SELinux: turn mount options strings into defines
[linux-3.10.git] / security / selinux / ss / services.c
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *      Support for enhanced MLS infrastructure.
10  *      Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29  *      This program is free software; you can redistribute it and/or modify
30  *      it under the terms of the GNU General Public License as published by
31  *      the Free Software Foundation, version 2.
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
39 #include <linux/in.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
45
46 #include "flask.h"
47 #include "avc.h"
48 #include "avc_ss.h"
49 #include "security.h"
50 #include "context.h"
51 #include "policydb.h"
52 #include "sidtab.h"
53 #include "services.h"
54 #include "conditional.h"
55 #include "mls.h"
56 #include "objsec.h"
57 #include "netlabel.h"
58 #include "xfrm.h"
59 #include "ebitmap.h"
60
61 extern void selnl_notify_policyload(u32 seqno);
62 unsigned int policydb_loaded_version;
63
64 int selinux_policycap_netpeer;
65 int selinux_policycap_openperm;
66
67 /*
68  * This is declared in avc.c
69  */
70 extern const struct selinux_class_perm selinux_class_perm;
71
72 static DEFINE_RWLOCK(policy_rwlock);
73 #define POLICY_RDLOCK read_lock(&policy_rwlock)
74 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
75 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
76 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
77
78 static DEFINE_MUTEX(load_mutex);
79 #define LOAD_LOCK mutex_lock(&load_mutex)
80 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
81
82 static struct sidtab sidtab;
83 struct policydb policydb;
84 int ss_initialized = 0;
85
86 /*
87  * The largest sequence number that has been used when
88  * providing an access decision to the access vector cache.
89  * The sequence number only changes when a policy change
90  * occurs.
91  */
92 static u32 latest_granting = 0;
93
94 /* Forward declaration. */
95 static int context_struct_to_string(struct context *context, char **scontext,
96                                     u32 *scontext_len);
97
98 /*
99  * Return the boolean value of a constraint expression
100  * when it is applied to the specified source and target
101  * security contexts.
102  *
103  * xcontext is a special beast...  It is used by the validatetrans rules
104  * only.  For these rules, scontext is the context before the transition,
105  * tcontext is the context after the transition, and xcontext is the context
106  * of the process performing the transition.  All other callers of
107  * constraint_expr_eval should pass in NULL for xcontext.
108  */
109 static int constraint_expr_eval(struct context *scontext,
110                                 struct context *tcontext,
111                                 struct context *xcontext,
112                                 struct constraint_expr *cexpr)
113 {
114         u32 val1, val2;
115         struct context *c;
116         struct role_datum *r1, *r2;
117         struct mls_level *l1, *l2;
118         struct constraint_expr *e;
119         int s[CEXPR_MAXDEPTH];
120         int sp = -1;
121
122         for (e = cexpr; e; e = e->next) {
123                 switch (e->expr_type) {
124                 case CEXPR_NOT:
125                         BUG_ON(sp < 0);
126                         s[sp] = !s[sp];
127                         break;
128                 case CEXPR_AND:
129                         BUG_ON(sp < 1);
130                         sp--;
131                         s[sp] &= s[sp+1];
132                         break;
133                 case CEXPR_OR:
134                         BUG_ON(sp < 1);
135                         sp--;
136                         s[sp] |= s[sp+1];
137                         break;
138                 case CEXPR_ATTR:
139                         if (sp == (CEXPR_MAXDEPTH-1))
140                                 return 0;
141                         switch (e->attr) {
142                         case CEXPR_USER:
143                                 val1 = scontext->user;
144                                 val2 = tcontext->user;
145                                 break;
146                         case CEXPR_TYPE:
147                                 val1 = scontext->type;
148                                 val2 = tcontext->type;
149                                 break;
150                         case CEXPR_ROLE:
151                                 val1 = scontext->role;
152                                 val2 = tcontext->role;
153                                 r1 = policydb.role_val_to_struct[val1 - 1];
154                                 r2 = policydb.role_val_to_struct[val2 - 1];
155                                 switch (e->op) {
156                                 case CEXPR_DOM:
157                                         s[++sp] = ebitmap_get_bit(&r1->dominates,
158                                                                   val2 - 1);
159                                         continue;
160                                 case CEXPR_DOMBY:
161                                         s[++sp] = ebitmap_get_bit(&r2->dominates,
162                                                                   val1 - 1);
163                                         continue;
164                                 case CEXPR_INCOMP:
165                                         s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
166                                                                      val2 - 1) &&
167                                                     !ebitmap_get_bit(&r2->dominates,
168                                                                      val1 - 1) );
169                                         continue;
170                                 default:
171                                         break;
172                                 }
173                                 break;
174                         case CEXPR_L1L2:
175                                 l1 = &(scontext->range.level[0]);
176                                 l2 = &(tcontext->range.level[0]);
177                                 goto mls_ops;
178                         case CEXPR_L1H2:
179                                 l1 = &(scontext->range.level[0]);
180                                 l2 = &(tcontext->range.level[1]);
181                                 goto mls_ops;
182                         case CEXPR_H1L2:
183                                 l1 = &(scontext->range.level[1]);
184                                 l2 = &(tcontext->range.level[0]);
185                                 goto mls_ops;
186                         case CEXPR_H1H2:
187                                 l1 = &(scontext->range.level[1]);
188                                 l2 = &(tcontext->range.level[1]);
189                                 goto mls_ops;
190                         case CEXPR_L1H1:
191                                 l1 = &(scontext->range.level[0]);
192                                 l2 = &(scontext->range.level[1]);
193                                 goto mls_ops;
194                         case CEXPR_L2H2:
195                                 l1 = &(tcontext->range.level[0]);
196                                 l2 = &(tcontext->range.level[1]);
197                                 goto mls_ops;
198 mls_ops:
199                         switch (e->op) {
200                         case CEXPR_EQ:
201                                 s[++sp] = mls_level_eq(l1, l2);
202                                 continue;
203                         case CEXPR_NEQ:
204                                 s[++sp] = !mls_level_eq(l1, l2);
205                                 continue;
206                         case CEXPR_DOM:
207                                 s[++sp] = mls_level_dom(l1, l2);
208                                 continue;
209                         case CEXPR_DOMBY:
210                                 s[++sp] = mls_level_dom(l2, l1);
211                                 continue;
212                         case CEXPR_INCOMP:
213                                 s[++sp] = mls_level_incomp(l2, l1);
214                                 continue;
215                         default:
216                                 BUG();
217                                 return 0;
218                         }
219                         break;
220                         default:
221                                 BUG();
222                                 return 0;
223                         }
224
225                         switch (e->op) {
226                         case CEXPR_EQ:
227                                 s[++sp] = (val1 == val2);
228                                 break;
229                         case CEXPR_NEQ:
230                                 s[++sp] = (val1 != val2);
231                                 break;
232                         default:
233                                 BUG();
234                                 return 0;
235                         }
236                         break;
237                 case CEXPR_NAMES:
238                         if (sp == (CEXPR_MAXDEPTH-1))
239                                 return 0;
240                         c = scontext;
241                         if (e->attr & CEXPR_TARGET)
242                                 c = tcontext;
243                         else if (e->attr & CEXPR_XTARGET) {
244                                 c = xcontext;
245                                 if (!c) {
246                                         BUG();
247                                         return 0;
248                                 }
249                         }
250                         if (e->attr & CEXPR_USER)
251                                 val1 = c->user;
252                         else if (e->attr & CEXPR_ROLE)
253                                 val1 = c->role;
254                         else if (e->attr & CEXPR_TYPE)
255                                 val1 = c->type;
256                         else {
257                                 BUG();
258                                 return 0;
259                         }
260
261                         switch (e->op) {
262                         case CEXPR_EQ:
263                                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
264                                 break;
265                         case CEXPR_NEQ:
266                                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
267                                 break;
268                         default:
269                                 BUG();
270                                 return 0;
271                         }
272                         break;
273                 default:
274                         BUG();
275                         return 0;
276                 }
277         }
278
279         BUG_ON(sp != 0);
280         return s[0];
281 }
282
283 /*
284  * Compute access vectors based on a context structure pair for
285  * the permissions in a particular class.
286  */
287 static int context_struct_compute_av(struct context *scontext,
288                                      struct context *tcontext,
289                                      u16 tclass,
290                                      u32 requested,
291                                      struct av_decision *avd)
292 {
293         struct constraint_node *constraint;
294         struct role_allow *ra;
295         struct avtab_key avkey;
296         struct avtab_node *node;
297         struct class_datum *tclass_datum;
298         struct ebitmap *sattr, *tattr;
299         struct ebitmap_node *snode, *tnode;
300         const struct selinux_class_perm *kdefs = &selinux_class_perm;
301         unsigned int i, j;
302
303         /*
304          * Remap extended Netlink classes for old policy versions.
305          * Do this here rather than socket_type_to_security_class()
306          * in case a newer policy version is loaded, allowing sockets
307          * to remain in the correct class.
308          */
309         if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
310                 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
311                     tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
312                         tclass = SECCLASS_NETLINK_SOCKET;
313
314         /*
315          * Initialize the access vectors to the default values.
316          */
317         avd->allowed = 0;
318         avd->decided = 0xffffffff;
319         avd->auditallow = 0;
320         avd->auditdeny = 0xffffffff;
321         avd->seqno = latest_granting;
322
323         /*
324          * Check for all the invalid cases.
