLock, flags); ioc->diagPending = 0; if (ioc->alt_ioc) ioc->alt_ioc->diagPending = 0; spin_unlock_irqrestore(&ioc->diagLock, flags); dtmprintk((MYIOC_s_INFO_FMT "HardResetHandler rc = %d!\n", ioc->name, rc)); return rc; } # define EVENT_DESCR_STR_SZ 100 /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ static void EventDescriptionStr(u8 event, u32 evData0, char *evStr) { char *ds = NULL; switch(event) { case MPI_EVENT_NONE: ds = "None"; break; case MPI_EVENT_LOG_DATA: ds = "Log Data"; break; case MPI_EVENT_STATE_CHANGE: ds = "State Change"; break; case MPI_EVENT_UNIT_ATTENTION: ds = "Unit Attention"; break; case MPI_EVENT_IOC_BUS_RESET: ds = "IOC Bus Reset"; break; case MPI_EVENT_EXT_BUS_RESET: ds = "External Bus Reset"; break; case MPI_EVENT_RESCAN: ds = "Bus Rescan Event"; /* Ok, do we need to do anything here? As far as I can tell, this is when a new device gets added to the loop. */ break; case MPI_EVENT_LINK_STATUS_CHANGE: if (evData0 == MPI_EVENT_LINK_STATUS_FAILURE) ds = "Link Status(FAILURE) Change"; else ds = "Link Status(ACTIVE) Change"; break; case MPI_EVENT_LOOP_STATE_CHANGE: if (evData0 == MPI_EVENT_LOOP_STATE_CHANGE_LIP) ds = "Loop State(LIP) Change"; else if (evData0 == MPI_EVENT_LOOP_STATE_CHANGE_LPE) ds = "Loop State(LPE) Change"; /* ??? */ else ds = "Loop State(LPB) Change"; /* ??? */ break; case MPI_EVENT_LOGOUT: ds = "Logout"; break; case MPI_EVENT_EVENT_CHANGE: if (evData0) ds = "Events(ON) Change"; else ds = "Events(OFF) Change"; break; case MPI_EVENT_INTEGRATED_RAID: { u8 ReasonCode = (u8)(evData0 >> 16); switch (ReasonCode) { case MPI_EVENT_RAID_RC_VOLUME_CREATED : ds = "Integrated Raid: Volume Created"; break; case MPI_EVENT_RAID_RC_VOLUME_DELETED : ds = "Integrated Raid: Volume Deleted"; break; case MPI_EVENT_RAID_RC_VOLUME_SETTINGS_CHANGED : ds = "Integrated Raid: Volume Settings Changed"; break; case MPI_EVENT_RAID_RC_VOLUME_STATUS_CHANGED : ds = "Integrated Raid: Volume Status Changed"; break; case MPI_EVENT_RAID_RC_VOLUME_PHYSDISK_CHANGED : ds = "Integrated Raid: Volume Physdisk Changed"; break; case MPI_EVENT_RAID_RC_PHYSDISK_CREATED : ds = "Integrated Raid: Physdisk Created"; break; case MPI_EVENT_RAID_RC_PHYSDISK_DELETED : ds = "Integrated Raid: Physdisk Deleted"; break; case MPI_EVENT_RAID_RC_PHYSDISK_SETTINGS_CHANGED : ds = "Integrated Raid: Physdisk Settings Changed"; break; case MPI_EVENT_RAID_RC_PHYSDISK_STATUS_CHANGED : ds = "Integrated Raid: Physdisk Status Changed"; break; case MPI_EVENT_RAID_RC_DOMAIN_VAL_NEEDED : ds = "Integrated Raid: Domain Validation Needed"; break; case MPI_EVENT_RAID_RC_SMART_DATA : ds = "Integrated Raid; Smart Data"; break; case MPI_EVENT_RAID_RC_REPLACE_ACTION_STARTED : ds = "Integrated Raid: Replace Action Started"; break; default: ds = "Integrated Raid"; break; } break; } case MPI_EVENT_SCSI_DEVICE_STATUS_CHANGE: ds = "SCSI Device Status Change"; break; case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: { u8 id = (u8)(evData0); u8 ReasonCode = (u8)(evData0 >> 16); switch (ReasonCode) { case MPI_EVENT_SAS_DEV_STAT_RC_ADDED: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS Device Status Change: Added: id=%d", id); break; case MPI_EVENT_SAS_DEV_STAT_RC_NOT_RESPONDING: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS