[ALSA] ymfpci: add per-voice volume controls
[linux-3.10.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(snd_pcm_substream_t *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         snd_pcm_runtime_t *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled == runtime->buffer_size)
60                         return;
61                 snd_assert(runtime->silence_filled <= runtime->buffer_size, return);
62                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64                         return;
65                 frames = runtime->silence_threshold - noise_dist;
66                 if (frames > runtime->silence_size)
67                         frames = runtime->silence_size;
68         } else {
69                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
70                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71                         runtime->silence_filled = avail > 0 ? avail : 0;
72                         runtime->silence_start = (runtime->status->hw_ptr +
73                                                   runtime->silence_filled) %
74                                                  runtime->boundary;
75                 } else {
76                         ofs = runtime->status->hw_ptr;
77                         frames = new_hw_ptr - ofs;
78                         if ((snd_pcm_sframes_t)frames < 0)
79                                 frames += runtime->boundary;
80                         runtime->silence_filled -= frames;
81                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
82                                 runtime->silence_filled = 0;
83                                 runtime->silence_start = (ofs + frames) - runtime->buffer_size;
84                         } else {
85                                 runtime->silence_start = ofs - runtime->silence_filled;
86                         }
87                         if ((snd_pcm_sframes_t)runtime->silence_start < 0)
88                                 runtime->silence_start += runtime->boundary;
89                 }
90                 frames = runtime->buffer_size - runtime->silence_filled;
91         }
92         snd_assert(frames <= runtime->buffer_size, return);
93         if (frames == 0)
94                 return;
95         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
96         while (frames > 0) {
97                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100                         if (substream->ops->silence) {
101                                 int err;
102                                 err = substream->ops->silence(substream, -1, ofs, transfer);
103                                 snd_assert(err >= 0, );
104                         } else {
105                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107                         }
108                 } else {
109                         unsigned int c;
110                         unsigned int channels = runtime->channels;
111                         if (substream->ops->silence) {
112                                 for (c = 0; c < channels; ++c) {
113                                         int err;
114                                         err = substream->ops->silence(substream, c, ofs, transfer);
115                                         snd_assert(err >= 0, );
116                                 }
117                         } else {
118                                 size_t dma_csize = runtime->dma_bytes / channels;
119                                 for (c = 0; c < channels; ++c) {
120                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122                                 }
123                         }
124                 }
125                 runtime->silence_filled += transfer;
126                 frames -= transfer;
127                 ofs = 0;
128         }
129 }
130
131 static void xrun(snd_pcm_substream_t *substream)
132 {
133         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
134 #ifdef CONFIG_SND_DEBUG
135         if (substream->pstr->xrun_debug) {
136                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
137                            substream->pcm->card->number,
138                            substream->pcm->device,
139                            substream->stream ? 'c' : 'p');
140                 if (substream->pstr->xrun_debug > 1)
141                         dump_stack();
142         }
143 #endif
144 }
145
146 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(snd_pcm_substream_t *substream,
147                                                           snd_pcm_runtime_t *runtime)
148 {
149         snd_pcm_uframes_t pos;
150
151         pos = substream->ops->pointer(substream);
152         if (pos == SNDRV_PCM_POS_XRUN)
153                 return pos; /* XRUN */
154         if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
155                 snd_timestamp_now((snd_timestamp_t*)&runtime->status->tstamp, runtime->tstamp_timespec);
156 #ifdef CONFIG_SND_DEBUG
157         if (pos >= runtime->buffer_size) {
158                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
159         } else
160 #endif
161         snd_runtime_check(pos < runtime->buffer_size, return 0);
162         pos -= pos % runtime->min_align;
163         return pos;
164 }
165
166 static inline int snd_pcm_update_hw_ptr_post(snd_pcm_substream_t *substream,
167                                              snd_pcm_runtime_t *runtime)
168 {
169         snd_pcm_uframes_t avail;
170
171         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
172                 avail = snd_pcm_playback_avail(runtime);
173         else
174                 avail = snd_pcm_capture_avail(runtime);
175         if (avail > runtime->avail_max)
176                 runtime->avail_max = avail;
177         if (avail >= runtime->stop_threshold) {
178                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
179                         snd_pcm_drain_done(substream);
180                 else
181                         xrun(substream);
182                 return -EPIPE;
183         }
184         if (avail >= runtime->control->avail_min)
185                 wake_up(&runtime->sleep);
186         return 0;
187 }
188
189 static inline int snd_pcm_update_hw_ptr_interrupt(snd_pcm_substream_t *substream)
190 {
191         snd_pcm_runtime_t *runtime = substream->runtime;
192         snd_pcm_uframes_t pos;
193         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
194         snd_pcm_sframes_t delta;
195
196         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
197         if (pos == SNDRV_PCM_POS_XRUN) {
198                 xrun(substream);
199                 return -EPIPE;
200         }
201         if (runtime->period_size == runtime->buffer_size)
202                 goto __next_buf;
203         new_hw_ptr = runtime->hw_ptr_base + pos;
204         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
205
206         delta = hw_ptr_interrupt - new_hw_ptr;
207         if (delta > 0) {
208                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
209 #ifdef CONFIG_SND_DEBUG
210                         if (runtime->periods > 1 && substream->pstr->xrun_debug) {
211                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
212                                 if (substream->pstr->xrun_debug > 1)
213                                         dump_stack();
214                         }
215 #endif
216                         return 0;
217                 }
218               __next_buf:
219                 runtime->hw_ptr_base += runtime->buffer_size;
220                 if (runtime->hw_ptr_base == runtime->boundary)
221                         runtime->hw_ptr_base = 0;
222                 new_hw_ptr = runtime->hw_ptr_base + pos;
223         }
224
225         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
226             runtime->silence_size > 0)
227                 snd_pcm_playback_silence(substream, new_hw_ptr);
228
229         runtime->status->hw_ptr = new_hw_ptr;
230         runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
231
232         return snd_pcm_update_hw_ptr_post(substream, runtime);
233 }
234
235 /* CAUTION: call it with irq disabled */
236 int snd_pcm_update_hw_ptr(snd_pcm_substream_t *substream)
237 {
238         snd_pcm_runtime_t *runtime = substream->runtime;
239         snd_pcm_uframes_t pos;
240         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
241         snd_pcm_sframes_t delta;
242
243         old_hw_ptr = runtime->status->hw_ptr;
244         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
245         if (pos == SNDRV_PCM_POS_XRUN) {
246                 xrun(substream);
247                 return -EPIPE;
248         }
249         new_hw_ptr = runtime->hw_ptr_base + pos;
250
251         delta = old_hw_ptr - new_hw_ptr;
252         if (delta > 0) {
253                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
254 #ifdef CONFIG_SND_DEBUG
255                         if (runtime->periods > 2 && substream->pstr->xrun_debug) {
256                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
257                                 if (substream->pstr->xrun_debug > 1)
258                                         dump_stack();
259                         }
260 #endif
261                         return 0;
262                 }
263                 runtime->hw_ptr_base += runtime->buffer_size;
264                 if (runtime->hw_ptr_base == runtime->boundary)
265                         runtime->hw_ptr_base = 0;
266                 new_hw_ptr = runtime->hw_ptr_base + pos;
267         }
268         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
269             runtime->silence_size > 0)
270                 snd_pcm_playback_silence(substream, new_hw_ptr);
271
272         runtime->status->hw_ptr = new_hw_ptr;
273
274         return snd_pcm_update_hw_ptr_post(substream, runtime);
275 }
276
277 /**
278  * snd_pcm_set_ops - set the PCM operators
279  * @pcm: the pcm instance
280  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
281  * @ops: the operator table
282  *
283  * Sets the given PCM operators to the pcm instance.
284  */
285 void snd_pcm_set_ops(snd_pcm_t *pcm, int direction, snd_pcm_ops_t *ops)
286 {
287         snd_pcm_str_t *stream = &pcm->streams[direction];
288         snd_pcm_substream_t *substream;
289         
290         for (substream = stream->substream; substream != NULL; substream = substream->next)
291                 substream->ops = ops;
292 }
293
294
295 /**
296  * snd_pcm_sync - set the PCM sync id
297  * @substream: the pcm substream
298  *
299  * Sets the PCM sync identifier for the card.
300  */
301 void snd_pcm_set_sync(snd_pcm_substream_t * substream)
302 {
303         snd_pcm_runtime_t *runtime = substream->runtime;
304         
305         runtime->sync.id32[0] = substream->pcm->card->number;
306         runtime->sync.id32[1] = -1;
307         runtime->sync.id32[2] = -1;
308         runtime->sync.id32[3] = -1;
309 }
310
311 /*
312  *  Standard ioctl routine
313  */
314
315 /* Code taken from alsa-lib */
316 #define assert(a) snd_assert((a), return -EINVAL)
317
318 static inline unsigned int div32(unsigned int a, unsigned int b, 
319                                  unsigned int *r)
320 {
321         if (b == 0) {
322                 *r = 0;
323                 return UINT_MAX;
324         }
325         *r = a % b;
326         return a / b;
327 }
328
329 static inline unsigned int div_down(unsigned int a, unsigned int b)
330 {
331         if (b == 0)
332                 return UINT_MAX;
333         return a / b;
334 }
335
336 static inline unsigned int div_up(unsigned int a, unsigned int b)
337 {
338         unsigned int r;
339         unsigned int q;
340         if (b == 0)
341                 return UINT_MAX;
342         q = div32(a, b, &r);
343         if (r)
344                 ++q;
345         return q;
346 }
347
348 static inline unsigned int mul(unsigned int a, unsigned int b)
349 {
350         if (a == 0)
351                 return 0;
352         if (div_down(UINT_MAX, a) < b)
353                 return UINT_MAX;
354         return a * b;
355 }
356
357 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
358                                     unsigned int c, unsigned int *r)
359 {
360         u_int64_t n = (u_int64_t) a * b;
361         if (c == 0) {
362                 snd_assert(n > 0, );
363                 *r = 0;
364                 return UINT_MAX;
365         }
366         div64_32(&n, c, r);
367         if (n >= UINT_MAX) {
368                 *r = 0;
369                 return UINT_MAX;
370         }
371         return n;
372 }
373
374 static int snd_interval_refine_min(snd_interval_t *i, unsigned int min, int openmin)
375 {
376         int changed = 0;
377         assert(!snd_interval_empty(i));
378         if (i->min < min) {
379                 i->min = min;
380                 i->openmin = openmin;
381                 changed = 1;
382         } else if (i->min == min && !i->openmin && openmin) {
383                 i->openmin = 1;
384                 changed = 1;
385         }
386         if (i->integer) {
387                 if (i->openmin) {
388                         i->min++;
389                         i->openmin = 0;
390                 }
391         }
392         if (snd_interval_checkempty(i)) {
393                 snd_interval_none(i);
394                 return -EINVAL;
395         }
396         return changed;
397 }
398
399 static int snd_interval_refine_max(snd_interval_t *i, unsigned int max, int openmax)
400 {
401         int changed = 0;
402         assert(!snd_interval_empty(i));
403         if (i->max > max) {
404                 i->max = max;
405                 i->openmax = openmax;
406                 changed = 1;
407         } else if (i->max == max && !i->openmax && openmax) {
408                 i->openmax = 1;
409                 changed = 1;
410         }
411         if (i->integer) {
412                 if (i->openmax) {
413                         i->max--;
414                         i->openmax = 0;
415                 }
416         }
417         if (snd_interval_checkempty(i)) {
418                 snd_interval_none(i);
419                 return -EINVAL;
420         }
421         return changed;
422 }
423
424 /**
425  * snd_interval_refine - refine the interval value of configurator
426  * @i: the interval value to refine
427  * @v: the interval value to refer to
428  *
429  * Refines the interval value with the reference value.