325          * - tclass 0
326          * - tclass > policy and > kernel
327          * - tclass > policy but is a userspace class
328          * - tclass > policy but we do not allow unknowns
329          */
330         if (unlikely(!tclass))
331                 goto inval_class;
332         if (unlikely(tclass > policydb.p_classes.nprim))
333                 if (tclass > kdefs->cts_len ||
334                     !kdefs->class_to_string[tclass - 1] ||
335                     !policydb.allow_unknown)
336                         goto inval_class;
337
338         /*
339          * Kernel class and we allow unknown so pad the allow decision
340          * the pad will be all 1 for unknown classes.
341          */
342         if (tclass <= kdefs->cts_len && policydb.allow_unknown)
343                 avd->allowed = policydb.undefined_perms[tclass - 1];
344
345         /*
346          * Not in policy. Since decision is completed (all 1 or all 0) return.
347          */
348         if (unlikely(tclass > policydb.p_classes.nprim))
349                 return 0;
350
351         tclass_datum = policydb.class_val_to_struct[tclass - 1];
352
353         /*
354          * If a specific type enforcement rule was defined for
355          * this permission check, then use it.
356          */
357         avkey.target_class = tclass;
358         avkey.specified = AVTAB_AV;
359         sattr = &policydb.type_attr_map[scontext->type - 1];
360         tattr = &policydb.type_attr_map[tcontext->type - 1];
361         ebitmap_for_each_positive_bit(sattr, snode, i) {
362                 ebitmap_for_each_positive_bit(tattr, tnode, j) {
363                         avkey.source_type = i + 1;
364                         avkey.target_type = j + 1;
365                         for (node = avtab_search_node(&policydb.te_avtab, &avkey);
366                              node != NULL;
367                              node = avtab_search_node_next(node, avkey.specified)) {
368                                 if (node->key.specified == AVTAB_ALLOWED)
369                                         avd->allowed |= node->datum.data;
370                                 else if (node->key.specified == AVTAB_AUDITALLOW)
371                                         avd->auditallow |= node->datum.data;
372                                 else if (node->key.specified == AVTAB_AUDITDENY)
373                                         avd->auditdeny &= node->datum.data;
374                         }
375
376                         /* Check conditional av table for additional permissions */
377                         cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
378
379                 }
380         }
381
382         /*
383          * Remove any permissions prohibited by a constraint (this includes
384          * the MLS policy).
385          */
386         constraint = tclass_datum->constraints;
387         while (constraint) {
388                 if ((constraint->permissions & (avd->allowed)) &&
389                     !constraint_expr_eval(scontext, tcontext, NULL,
390                                           constraint->expr)) {
391                         avd->allowed = (avd->allowed) & ~(constraint->permissions);
392                 }
393                 constraint = constraint->next;
394         }
395
396         /*
397          * If checking process transition permission and the
398          * role is changing, then check the (current_role, new_role)
399          * pair.
400          */
401         if (tclass == SECCLASS_PROCESS &&
402             (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
403             scontext->role != tcontext->role) {
404                 for (ra = policydb.role_allow; ra; ra = ra->next) {
405                         if (scontext->role == ra->role &&
406                             tcontext->role == ra->new_role)
407                                 break;
408                 }
409                 if (!ra)
410                         avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
411                                                         PROCESS__DYNTRANSITION);
412         }
413
414         return 0;
415
416 inval_class:
417         printk(KERN_ERR "%s:  unrecognized class %d\n", __func__, tclass);
418         return -EINVAL;
419 }
420
421 /*
422  * Given a sid find if the type has the permissive flag set
423  */
424 int security_permissive_sid(u32 sid)
425 {
426         struct context *context;
427         u32 type;
428         int rc;
429
430         POLICY_RDLOCK;
431
432         context = sidtab_search(&sidtab, sid);
433         BUG_ON(!context);
434
435         type = context->type;
436         /*
437          * we are intentionally using type here, not type-1, the 0th bit may
438          * someday indicate that we are globally setting permissive in policy.
439          */
440         rc = ebitmap_get_bit(&policydb.permissive_map, type);
441
442         POLICY_RDUNLOCK;
443         return rc;
444 }
445
446 static int security_validtrans_handle_fail(struct context *ocontext,
447                                            struct context *ncontext,
448                                            struct context *tcontext,
449                                            u16 tclass)
450 {
451         char *o = NULL, *n = NULL, *t = NULL;
452         u32 olen, nlen, tlen;
453
454         if (context_struct_to_string(ocontext, &o, &olen) < 0)
455                 goto out;
456         if (context_struct_to_string(ncontext, &n, &nlen) < 0)
457                 goto out;
458         if (context_struct_to_string(tcontext, &t, &tlen) < 0)
459                 goto out;
460         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
461                   "security_validate_transition:  denied for"
462                   " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
463                   o, n, t, policydb.p_class_val_to_name[tclass-1]);
464 out:
465         kfree(o);
466         kfree(n);
467         kfree(t);
468
469         if (!selinux_enforcing)
470                 return 0;
471         return -EPERM;
472 }
473
474 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
475                                  u16 tclass)
476 {
477         struct context *ocontext;
478         struct context *ncontext;
479         struct context *tcontext;
480         struct class_datum *tclass_datum;
481         struct constraint_node *constraint;
482         int rc = 0;
483
484         if (!ss_initialized)
485                 return 0;
486
487         POLICY_RDLOCK;
488
489         /*
490          * Remap extended Netlink classes for old policy versions.
491          * Do this here rather than socket_type_to_security_class()
492          * in case a newer policy version is loaded, allowing sockets
493          * to remain in the correct class.
494          */
495         if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
496                 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
497                     tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
498                         tclass = SECCLASS_NETLINK_SOCKET;
499
500         if (!tclass || tclass > policydb.p_classes.nprim) {
501                 printk(KERN_ERR "security_validate_transition:  "
502                        "unrecognized class %d\n", tclass);
503                 rc = -EINVAL;
504                 goto out;
505         }
506         tclass_datum = policydb.class_val_to_struct[tclass - 1];
507
508         ocontext = sidtab_search(&sidtab, oldsid);
509         if (!ocontext) {
510                 printk(KERN_ERR "security_validate_transition: "
511                        " unrecognized SID %d\n", oldsid);
512                 rc = -EINVAL;
513                 goto out;
514         }
515
516         ncontext = sidtab_search(&sidtab, newsid);
517         if (!ncontext) {
518                 printk(KERN_ERR "security_validate_transition: "
519                        " unrecognized SID %d\n", newsid);
520                 rc = -EINVAL;
521                 goto out;
522         }
523
524         tcontext = sidtab_search(&sidtab, tasksid);
525         if (!tcontext) {
526                 printk(KERN_ERR "security_validate_transition: "
527                        " unrecognized SID %d\n", tasksid);
528                 rc = -EINVAL;
529                 goto out;
530         }
531
532         constraint = tclass_datum->validatetrans;
533         while (constraint) {
534                 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
535                                           constraint->expr)) {
536                         rc = security_validtrans_handle_fail(ocontext, ncontext,
537                                                              tcontext, tclass);
538                         goto out;
539                 }
540                 constraint = constraint->next;
541         }
542
543 out:
544         POLICY_RDUNLOCK;
545         return rc;
546 }
547
548 /**
549  * security_compute_av - Compute access vector decisions.
550  * @ssid: source security identifier
551  * @tsid: target security identifier
552  * @tclass: target security class
553  * @requested: requested permissions
554  * @avd: access vector decisions
555  *
556  * Compute a set of access vector decisions based on the
557  * SID pair (@ssid, @tsid) for the permissions in @tclass.
558  * Return -%EINVAL if any of the parameters are invalid or %0
559  * if the access vector decisions were computed successfully.
560  */
561 int security_compute_av(u32 ssid,
562                         u32 tsid,
563                         u16 tclass,
564                         u32 requested,
565                         struct av_decision *avd)
566 {
567         struct context *scontext = NULL, *tcontext = NULL;
568         int rc = 0;
569
570         if (!ss_initialized) {
571                 avd->allowed = 0xffffffff;
572                 avd->decided = 0xffffffff;
573                 avd->auditallow = 0;
574                 avd->auditdeny = 0xffffffff;
575                 avd->seqno = latest_granting;
576                 return 0;
577         }
578
579         POLICY_RDLOCK;
580
581         scontext = sidtab_search(&sidtab, ssid);
582         if (!scontext) {
583                 printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
584                        ssid);
585                 rc = -EINVAL;
586                 goto out;
587         }
588         tcontext = sidtab_search(&sidtab, tsid);
589         if (!tcontext) {
590                 printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
591                        tsid);
592                 rc = -EINVAL;
593                 goto out;
594         }
595
596         rc = context_struct_compute_av(scontext, tcontext, tclass,
597                                        requested, avd);
598 out:
599         POLICY_RDUNLOCK;
600         return rc;
601 }
602
603 /*
604  * Write the security context string representation of
605  * the context structure `context' into a dynamically
606  * allocated string of the correct size.  Set `*scontext'
607  * to point to this string and set `*scontext_len' to
608  * the length of the string.