Device Status Change: Deleted: id=%d", id); break; case MPI_EVENT_SAS_DEV_STAT_RC_SMART_DATA: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS Device Status Change: SMART Data: id=%d", id); break; case MPI_EVENT_SAS_DEV_STAT_RC_NO_PERSIST_ADDED: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS Device Status Change: No Persistancy " "Added: id=%d", id); break; default: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS Device Status Change: Unknown: id=%d", id); break; } break; } case MPI_EVENT_ON_BUS_TIMER_EXPIRED: ds = "Bus Timer Expired"; break; case MPI_EVENT_QUEUE_FULL: ds = "Queue Full"; break; case MPI_EVENT_SAS_SES: ds = "SAS SES Event"; break; case MPI_EVENT_PERSISTENT_TABLE_FULL: ds = "Persistent Table Full"; break; case MPI_EVENT_SAS_PHY_LINK_STATUS: { u8 LinkRates = (u8)(evData0 >> 8); u8 PhyNumber = (u8)(evData0); LinkRates = (LinkRates & MPI_EVENT_SAS_PLS_LR_CURRENT_MASK) >> MPI_EVENT_SAS_PLS_LR_CURRENT_SHIFT; switch (LinkRates) { case MPI_EVENT_SAS_PLS_LR_RATE_UNKNOWN: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS PHY Link Status: Phy=%d:" " Rate Unknown",PhyNumber); break; case MPI_EVENT_SAS_PLS_LR_RATE_PHY_DISABLED: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS PHY Link Status: Phy=%d:" " Phy Disabled",PhyNumber); break; case MPI_EVENT_SAS_PLS_LR_RATE_FAILED_SPEED_NEGOTIATION: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS PHY Link Status: Phy=%d:" " Failed Speed Nego",PhyNumber); break; case MPI_EVENT_SAS_PLS_LR_RATE_SATA_OOB_COMPLETE: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS PHY Link Status: Phy=%d:" " Sata OOB Completed",PhyNumber); break; case MPI_EVENT_SAS_PLS_LR_RATE_1_5: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS PHY Link Status: Phy=%d:" " Rate 1.5 Gbps",PhyNumber); break; case MPI_EVENT_SAS_PLS_LR_RATE_3_0: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS PHY Link Status: Phy=%d:" " Rate 3.0 Gpbs",PhyNumber); break; default: snprintf(evStr, EVENT_DESCR_STR_SZ, "SAS PHY Link Status: Phy=%d", PhyNumber); break; } break; } case MPI_EVENT_SAS_DISCOVERY_ERROR: ds = "SAS Discovery Error"; break; case MPI_EVENT_IR_RESYNC_UPDATE: { u8 resync_complete = (u8)(evData0 >> 16); snprintf(evStr, EVENT_DESCR_STR_SZ, "IR Resync Update: Complete = %d:",resync_complete); break; } case MPI_EVENT_IR2: { u8 ReasonCode = (u8)(evData0 >> 16); switch (ReasonCode) { case MPI_EVENT_IR2_RC_LD_STATE_CHANGED: ds = "IR2: LD State Changed"; break; case MPI_EVENT_IR2_RC_PD_STATE_CHANGED: ds = "IR2: PD State Changed"; break; case MPI_EVENT_IR2_RC_BAD_BLOCK_TABLE_FULL: ds = "IR2: Bad Block Table Full"; break; case MPI_EVENT_IR2_RC_PD_INSERTED: ds = "IR2: PD Inserted"; break; case MPI_EVENT_IR2_RC_PD_REMOVED: ds = "IR2: PD Removed"; break; case MPI_EVENT_IR2_RC_FOREIGN_CFG_DETECTED: ds = "IR2: Foreign CFG Detected"; break; case MPI_EVENT_IR2_RC_REBUILD_MEDIUM_ERROR: ds = "IR2: Rebuild Medium Error"; break; default: ds = "IR2"; break; } break; } case MPI_EVENT_SAS_DISCOVERY: { if (evData0) ds = "SAS Discovery: Start"; else ds = "SAS Discovery: Stop"; break; } case MPI_EVENT_LOG_ENTRY_ADDED: ds = "SAS Log Entry Added"; break; /* * MPT base "custom" events may be added here... */ default: ds = "Unknown"; break; } if (ds) strncpy(evStr, ds, EVENT_DESCR_STR_SZ); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * ProcessEventNotification - Route a received EventNotificationReply to * all currently regeistered event handlers. * @ioc: Pointer to MPT_ADAPTER structure * @pEventReply: Pointer to EventNotification reply frame * @evHandlers: Pointer to integer, number of event handlers * * Returns sum of event handlers return values. */ static int ProcessEventNotification(MPT_ADAPTER *ioc, EventNotificationReply_t *pEventReply, int *evHandlers) { u16 evDataLen; u32 evData0 = 0; // u32 evCtx; int ii; int r = 0; int handlers = 0; char evStr[EVENT_DESCR_STR_SZ]; u8 event; /* * Do platform normalization of values */ event = le32_to_cpu(pEventReply->Event) & 0xFF; // evCtx = le32_to_cpu(pEventReply->EventContext); evDataLen = le16_to_cpu(pEventReply->EventDataLength); if (evDataLen) { evData0 = le32_to_cpu(pEventReply->Data[0]); } EventDescriptionStr(event, evData0, evStr); devtprintk((MYIOC_s_INFO_FMT "MPT event:(%02Xh) : %s\n", ioc->name, event, evStr)); #if defined(MPT_DEBUG) || defined(MPT_DEBUG_VERBOSE_EVENTS) printk(KERN_INFO MYNAM ": Event data:\n" KERN_INFO); for (ii = 0; ii < evDataLen; ii++) printk(" %08x", le32_to_cpu(pEventReply->Data[ii])); printk("\n"); #endif /* * Do general / base driver event processing */ switch(event) { case MPI_EVENT_EVENT_CHANGE: /* 0A */ if (evDataLen) { u8 evState = evData0 & 0xFF; /* CHECKME! What if evState unexpectedly says OFF (0)? */ /* Update EventState field in cached IocFacts */ if (ioc->facts.Function) { ioc->facts.EventState = evState; } } break; case MPI_EVENT_INTEGRATED_RAID: mptbase_raid_process_event_data(ioc, (MpiEventDataRaid_t *)pEventReply->Data); break; default: break; } /* * Should this event be logged? Events are written sequentially. * When buffer is full, start again at the top. */ if (ioc->events && (ioc->eventTypes & ( 1 << event))) { int idx; idx = ioc->eventContext % MPTCTL_EVENT_LOG_SIZE; ioc->events[idx].event = event; ioc->events[idx].eventContext = ioc->eventContext; for (ii = 0; ii < 2; ii++) { if (ii < evDataLen) ioc->events[idx].data[ii] = le32_to_cpu(pEventReply->Data[ii]); else ioc->events[idx].data[ii] = 0; } ioc->eventContext++; } /* * Call each currently registered protocol event handler. */ for (ii=MPT_MAX_PROTOCOL_DRIVERS-1; ii; ii--) { if (MptEvHandlers[ii]) { devtverboseprintk((MYIOC_s_INFO_FMT "Routing Event to event handler #%d\n", ioc->name, ii)); r += (*(MptEvHandlers[ii]))(ioc, pEventReply); handlers++; } } /* FIXME? Examine results here? */ /* * If needed, send (a single) EventAck. */ if (pEventReply->AckRequired == MPI_EVENT_NOTIFICATION_ACK_REQUIRED) { devtverboseprintk((MYIOC_s_WARN_FMT "EventAck required\n",ioc->name)); if ((ii = SendEventAck(ioc, pEventReply)) != 0) { devtverboseprintk((MYIOC_s_WARN_FMT "SendEventAck returned %d\n", ioc->name, ii)); } } *evHandlers = handlers; return r; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_fc_log_info - Log information returned from Fibre Channel IOC. * @ioc: Pointer to MPT_ADAPTER structure * @log_info: U32 LogInfo reply word from the IOC * * Refer to lsi/fc_log.h. */ static void mpt_fc_log_info(MPT_ADAPTER *ioc, u32 log_info) { static char *subcl_str[8] = { "FCP