430  * The interval is changed to the range satisfying both intervals.
431  * The interval status (min, max, integer, etc.) are evaluated.
432  *
433  * Returns non-zero if the value is changed, zero if not changed.
434  */
435 int snd_interval_refine(snd_interval_t *i, const snd_interval_t *v)
436 {
437         int changed = 0;
438         assert(!snd_interval_empty(i));
439         if (i->min < v->min) {
440                 i->min = v->min;
441                 i->openmin = v->openmin;
442                 changed = 1;
443         } else if (i->min == v->min && !i->openmin && v->openmin) {
444                 i->openmin = 1;
445                 changed = 1;
446         }
447         if (i->max > v->max) {
448                 i->max = v->max;
449                 i->openmax = v->openmax;
450                 changed = 1;
451         } else if (i->max == v->max && !i->openmax && v->openmax) {
452                 i->openmax = 1;
453                 changed = 1;
454         }
455         if (!i->integer && v->integer) {
456                 i->integer = 1;
457                 changed = 1;
458         }
459         if (i->integer) {
460                 if (i->openmin) {
461                         i->min++;
462                         i->openmin = 0;
463                 }
464                 if (i->openmax) {
465                         i->max--;
466                         i->openmax = 0;
467                 }
468         } else if (!i->openmin && !i->openmax && i->min == i->max)
469                 i->integer = 1;
470         if (snd_interval_checkempty(i)) {
471                 snd_interval_none(i);
472                 return -EINVAL;
473         }
474         return changed;
475 }
476
477 static int snd_interval_refine_first(snd_interval_t *i)
478 {
479         assert(!snd_interval_empty(i));
480         if (snd_interval_single(i))
481                 return 0;
482         i->max = i->min;
483         i->openmax = i->openmin;
484         if (i->openmax)
485                 i->max++;
486         return 1;
487 }
488
489 static int snd_interval_refine_last(snd_interval_t *i)
490 {
491         assert(!snd_interval_empty(i));
492         if (snd_interval_single(i))
493                 return 0;
494         i->min = i->max;
495         i->openmin = i->openmax;
496         if (i->openmin)
497                 i->min--;
498         return 1;
499 }
500
501 static int snd_interval_refine_set(snd_interval_t *i, unsigned int val)
502 {
503         snd_interval_t t;
504         t.empty = 0;
505         t.min = t.max = val;
506         t.openmin = t.openmax = 0;
507         t.integer = 1;
508         return snd_interval_refine(i, &t);
509 }
510
511 void snd_interval_mul(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
512 {
513         if (a->empty || b->empty) {
514                 snd_interval_none(c);
515                 return;
516         }
517         c->empty = 0;
518         c->min = mul(a->min, b->min);
519         c->openmin = (a->openmin || b->openmin);
520         c->max = mul(a->max,  b->max);
521         c->openmax = (a->openmax || b->openmax);
522         c->integer = (a->integer && b->integer);
523 }
524
525 /**
526  * snd_interval_div - refine the interval value with division
527  *
528  * c = a / b
529  *
530  * Returns non-zero if the value is changed, zero if not changed.
531  */
532 void snd_interval_div(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
533 {
534         unsigned int r;
535         if (a->empty || b->empty) {
536                 snd_interval_none(c);
537                 return;
538         }
539         c->empty = 0;
540         c->min = div32(a->min, b->max, &r);
541         c->openmin = (r || a->openmin || b->openmax);
542         if (b->min > 0) {
543                 c->max = div32(a->max, b->min, &r);
544                 if (r) {
545                         c->max++;
546                         c->openmax = 1;
547                 } else
548                         c->openmax = (a->openmax || b->openmin);
549         } else {
550                 c->max = UINT_MAX;
551                 c->openmax = 0;
552         }
553         c->integer = 0;
554 }
555
556 /**
557  * snd_interval_muldivk - refine the interval value
558  *
559  * c = a * b / k
560  *
561  * Returns non-zero if the value is changed, zero if not changed.
562  */
563 void snd_interval_muldivk(const snd_interval_t *a, const snd_interval_t *b,
564                       unsigned int k, snd_interval_t *c)
565 {
566         unsigned int r;
567         if (a->empty || b->empty) {
568                 snd_interval_none(c);
569                 return;
570         }
571         c->empty = 0;
572         c->min = muldiv32(a->min, b->min, k, &r);
573         c->openmin = (r || a->openmin || b->openmin);
574         c->max = muldiv32(a->max, b->max, k, &r);
575         if (r) {
576                 c->max++;
577                 c->openmax = 1;
578         } else
579                 c->openmax = (a->openmax || b->openmax);
580         c->integer = 0;
581 }
582
583 /**
584  * snd_interval_mulkdiv - refine the interval value
585  *
586  * c = a * k / b
587  *
588  * Returns non-zero if the value is changed, zero if not changed.
589  */
590 void snd_interval_mulkdiv(const snd_interval_t *a, unsigned int k,
591                       const snd_interval_t *b, snd_interval_t *c)
592 {
593         unsigned int r;
594         if (a->empty || b->empty) {
595                 snd_interval_none(c);
596                 return;
597         }
598         c->empty = 0;
599         c->min = muldiv32(a->min, k, b->max, &r);
600         c->openmin = (r || a->openmin || b->openmax);
601         if (b->min > 0) {
602                 c->max = muldiv32(a->max, k, b->min, &r);
603                 if (r) {
604                         c->max++;
605                         c->openmax = 1;
606                 } else
607                         c->openmax = (a->openmax || b->openmin);
608         } else {
609                 c->max = UINT_MAX;
610                 c->openmax = 0;
611         }
612         c->integer = 0;
613 }
614
615 #undef assert
616 /* ---- */
617
618
619 /**
620  * snd_interval_ratnum - refine the interval value
621  *
622  * Returns non-zero if the value is changed, zero if not changed.
623  */
624 int snd_interval_ratnum(snd_interval_t *i,
625                     unsigned int rats_count, ratnum_t *rats,
626                     unsigned int *nump, unsigned int *denp)
627 {
628         unsigned int best_num, best_diff, best_den;
629         unsigned int k;
630         snd_interval_t t;
631         int err;
632
633         best_num = best_den = best_diff = 0;
634         for (k = 0; k < rats_count; ++k) {
635                 unsigned int num = rats[k].num;
636                 unsigned int den;
637                 unsigned int q = i->min;
638                 int diff;
639                 if (q == 0)
640                         q = 1;
641                 den = div_down(num, q);
642                 if (den < rats[k].den_min)
643                         continue;
644                 if (den > rats[k].den_max)
645                         den = rats[k].den_max;
646                 else {
647                         unsigned int r;
648                         r = (den - rats[k].den_min) % rats[k].den_step;
649                         if (r != 0)
650                                 den -= r;
651                 }
652                 diff = num - q * den;
653                 if (best_num == 0 ||
654                     diff * best_den < best_diff * den) {
655                         best_diff = diff;
656                         best_den = den;
657                         best_num = num;
658                 }
659         }
660         if (best_den == 0) {
661                 i->empty = 1;
662                 return -EINVAL;
663         }
664         t.min = div_down(best_num, best_den);
665         t.openmin = !!(best_num % best_den);
666         
667         best_num = best_den = best_diff = 0;
668         for (k = 0; k < rats_count; ++k) {
669                 unsigned int num = rats[k].num;
670                 unsigned int den;
671                 unsigned int q = i->max;
672                 int diff;
673                 if (q == 0) {
674                         i->empty = 1;
675                         return -EINVAL;
676                 }
677                 den = div_up(num, q);
678                 if (den > rats[k].den_max)
679                         continue;
680                 if (den < rats[k].den_min)
681                         den = rats[k].den_min;
682                 else {
683                         unsigned int r;
684                         r = (den - rats[k].den_min) % rats[k].den_step;
685                         if (r != 0)
686                                 den += rats[k].den_step - r;
687                 }
688                 diff = q * den - num;
689                 if (best_num == 0 ||
690                     diff * best_den < best_diff * den) {
691                         best_diff = diff;
692                         best_den = den;
693                         best_num = num;
694                 }
695         }
696         if (best_den == 0) {
697                 i->empty = 1;
698                 return -EINVAL;
699         }
700         t.max = div_up(best_num, best_den);
701         t.openmax = !!(best_num % best_den);
702         t.integer = 0;
703         err = snd_interval_refine(i, &t);
704         if (err < 0)
705                 return err;
706
707         if (snd_interval_single(i)) {
708                 if (nump)
709                         *nump = best_num;
710                 if (denp)
711                         *denp = best_den;
712         }
713         return err;
714 }
715
716 /**
717  * snd_interval_ratden - refine the interval value
718  *
719  * Returns non-zero if the value is changed, zero if not changed.