609  */
610 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
611 {
612         char *scontextp;
613
614         *scontext = NULL;
615         *scontext_len = 0;
616
617         /* Compute the size of the context. */
618         *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
619         *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
620         *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
621         *scontext_len += mls_compute_context_len(context);
622
623         /* Allocate space for the context; caller must free this space. */
624         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
625         if (!scontextp) {
626                 return -ENOMEM;
627         }
628         *scontext = scontextp;
629
630         /*
631          * Copy the user name, role name and type name into the context.
632          */
633         sprintf(scontextp, "%s:%s:%s",
634                 policydb.p_user_val_to_name[context->user - 1],
635                 policydb.p_role_val_to_name[context->role - 1],
636                 policydb.p_type_val_to_name[context->type - 1]);
637         scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
638                      1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
639                      1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
640
641         mls_sid_to_context(context, &scontextp);
642
643         *scontextp = 0;
644
645         return 0;
646 }
647
648 #include "initial_sid_to_string.h"
649
650 const char *security_get_initial_sid_context(u32 sid)
651 {
652         if (unlikely(sid > SECINITSID_NUM))
653                 return NULL;
654         return initial_sid_to_string[sid];
655 }
656
657 /**
658  * security_sid_to_context - Obtain a context for a given SID.
659  * @sid: security identifier, SID
660  * @scontext: security context
661  * @scontext_len: length in bytes
662  *
663  * Write the string representation of the context associated with @sid
664  * into a dynamically allocated string of the correct size.  Set @scontext
665  * to point to this string and set @scontext_len to the length of the string.
666  */
667 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
668 {
669         struct context *context;
670         int rc = 0;
671
672         *scontext = NULL;
673         *scontext_len  = 0;
674
675         if (!ss_initialized) {
676                 if (sid <= SECINITSID_NUM) {
677                         char *scontextp;
678
679                         *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
680                         scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
681                         if (!scontextp) {
682                                 rc = -ENOMEM;
683                                 goto out;
684                         }
685                         strcpy(scontextp, initial_sid_to_string[sid]);
686                         *scontext = scontextp;
687                         goto out;
688                 }
689                 printk(KERN_ERR "security_sid_to_context:  called before initial "
690                        "load_policy on unknown SID %d\n", sid);
691                 rc = -EINVAL;
692                 goto out;
693         }
694         POLICY_RDLOCK;
695         context = sidtab_search(&sidtab, sid);
696         if (!context) {
697                 printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
698                        "%d\n", sid);
699                 rc = -EINVAL;
700                 goto out_unlock;
701         }
702         rc = context_struct_to_string(context, scontext, scontext_len);
703 out_unlock:
704         POLICY_RDUNLOCK;
705 out:
706         return rc;
707
708 }
709
710 static int security_context_to_sid_core(char *scontext, u32 scontext_len,
711                                         u32 *sid, u32 def_sid, gfp_t gfp_flags)
712 {
713         char *scontext2;
714         struct context context;
715         struct role_datum *role;
716         struct type_datum *typdatum;
717         struct user_datum *usrdatum;
718         char *scontextp, *p, oldc;
719         int rc = 0;
720
721         if (!ss_initialized) {
722                 int i;
723
724                 for (i = 1; i < SECINITSID_NUM; i++) {
725                         if (!strcmp(initial_sid_to_string[i], scontext)) {
726                                 *sid = i;
727                                 goto out;
728                         }
729                 }
730                 *sid = SECINITSID_KERNEL;
731                 goto out;
732         }
733         *sid = SECSID_NULL;
734
735         /* Copy the string so that we can modify the copy as we parse it.
736            The string should already by null terminated, but we append a
737            null suffix to the copy to avoid problems with the existing
738            attr package, which doesn't view the null terminator as part
739            of the attribute value. */
740         scontext2 = kmalloc(scontext_len+1, gfp_flags);
741         if (!scontext2) {
742                 rc = -ENOMEM;
743                 goto out;
744         }
745         memcpy(scontext2, scontext, scontext_len);
746         scontext2[scontext_len] = 0;
747
748         context_init(&context);
749         *sid = SECSID_NULL;
750
751         POLICY_RDLOCK;
752
753         /* Parse the security context. */
754
755         rc = -EINVAL;
756         scontextp = (char *) scontext2;
757
758         /* Extract the user. */
759         p = scontextp;
760         while (*p && *p != ':')
761                 p++;
762
763         if (*p == 0)
764                 goto out_unlock;
765
766         *p++ = 0;
767
768         usrdatum = hashtab_search(policydb.p_users.table, scontextp);
769         if (!usrdatum)
770                 goto out_unlock;
771
772         context.user = usrdatum->value;
773
774         /* Extract role. */
775         scontextp = p;
776         while (*p && *p != ':')
777                 p++;
778
779         if (*p == 0)
780                 goto out_unlock;
781
782         *p++ = 0;
783
784         role = hashtab_search(policydb.p_roles.table, scontextp);
785         if (!role)
786                 goto out_unlock;
787         context.role = role->value;
788
789         /* Extract type. */
790         scontextp = p;
791         while (*p && *p != ':')
792                 p++;
793         oldc = *p;
794         *p++ = 0;
795
796         typdatum = hashtab_search(policydb.p_types.table, scontextp);
797         if (!typdatum)
798                 goto out_unlock;
799
800         context.type = typdatum->value;
801
802         rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
803         if (rc)
804                 goto out_unlock;
805
806         if ((p - scontext2) < scontext_len) {
807                 rc = -EINVAL;
808                 goto out_unlock;
809         }
810
811         /* Check the validity of the new context. */
812         if (!policydb_context_isvalid(&policydb, &context)) {
813                 rc = -EINVAL;
814                 goto out_unlock;
815         }
816         /* Obtain the new sid. */
817         rc = sidtab_context_to_sid(&sidtab, &context, sid);
818 out_unlock:
819         POLICY_RDUNLOCK;
820         context_destroy(&context);
821         kfree(scontext2);
822 out:
823         return rc;
824 }
825
826 /**
827  * security_context_to_sid - Obtain a SID for a given security context.
828  * @scontext: security context
829  * @scontext_len: length in bytes
830  * @sid: security identifier, SID
831  *
832  * Obtains a SID associated with the security context that
833  * has the string representation specified by @scontext.
834  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
835  * memory is available, or 0 on success.
836  */
837 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
838 {
839         return security_context_to_sid_core(scontext, scontext_len,
840                                             sid, SECSID_NULL, GFP_KERNEL);
841 }
842
843 /**
844  * security_context_to_sid_default - Obtain a SID for a given security context,
845  * falling back to specified default if needed.
846  *
847  * @scontext: security context
848  * @scontext_len: length in bytes
849  * @sid: security identifier, SID
850  * @def_sid: default SID to assign on error
851  *
852  * Obtains a SID associated with the security context that
853  * has the string representation specified by @scontext.
854  * The default SID is passed to the MLS layer to be used to allow
855  * kernel labeling of the MLS field if the MLS field is not present
856  * (for upgrading to MLS without full relabel).
857  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
858  * memory is available, or 0 on success.