Initiator", "FCP Target", "LAN", "MPI Message Layer", "FC Link", "Context Manager", "Invalid Field Offset", "State Change Info" }; u8 subcl = (log_info >> 24) & 0x7; printk(MYIOC_s_INFO_FMT "LogInfo(0x%08x): SubCl={%s}\n", ioc->name, log_info, subcl_str[subcl]); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_spi_log_info - Log information returned from SCSI Parallel IOC. * @ioc: Pointer to MPT_ADAPTER structure * @mr: Pointer to MPT reply frame * @log_info: U32 LogInfo word from the IOC * * Refer to lsi/sp_log.h. */ static void mpt_spi_log_info(MPT_ADAPTER *ioc, u32 log_info) { u32 info = log_info & 0x00FF0000; char *desc = "unknown"; switch (info) { case 0x00010000: desc = "bug! MID not found"; if (ioc->reload_fw == 0) ioc->reload_fw++; break; case 0x00020000: desc = "Parity Error"; break; case 0x00030000: desc = "ASYNC Outbound Overrun"; break; case 0x00040000: desc = "SYNC Offset Error"; break; case 0x00050000: desc = "BM Change"; break; case 0x00060000: desc = "Msg In Overflow"; break; case 0x00070000: desc = "DMA Error"; break; case 0x00080000: desc = "Outbound DMA Overrun"; break; case 0x00090000: desc = "Task Management"; break; case 0x000A0000: desc = "Device Problem"; break; case 0x000B0000: desc = "Invalid Phase Change"; break; case 0x000C0000: desc = "Untagged Table Size"; break; } printk(MYIOC_s_INFO_FMT "LogInfo(0x%08x): F/W: %s\n", ioc->name, log_info, desc); } /* strings for sas loginfo */ static char *originator_str[] = { "IOP", /* 00h */ "PL", /* 01h */ "IR" /* 02h */ }; static char *iop_code_str[] = { NULL, /* 00h */ "Invalid SAS Address", /* 01h */ NULL, /* 02h */ "Invalid Page", /* 03h */ NULL, /* 04h */ "Task Terminated" /* 05h */ }; static char *pl_code_str[] = { NULL, /* 00h */ "Open Failure", /* 01h */ "Invalid Scatter Gather List", /* 02h */ "Wrong Relative Offset or Frame Length", /* 03h */ "Frame Transfer Error", /* 04h */ "Transmit Frame Connected Low", /* 05h */ "SATA Non-NCQ RW Error Bit Set", /* 06h */ "SATA Read Log Receive Data Error", /* 07h */ "SATA NCQ Fail All Commands After Error", /* 08h */ "SATA Error in Receive Set Device Bit FIS", /* 09h */ "Receive Frame Invalid Message", /* 0Ah */ "Receive Context Message Valid Error", /* 0Bh */ "Receive Frame Current Frame Error", /* 0Ch */ "SATA Link Down", /* 0Dh */ "Discovery SATA Init W IOS", /* 0Eh */ "Config Invalid Page", /* 0Fh */ "Discovery SATA Init Timeout", /* 10h */ "Reset", /* 11h */ "Abort", /* 12h */ "IO Not Yet Executed", /* 13h */ "IO Executed", /* 14h */ "Persistant Reservation Out Not Affiliation Owner", /* 15h */ "Open Transmit DMA Abort", /* 16h */ NULL, /* 17h */ NULL, /* 18h */ NULL, /* 19h */ NULL, /* 1Ah */ NULL, /* 1Bh */ NULL, /* 1Ch */ NULL, /* 1Dh */ NULL, /* 1Eh */ NULL, /* 1Fh */ "Enclosure Management" /* 20h */ }; /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_sas_log_info - Log information returned from SAS IOC. * @ioc: Pointer to MPT_ADAPTER structure * @log_info: U32 LogInfo reply word from the IOC * * Refer to lsi/mpi_log_sas.h. */ static void mpt_sas_log_info(MPT_ADAPTER *ioc, u32 log_info) { union loginfo_type { u32 loginfo; struct { u32 subcode:16; u32 code:8; u32 originator:4; u32 bus_type:4; }dw; }; union loginfo_type sas_loginfo; char *code_desc = NULL; sas_loginfo.loginfo = log_info; if ((sas_loginfo.dw.bus_type != 3 /*SAS*/) && (sas_loginfo.dw.originator < sizeof(originator_str)/sizeof(char*))) return; if ((sas_loginfo.dw.originator == 0 /*IOP*/) && (sas_loginfo.dw.code < sizeof(iop_code_str)/sizeof(char*))) { code_desc = iop_code_str[sas_loginfo.dw.code]; }else if ((sas_loginfo.dw.originator == 1 /*PL*/) && (sas_loginfo.dw.code < sizeof(pl_code_str)/sizeof(char*) )) { code_desc = pl_code_str[sas_loginfo.dw.code]; } if (code_desc != NULL) printk(MYIOC_s_INFO_FMT "LogInfo(0x%08x): Originator={%s}, Code={%s}," " SubCode(0x%04x)\n", ioc->name, log_info, originator_str[sas_loginfo.dw.originator], code_desc, sas_loginfo.dw.subcode); else printk(MYIOC_s_INFO_FMT "LogInfo(0x%08x): Originator={%s}, Code=(0x%02x)," " SubCode(0x%04x)\n", ioc->name, log_info, originator_str[sas_loginfo.dw.originator], sas_loginfo.dw.code, sas_loginfo.dw.subcode); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * mpt_sp_ioc_info - IOC information returned from SCSI Parallel IOC. * @ioc: Pointer to MPT_ADAPTER structure * @ioc_status: U32 IOCStatus word from IOC * @mf: Pointer to MPT request frame * * Refer to lsi/mpi.h. */ static void mpt_sp_ioc_info(MPT_ADAPTER *ioc, u32 ioc_status, MPT_FRAME_HDR *mf) { u32 status = ioc_status & MPI_IOCSTATUS_MASK; char *desc = ""; switch (status) { case MPI_IOCSTATUS_INVALID_FUNCTION: /* 0x0001 */ desc = "Invalid Function"; break; case MPI_IOCSTATUS_BUSY: /* 0x0002 */ desc = "Busy"; break; case MPI_IOCSTATUS_INVALID_SGL: /* 0x0003 */ desc = "Invalid SGL"; break; case MPI_IOCSTATUS_INTERNAL_ERROR: /* 0x0004 */ desc = "Internal Error"; break; case MPI_IOCSTATUS_RESERVED: /* 0x0005 */ desc = "Reserved"; break; case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES: /* 0x0006 */ desc = "Insufficient Resources"; break; case MPI_IOCSTATUS_INVALID_FIELD: /* 0x0007 */ desc = "Invalid Field"; break; case MPI_IOCSTATUS_INVALID_STATE: /* 0x0008 */ desc = "Invalid State"; break; case MPI_IOCSTATUS_CONFIG_INVALID_ACTION: /* 0x0020 */ case MPI_IOCSTATUS_CONFIG_INVALID_TYPE: /* 0x0021 */ case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: /* 0x0022 */ case MPI_IOCSTATUS_CONFIG_INVALID_DATA: /* 0x0023 */ case MPI_IOCSTATUS_CONFIG_NO_DEFAULTS: /* 0x0024 */ case MPI_IOCSTATUS_CONFIG_CANT_COMMIT: /* 0x0025 */ /* No message for Config IOCStatus values */ break; case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR: /* 0x0040 */ /* No message for recovered error desc = "SCSI Recovered Error"; */ break; case MPI_IOCSTATUS_SCSI_INVALID_BUS: /* 0x0041 */ desc = "SCSI Invalid Bus"; break; case MPI_IOCSTATUS_SCSI_INVALID_TARGETID: /* 0x0042 */ desc = "SCSI Invalid TargetID"; break; case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE: /* 0x0043 */ { SCSIIORequest_t *pScsiReq = (SCSIIORequest_t *) mf; U8 cdb = pScsiReq->CDB[0]; if (cdb != 0x12) { /* Inquiry is issued for device scanning */ desc = "SCSI Device Not There"; } break; } case MPI_IOCSTATUS_SCSI_DATA_OVERRUN: /* 0x0044 */ desc = "SCSI Data Overrun"; break; case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN: /* 0x0045 */ /* This error is checked in scsi_io_done(). Skip. desc = "SCSI Data Underrun"; */ break; case MPI_IOCSTATUS_SCSI_IO_DATA_ERROR: /* 0x0046 */ desc = "SCSI I/O Data Error"; break; case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR: /* 0x0047 */ desc = "SCSI Protocol Error"; break; case MPI_IOCSTATUS_SCSI_TASK_TERMINATED: /* 0x0048 */ desc = "SCSI Task Terminated"; break; case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: /* 0x0049 */ desc = "SCSI Residual Mismatch"; break; case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED: /* 0x004A */ desc = "SCSI Task Management Failed"; break; case MPI_IOCSTATUS_SCSI_IOC_TERMINATED: /* 0x004B */ desc = "SCSI IOC Terminated"; break; case MPI_IOCSTATUS_SCSI_EXT_TERMINATED: /* 0x004C */ desc = "SCSI Ext Terminated"; break; default: desc = "Others"; break; } if (desc != "") printk(MYIOC_s_INFO_FMT "IOCStatus(0x%04x): %s\n", ioc->name, status, desc); } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ EXPORT_SYMBOL(mpt_attach); EXPORT_SYMBOL(mpt_detach); #ifdef CONFIG_PM EXPORT_SYMBOL(mpt_resume); EXPORT_SYMBOL(mpt_suspend); #endif EXPORT_SYMBOL(ioc_list); EXPORT_SYMBOL(mpt_proc_root_dir); EXPORT_SYMBOL(mpt_register); EXPORT_SYMBOL(mpt_deregister); EXPORT_SYMBOL(mpt_event_register); EXPORT_SYMBOL(mpt_event_deregister); EXPORT_SYMBOL(mpt_reset_register); EXPORT_SYMBOL(mpt_reset_deregister); EXPORT_SYMBOL(mpt_device_driver_register); EXPORT_SYMBOL(mpt_device_driver_deregister); EXPORT_SYMBOL(mpt_get_msg_frame); EXPORT_SYMBOL(mpt_put_msg_frame); EXPORT_SYMBOL(mpt_free_msg_frame); EXPORT_SYMBOL(mpt_add_sge); EXPORT_SYMBOL(mpt_send_handshake_request); EXPORT_SYMBOL(mpt_verify_adapter); EXPORT_SYMBOL(mpt_GetIocState); EXPORT_SYMBOL(mpt_print_ioc_summary); EXPORT_SYMBOL(mpt_lan_index); EXPORT_SYMBOL(mpt_stm_index); EXPORT_SYMBOL(mpt_HardResetHandler); EXPORT_SYMBOL(mpt_config); EXPORT_SYMBOL(mpt_findImVolumes); EXPORT_SYMBOL(mpt_alloc_fw_memory); EXPORT_SYMBOL(mpt_free_fw_memory); EXPORT_SYMBOL(mptbase_sas_persist_operation); EXPORT_SYMBOL(mptbase_GetFcPortPage0); /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * fusion_init - Fusion MPT base driver initialization routine. * * Returns 0 for success, non-zero for failure. */ static int __init fusion_init(void) { int i; show_mptmod_ver(my_NAME, my_VERSION); printk(KERN_INFO COPYRIGHT "\n"); for (i = 0; i < MPT_MAX_PROTOCOL_DRIVERS; i++) { MptCallbacks[i] = NULL; MptDriverClass[i] = MPTUNKNOWN_DRIVER; MptEvHandlers[i] = NULL; MptResetHandlers[i] = NULL; } /* Register ourselves (mptbase) in order to facilitate * EventNotification handling. */ mpt_base_index = mpt_register(mpt_base_reply, MPTBASE_DRIVER); /* Register for hard reset handling callbacks. */ if (mpt_reset_register(mpt_base_index, mpt_ioc_reset) == 0) { dprintk((KERN_INFO MYNAM ": Register for IOC reset notification\n")); } else { /* FIXME! */ } #ifdef CONFIG_PROC_FS (void) procmpt_create(); #endif return 0; } /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * fusion_exit - Perform driver unload cleanup. * * This routine frees all resources associated with each MPT adapter * and removes all %MPT_PROCFS_MPTBASEDIR entries. */ static void __exit fusion_exit(void) { dexitprintk((KERN_INFO MYNAM ": fusion_exit() called!\n")); mpt_reset_deregister(mpt_base_index); #ifdef CONFIG_PROC_FS procmpt_destroy(); #endif } module_init(fusion_init); module_exit(fusion_exit);