720  */
721 static int snd_interval_ratden(snd_interval_t *i,
722                                unsigned int rats_count, ratden_t *rats,
723                                unsigned int *nump, unsigned int *denp)
724 {
725         unsigned int best_num, best_diff, best_den;
726         unsigned int k;
727         snd_interval_t t;
728         int err;
729
730         best_num = best_den = best_diff = 0;
731         for (k = 0; k < rats_count; ++k) {
732                 unsigned int num;
733                 unsigned int den = rats[k].den;
734                 unsigned int q = i->min;
735                 int diff;
736                 num = mul(q, den);
737                 if (num > rats[k].num_max)
738                         continue;
739                 if (num < rats[k].num_min)
740                         num = rats[k].num_max;
741                 else {
742                         unsigned int r;
743                         r = (num - rats[k].num_min) % rats[k].num_step;
744                         if (r != 0)
745                                 num += rats[k].num_step - r;
746                 }
747                 diff = num - q * den;
748                 if (best_num == 0 ||
749                     diff * best_den < best_diff * den) {
750                         best_diff = diff;
751                         best_den = den;
752                         best_num = num;
753                 }
754         }
755         if (best_den == 0) {
756                 i->empty = 1;
757                 return -EINVAL;
758         }
759         t.min = div_down(best_num, best_den);
760         t.openmin = !!(best_num % best_den);
761         
762         best_num = best_den = best_diff = 0;
763         for (k = 0; k < rats_count; ++k) {
764                 unsigned int num;
765                 unsigned int den = rats[k].den;
766                 unsigned int q = i->max;
767                 int diff;
768                 num = mul(q, den);
769                 if (num < rats[k].num_min)
770                         continue;
771                 if (num > rats[k].num_max)
772                         num = rats[k].num_max;
773                 else {
774                         unsigned int r;
775                         r = (num - rats[k].num_min) % rats[k].num_step;
776                         if (r != 0)
777                                 num -= r;
778                 }
779                 diff = q * den - num;
780                 if (best_num == 0 ||
781                     diff * best_den < best_diff * den) {
782                         best_diff = diff;
783                         best_den = den;
784                         best_num = num;
785                 }
786         }
787         if (best_den == 0) {
788                 i->empty = 1;
789                 return -EINVAL;
790         }
791         t.max = div_up(best_num, best_den);
792         t.openmax = !!(best_num % best_den);
793         t.integer = 0;
794         err = snd_interval_refine(i, &t);
795         if (err < 0)
796                 return err;
797
798         if (snd_interval_single(i)) {
799                 if (nump)
800                         *nump = best_num;
801                 if (denp)
802                         *denp = best_den;
803         }
804         return err;
805 }
806
807 /**
808  * snd_interval_list - refine the interval value from the list
809  * @i: the interval value to refine
810  * @count: the number of elements in the list
811  * @list: the value list
812  * @mask: the bit-mask to evaluate
813  *
814  * Refines the interval value from the list.
815  * When mask is non-zero, only the elements corresponding to bit 1 are
816  * evaluated.
817  *
818  * Returns non-zero if the value is changed, zero if not changed.
819  */
820 int snd_interval_list(snd_interval_t *i, unsigned int count, unsigned int *list, unsigned int mask)
821 {
822         unsigned int k;
823         int changed = 0;
824         for (k = 0; k < count; k++) {
825                 if (mask && !(mask & (1 << k)))
826                         continue;
827                 if (i->min == list[k] && !i->openmin)
828                         goto _l1;
829                 if (i->min < list[k]) {
830                         i->min = list[k];
831                         i->openmin = 0;
832                         changed = 1;
833                         goto _l1;
834                 }
835         }
836         i->empty = 1;
837         return -EINVAL;
838  _l1:
839         for (k = count; k-- > 0;) {
840                 if (mask && !(mask & (1 << k)))
841                         continue;
842                 if (i->max == list[k] && !i->openmax)
843                         goto _l2;
844                 if (i->max > list[k]) {
845                         i->max = list[k];
846                         i->openmax = 0;
847                         changed = 1;
848                         goto _l2;
849                 }
850         }
851         i->empty = 1;
852         return -EINVAL;
853  _l2:
854         if (snd_interval_checkempty(i)) {
855                 i->empty = 1;
856                 return -EINVAL;
857         }
858         return changed;
859 }
860
861 static int snd_interval_step(snd_interval_t *i, unsigned int min, unsigned int step)
862 {
863         unsigned int n;
864         int changed = 0;
865         n = (i->min - min) % step;
866         if (n != 0 || i->openmin) {
867                 i->min += step - n;
868                 changed = 1;
869         }
870         n = (i->max - min) % step;
871         if (n != 0 || i->openmax) {
872                 i->max -= n;
873                 changed = 1;
874         }
875         if (snd_interval_checkempty(i)) {
876                 i->empty = 1;
877                 return -EINVAL;
878         }
879         return changed;
880 }
881
882 /* Info constraints helpers */
883
884 /**
885  * snd_pcm_hw_rule_add - add the hw-constraint rule
886  * @runtime: the pcm runtime instance
887  * @cond: condition bits
888  * @var: the variable to evaluate
889  * @func: the evaluation function
890  * @private: the private data pointer passed to function
891  * @dep: the dependent variables
892  *
893  * Returns zero if successful, or a negative error code on failure.
894  */
895 int snd_pcm_hw_rule_add(snd_pcm_runtime_t *runtime, unsigned int cond,
896                         int var,
897                         snd_pcm_hw_rule_func_t func, void *private,
898                         int dep, ...)
899 {
900         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
901         snd_pcm_hw_rule_t *c;
902         unsigned int k;
903         va_list args;
904         va_start(args, dep);
905         if (constrs->rules_num >= constrs->rules_all) {
906                 snd_pcm_hw_rule_t *new;
907                 unsigned int new_rules = constrs->rules_all + 16;
908                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
909                 if (!new)
910                         return -ENOMEM;
911                 if (constrs->rules) {
912                         memcpy(new, constrs->rules,
913                                constrs->rules_num * sizeof(*c));
914                         kfree(constrs->rules);
915                 }
916                 constrs->rules = new;
917                 constrs->rules_all = new_rules;
918         }
919         c = &constrs->rules[constrs->rules_num];
920         c->cond = cond;
921         c->func = func;
922         c->var = var;
923         c->private = private;
924         k = 0;
925         while (1) {
926                 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
927                 c->deps[k++] = dep;
928                 if (dep < 0)
929                         break;
930                 dep = va_arg(args, int);
931         }
932         constrs->rules_num++;
933         va_end(args);
934         return 0;
935 }                                   
936
937 /**
938  * snd_pcm_hw_constraint_mask
939  */
940 int snd_pcm_hw_constraint_mask(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
941                                u_int32_t mask)
942 {
943         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
944         snd_mask_t *maskp = constrs_mask(constrs, var);
945         *maskp->bits &= mask;
946         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
947         if (*maskp->bits == 0)
948                 return -EINVAL;
949         return 0;
950 }
951
952 /**
953  * snd_pcm_hw_constraint_mask64
954  */
955 int snd_pcm_hw_constraint_mask64(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
956                                  u_int64_t mask)
957 {
958         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
959         snd_mask_t *maskp = constrs_mask(constrs, var);
960         maskp->bits[0] &= (u_int32_t)mask;
961         maskp->bits[1] &= (u_int32_t)(mask >> 32);
962         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
963         if (! maskp->bits[0] && ! maskp->bits[1])
964                 return -EINVAL;
965         return 0;
966 }
967
968 /**
969  * snd_pcm_hw_constraint_integer
970  */
971 int snd_pcm_hw_constraint_integer(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var)
972 {
973         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
974         return snd_interval_setinteger(constrs_interval(constrs, var));
975 }
976
977 /**
978  * snd_pcm_hw_constraint_minmax
979  */
980 int snd_pcm_hw_constraint_minmax(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
981                                  unsigned int min, unsigned int max)
982 {
983         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
984         snd_interval_t t;
985         t.min = min;
986         t.max = max;
987         t.openmin = t.openmax = 0;
988         t.integer = 0;
989         return snd_interval_refine(constrs_interval(constrs, var), &t);
990 }
991
992 static int snd_pcm_hw_rule_list(snd_pcm_hw_params_t *params,
993                                 snd_pcm_hw_rule_t *rule)
994 {
995         snd_pcm_hw_constraint_list_t *list = rule->private;
996         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
997 }               
998
999
1000 /**
1001  * snd_pcm_hw_constraint_list
1002  */
1003 int snd_pcm_hw_constraint_list(snd_pcm_runtime_t *runtime,
1004                                unsigned int cond,
1005                                snd_pcm_hw_param_t var,
1006                                snd_pcm_hw_constraint_list_t *l)
1007 {
1008         return snd_pcm_hw_rule_add(runtime, cond, var,
1009                                    snd_pcm_hw_rule_list, l,
1010                                    var, -1);
1011 }
1012
1013 static int snd_pcm_hw_rule_ratnums(snd_pcm_hw_params_t *params,
1014                                    snd_pcm_hw_rule_t *rule)
1015 {
1016         snd_pcm_hw_constraint_ratnums_t *r = rule->private;
1017         unsigned int num = 0, den = 0;
1018         int err;
1019         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1020                                   r->nrats, r->rats, &num, &den);
1021         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1022                 params->rate_num = num;
1023                 params->rate_den = den;
1024         }
1025         return err;
1026 }
1027
1028 /**
1029  * snd_pcm_hw_constraint_ratnums
1030  */
1031 int snd_pcm_hw_constraint_ratnums(snd_pcm_runtime_t *runtime, 
1032                                   unsigned int cond,
1033                                   snd_pcm_hw_param_t var,
1034                                   snd_pcm_hw_constraint_ratnums_t *r)
1035 {
1036         return snd_pcm_hw_rule_add(runtime, cond, var,
1037                                    snd_pcm_hw_rule_ratnums, r,