859  */
860 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid,
861                                     u32 def_sid, gfp_t gfp_flags)
862 {
863         return security_context_to_sid_core(scontext, scontext_len,
864                                             sid, def_sid, gfp_flags);
865 }
866
867 static int compute_sid_handle_invalid_context(
868         struct context *scontext,
869         struct context *tcontext,
870         u16 tclass,
871         struct context *newcontext)
872 {
873         char *s = NULL, *t = NULL, *n = NULL;
874         u32 slen, tlen, nlen;
875
876         if (context_struct_to_string(scontext, &s, &slen) < 0)
877                 goto out;
878         if (context_struct_to_string(tcontext, &t, &tlen) < 0)
879                 goto out;
880         if (context_struct_to_string(newcontext, &n, &nlen) < 0)
881                 goto out;
882         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
883                   "security_compute_sid:  invalid context %s"
884                   " for scontext=%s"
885                   " tcontext=%s"
886                   " tclass=%s",
887                   n, s, t, policydb.p_class_val_to_name[tclass-1]);
888 out:
889         kfree(s);
890         kfree(t);
891         kfree(n);
892         if (!selinux_enforcing)
893                 return 0;
894         return -EACCES;
895 }
896
897 static int security_compute_sid(u32 ssid,
898                                 u32 tsid,
899                                 u16 tclass,
900                                 u32 specified,
901                                 u32 *out_sid)
902 {
903         struct context *scontext = NULL, *tcontext = NULL, newcontext;
904         struct role_trans *roletr = NULL;
905         struct avtab_key avkey;
906         struct avtab_datum *avdatum;
907         struct avtab_node *node;
908         int rc = 0;
909
910         if (!ss_initialized) {
911                 switch (tclass) {
912                 case SECCLASS_PROCESS:
913                         *out_sid = ssid;
914                         break;
915                 default:
916                         *out_sid = tsid;
917                         break;
918                 }
919                 goto out;
920         }
921
922         context_init(&newcontext);
923
924         POLICY_RDLOCK;
925
926         scontext = sidtab_search(&sidtab, ssid);
927         if (!scontext) {
928                 printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
929                        ssid);
930                 rc = -EINVAL;
931                 goto out_unlock;
932         }
933         tcontext = sidtab_search(&sidtab, tsid);
934         if (!tcontext) {
935                 printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
936                        tsid);
937                 rc = -EINVAL;
938                 goto out_unlock;
939         }
940
941         /* Set the user identity. */
942         switch (specified) {
943         case AVTAB_TRANSITION:
944         case AVTAB_CHANGE:
945                 /* Use the process user identity. */
946                 newcontext.user = scontext->user;
947                 break;
948         case AVTAB_MEMBER:
949                 /* Use the related object owner. */
950                 newcontext.user = tcontext->user;
951                 break;
952         }
953
954         /* Set the role and type to default values. */
955         switch (tclass) {
956         case SECCLASS_PROCESS:
957                 /* Use the current role and type of process. */
958                 newcontext.role = scontext->role;
959                 newcontext.type = scontext->type;
960                 break;
961         default:
962                 /* Use the well-defined object role. */
963                 newcontext.role = OBJECT_R_VAL;
964                 /* Use the type of the related object. */
965                 newcontext.type = tcontext->type;
966         }
967
968         /* Look for a type transition/member/change rule. */
969         avkey.source_type = scontext->type;
970         avkey.target_type = tcontext->type;
971         avkey.target_class = tclass;
972         avkey.specified = specified;
973         avdatum = avtab_search(&policydb.te_avtab, &avkey);
974
975         /* If no permanent rule, also check for enabled conditional rules */
976         if(!avdatum) {
977                 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
978                 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
979                         if (node->key.specified & AVTAB_ENABLED) {
980                                 avdatum = &node->datum;
981                                 break;
982                         }
983                 }
984         }
985
986         if (avdatum) {
987                 /* Use the type from the type transition/member/change rule. */
988                 newcontext.type = avdatum->data;
989         }
990
991         /* Check for class-specific changes. */
992         switch (tclass) {
993         case SECCLASS_PROCESS:
994                 if (specified & AVTAB_TRANSITION) {
995                         /* Look for a role transition rule. */
996                         for (roletr = policydb.role_tr; roletr;
997                              roletr = roletr->next) {
998                                 if (roletr->role == scontext->role &&
999                                     roletr->type == tcontext->type) {
1000                                         /* Use the role transition rule. */
1001                                         newcontext.role = roletr->new_role;
1002                                         break;
1003                                 }
1004                         }
1005                 }
1006                 break;
1007         default:
1008                 break;
1009         }
1010
1011         /* Set the MLS attributes.
1012            This is done last because it may allocate memory. */
1013         rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1014         if (rc)
1015                 goto out_unlock;
1016
1017         /* Check the validity of the context. */
1018         if (!policydb_context_isvalid(&policydb, &newcontext)) {
1019                 rc = compute_sid_handle_invalid_context(scontext,
1020                                                         tcontext,
1021                                                         tclass,
1022                                                         &newcontext);
1023                 if (rc)
1024                         goto out_unlock;
1025         }
1026         /* Obtain the sid for the context. */
1027         rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1028 out_unlock:
1029         POLICY_RDUNLOCK;
1030         context_destroy(&newcontext);
1031 out:
1032         return rc;
1033 }
1034
1035 /**
1036  * security_transition_sid - Compute the SID for a new subject/object.
1037  * @ssid: source security identifier
1038  * @tsid: target security identifier
1039  * @tclass: target security class
1040  * @out_sid: security identifier for new subject/object
1041  *
1042  * Compute a SID to use for labeling a new subject or object in the
1043  * class @tclass based on a SID pair (@ssid, @tsid).
1044  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1045  * if insufficient memory is available, or %0 if the new SID was
1046  * computed successfully.
1047  */
1048 int security_transition_sid(u32 ssid,
1049                             u32 tsid,
1050                             u16 tclass,
1051                             u32 *out_sid)
1052 {
1053         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1054 }
1055
1056 /**
1057  * security_member_sid - Compute the SID for member selection.
1058  * @ssid: source security identifier
1059  * @tsid: target security identifier
1060  * @tclass: target security class
1061  * @out_sid: security identifier for selected member
1062  *
1063  * Compute a SID to use when selecting a member of a polyinstantiated
1064  * object of class @tclass based on a SID pair (@ssid, @tsid).
1065  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1066  * if insufficient memory is available, or %0 if the SID was
1067  * computed successfully.
1068  */
1069 int security_member_sid(u32 ssid,
1070                         u32 tsid,
1071                         u16 tclass,
1072                         u32 *out_sid)
1073 {
1074         return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1075 }
1076
1077 /**
1078  * security_change_sid - Compute the SID for object relabeling.
1079  * @ssid: source security identifier
1080  * @tsid: target security identifier
1081  * @tclass: target security class
1082  * @out_sid: security identifier for selected member
1083  *
1084  * Compute a SID to use for relabeling an object of class @tclass
1085  * based on a SID pair (@ssid, @tsid).
1086  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1087  * if insufficient memory is available, or %0 if the SID was
1088  * computed successfully.
1089  */
1090 int security_change_sid(u32 ssid,
1091                         u32 tsid,
1092                         u16 tclass,
1093                         u32 *out_sid)
1094 {
1095         return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1096 }
1097
1098 /*
1099  * Verify that each kernel class that is defined in the
1100  * policy is correct
1101  */
1102 static int validate_classes(struct policydb *p)
1103 {
1104         int i, j;
1105         struct class_datum *cladatum;
1106         struct perm_datum *perdatum;
1107         u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1108         u16 class_val;
1109         const struct selinux_class_perm *kdefs = &selinux_class_perm;
1110         const char *def_class, *def_perm, *pol_class;
1111         struct symtab *perms;
1112
1113         if (p->allow_unknown) {
1114                 u32 num_classes = kdefs->cts_len;
1115                 p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1116                 if (!p->undefined_perms)
1117                         return -ENOMEM;
1118         }
1119
1120         for (i = 1; i < kdefs->cts_len; i++) {
1121                 def_class = kdefs->class_to_string[i];
1122                 if (!def_class)
1123                         continue;
1124                 if (i > p->p_classes.nprim) {
1125                         printk(KERN_INFO
1126                                "SELinux:  class %s not defined in policy\n",
1127                                def_class);
1128                         if (p->reject_unknown)
1129                                 return -EINVAL;
1130                         if (p->allow_unknown)
1131                                 p->undefined_perms[i-1] = ~0U;
1132                         continue;
1133                 }
1134                 pol_class = p->p_class_val_to_name[i-1];
1135                 if (strcmp(pol_class, def_class)) {
1136                         printk(KERN_ERR
1137                                "SELinux:  class %d is incorrect, found %s but should be %s\n",
1138                                i, pol_class, def_class);
1139                         return -EINVAL;
1140                 }
1141         }
1142         for (i = 0; i < kdefs->av_pts_len; i++) {
1143                 class_val = kdefs->av_perm_to_string[i].tclass;
1144                 perm_val = kdefs->av_perm_to_string[i].value;
1145                 def_perm = kdefs->av_perm_to_string[i].name;
1146                 if (class_val > p->p_classes.nprim)
1147                         continue;
1148                 pol_class = p->p_class_val_to_name[class_val-1];
1149                 cladatum = hashtab_search(p->p_classes.table, pol_class);
1150                 BUG_ON(!cladatum);
1151                 perms = &cladatum->permissions;
1152                 nprim = 1 << (perms->nprim - 1);
1153                 if (perm_val > nprim) {
1154                         printk(KERN_INFO
1155                                "SELinux:  permission %s in class %s not defined in policy\n",
1156                                def_perm, pol_class);
1157                         if (p->reject_unknown)
1158                                 return -EINVAL;
1159                         if (p->allow_unknown)
1160                                 p->undefined_perms[class_val-1] |= perm_val;
1161                         continue;
1162                 }
1163                 perdatum = hashtab_search(perms->table, def_perm);
1164                 if (perdatum == NULL) {
1165                         printk(KERN_ERR
1166                                "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1167                                def_perm, pol_class);
1168                         return -EINVAL;
1169                 }
1170                 pol_val = 1 << (perdatum->value - 1);
1171                 if (pol_val != perm_val) {
1172                         printk(KERN_ERR
1173                                "SELinux:  permission %s in class %s has incorrect value\n",
1174                                def_perm, pol_class);
1175                         return -EINVAL;
1176                 }
1177         }
1178         for (i = 0; i < kdefs->av_inherit_len; i++) {
1179                 class_val = kdefs->av_inherit[i].tclass;
1180                 if (class_val > p->p_classes.nprim)
1181                         continue;
1182                 pol_class = p->p_class_val_to_name[class_val-1];
1183                 cladatum = hashtab_search(p->p_classes.table, pol_class);
1184                 BUG_ON(!cladatum);
1185                 if (!cladatum->comdatum) {
1186                         printk(KERN_ERR
1187                                "SELinux:  class %s should have an inherits clause but does not\n",
1188                                pol_class);
1189                         return -EINVAL;
1190                 }
1191                 tmp = kdefs->av_inherit[i].common_base;
1192                 common_pts_len = 0;
1193                 while (!(tmp & 0x01)) {
1194                         common_pts_len++;
1195                         tmp >>= 1;
1196                 }
1197                 perms = &cladatum->comdatum->permissions;
1198                 for (j = 0; j < common_pts_len; j++) {
1199                         def_perm = kdefs->av_inherit[i].common_pts[j];
1200                         if (j >= perms->nprim) {
1201                                 printk(KERN_INFO
1202                                        "SELinux:  permission %s in class %s not defined in policy\n",
1203                                        def_perm, pol_class);
1204                                 if (p->reject_unknown)
1205                                         return -EINVAL;
1206                                 if (p->allow_unknown)
1207                                         p->undefined_perms[class_val-1] |= (1 << j);
1208                                 continue;
1209                         }
1210                         perdatum = hashtab_search(perms->table, def_perm);
1211                         if (perdatum == NULL) {
1212                                 printk(KERN_ERR
1213                                        "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1214                                        def_perm, pol_class);
1215                                 return -EINVAL;
1216                         }
1217                         if (perdatum->value != j + 1) {
1218                                 printk(KERN_ERR
1219                                        "SELinux:  permission %s in class %s has incorrect value\n",
1220                                        def_perm, pol_class);
1221                                 return -EINVAL;
1222                         }
1223                 }
1224         }
1225         return 0;
1226 }
1227
1228 /* Clone the SID into the new SID table. */
1229 static int clone_sid(u32 sid,
1230                      struct context *context,
1231                      void *arg)
1232 {
1233         struct sidtab *s = arg;
1234
1235         return sidtab_insert(s, sid, context);
1236 }
1237
1238 static inline int convert_context_handle_invalid_context(struct context *context)
1239 {
1240         int rc = 0;
1241
1242         if (selinux_enforcing) {
1243                 rc = -EINVAL;
1244         } else {
1245                 char *s;
1246                 u32 len;
1247
1248                 context_struct_to_string(context, &s, &len);
1249                 printk(KERN_ERR "SELinux:  context %s is invalid\n", s);
1250                 kfree(s);
1251         }
1252         return rc;
1253 }
1254
1255 struct convert_context_args {
1256         struct policydb *oldp;
1257         struct policydb *newp;
1258 };
1259
1260 /*
1261  * Convert the values in the security context
1262  * structure `c' from the values specified
1263  * in the policy `p->oldp' to the values specified
1264  * in the policy `p->newp'.  Verify that the
1265  * context is valid under the new policy.