1038                                    var, -1);
1039 }
1040
1041 static int snd_pcm_hw_rule_ratdens(snd_pcm_hw_params_t *params,
1042                                    snd_pcm_hw_rule_t *rule)
1043 {
1044         snd_pcm_hw_constraint_ratdens_t *r = rule->private;
1045         unsigned int num = 0, den = 0;
1046         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1047                                   r->nrats, r->rats, &num, &den);
1048         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1049                 params->rate_num = num;
1050                 params->rate_den = den;
1051         }
1052         return err;
1053 }
1054
1055 /**
1056  * snd_pcm_hw_constraint_ratdens
1057  */
1058 int snd_pcm_hw_constraint_ratdens(snd_pcm_runtime_t *runtime, 
1059                                   unsigned int cond,
1060                                   snd_pcm_hw_param_t var,
1061                                   snd_pcm_hw_constraint_ratdens_t *r)
1062 {
1063         return snd_pcm_hw_rule_add(runtime, cond, var,
1064                                    snd_pcm_hw_rule_ratdens, r,
1065                                    var, -1);
1066 }
1067
1068 static int snd_pcm_hw_rule_msbits(snd_pcm_hw_params_t *params,
1069                                   snd_pcm_hw_rule_t *rule)
1070 {
1071         unsigned int l = (unsigned long) rule->private;
1072         int width = l & 0xffff;
1073         unsigned int msbits = l >> 16;
1074         snd_interval_t *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1075         if (snd_interval_single(i) && snd_interval_value(i) == width)
1076                 params->msbits = msbits;
1077         return 0;
1078 }
1079
1080 /**
1081  * snd_pcm_hw_constraint_msbits
1082  */
1083 int snd_pcm_hw_constraint_msbits(snd_pcm_runtime_t *runtime, 
1084                                  unsigned int cond,
1085                                  unsigned int width,
1086                                  unsigned int msbits)
1087 {
1088         unsigned long l = (msbits << 16) | width;
1089         return snd_pcm_hw_rule_add(runtime, cond, -1,
1090                                     snd_pcm_hw_rule_msbits,
1091                                     (void*) l,
1092                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1093 }
1094
1095 static int snd_pcm_hw_rule_step(snd_pcm_hw_params_t *params,
1096                                 snd_pcm_hw_rule_t *rule)
1097 {
1098         unsigned long step = (unsigned long) rule->private;
1099         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1100 }
1101
1102 /**
1103  * snd_pcm_hw_constraint_step
1104  */
1105 int snd_pcm_hw_constraint_step(snd_pcm_runtime_t *runtime,
1106                                unsigned int cond,
1107                                snd_pcm_hw_param_t var,
1108                                unsigned long step)
1109 {
1110         return snd_pcm_hw_rule_add(runtime, cond, var, 
1111                                    snd_pcm_hw_rule_step, (void *) step,
1112                                    var, -1);
1113 }
1114
1115 static int snd_pcm_hw_rule_pow2(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule)
1116 {
1117         static int pow2_sizes[] = {
1118                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1119                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1120                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1121                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1122         };
1123         return snd_interval_list(hw_param_interval(params, rule->var),
1124                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1125 }               
1126
1127 /**
1128  * snd_pcm_hw_constraint_pow2
1129  */
1130 int snd_pcm_hw_constraint_pow2(snd_pcm_runtime_t *runtime,
1131                                unsigned int cond,
1132                                snd_pcm_hw_param_t var)
1133 {
1134         return snd_pcm_hw_rule_add(runtime, cond, var, 
1135                                    snd_pcm_hw_rule_pow2, NULL,
1136                                    var, -1);
1137 }
1138
1139 /* To use the same code we have in alsa-lib */
1140 #define snd_pcm_t snd_pcm_substream_t
1141 #define assert(i) snd_assert((i), return -EINVAL)
1142 #ifndef INT_MIN
1143 #define INT_MIN ((int)((unsigned int)INT_MAX+1))
1144 #endif
1145
1146 static void _snd_pcm_hw_param_any(snd_pcm_hw_params_t *params,
1147                                   snd_pcm_hw_param_t var)
1148 {
1149         if (hw_is_mask(var)) {
1150                 snd_mask_any(hw_param_mask(params, var));
1151                 params->cmask |= 1 << var;
1152                 params->rmask |= 1 << var;
1153                 return;
1154         }
1155         if (hw_is_interval(var)) {
1156                 snd_interval_any(hw_param_interval(params, var));
1157                 params->cmask |= 1 << var;
1158                 params->rmask |= 1 << var;
1159                 return;
1160         }
1161         snd_BUG();
1162 }
1163
1164 #if 0
1165 /**
1166  * snd_pcm_hw_param_any
1167  */
1168 int snd_pcm_hw_param_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1169                          snd_pcm_hw_param_t var)
1170 {
1171         _snd_pcm_hw_param_any(params, var);
1172         return snd_pcm_hw_refine(pcm, params);
1173 }
1174 #endif  /*  0  */
1175
1176 void _snd_pcm_hw_params_any(snd_pcm_hw_params_t *params)
1177 {
1178         unsigned int k;
1179         memset(params, 0, sizeof(*params));
1180         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1181                 _snd_pcm_hw_param_any(params, k);
1182         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1183                 _snd_pcm_hw_param_any(params, k);
1184         params->info = ~0U;
1185 }
1186
1187 #if 0
1188 /**
1189  * snd_pcm_hw_params_any
1190  *
1191  * Fill PARAMS with full configuration space boundaries
1192  */
1193 int snd_pcm_hw_params_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1194 {
1195         _snd_pcm_hw_params_any(params);
1196         return snd_pcm_hw_refine(pcm, params);
1197 }
1198 #endif  /*  0  */
1199
1200 /**
1201  * snd_pcm_hw_param_value
1202  *
1203  * Return the value for field PAR if it's fixed in configuration space 
1204  *  defined by PARAMS. Return -EINVAL otherwise
1205  */
1206 static int snd_pcm_hw_param_value(const snd_pcm_hw_params_t *params,
1207                                   snd_pcm_hw_param_t var, int *dir)
1208 {
1209         if (hw_is_mask(var)) {
1210                 const snd_mask_t *mask = hw_param_mask_c(params, var);
1211                 if (!snd_mask_single(mask))
1212                         return -EINVAL;
1213                 if (dir)
1214                         *dir = 0;
1215                 return snd_mask_value(mask);
1216         }
1217         if (hw_is_interval(var)) {
1218                 const snd_interval_t *i = hw_param_interval_c(params, var);
1219                 if (!snd_interval_single(i))
1220                         return -EINVAL;
1221                 if (dir)
1222                         *dir = i->openmin;
1223                 return snd_interval_value(i);
1224         }
1225         assert(0);
1226         return -EINVAL;
1227 }
1228
1229 /**
1230  * snd_pcm_hw_param_value_min
1231  *
1232  * Return the minimum value for field PAR.
1233  */
1234 unsigned int snd_pcm_hw_param_value_min(const snd_pcm_hw_params_t *params,
1235                                         snd_pcm_hw_param_t var, int *dir)
1236 {
1237         if (hw_is_mask(var)) {
1238                 if (dir)
1239                         *dir = 0;
1240                 return snd_mask_min(hw_param_mask_c(params, var));
1241         }
1242         if (hw_is_interval(var)) {
1243                 const snd_interval_t *i = hw_param_interval_c(params, var);
1244                 if (dir)
1245                         *dir = i->openmin;
1246                 return snd_interval_min(i);
1247         }
1248         assert(0);
1249         return -EINVAL;
1250 }
1251
1252 /**
1253  * snd_pcm_hw_param_value_max
1254  *
1255  * Return the maximum value for field PAR.
1256  */
1257 unsigned int snd_pcm_hw_param_value_max(const snd_pcm_hw_params_t *params,
1258                                         snd_pcm_hw_param_t var, int *dir)
1259 {
1260         if (hw_is_mask(var)) {
1261                 if (dir)
1262                         *dir = 0;
1263                 return snd_mask_max(hw_param_mask_c(params, var));
1264         }
1265         if (hw_is_interval(var)) {
1266                 const snd_interval_t *i = hw_param_interval_c(params, var);
1267                 if (dir)
1268                         *dir = - (int) i->openmax;
1269                 return snd_interval_max(i);
1270         }
1271         assert(0);
1272         return -EINVAL;
1273 }
1274
1275 void _snd_pcm_hw_param_setempty(snd_pcm_hw_params_t *params,
1276                                 snd_pcm_hw_param_t var)
1277 {
1278         if (hw_is_mask(var)) {
1279                 snd_mask_none(hw_param_mask(params, var));
1280                 params->cmask |= 1 << var;
1281                 params->rmask |= 1 << var;
1282         } else if (hw_is_interval(var)) {
1283                 snd_interval_none(hw_param_interval(params, var));
1284                 params->cmask |= 1 << var;
1285                 params->rmask |= 1 << var;
1286         } else {
1287                 snd_BUG();
1288         }
1289 }
1290
1291 int _snd_pcm_hw_param_setinteger(snd_pcm_hw_params_t *params,
1292                                  snd_pcm_hw_param_t var)
1293 {
1294         int changed;
1295         assert(hw_is_interval(var));
1296         changed = snd_interval_setinteger(hw_param_interval(params, var));
1297         if (changed) {
1298                 params->cmask |= 1 << var;
1299                 params->rmask |= 1 << var;
1300         }
1301         return changed;
1302 }
1303         
1304 #if 0
1305 /**
1306  * snd_pcm_hw_param_setinteger
1307  *
1308  * Inside configuration space defined by PARAMS remove from PAR all 
1309  * non integer values. Reduce configuration space accordingly.
1310  * Return -EINVAL if the configuration space is empty
1311  */
1312 int snd_pcm_hw_param_setinteger(snd_pcm_t *pcm, 
1313                                 snd_pcm_hw_params_t *params,
1314                                 snd_pcm_hw_param_t var)
1315 {
1316         int changed = _snd_pcm_hw_param_setinteger(params, var);
1317         if (changed < 0)
1318                 return changed;
1319         if (params->rmask) {
1320                 int err = snd_pcm_hw_refine(pcm, params);
1321                 if (err < 0)
1322                         return err;
1323         }
1324         return 0;
1325 }
1326 #endif  /*  0  */
1327
1328 static int _snd_pcm_hw_param_first(snd_pcm_hw_params_t *params,
1329                                    snd_pcm_hw_param_t var)
1330 {
1331         int changed;
1332         if (hw_is_mask(var))
1333                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1334         else if (hw_is_interval(var))
1335                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1336         else {
1337                 assert(0);
1338                 return -EINVAL;
1339         }
1340         if (changed) {
1341                 params->cmask |= 1 << var;
1342                 params->rmask |= 1 << var;
1343         }
1344         return changed;
1345 }
1346
1347
1348 /**
1349  * snd_pcm_hw_param_first
1350  *
1351  * Inside configuration space defined by PARAMS remove from PAR all 
1352  * values > minimum. Reduce configuration space accordingly.
1353  * Return the minimum.
1354  */
1355 static int snd_pcm_hw_param_first(snd_pcm_t *pcm, 
1356                                   snd_pcm_hw_params_t *params, 
1357                                   snd_pcm_hw_param_t var, int *dir)
1358 {
1359         int changed = _snd_pcm_hw_param_first(params, var);
1360         if (changed < 0)
1361                 return changed;
1362         if (params->rmask) {
1363                 int err = snd_pcm_hw_refine(pcm, params);
1364                 assert(err >= 0);
1365         }
1366         return snd_pcm_hw_param_value(params, var, dir);
1367 }
1368
1369 static int _snd_pcm_hw_param_last(snd_pcm_hw_params_t *params,
1370                                   snd_pcm_hw_param_t var)
1371 {
1372         int changed;
1373         if (hw_is_mask(var))
1374                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1375         else if (hw_is_interval(var))
1376                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1377         else {
1378                 assert(0);
1379                 return -EINVAL;
1380         }
1381         if (changed) {
1382                 params->cmask |= 1 << var;
1383                 params->rmask |= 1 << var;
1384         }
1385         return changed;
1386 }
1387
1388
1389 /**
1390  * snd_pcm_hw_param_last
1391  *
1392  * Inside configuration space defined by PARAMS remove from PAR all 
1393  * values < maximum. Reduce configuration space accordingly.
1394  * Return the maximum.
1395  */
1396 static int snd_pcm_hw_param_last(snd_pcm_t *pcm, 
1397                                  snd_pcm_hw_params_t *params,
1398                                  snd_pcm_hw_param_t var, int *dir)
1399 {
1400         int changed = _snd_pcm_hw_param_last(params, var);
1401         if (changed < 0)
1402                 return changed;
1403         if (params->rmask) {
1404                 int err = snd_pcm_hw_refine(pcm, params);
1405                 assert(err >= 0);
1406         }
1407         return snd_pcm_hw_param_value(params, var, dir);
1408 }
1409
1410 int _snd_pcm_hw_param_min(snd_pcm_hw_params_t *params,
1411                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1412 {
1413         int changed;
1414         int open = 0;
1415         if (dir) {
1416                 if (dir > 0) {
1417                         open = 1;
1418                 } else if (dir < 0) {
1419                         if (val > 0) {
1420                                 open = 1;
1421                                 val--;
1422                         }
1423                 }
1424         }
1425         if (hw_is_mask(var))
1426                 changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
1427         else if (hw_is_interval(var))
1428                 changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
1429         else {
1430                 assert(0);
1431                 return -EINVAL;
1432         }
1433         if (changed) {
1434                 params->cmask |= 1 << var;
1435                 params->rmask |= 1 << var;
1436         }
1437         return changed;
1438 }
1439
1440 /**
1441  * snd_pcm_hw_param_min
1442  *
1443  * Inside configuration space defined by PARAMS remove from PAR all 
1444  * values < VAL. Reduce configuration space accordingly.
1445  * Return new minimum or -EINVAL if the configuration space is empty
1446  */
1447 static int snd_pcm_hw_param_min(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1448                                 snd_pcm_hw_param_t var, unsigned int val,
1449                                 int *dir)
1450 {
1451         int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
1452         if (changed < 0)
1453                 return changed;
1454         if (params->rmask) {
1455                 int err = snd_pcm_hw_refine(pcm, params);
1456                 if (err < 0)
1457                         return err;
1458         }
1459         return snd_pcm_hw_param_value_min(params, var, dir);
1460 }
1461
1462 static int _snd_pcm_hw_param_max(snd_pcm_hw_params_t *params,
1463                                  snd_pcm_hw_param_t var, unsigned int val,
1464                                  int dir)
1465 {
1466         int changed;
1467         int open = 0;
1468         if (dir) {
1469                 if (dir < 0) {
1470                         open = 1;
1471                 } else if (dir > 0) {
1472                         open = 1;
1473                         val++;
1474                 }
1475         }
1476         if (hw_is_mask(var)) {
1477                 if (val == 0 && open) {
1478                         snd_mask_none(hw_param_mask(params, var));
1479                         changed = -EINVAL;
1480                 } else
1481                         changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
1482         } else if (hw_is_interval(var))
1483                 changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
1484         else {
1485                 assert(0);
1486                 return -EINVAL;
1487         }
1488         if (changed) {
1489                 params->cmask |= 1 << var;
1490                 params->rmask |= 1 << var;
1491         }
1492         return changed;
1493 }
1494
1495 /**
1496  * snd_pcm_hw_param_max
1497  *
1498  * Inside configuration space defined by PARAMS remove from PAR all 
1499  *  values >= VAL + 1. Reduce configuration space accordingly.
1500  *  Return new maximum or -EINVAL if the configuration space is empty
1501  */
1502 static int snd_pcm_hw_param_max(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1503                                 snd_pcm_hw_param_t var, unsigned int val,
1504                                 int *dir)
1505 {
1506         int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
1507         if (changed < 0)
1508                 return changed;
1509         if (params->rmask) {
1510                 int err = snd_pcm_hw_refine(pcm, params);
1511                 if (err < 0)
1512                         return err;
1513         }
1514         return snd_pcm_hw_param_value_max(params, var, dir);
1515 }
1516
1517 int _snd_pcm_hw_param_set(snd_pcm_hw_params_t *params,
1518                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1519 {
1520         int changed;
1521         if (hw_is_mask(var)) {
1522                 snd_mask_t *m = hw_param_mask(params, var);
1523                 if (val == 0 && dir < 0) {
1524                         changed = -EINVAL;
1525                         snd_mask_none(m);
1526                 } else {
1527                         if (dir > 0)
1528                                 val++;
1529                         else if (dir < 0)
1530                                 val--;
1531                         changed = snd_mask_refine_set(hw_param_mask(params, var), val);
1532                 }
1533         } else if (hw_is_interval(var)) {
1534                 snd_interval_t *i = hw_param_interval(params, var);
1535                 if (val == 0 && dir < 0) {
1536                         changed = -EINVAL;
1537                         snd_interval_none(i);
1538                 } else if (dir == 0)
1539                         changed = snd_interval_refine_set(i, val);
1540                 else {
1541                         snd_interval_t t;
1542                         t.openmin = 1;
1543                         t.openmax = 1;
1544                         t.empty = 0;
1545                         t.integer = 0;
1546                         if (dir < 0) {
1547                                 t.min = val - 1;
1548                                 t.max = val;
1549                         } else {
1550                                 t.min = val;
1551                                 t.max = val+1;
1552                         }
1553                         changed = snd_interval_refine(i, &t);
1554                 }
1555         } else {
1556                 assert(0);
1557                 return -EINVAL;
1558         }
1559         if (changed) {
1560                 params->cmask |= 1 << var;
1561                 params->rmask |= 1 << var;
1562         }
1563         return changed;
1564 }
1565
1566 /**
1567  * snd_pcm_hw_param_set
1568  *
1569  * Inside configuration space defined by PARAMS remove from PAR all 
1570  * values != VAL. Reduce configuration space accordingly.
1571  *  Return VAL or -EINVAL if the configuration space is empty
1572  */
1573 int snd_pcm_hw_param_set(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1574                          snd_pcm_hw_param_t var, unsigned int val, int dir)
1575 {
1576         int changed = _snd_pcm_hw_param_set(params, var, val, dir);
1577         if (changed < 0)
1578                 return changed;
1579         if (params->rmask) {
1580                 int err = snd_pcm_hw_refine(pcm, params);
1581                 if (err < 0)
1582                         return err;
1583         }
1584         return snd_pcm_hw_param_value(params, var, NULL);
1585 }
1586
1587 int _snd_pcm_hw_param_mask(snd_pcm_hw_params_t *params,
1588                            snd_pcm_hw_param_t var, const snd_mask_t *val)
1589 {
1590         int changed;
1591         assert(hw_is_mask(var));
1592         changed = snd_mask_refine(hw_param_mask(params, var), val);
1593         if (changed) {
1594                 params->cmask |= 1 << var;
1595                 params->rmask |= 1 << var;
1596         }
1597         return changed;
1598 }
1599
1600 /**
1601  * snd_pcm_hw_param_mask
1602  *
1603  * Inside configuration space defined by PARAMS remove from PAR all values
1604  * not contained in MASK. Reduce configuration space accordingly.
1605  * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
1606  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1607  * Return 0 on success or -EINVAL
1608  * if the configuration space is empty
1609  */
1610 int snd_pcm_hw_param_mask(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1611                           snd_pcm_hw_param_t var, const snd_mask_t *val)
1612 {
1613         int changed = _snd_pcm_hw_param_mask(params, var, val);
1614         if (changed < 0)
1615                 return changed;
1616         if (params->rmask) {
1617                 int err = snd_pcm_hw_refine(pcm, params);
1618                 if (err < 0)
1619                         return err;
1620         }
1621         return 0;
1622 }
1623
1624 static int boundary_sub(int a, int adir,
1625                         int b, int bdir,
1626                         int *c, int *cdir)
1627 {
1628         adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
1629         bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
1630         *c = a - b;
1631         *cdir = adir - bdir;
1632         if (*cdir == -2) {
1633                 assert(*c > INT_MIN);
1634                 (*c)--;
1635         } else if (*cdir == 2) {
1636                 assert(*c < INT_MAX);
1637                 (*c)++;
1638         }
1639         return 0;
1640 }
1641
1642 static int boundary_lt(unsigned int a, int adir,
1643                        unsigned int b, int bdir)
1644 {
1645         assert(a > 0 || adir >= 0);
1646         assert(b > 0 || bdir >= 0);
1647         if (adir < 0) {
1648                 a--;
1649                 adir = 1;
1650         } else if (adir > 0)
1651                 adir = 1;
1652         if (bdir < 0) {
1653                 b--;
1654                 bdir = 1;
1655         } else if (bdir > 0)
1656                 bdir = 1;
1657         return a < b || (a == b && adir < bdir);
1658 }
1659
1660 /* Return 1 if min is nearer to best than max */
1661 static int boundary_nearer(int min, int mindir,
1662                            int best, int bestdir,
1663                            int max, int maxdir)
1664 {
1665         int dmin, dmindir;
1666         int dmax, dmaxdir;
1667         boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
1668         boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
1669         return boundary_lt(dmin, dmindir, dmax, dmaxdir);
1670 }
1671
1672 /**
1673  * snd_pcm_hw_param_near
1674  *
1675  * Inside configuration space defined by PARAMS set PAR to the available value
1676  * nearest to VAL. Reduce configuration space accordingly.
1677  * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
1678  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1679  * Return the value found.