1266  */
1267 static int convert_context(u32 key,
1268                            struct context *c,
1269                            void *p)
1270 {
1271         struct convert_context_args *args;
1272         struct context oldc;
1273         struct role_datum *role;
1274         struct type_datum *typdatum;
1275         struct user_datum *usrdatum;
1276         char *s;
1277         u32 len;
1278         int rc;
1279
1280         args = p;
1281
1282         rc = context_cpy(&oldc, c);
1283         if (rc)
1284                 goto out;
1285
1286         rc = -EINVAL;
1287
1288         /* Convert the user. */
1289         usrdatum = hashtab_search(args->newp->p_users.table,
1290                                   args->oldp->p_user_val_to_name[c->user - 1]);
1291         if (!usrdatum) {
1292                 goto bad;
1293         }
1294         c->user = usrdatum->value;
1295
1296         /* Convert the role. */
1297         role = hashtab_search(args->newp->p_roles.table,
1298                               args->oldp->p_role_val_to_name[c->role - 1]);
1299         if (!role) {
1300                 goto bad;
1301         }
1302         c->role = role->value;
1303
1304         /* Convert the type. */
1305         typdatum = hashtab_search(args->newp->p_types.table,
1306                                   args->oldp->p_type_val_to_name[c->type - 1]);
1307         if (!typdatum) {
1308                 goto bad;
1309         }
1310         c->type = typdatum->value;
1311
1312         rc = mls_convert_context(args->oldp, args->newp, c);
1313         if (rc)
1314                 goto bad;
1315
1316         /* Check the validity of the new context. */
1317         if (!policydb_context_isvalid(args->newp, c)) {
1318                 rc = convert_context_handle_invalid_context(&oldc);
1319                 if (rc)
1320                         goto bad;
1321         }
1322
1323         context_destroy(&oldc);
1324 out:
1325         return rc;
1326 bad:
1327         context_struct_to_string(&oldc, &s, &len);
1328         context_destroy(&oldc);
1329         printk(KERN_ERR "SELinux:  invalidating context %s\n", s);
1330         kfree(s);
1331         goto out;
1332 }
1333
1334 static void security_load_policycaps(void)
1335 {
1336         selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1337                                                   POLICYDB_CAPABILITY_NETPEER);
1338         selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1339                                                   POLICYDB_CAPABILITY_OPENPERM);
1340 }
1341
1342 extern void selinux_complete_init(void);
1343 static int security_preserve_bools(struct policydb *p);
1344
1345 /**
1346  * security_load_policy - Load a security policy configuration.
1347  * @data: binary policy data
1348  * @len: length of data in bytes
1349  *
1350  * Load a new set of security policy configuration data,
1351  * validate it and convert the SID table as necessary.
1352  * This function will flush the access vector cache after
1353  * loading the new policy.
1354  */
1355 int security_load_policy(void *data, size_t len)
1356 {
1357         struct policydb oldpolicydb, newpolicydb;
1358         struct sidtab oldsidtab, newsidtab;
1359         struct convert_context_args args;
1360         u32 seqno;
1361         int rc = 0;
1362         struct policy_file file = { data, len }, *fp = &file;
1363
1364         LOAD_LOCK;
1365
1366         if (!ss_initialized) {
1367                 avtab_cache_init();
1368                 if (policydb_read(&policydb, fp)) {
1369                         LOAD_UNLOCK;
1370                         avtab_cache_destroy();
1371                         return -EINVAL;
1372                 }
1373                 if (policydb_load_isids(&policydb, &sidtab)) {
1374                         LOAD_UNLOCK;
1375                         policydb_destroy(&policydb);
1376                         avtab_cache_destroy();
1377                         return -EINVAL;
1378                 }
1379                 /* Verify that the kernel defined classes are correct. */
1380                 if (validate_classes(&policydb)) {
1381                         printk(KERN_ERR
1382                                "SELinux:  the definition of a class is incorrect\n");
1383                         LOAD_UNLOCK;
1384                         sidtab_destroy(&sidtab);
1385                         policydb_destroy(&policydb);
1386                         avtab_cache_destroy();
1387                         return -EINVAL;
1388                 }
1389                 security_load_policycaps();
1390                 policydb_loaded_version = policydb.policyvers;
1391                 ss_initialized = 1;
1392                 seqno = ++latest_granting;
1393                 LOAD_UNLOCK;
1394                 selinux_complete_init();
1395                 avc_ss_reset(seqno);
1396                 selnl_notify_policyload(seqno);
1397                 selinux_netlbl_cache_invalidate();
1398                 selinux_xfrm_notify_policyload();
1399                 return 0;
1400         }
1401
1402 #if 0
1403         sidtab_hash_eval(&sidtab, "sids");
1404 #endif
1405
1406         if (policydb_read(&newpolicydb, fp)) {
1407                 LOAD_UNLOCK;
1408                 return -EINVAL;
1409         }
1410
1411         sidtab_init(&newsidtab);
1412
1413         /* Verify that the kernel defined classes are correct. */
1414         if (validate_classes(&newpolicydb)) {
1415                 printk(KERN_ERR
1416                        "SELinux:  the definition of a class is incorrect\n");
1417                 rc = -EINVAL;
1418                 goto err;
1419         }
1420
1421         rc = security_preserve_bools(&newpolicydb);
1422         if (rc) {
1423                 printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1424                 goto err;
1425         }
1426
1427         /* Clone the SID table. */
1428         sidtab_shutdown(&sidtab);
1429         if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1430                 rc = -ENOMEM;
1431                 goto err;
1432         }
1433
1434         /* Convert the internal representations of contexts
1435            in the new SID table and remove invalid SIDs. */
1436         args.oldp = &policydb;
1437         args.newp = &newpolicydb;
1438         sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1439
1440         /* Save the old policydb and SID table to free later. */
1441         memcpy(&oldpolicydb, &policydb, sizeof policydb);
1442         sidtab_set(&oldsidtab, &sidtab);
1443
1444         /* Install the new policydb and SID table. */
1445         POLICY_WRLOCK;
1446         memcpy(&policydb, &newpolicydb, sizeof policydb);
1447         sidtab_set(&sidtab, &newsidtab);
1448         security_load_policycaps();
1449         seqno = ++latest_granting;
1450         policydb_loaded_version = policydb.policyvers;
1451         POLICY_WRUNLOCK;
1452         LOAD_UNLOCK;
1453
1454         /* Free the old policydb and SID table. */
1455         policydb_destroy(&oldpolicydb);
1456         sidtab_destroy(&oldsidtab);
1457
1458         avc_ss_reset(seqno);
1459         selnl_notify_policyload(seqno);
1460         selinux_netlbl_cache_invalidate();
1461         selinux_xfrm_notify_policyload();
1462
1463         return 0;
1464
1465 err:
1466         LOAD_UNLOCK;
1467         sidtab_destroy(&newsidtab);
1468         policydb_destroy(&newpolicydb);
1469         return rc;
1470
1471 }
1472
1473 /**
1474  * security_port_sid - Obtain the SID for a port.