1680   */
1681 int snd_pcm_hw_param_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1682                           snd_pcm_hw_param_t var, unsigned int best, int *dir)
1683 {
1684         snd_pcm_hw_params_t *save = NULL;
1685         int v;
1686         unsigned int saved_min;
1687         int last = 0;
1688         int min, max;
1689         int mindir, maxdir;
1690         int valdir = dir ? *dir : 0;
1691         /* FIXME */
1692         if (best > INT_MAX)
1693                 best = INT_MAX;
1694         min = max = best;
1695         mindir = maxdir = valdir;
1696         if (maxdir > 0)
1697                 maxdir = 0;
1698         else if (maxdir == 0)
1699                 maxdir = -1;
1700         else {
1701                 maxdir = 1;
1702                 max--;
1703         }
1704         save = kmalloc(sizeof(*save), GFP_KERNEL);
1705         if (save == NULL)
1706                 return -ENOMEM;
1707         *save = *params;
1708         saved_min = min;
1709         min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
1710         if (min >= 0) {
1711                 snd_pcm_hw_params_t *params1;
1712                 if (max < 0)
1713                         goto _end;
1714                 if ((unsigned int)min == saved_min && mindir == valdir)
1715                         goto _end;
1716                 params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
1717                 if (params1 == NULL) {
1718                         kfree(save);
1719                         return -ENOMEM;
1720                 }
1721                 *params1 = *save;
1722                 max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
1723                 if (max < 0) {
1724                         kfree(params1);
1725                         goto _end;
1726                 }
1727                 if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
1728                         *params = *params1;
1729                         last = 1;
1730                 }
1731                 kfree(params1);
1732         } else {
1733                 *params = *save;
1734                 max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
1735                 assert(max >= 0);
1736                 last = 1;
1737         }
1738  _end:
1739         kfree(save);
1740         if (last)
1741                 v = snd_pcm_hw_param_last(pcm, params, var, dir);
1742         else
1743                 v = snd_pcm_hw_param_first(pcm, params, var, dir);
1744         assert(v >= 0);
1745         return v;
1746 }
1747
1748 /**
1749  * snd_pcm_hw_param_choose
1750  *
1751  * Choose one configuration from configuration space defined by PARAMS
1752  * The configuration chosen is that obtained fixing in this order:
1753  * first access, first format, first subformat, min channels,
1754  * min rate, min period time, max buffer size, min tick time
1755  */
1756 int snd_pcm_hw_params_choose(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1757 {
1758         int err;
1759
1760         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
1761         assert(err >= 0);
1762
1763         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
1764         assert(err >= 0);
1765
1766         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
1767         assert(err >= 0);
1768
1769         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
1770         assert(err >= 0);
1771
1772         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
1773         assert(err >= 0);
1774
1775         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
1776         assert(err >= 0);
1777
1778         err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
1779         assert(err >= 0);
1780
1781         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
1782         assert(err >= 0);
1783
1784         return 0;
1785 }
1786
1787 #undef snd_pcm_t
1788 #undef assert
1789
1790 static int snd_pcm_lib_ioctl_reset(snd_pcm_substream_t *substream,
1791                                    void *arg)
1792 {
1793         snd_pcm_runtime_t *runtime = substream->runtime;
1794         unsigned long flags;
1795         snd_pcm_stream_lock_irqsave(substream, flags);
1796         if (snd_pcm_running(substream) &&
1797             snd_pcm_update_hw_ptr(substream) >= 0)
1798                 runtime->status->hw_ptr %= runtime->buffer_size;
1799         else
1800                 runtime->status->hw_ptr = 0;
1801         snd_pcm_stream_unlock_irqrestore(substream, flags);
1802         return 0;
1803 }
1804
1805 static int snd_pcm_lib_ioctl_channel_info(snd_pcm_substream_t *substream,
1806                                           void *arg)
1807 {
1808         snd_pcm_channel_info_t *info = arg;
1809         snd_pcm_runtime_t *runtime = substream->runtime;
1810         int width;
1811         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1812                 info->offset = -1;
1813                 return 0;
1814         }
1815         width = snd_pcm_format_physical_width(runtime->format);
1816         if (width < 0)
1817                 return width;
1818         info->offset = 0;
1819         switch (runtime->access) {
1820         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1821         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1822                 info->first = info->channel * width;
1823                 info->step = runtime->channels * width;
1824                 break;
1825         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1826         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1827         {
1828                 size_t size = runtime->dma_bytes / runtime->channels;
1829                 info->first = info->channel * size * 8;
1830                 info->step = width;
1831                 break;
1832         }
1833         default:
1834                 snd_BUG();
1835                 break;
1836         }
1837         return 0;
1838 }
1839
1840 /**
1841  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1842  * @substream: the pcm substream instance
1843  * @cmd: ioctl command
1844  * @arg: ioctl argument
1845  *
1846  * Processes the generic ioctl commands for PCM.
1847  * Can be passed as the ioctl callback for PCM ops.
1848  *
1849  * Returns zero if successful, or a negative error code on failure.
1850  */
1851 int snd_pcm_lib_ioctl(snd_pcm_substream_t *substream,
1852                       unsigned int cmd, void *arg)
1853 {
1854         switch (cmd) {
1855         case SNDRV_PCM_IOCTL1_INFO:
1856                 return 0;
1857         case SNDRV_PCM_IOCTL1_RESET:
1858                 return snd_pcm_lib_ioctl_reset(substream, arg);
1859         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1860                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1861         }
1862         return -ENXIO;
1863 }
1864
1865 /*
1866  *  Conditions
1867  */
1868
1869 static void snd_pcm_system_tick_set(snd_pcm_substream_t *substream, 
1870                                     unsigned long ticks)
1871 {
1872         snd_pcm_runtime_t *runtime = substream->runtime;
1873         if (ticks == 0)
1874                 del_timer(&runtime->tick_timer);
1875         else {
1876                 ticks += (1000000 / HZ) - 1;
1877                 ticks /= (1000000 / HZ);
1878                 mod_timer(&runtime->tick_timer, jiffies + ticks);
1879         }
1880 }
1881
1882 /* Temporary alias */
1883 void snd_pcm_tick_set(snd_pcm_substream_t *substream, unsigned long ticks)
1884 {
1885         snd_pcm_system_tick_set(substream, ticks);
1886 }
1887
1888 void snd_pcm_tick_prepare(snd_pcm_substream_t *substream)
1889 {
1890         snd_pcm_runtime_t *runtime = substream->runtime;
1891         snd_pcm_uframes_t frames = ULONG_MAX;
1892         snd_pcm_uframes_t avail, dist;
1893         unsigned int ticks;
1894         u_int64_t n;
1895         u_int32_t r;
1896         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1897                 if (runtime->silence_size >= runtime->boundary) {
1898                         frames = 1;
1899                 } else if (runtime->silence_size > 0 &&
1900                            runtime->silence_filled < runtime->buffer_size) {
1901                         snd_pcm_sframes_t noise_dist;
1902                         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
1903                         snd_assert(noise_dist <= (snd_pcm_sframes_t)runtime->silence_threshold, );
1904                         frames = noise_dist - runtime->silence_threshold;
1905                 }
1906                 avail = snd_pcm_playback_avail(runtime);
1907         } else {
1908                 avail = snd_pcm_capture_avail(runtime);
1909         }
1910         if (avail < runtime->control->avail_min) {
1911                 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
1912                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1913                         frames = n;
1914         }
1915         if (avail < runtime->buffer_size) {
1916                 snd_pcm_sframes_t n = runtime->buffer_size - avail;
1917                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1918                         frames = n;
1919         }
1920         if (frames == ULONG_MAX) {
1921                 snd_pcm_tick_set(substream, 0);
1922                 return;
1923         }
1924         dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
1925         /* Distance to next interrupt */
1926         dist = runtime->period_size - dist % runtime->period_size;
1927         if (dist <= frames) {
1928                 snd_pcm_tick_set(substream, 0);
1929                 return;
1930         }
1931         /* the base time is us */
1932         n = frames;
1933         n *= 1000000;
1934         div64_32(&n, runtime->tick_time * runtime->rate, &r);
1935         ticks = n + (r > 0 ? 1 : 0);
1936         if (ticks < runtime->sleep_min)
1937                 ticks = runtime->sleep_min;
1938         snd_pcm_tick_set(substream, (unsigned long) ticks);
1939 }
1940
1941 void snd_pcm_tick_elapsed(snd_pcm_substream_t *substream)
1942 {
1943         snd_pcm_runtime_t *runtime;
1944         unsigned long flags;
1945         
1946         snd_assert(substream != NULL, return);
1947         runtime = substream->runtime;
1948         snd_assert(runtime != NULL, return);
1949
1950         snd_pcm_stream_lock_irqsave(substream, flags);
1951         if (!snd_pcm_running(substream) ||
1952             snd_pcm_update_hw_ptr(substream) < 0)
1953                 goto _end;
1954         if (runtime->sleep_min)
1955                 snd_pcm_tick_prepare(substream);
1956  _end:
1957         snd_pcm_stream_unlock_irqrestore(substream, flags);
1958 }
1959
1960 /**
1961  * snd_pcm_period_elapsed - update the pcm status for the next period
1962  * @substream: the pcm substream instance
1963  *
1964  * This function is called from the interrupt handler when the
1965  * PCM has processed the period size.  It will update the current
1966  * pointer, set up the tick, wake up sleepers, etc.
1967  *
1968  * Even if more than one periods have elapsed since the last call, you
1969  * have to call this only once.
1970  */
1971 void snd_pcm_period_elapsed(snd_pcm_substream_t *substream)
1972 {
1973         snd_pcm_runtime_t *runtime;
1974         unsigned long flags;
1975
1976         snd_assert(substream != NULL, return);
1977         runtime = substream->runtime;
1978         snd_assert(runtime != NULL, return);
1979
1980         if (runtime->transfer_ack_begin)
1981                 runtime->transfer_ack_begin(substream);
1982
1983         snd_pcm_stream_lock_irqsave(substream, flags);
1984         if (!snd_pcm_running(substream) ||
1985             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1986                 goto _end;
1987
1988         if (substream->timer_running)
1989                 snd_timer_interrupt(substream->timer, 1);
1990         if (runtime->sleep_min)
1991                 snd_pcm_tick_prepare(substream);
1992  _end:
1993         snd_pcm_stream_unlock_irqrestore(substream, flags);
1994         if (runtime->transfer_ack_end)
1995                 runtime->transfer_ack_end(substream);
1996         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1997 }
1998
1999 static int snd_pcm_lib_write_transfer(snd_pcm_substream_t *substream,
2000                                       unsigned int hwoff,
2001                                       unsigned long data, unsigned int off,
2002                                       snd_pcm_uframes_t frames)
2003 {
2004         snd_pcm_runtime_t *runtime = substream->runtime;
2005         int err;
2006         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2007         if (substream->ops->copy) {
2008                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2009                         return err;
2010         } else {
2011                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2012                 snd_assert(runtime->dma_area, return -EFAULT);
2013                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2014                         return -EFAULT;
2015         }
2016         return 0;
2017 }
2018  
2019 typedef int (*transfer_f)(snd_pcm_substream_t *substream, unsigned int hwoff,
2020                           unsigned long data, unsigned int off,
2021                           snd_pcm_uframes_t size);
2022
2023 static snd_pcm_sframes_t snd_pcm_lib_write1(snd_pcm_substream_t *substream, 
2024                                             unsigned long data,
2025                                             snd_pcm_uframes_t size,
2026                                             int nonblock,
2027                                             transfer_f transfer)
2028 {
2029         snd_pcm_runtime_t *runtime = substream->runtime;
2030         snd_pcm_uframes_t xfer = 0;
2031         snd_pcm_uframes_t offset = 0;
2032         int err = 0;
2033
2034         if (size == 0)
2035                 return 0;
2036         if (size > runtime->xfer_align)
2037                 size -= size % runtime->xfer_align;
2038
2039         snd_pcm_stream_lock_irq(substream);
2040         switch (runtime->status->state) {
2041         case SNDRV_PCM_STATE_PREPARED:
2042         case SNDRV_PCM_STATE_RUNNING:
2043         case SNDRV_PCM_STATE_PAUSED:
2044                 break;
2045         case SNDRV_PCM_STATE_XRUN:
2046                 err = -EPIPE;
2047                 goto _end_unlock;
2048         case SNDRV_PCM_STATE_SUSPENDED:
2049                 err = -ESTRPIPE;
2050                 goto _end_unlock;
2051         default:
2052                 err = -EBADFD;
2053                 goto _end_unlock;
2054         }
2055
2056         while (size > 0) {
2057                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2058                 snd_pcm_uframes_t avail;
2059                 snd_pcm_uframes_t cont;
2060                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2061                         snd_pcm_update_hw_ptr(substream);
2062                 avail = snd_pcm_playback_avail(runtime);
2063                 if (((avail < runtime->control->avail_min && size > avail) ||
2064                    (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
2065                         wait_queue_t wait;
2066                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED } state;
2067                         long tout;
2068
2069                         if (nonblock) {
2070                                 err = -EAGAIN;
2071                                 goto _end_unlock;
2072                         }
2073
2074                         init_waitqueue_entry(&wait, current);
2075                         add_wait_queue(&runtime->sleep, &wait);
2076                         while (1) {
2077                                 if (signal_pending(current)) {
2078                                         state = SIGNALED;
2079                                         break;
2080                                 }
2081                                 set_current_state(TASK_INTERRUPTIBLE);
2082                                 snd_pcm_stream_unlock_irq(substream);
2083                                 tout = schedule_timeout(10 * HZ);
2084                                 snd_pcm_stream_lock_irq(substream);
2085                                 if (tout == 0) {
2086                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2087                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2088                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2089                                                 break;
2090                                         }
2091                                 }
2092                                 switch (runtime->status->state) {
2093                                 case SNDRV_PCM_STATE_XRUN:
2094                                 case SNDRV_PCM_STATE_DRAINING:
2095                                         state = ERROR;
2096                                         goto _end_loop;
2097                                 case SNDRV_PCM_STATE_SUSPENDED:
2098                                         state = SUSPENDED;
2099                                         goto _end_loop;
2100                                 default:
2101                                         break;
2102                                 }
2103                                 avail = snd_pcm_playback_avail(runtime);
2104                                 if (avail >= runtime->control->avail_min) {
2105                                         state = READY;
2106                                         break;
2107                                 }
2108                         }
2109                        _end_loop:
2110                         remove_wait_queue(&runtime->sleep, &wait);
2111
2112                         switch (state) {
2113                         case ERROR:
2114                                 err = -EPIPE;
2115                                 goto _end_unlock;
2116                         case SUSPENDED:
2117                                 err = -ESTRPIPE;
2118                                 goto _end_unlock;
2119                         case SIGNALED:
2120                                 err = -ERESTARTSYS;
2121                                 goto _end_unlock;
2122                         case EXPIRED:
2123                                 snd_printd("playback write error (DMA or IRQ trouble?)\n");
2124                                 err = -EIO;
2125                                 goto _end_unlock;
2126                         default:
2127                                 break;
2128                         }
2129                 }
2130                 if (avail > runtime->xfer_align)
2131                         avail -= avail % runtime->xfer_align;
2132                 frames = size > avail ? avail : size;
2133                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2134                 if (frames > cont)
2135                         frames = cont;
2136                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2137                 appl_ptr = runtime->control->appl_ptr;
2138                 appl_ofs = appl_ptr % runtime->buffer_size;
2139                 snd_pcm_stream_unlock_irq(substream);
2140                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2141                         goto _end;
2142                 snd_pcm_stream_lock_irq(substream);
2143                 switch (runtime->status->state) {
2144                 case SNDRV_PCM_STATE_XRUN:
2145                         err = -EPIPE;
2146                         goto _end_unlock;
2147                 case SNDRV_PCM_STATE_SUSPENDED:
2148                         err = -ESTRPIPE;
2149                         goto _end_unlock;
2150                 default:
2151                         break;
2152                 }
2153                 appl_ptr += frames;
2154                 if (appl_ptr >= runtime->boundary)
2155                         appl_ptr -= runtime->boundary;
2156                 runtime->control->appl_ptr = appl_ptr;
2157                 if (substream->ops->ack)
2158                         substream->ops->ack(substream);
2159
2160                 offset += frames;
2161                 size -= frames;
2162                 xfer += frames;
2163                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2164                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2165                         err = snd_pcm_start(substream);
2166                         if (err < 0)
2167                                 goto _end_unlock;
2168                 }
2169                 if (runtime->sleep_min &&
2170                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2171                         snd_pcm_tick_prepare(substream);
2172         }
2173  _end_unlock:
2174         snd_pcm_stream_unlock_irq(substream);
2175  _end:
2176         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2177 }
2178
2179 snd_pcm_sframes_t snd_pcm_lib_write(snd_pcm_substream_t *substream, const void __user *buf, snd_pcm_uframes_t size)
2180 {
2181         snd_pcm_runtime_t *runtime;
2182         int nonblock;
2183
2184         snd_assert(substream != NULL, return -ENXIO);
2185         runtime = substream->runtime;
2186         snd_assert(runtime != NULL, return -ENXIO);
2187         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2188         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2189                 return -EBADFD;
2190
2191         snd_assert(substream->ffile != NULL, return -ENXIO);
2192         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2193 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2194         if (substream->oss.oss) {
2195                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2196                 if (setup != NULL) {
2197                         if (setup->nonblock)
2198                                 nonblock = 1;
2199                         else if (setup->block)
2200                                 nonblock = 0;
2201                 }
2202         }
2203 #endif
2204
2205         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2206             runtime->channels > 1)
2207                 return -EINVAL;
2208         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2209                                   snd_pcm_lib_write_transfer);
2210 }
2211
2212 static int snd_pcm_lib_writev_transfer(snd_pcm_substream_t *substream,
2213                                        unsigned int hwoff,
2214                                        unsigned long data, unsigned int off,
2215                                        snd_pcm_uframes_t frames)
2216 {
2217         snd_pcm_runtime_t *runtime = substream->runtime;
2218         int err;
2219         void __user **bufs = (void __user **)data;
2220         int channels = runtime->channels;
2221         int c;
2222         if (substream->ops->copy) {
2223                 snd_assert(substream->ops->silence != NULL, return -EINVAL);
2224                 for (c = 0; c < channels; ++c, ++bufs) {
2225                         if (*bufs == NULL) {
2226                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2227                                         return err;
2228                         } else {
2229                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2230                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2231                                         return err;
2232                         }
2233                 }
2234         } else {
2235                 /* default transfer behaviour */
2236                 size_t dma_csize = runtime->dma_bytes / channels;
2237                 snd_assert(runtime->dma_area, return -EFAULT);
2238                 for (c = 0; c < channels; ++c, ++bufs) {
2239                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2240                         if (*bufs == NULL) {
2241                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2242                         } else {
2243                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2244                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2245                                         return -EFAULT;
2246                         }
2247                 }
2248         }
2249         return 0;
2250 }
2251  
2252 snd_pcm_sframes_t snd_pcm_lib_writev(snd_pcm_substream_t *substream,
2253                                      void __user **bufs,
2254                                      snd_pcm_uframes_t frames)
2255 {
2256         snd_pcm_runtime_t *runtime;
2257         int nonblock;
2258
2259         snd_assert(substream != NULL, return -ENXIO);
2260         runtime = substream->runtime;
2261         snd_assert(runtime != NULL, return -ENXIO);
2262         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2263         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2264                 return -EBADFD;
2265
2266         snd_assert(substream->ffile != NULL, return -ENXIO);
2267         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2268 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2269         if (substream->oss.oss) {
2270                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2271                 if (setup != NULL) {
2272                         if (setup->nonblock)
2273                                 nonblock = 1;
2274                         else if (setup->block)
2275                                 nonblock = 0;
2276                 }
2277         }
2278 #endif
2279
2280         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2281                 return -EINVAL;
2282         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2283                                   nonblock, snd_pcm_lib_writev_transfer);
2284 }
2285
2286 static int snd_pcm_lib_read_transfer(snd_pcm_substream_t *substream, 
2287                                      unsigned int hwoff,
2288                                      unsigned long data, unsigned int off,
2289                                      snd_pcm_uframes_t frames)
2290 {
2291         snd_pcm_runtime_t *runtime = substream->runtime;
2292         int err;
2293         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2294         if (substream->ops->copy) {