1475  * @domain: communication domain aka address family
1476  * @type: socket type
1477  * @protocol: protocol number
1478  * @port: port number
1479  * @out_sid: security identifier
1480  */
1481 int security_port_sid(u16 domain,
1482                       u16 type,
1483                       u8 protocol,
1484                       u16 port,
1485                       u32 *out_sid)
1486 {
1487         struct ocontext *c;
1488         int rc = 0;
1489
1490         POLICY_RDLOCK;
1491
1492         c = policydb.ocontexts[OCON_PORT];
1493         while (c) {
1494                 if (c->u.port.protocol == protocol &&
1495                     c->u.port.low_port <= port &&
1496                     c->u.port.high_port >= port)
1497                         break;
1498                 c = c->next;
1499         }
1500
1501         if (c) {
1502                 if (!c->sid[0]) {
1503                         rc = sidtab_context_to_sid(&sidtab,
1504                                                    &c->context[0],
1505                                                    &c->sid[0]);
1506                         if (rc)
1507                                 goto out;
1508                 }
1509                 *out_sid = c->sid[0];
1510         } else {
1511                 *out_sid = SECINITSID_PORT;
1512         }
1513
1514 out:
1515         POLICY_RDUNLOCK;
1516         return rc;
1517 }
1518
1519 /**
1520  * security_netif_sid - Obtain the SID for a network interface.
1521  * @name: interface name
1522  * @if_sid: interface SID
1523  */
1524 int security_netif_sid(char *name, u32 *if_sid)
1525 {
1526         int rc = 0;
1527         struct ocontext *c;
1528
1529         POLICY_RDLOCK;
1530
1531         c = policydb.ocontexts[OCON_NETIF];
1532         while (c) {
1533                 if (strcmp(name, c->u.name) == 0)
1534                         break;
1535                 c = c->next;
1536         }
1537
1538         if (c) {
1539                 if (!c->sid[0] || !c->sid[1]) {
1540                         rc = sidtab_context_to_sid(&sidtab,
1541                                                   &c->context[0],
1542                                                   &c->sid[0]);
1543                         if (rc)
1544                                 goto out;
1545                         rc = sidtab_context_to_sid(&sidtab,
1546                                                    &c->context[1],
1547                                                    &c->sid[1]);
1548                         if (rc)
1549                                 goto out;
1550                 }
1551                 *if_sid = c->sid[0];
1552         } else
1553                 *if_sid = SECINITSID_NETIF;
1554
1555 out:
1556         POLICY_RDUNLOCK;
1557         return rc;
1558 }
1559
1560 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1561 {
1562         int i, fail = 0;
1563
1564         for(i = 0; i < 4; i++)
1565                 if(addr[i] != (input[i] & mask[i])) {
1566                         fail = 1;
1567                         break;
1568                 }
1569
1570         return !fail;
1571 }
1572
1573 /**
1574  * security_node_sid - Obtain the SID for a node (host).
1575  * @domain: communication domain aka address family
1576  * @addrp: address
1577  * @addrlen: address length in bytes
1578  * @out_sid: security identifier
1579  */
1580 int security_node_sid(u16 domain,
1581                       void *addrp,
1582                       u32 addrlen,
1583                       u32 *out_sid)
1584 {
1585         int rc = 0;
1586         struct ocontext *c;
1587
1588         POLICY_RDLOCK;
1589
1590         switch (domain) {
1591         case AF_INET: {
1592                 u32 addr;
1593
1594                 if (addrlen != sizeof(u32)) {
1595                         rc = -EINVAL;
1596                         goto out;
1597                 }
1598
1599                 addr = *((u32 *)addrp);
1600
1601                 c = policydb.ocontexts[OCON_NODE];
1602                 while (c) {
1603                         if (c->u.node.addr == (addr & c->u.node.mask))
1604                                 break;
1605                         c = c->next;
1606                 }
1607                 break;
1608         }
1609
1610         case AF_INET6:
1611                 if (addrlen != sizeof(u64) * 2) {
1612                         rc = -EINVAL;
1613                         goto out;
1614                 }
1615                 c = policydb.ocontexts[OCON_NODE6];
1616                 while (c) {
1617                         if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1618                                                 c->u.node6.mask))
1619                                 break;
1620                         c = c->next;
1621                 }
1622                 break;
1623
1624         default:
1625                 *out_sid = SECINITSID_NODE;
1626                 goto out;
1627         }
1628
1629         if (c) {
1630                 if (!c->sid[0]) {
1631                         rc = sidtab_context_to_sid(&sidtab,
1632                                                    &c->context[0],
1633                                                    &c->sid[0]);
1634                         if (rc)
1635                                 goto out;
1636                 }
1637                 *out_sid = c->sid[0];
1638         } else {
1639                 *out_sid = SECINITSID_NODE;
1640         }
1641
1642 out:
1643         POLICY_RDUNLOCK;
1644         return rc;
1645 }
1646
1647 #define SIDS_NEL 25
1648
1649 /**
1650  * security_get_user_sids - Obtain reachable SIDs for a user.
1651  * @fromsid: starting SID
1652  * @username: username
1653  * @sids: array of reachable SIDs for user
1654  * @nel: number of elements in @sids
1655  *
1656  * Generate the set of SIDs for legal security contexts
1657  * for a given user that can be reached by @fromsid.
1658  * Set *@sids to point to a dynamically allocated
1659  * array containing the set of SIDs.  Set *@nel to the
1660  * number of elements in the array.
1661  */
1662
1663 int security_get_user_sids(u32 fromsid,
1664                            char *username,
1665                            u32 **sids,
1666                            u32 *nel)
1667 {
1668         struct context *fromcon, usercon;
1669         u32 *mysids = NULL, *mysids2, sid;
1670         u32 mynel = 0, maxnel = SIDS_NEL;
1671         struct user_datum *user;
1672         struct role_datum *role;
1673         struct ebitmap_node *rnode, *tnode;
1674         int rc = 0, i, j;
1675
1676         *sids = NULL;
1677         *nel = 0;
1678
1679         if (!ss_initialized)
1680                 goto out;
1681
1682         POLICY_RDLOCK;
1683
1684         fromcon = sidtab_search(&sidtab, fromsid);
1685         if (!fromcon) {
1686                 rc = -EINVAL;
1687                 goto out_unlock;
1688         }
1689
1690         user = hashtab_search(policydb.p_users.table, username);
1691         if (!user) {
1692                 rc = -EINVAL;
1693                 goto out_unlock;
1694         }
1695         usercon.user = user->value;
1696
1697         mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1698         if (!mysids) {
1699                 rc = -ENOMEM;
1700                 goto out_unlock;
1701         }
1702
1703         ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1704                 role = policydb.role_val_to_struct[i];
1705                 usercon.role = i+1;
1706                 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1707                         usercon.type = j+1;
1708
1709                         if (mls_setup_user_range(fromcon, user, &usercon))
1710                                 continue;
1711
1712                         rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1713                         if (rc)
1714                                 goto out_unlock;
1715                         if (mynel < maxnel) {
1716                                 mysids[mynel++] = sid;
1717                         } else {
1718                                 maxnel += SIDS_NEL;
1719                                 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1720                                 if (!mysids2) {
1721                                         rc = -ENOMEM;
1722                                         goto out_unlock;
1723                                 }
1724                                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1725                                 kfree(mysids);
1726                                 mysids = mysids2;
1727                                 mysids[mynel++] = sid;
1728                         }
1729                 }
1730         }
1731
1732 out_unlock:
1733         POLICY_RDUNLOCK;
1734         if (rc || !mynel) {
1735                 kfree(mysids);
1736                 goto out;
1737         }
1738
1739         mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
1740         if (!mysids2) {
1741                 rc = -ENOMEM;
1742                 kfree(mysids);
1743                 goto out;
1744         }
1745         for (i = 0, j = 0; i < mynel; i++) {
1746                 rc = avc_has_perm_noaudit(fromsid, mysids[i],
1747                                           SECCLASS_PROCESS,
1748                                           PROCESS__TRANSITION, AVC_STRICT,
1749                                           NULL);
1750                 if (!rc)
1751                         mysids2[j++] = mysids[i];
1752                 cond_resched();
1753         }
1754         rc = 0;
1755         kfree(mysids);
1756         *sids = mysids2;
1757         *nel = j;
1758 out:
1759         return rc;
1760 }
1761
1762 /**
1763  * security_genfs_sid - Obtain a SID for a file in a filesystem
1764  * @fstype: filesystem type
1765  * @path: path from root of mount
1766  * @sclass: file security class
1767  * @sid: SID for path
1768  *
1769  * Obtain a SID to use for a file in a filesystem that
1770  * cannot support xattr or use a fixed labeling behavior like
1771  * transition SIDs or task SIDs.