2295                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2296                         return err;
2297         } else {
2298                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2299                 snd_assert(runtime->dma_area, return -EFAULT);
2300                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2301                         return -EFAULT;
2302         }
2303         return 0;
2304 }
2305
2306 static snd_pcm_sframes_t snd_pcm_lib_read1(snd_pcm_substream_t *substream,
2307                                            unsigned long data,
2308                                            snd_pcm_uframes_t size,
2309                                            int nonblock,
2310                                            transfer_f transfer)
2311 {
2312         snd_pcm_runtime_t *runtime = substream->runtime;
2313         snd_pcm_uframes_t xfer = 0;
2314         snd_pcm_uframes_t offset = 0;
2315         int err = 0;
2316
2317         if (size == 0)
2318                 return 0;
2319         if (size > runtime->xfer_align)
2320                 size -= size % runtime->xfer_align;
2321
2322         snd_pcm_stream_lock_irq(substream);
2323         switch (runtime->status->state) {
2324         case SNDRV_PCM_STATE_PREPARED:
2325                 if (size >= runtime->start_threshold) {
2326                         err = snd_pcm_start(substream);
2327                         if (err < 0)
2328                                 goto _end_unlock;
2329                 }
2330                 break;
2331         case SNDRV_PCM_STATE_DRAINING:
2332         case SNDRV_PCM_STATE_RUNNING:
2333         case SNDRV_PCM_STATE_PAUSED:
2334                 break;
2335         case SNDRV_PCM_STATE_XRUN:
2336                 err = -EPIPE;
2337                 goto _end_unlock;
2338         case SNDRV_PCM_STATE_SUSPENDED:
2339                 err = -ESTRPIPE;
2340                 goto _end_unlock;
2341         default:
2342                 err = -EBADFD;
2343                 goto _end_unlock;
2344         }
2345
2346         while (size > 0) {
2347                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2348                 snd_pcm_uframes_t avail;
2349                 snd_pcm_uframes_t cont;
2350                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2351                         snd_pcm_update_hw_ptr(substream);
2352               __draining:
2353                 avail = snd_pcm_capture_avail(runtime);
2354                 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2355                         if (avail < runtime->xfer_align) {
2356                                 err = -EPIPE;
2357                                 goto _end_unlock;
2358                         }
2359                 } else if ((avail < runtime->control->avail_min && size > avail) ||
2360                            (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
2361                         wait_queue_t wait;
2362                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED } state;
2363                         long tout;
2364
2365                         if (nonblock) {
2366                                 err = -EAGAIN;
2367                                 goto _end_unlock;
2368                         }
2369
2370                         init_waitqueue_entry(&wait, current);
2371                         add_wait_queue(&runtime->sleep, &wait);
2372                         while (1) {
2373                                 if (signal_pending(current)) {
2374                                         state = SIGNALED;
2375                                         break;
2376                                 }
2377                                 set_current_state(TASK_INTERRUPTIBLE);
2378                                 snd_pcm_stream_unlock_irq(substream);
2379                                 tout = schedule_timeout(10 * HZ);
2380                                 snd_pcm_stream_lock_irq(substream);
2381                                 if (tout == 0) {
2382                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2383                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2384                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2385                                                 break;
2386                                         }
2387                                 }
2388                                 switch (runtime->status->state) {
2389                                 case SNDRV_PCM_STATE_XRUN:
2390                                         state = ERROR;
2391                                         goto _end_loop;
2392                                 case SNDRV_PCM_STATE_SUSPENDED:
2393                                         state = SUSPENDED;
2394                                         goto _end_loop;
2395                                 case SNDRV_PCM_STATE_DRAINING:
2396                                         goto __draining;
2397                                 default:
2398                                         break;
2399                                 }
2400                                 avail = snd_pcm_capture_avail(runtime);
2401                                 if (avail >= runtime->control->avail_min) {
2402                                         state = READY;
2403                                         break;
2404                                 }
2405                         }
2406                        _end_loop:
2407                         remove_wait_queue(&runtime->sleep, &wait);
2408
2409                         switch (state) {
2410                         case ERROR:
2411                                 err = -EPIPE;
2412                                 goto _end_unlock;
2413                         case SUSPENDED:
2414                                 err = -ESTRPIPE;
2415                                 goto _end_unlock;
2416                         case SIGNALED:
2417                                 err = -ERESTARTSYS;
2418                                 goto _end_unlock;
2419                         case EXPIRED:
2420                                 snd_printd("capture read error (DMA or IRQ trouble?)\n");
2421                                 err = -EIO;
2422                                 goto _end_unlock;
2423                         default:
2424                                 break;
2425                         }
2426                 }
2427                 if (avail > runtime->xfer_align)
2428                         avail -= avail % runtime->xfer_align;
2429                 frames = size > avail ? avail : size;
2430                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2431                 if (frames > cont)
2432                         frames = cont;
2433                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2434                 appl_ptr = runtime->control->appl_ptr;
2435                 appl_ofs = appl_ptr % runtime->buffer_size;
2436                 snd_pcm_stream_unlock_irq(substream);
2437                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2438                         goto _end;
2439                 snd_pcm_stream_lock_irq(substream);
2440                 switch (runtime->status->state) {
2441                 case SNDRV_PCM_STATE_XRUN:
2442                         err = -EPIPE;
2443                         goto _end_unlock;
2444                 case SNDRV_PCM_STATE_SUSPENDED:
2445                         err = -ESTRPIPE;
2446                         goto _end_unlock;
2447                 default:
2448                         break;
2449                 }
2450                 appl_ptr += frames;
2451                 if (appl_ptr >= runtime->boundary)
2452                         appl_ptr -= runtime->boundary;
2453                 runtime->control->appl_ptr = appl_ptr;
2454                 if (substream->ops->ack)
2455                         substream->ops->ack(substream);
2456
2457                 offset += frames;
2458                 size -= frames;
2459                 xfer += frames;
2460                 if (runtime->sleep_min &&
2461                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2462                         snd_pcm_tick_prepare(substream);
2463         }
2464  _end_unlock:
2465         snd_pcm_stream_unlock_irq(substream);
2466  _end:
2467         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2468 }
2469
2470 snd_pcm_sframes_t snd_pcm_lib_read(snd_pcm_substream_t *substream, void __user *buf, snd_pcm_uframes_t size)
2471 {
2472         snd_pcm_runtime_t *runtime;
2473         int nonblock;
2474         
2475         snd_assert(substream != NULL, return -ENXIO);
2476         runtime = substream->runtime;
2477         snd_assert(runtime != NULL, return -ENXIO);
2478         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2479         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2480                 return -EBADFD;
2481
2482         snd_assert(substream->ffile != NULL, return -ENXIO);
2483         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2484 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2485         if (substream->oss.oss) {
2486                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2487                 if (setup != NULL) {
2488                         if (setup->nonblock)
2489                                 nonblock = 1;
2490                         else if (setup->block)
2491                                 nonblock = 0;
2492                 }
2493         }
2494 #endif
2495         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2496                 return -EINVAL;
2497         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2498 }
2499
2500 static int snd_pcm_lib_readv_transfer(snd_pcm_substream_t *substream,
2501                                       unsigned int hwoff,
2502                                       unsigned long data, unsigned int off,
2503                                       snd_pcm_uframes_t frames)
2504 {
2505         snd_pcm_runtime_t *runtime = substream->runtime;
2506         int err;
2507         void __user **bufs = (void __user **)data;
2508         int channels = runtime->channels;
2509         int c;
2510         if (substream->ops->copy) {
2511                 for (c = 0; c < channels; ++c, ++bufs) {
2512                         char __user *buf;
2513                         if (*bufs == NULL)
2514                                 continue;
2515                         buf = *bufs + samples_to_bytes(runtime, off);
2516                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2517                                 return err;
2518                 }
2519         } else {
2520                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2521                 snd_assert(runtime->dma_area, return -EFAULT);
2522                 for (c = 0; c < channels; ++c, ++bufs) {
2523                         char *hwbuf;
2524                         char __user *buf;
2525                         if (*bufs == NULL)
2526                                 continue;
2527
2528                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2529                         buf = *bufs + samples_to_bytes(runtime, off);
2530                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2531                                 return -EFAULT;
2532                 }
2533         }
2534         return 0;
2535 }
2536  
2537 snd_pcm_sframes_t snd_pcm_lib_readv(snd_pcm_substream_t *substream,
2538                                     void __user **bufs,
2539                                     snd_pcm_uframes_t frames)
2540 {
2541         snd_pcm_runtime_t *runtime;
2542         int nonblock;
2543
2544         snd_assert(substream != NULL, return -ENXIO);
2545         runtime = substream->runtime;
2546         snd_assert(runtime != NULL, return -ENXIO);
2547         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2548         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2549                 return -EBADFD;
2550
2551         snd_assert(substream->ffile != NULL, return -ENXIO);
2552         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2553 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2554         if (substream->oss.oss) {
2555                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2556                 if (setup != NULL) {
2557                         if (setup->nonblock)
2558                                 nonblock = 1;
2559                         else if (setup->block)
2560                                 nonblock = 0;
2561                 }
2562         }
2563 #endif
2564
2565         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2566                 return -EINVAL;
2567         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2568 }
2569
2570 /*
2571  *  Exported symbols
2572  */
2573
2574 EXPORT_SYMBOL(snd_interval_refine);
2575 EXPORT_SYMBOL(snd_interval_list);
2576 EXPORT_SYMBOL(snd_interval_ratnum);
2577 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
2578 EXPORT_SYMBOL(_snd_pcm_hw_param_min);
2579 EXPORT_SYMBOL(_snd_pcm_hw_param_set);
2580 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
2581 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
2582 EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
2583 EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
2584 EXPORT_SYMBOL(snd_pcm_hw_param_mask);
2585 EXPORT_SYMBOL(snd_pcm_hw_param_first);
2586 EXPORT_SYMBOL(snd_pcm_hw_param_last);
2587 EXPORT_SYMBOL(snd_pcm_hw_param_near);
2588 EXPORT_SYMBOL(snd_pcm_hw_param_set);
2589 EXPORT_SYMBOL(snd_pcm_hw_refine);
2590 EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
2591 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
2592 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
2593 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
2594 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
2595 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
2596 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
2597 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
2598 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
2599 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
2600 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
2601 EXPORT_SYMBOL(snd_pcm_set_ops);
2602 EXPORT_SYMBOL(snd_pcm_set_sync);
2603 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
2604 EXPORT_SYMBOL(snd_pcm_stop);
2605 EXPORT_SYMBOL(snd_pcm_period_elapsed);
2606 EXPORT_SYMBOL(snd_pcm_lib_write);
2607 EXPORT_SYMBOL(snd_pcm_lib_read);
2608 EXPORT_SYMBOL(snd_pcm_lib_writev);
2609 EXPORT_SYMBOL(snd_pcm_lib_readv);
2610 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
2611 EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
2612 /* pcm_memory.c */
2613 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
2614 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
2615 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
2616 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
2617 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
2618 EXPORT_SYMBOL(snd_pcm_lib_free_pages);