1772  */
1773 int security_genfs_sid(const char *fstype,
1774                        char *path,
1775                        u16 sclass,
1776                        u32 *sid)
1777 {
1778         int len;
1779         struct genfs *genfs;
1780         struct ocontext *c;
1781         int rc = 0, cmp = 0;
1782
1783         while (path[0] == '/' && path[1] == '/')
1784                 path++;
1785
1786         POLICY_RDLOCK;
1787
1788         for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1789                 cmp = strcmp(fstype, genfs->fstype);
1790                 if (cmp <= 0)
1791                         break;
1792         }
1793
1794         if (!genfs || cmp) {
1795                 *sid = SECINITSID_UNLABELED;
1796                 rc = -ENOENT;
1797                 goto out;
1798         }
1799
1800         for (c = genfs->head; c; c = c->next) {
1801                 len = strlen(c->u.name);
1802                 if ((!c->v.sclass || sclass == c->v.sclass) &&
1803                     (strncmp(c->u.name, path, len) == 0))
1804                         break;
1805         }
1806
1807         if (!c) {
1808                 *sid = SECINITSID_UNLABELED;
1809                 rc = -ENOENT;
1810                 goto out;
1811         }
1812
1813         if (!c->sid[0]) {
1814                 rc = sidtab_context_to_sid(&sidtab,
1815                                            &c->context[0],
1816                                            &c->sid[0]);
1817                 if (rc)
1818                         goto out;
1819         }
1820
1821         *sid = c->sid[0];
1822 out:
1823         POLICY_RDUNLOCK;
1824         return rc;
1825 }
1826
1827 /**
1828  * security_fs_use - Determine how to handle labeling for a filesystem.
1829  * @fstype: filesystem type
1830  * @behavior: labeling behavior
1831  * @sid: SID for filesystem (superblock)
1832  */
1833 int security_fs_use(
1834         const char *fstype,
1835         unsigned int *behavior,
1836         u32 *sid)
1837 {
1838         int rc = 0;
1839         struct ocontext *c;
1840
1841         POLICY_RDLOCK;
1842
1843         c = policydb.ocontexts[OCON_FSUSE];
1844         while (c) {
1845                 if (strcmp(fstype, c->u.name) == 0)
1846                         break;
1847                 c = c->next;
1848         }
1849
1850         if (c) {
1851                 *behavior = c->v.behavior;
1852                 if (!c->sid[0]) {
1853                         rc = sidtab_context_to_sid(&sidtab,
1854                                                    &c->context[0],
1855                                                    &c->sid[0]);
1856                         if (rc)
1857                                 goto out;
1858                 }
1859                 *sid = c->sid[0];
1860         } else {
1861                 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1862                 if (rc) {
1863                         *behavior = SECURITY_FS_USE_NONE;
1864                         rc = 0;
1865                 } else {
1866                         *behavior = SECURITY_FS_USE_GENFS;
1867                 }
1868         }
1869
1870 out:
1871         POLICY_RDUNLOCK;
1872         return rc;
1873 }
1874
1875 int security_get_bools(int *len, char ***names, int **values)
1876 {
1877         int i, rc = -ENOMEM;
1878
1879         POLICY_RDLOCK;
1880         *names = NULL;
1881         *values = NULL;
1882
1883         *len = policydb.p_bools.nprim;
1884         if (!*len) {
1885                 rc = 0;
1886                 goto out;
1887         }
1888
1889        *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1890         if (!*names)
1891                 goto err;
1892
1893        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1894         if (!*values)
1895                 goto err;
1896
1897         for (i = 0; i < *len; i++) {
1898                 size_t name_len;
1899                 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1900                 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1901                (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1902                 if (!(*names)[i])
1903                         goto err;
1904                 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1905                 (*names)[i][name_len - 1] = 0;
1906         }
1907         rc = 0;
1908 out:
1909         POLICY_RDUNLOCK;
1910         return rc;
1911 err:
1912         if (*names) {
1913                 for (i = 0; i < *len; i++)
1914                         kfree((*names)[i]);
1915         }
1916         kfree(*values);
1917         goto out;
1918 }
1919
1920
1921 int security_set_bools(int len, int *values)
1922 {
1923         int i, rc = 0;
1924         int lenp, seqno = 0;
1925         struct cond_node *cur;
1926
1927         POLICY_WRLOCK;
1928
1929         lenp = policydb.p_bools.nprim;
1930         if (len != lenp) {
1931                 rc = -EFAULT;
1932                 goto out;
1933         }
1934
1935         for (i = 0; i < len; i++) {
1936                 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1937                         audit_log(current->audit_context, GFP_ATOMIC,
1938                                 AUDIT_MAC_CONFIG_CHANGE,
1939                                 "bool=%s val=%d old_val=%d auid=%u ses=%u",
1940                                 policydb.p_bool_val_to_name[i],
1941                                 !!values[i],
1942                                 policydb.bool_val_to_struct[i]->state,
1943                                 audit_get_loginuid(current),
1944                                 audit_get_sessionid(current));
1945                 }
1946                 if (values[i]) {
1947                         policydb.bool_val_to_struct[i]->state = 1;
1948                 } else {
1949                         policydb.bool_val_to_struct[i]->state = 0;
1950                 }
1951         }
1952
1953         for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1954                 rc = evaluate_cond_node(&policydb, cur);
1955                 if (rc)
1956                         goto out;
1957         }
1958
1959         seqno = ++latest_granting;
1960
1961 out:
1962         POLICY_WRUNLOCK;
1963         if (!rc) {
1964                 avc_ss_reset(seqno);
1965                 selnl_notify_policyload(seqno);
1966                 selinux_xfrm_notify_policyload();
1967         }
1968         return rc;
1969 }
1970
1971 int security_get_bool_value(int bool)
1972 {
1973         int rc = 0;
1974         int len;
1975
1976         POLICY_RDLOCK;
1977
1978         len = policydb.p_bools.nprim;
1979         if (bool >= len) {
1980                 rc = -EFAULT;
1981                 goto out;
1982         }
1983
1984         rc = policydb.bool_val_to_struct[bool]->state;
1985 out:
1986         POLICY_RDUNLOCK;
1987         return rc;
1988 }
1989
1990 static int security_preserve_bools(struct policydb *p)
1991 {
1992         int rc, nbools = 0, *bvalues = NULL, i;
1993         char **bnames = NULL;
1994         struct cond_bool_datum *booldatum;
1995         struct cond_node *cur;
1996
1997         rc = security_get_bools(&nbools, &bnames, &bvalues);
1998         if (rc)
1999                 goto out;
2000         for (i = 0; i < nbools; i++) {
2001                 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2002                 if (booldatum)
2003                         booldatum->state = bvalues[i];
2004         }
2005         for (cur = p->cond_list; cur != NULL; cur = cur->next) {
2006                 rc = evaluate_cond_node(p, cur);
2007                 if (rc)
2008                         goto out;
2009         }
2010
2011 out:
2012         if (bnames) {
2013                 for (i = 0; i < nbools; i++)
2014                         kfree(bnames[i]);
2015         }
2016         kfree(bnames);
2017         kfree(bvalues);
2018         return rc;
2019 }
2020
2021 /*
2022  * security_sid_mls_copy() - computes a new sid based on the given
2023  * sid and the mls portion of mls_sid.
2024  */
2025 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2026 {
2027         struct context *context1;
2028         struct context *context2;
2029         struct context newcon;
2030         char *s;
2031         u32 len;
2032         int rc = 0;
2033
2034         if (!ss_initialized || !selinux_mls_enabled) {
2035                 *new_sid = sid;
2036                 goto out;
2037         }
2038
2039         context_init(&newcon);
2040
2041         POLICY_RDLOCK;
2042         context1 = sidtab_search(&sidtab, sid);
2043         if (!context1) {
2044                 printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
2045                        "%d\n", sid);
2046                 rc = -EINVAL;
2047                 goto out_unlock;
2048         }
2049
2050         context2 = sidtab_search(&sidtab, mls_sid);
2051         if (!context2) {
2052                 printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
2053                        "%d\n", mls_sid);
2054                 rc = -EINVAL;
2055                 goto out_unlock;
2056         }
2057
2058         newcon.user = context1->user;
2059         newcon.role = context1->role;
2060         newcon.type = context1->type;
2061         rc = mls_context_cpy(&newcon, context2);
2062         if (rc)
2063                 goto out_unlock;
2064
2065         /* Check the validity of the new context. */
2066         if (!policydb_context_isvalid(&policydb, &newcon)) {
2067                 rc = convert_context_handle_invalid_context(&newcon);
2068                 if (rc)
2069                         goto bad;
2070         }
2071
2072         rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2073         goto out_unlock;
2074
2075 bad:
2076         if (!context_struct_to_string(&newcon, &s, &len)) {
2077                 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2078                           "security_sid_mls_copy: invalid context %s", s);
2079                 kfree(s);
2080         }
2081
2082 out_unlock:
2083         POLICY_RDUNLOCK;
2084         context_destroy(&newcon);
2085 out:
2086         return rc;
2087 }
2088
2089 /**
2090  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2091  * @nlbl_sid: NetLabel SID
2092  * @nlbl_type: NetLabel labeling protocol type
2093  * @xfrm_sid: XFRM SID
2094  *
2095  * Description:
2096  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2097  * resolved into a single SID it is returned via @peer_sid and the function
2098  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2099  * returns a negative value.  A table summarizing the behavior is below:
2100  *
2101  *                                 | function return |      @sid
2102  *   ------------------------------+-----------------+-----------------
2103  *   no peer labels                |        0        |    SECSID_NULL
2104  *   single peer label             |        0        |    <peer_label>
2105  *   multiple, consistent labels   |        0        |    <peer_label>
2106  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2107  *
2108  */
2109 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2110                                  u32 xfrm_sid,
2111                                  u32 *peer_sid)
2112 {
2113         int rc;
2114         struct context *nlbl_ctx;
2115         struct context *xfrm_ctx;
2116
2117         /* handle the common (which also happens to be the set of easy) cases
2118          * right away, these two if statements catch everything involving a
2119          * single or absent peer SID/label */
2120         if (xfrm_sid == SECSID_NULL) {
2121                 *peer_sid = nlbl_sid;
2122                 return 0;
2123         }
2124         /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2125          * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2126          * is present */
2127         if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2128                 *peer_sid = xfrm_sid;
2129                 return 0;
2130         }
2131
2132         /* we don't need to check ss_initialized here since the only way both
2133          * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2134          * security server was initialized and ss_initialized was true */
2135         if (!selinux_mls_enabled) {
2136                 *peer_sid = SECSID_NULL;
2137                 return 0;
2138         }
2139
2140         POLICY_RDLOCK;
2141
2142         nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2143         if (!nlbl_ctx) {
2144                 printk(KERN_ERR
2145                        "security_sid_mls_cmp:  unrecognized SID %d\n",
2146                        nlbl_sid);
2147                 rc = -EINVAL;
2148                 goto out_slowpath;
2149         }
2150         xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2151         if (!xfrm_ctx) {
2152                 printk(KERN_ERR
2153                        "security_sid_mls_cmp:  unrecognized SID %d\n",
2154                        xfrm_sid);
2155                 rc = -EINVAL;
2156                 goto out_slowpath;
2157         }
2158         rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2159
2160 out_slowpath:
2161         POLICY_RDUNLOCK;
2162         if (rc == 0)
2163                 /* at present NetLabel SIDs/labels really only carry MLS
2164                  * information so if the MLS portion of the NetLabel SID
2165                  * matches the MLS portion of the labeled XFRM SID/label
2166                  * then pass along the XFRM SID as it is the most
2167                  * expressive */
2168                 *peer_sid = xfrm_sid;
2169         else
2170                 *peer_sid = SECSID_NULL;
2171         return rc;
2172 }
2173
2174 static int get_classes_callback(void *k, void *d, void *args)
2175 {
2176         struct class_datum *datum = d;
2177         char *name = k, **classes = args;
2178         int value = datum->value - 1;
2179
2180         classes[value] = kstrdup(name, GFP_ATOMIC);
2181         if (!classes[value])
2182                 return -ENOMEM;
2183
2184         return 0;
2185 }
2186
2187 int security_get_classes(char ***classes, int *nclasses)
2188 {
2189         int rc = -ENOMEM;
2190
2191         POLICY_RDLOCK;
2192
2193         *nclasses = policydb.p_classes.nprim;
2194         *classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2195         if (!*classes)
2196                 goto out;
2197
2198         rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2199                         *classes);
2200         if (rc < 0) {
2201                 int i;
2202                 for (i = 0; i < *nclasses; i++)
2203                         kfree((*classes)[i]);
2204                 kfree(*classes);
2205         }
2206
2207 out:
2208         POLICY_RDUNLOCK;
2209         return rc;
2210 }
2211
2212 static int get_permissions_callback(void *k, void *d, void *args)
2213 {
2214         struct perm_datum *datum = d;
2215         char *name = k, **perms = args;
2216         int value = datum->value - 1;
2217
2218         perms[value] = kstrdup(name, GFP_ATOMIC);
2219         if (!perms[value])
2220                 return -ENOMEM;
2221
2222         return 0;
2223 }
2224
2225 int security_get_permissions(char *class, char ***perms, int *nperms)
2226 {
2227         int rc = -ENOMEM, i;
2228         struct class_datum *match;
2229
2230         POLICY_RDLOCK;
2231
2232         match = hashtab_search(policydb.p_classes.table, class);
2233         if (!match) {
2234                 printk(KERN_ERR "%s:  unrecognized class %s\n",
2235                         __func__, class);
2236                 rc = -EINVAL;
2237                 goto out;
2238         }
2239
2240         *nperms = match->permissions.nprim;
2241         *perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2242         if (!*perms)
2243                 goto out;
2244
2245         if (match->comdatum) {
2246                 rc = hashtab_map(match->comdatum->permissions.table,
2247                                 get_permissions_callback, *perms);
2248                 if (rc < 0)
2249                         goto err;
2250         }
2251
2252         rc = hashtab_map(match->permissions.table, get_permissions_callback,
2253                         *perms);
2254         if (rc < 0)
2255                 goto err;
2256
2257 out:
2258         POLICY_RDUNLOCK;
2259         return rc;
2260
2261 err:
2262         POLICY_RDUNLOCK;
2263         for (i = 0; i < *nperms; i++)
2264                 kfree((*perms)[i]);
2265         kfree(*perms);
2266         return rc;
2267 }
2268
2269 int security_get_reject_unknown(void)
2270 {
2271         return policydb.reject_unknown;
2272 }
2273
2274 int security_get_allow_unknown(void)
2275 {
2276         return policydb.allow_unknown;
2277 }
2278
2279 /**
2280  * security_policycap_supported - Check for a specific policy capability
2281  * @req_cap: capability
2282  *
2283  * Description:
2284  * This function queries the currently loaded policy to see if it supports the
2285  * capability specified by @req_cap.  Returns true (1) if the capability is
2286  * supported, false (0) if it isn't supported.
2287  *
2288  */
2289 int security_policycap_supported(unsigned int req_cap)
2290 {
2291         int rc;
2292
2293         POLICY_RDLOCK;
2294         rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2295         POLICY_RDUNLOCK;
2296
2297         return rc;
2298 }
2299
2300 struct selinux_audit_rule {
2301         u32 au_seqno;
2302         struct context au_ctxt;
2303 };
2304
2305 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
2306 {
2307         if (rule) {
2308                 context_destroy(&rule->au_ctxt);
2309                 kfree(rule);
2310         }
2311 }
2312
2313 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
2314                             struct selinux_audit_rule **rule)
2315 {
2316         struct selinux_audit_rule *tmprule;
2317         struct role_datum *roledatum;
2318         struct type_datum *typedatum;
2319         struct user_datum *userdatum;
2320         int rc = 0;
2321
2322         *rule = NULL;
2323
2324         if (!ss_initialized)
2325                 return -EOPNOTSUPP;
2326
2327         switch (field) {
2328         case AUDIT_SUBJ_USER:
2329         case AUDIT_SUBJ_ROLE:
2330         case AUDIT_SUBJ_TYPE:
2331         case AUDIT_OBJ_USER:
2332         case AUDIT_OBJ_ROLE:
2333         case AUDIT_OBJ_TYPE:
2334                 /* only 'equals' and 'not equals' fit user, role, and type */
2335                 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2336                         return -EINVAL;
2337                 break;
2338         case AUDIT_SUBJ_SEN:
2339         case AUDIT_SUBJ_CLR:
2340         case AUDIT_OBJ_LEV_LOW:
2341         case AUDIT_OBJ_LEV_HIGH:
2342                 /* we do not allow a range, indicated by the presense of '-' */
2343                 if (strchr(rulestr, '-'))
2344                         return -EINVAL;
2345                 break;
2346         default:
2347                 /* only the above fields are valid */
2348                 return -EINVAL;
2349         }
2350
2351         tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2352         if (!tmprule)
2353                 return -ENOMEM;
2354
2355         context_init(&tmprule->au_ctxt);
2356
2357         POLICY_RDLOCK;
2358
2359         tmprule->au_seqno = latest_granting;
2360
2361         switch (field) {
2362         case AUDIT_SUBJ_USER:
2363         case AUDIT_OBJ_USER:
2364                 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2365                 if (!userdatum)
2366                         rc = -EINVAL;
2367                 else
2368                         tmprule->au_ctxt.user = userdatum->value;
2369                 break;
2370         case AUDIT_SUBJ_ROLE:
2371         case AUDIT_OBJ_ROLE:
2372                 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2373                 if (!roledatum)
2374                         rc = -EINVAL;
2375                 else
2376                         tmprule->au_ctxt.role = roledatum->value;
2377                 break;
2378         case AUDIT_SUBJ_TYPE:
2379         case AUDIT_OBJ_TYPE:
2380                 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2381                 if (!typedatum)
2382                         rc = -EINVAL;
2383                 else
2384                         tmprule->au_ctxt.type = typedatum->value;
2385                 break;
2386         case AUDIT_SUBJ_SEN:
2387         case AUDIT_SUBJ_CLR:
2388         case AUDIT_OBJ_LEV_LOW:
2389         case AUDIT_OBJ_LEV_HIGH:
2390                 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2391                 break;
2392         }
2393
2394         POLICY_RDUNLOCK;
2395
2396         if (rc) {
2397                 selinux_audit_rule_free(tmprule);
2398                 tmprule = NULL;
2399         }
2400
2401         *rule = tmprule;
2402
2403         return rc;
2404 }
2405
2406 int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
2407                              struct selinux_audit_rule *rule,
2408                              struct audit_context *actx)
2409 {
2410         struct context *ctxt;
2411         struct mls_level *level;
2412         int match = 0;
2413
2414         if (!rule) {
2415                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2416                           "selinux_audit_rule_match: missing rule\n");
2417                 return -ENOENT;
2418         }
2419
2420         POLICY_RDLOCK;
2421
2422         if (rule->au_seqno < latest_granting) {
2423                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2424                           "selinux_audit_rule_match: stale rule\n");
2425                 match = -ESTALE;
2426                 goto out;
2427         }
2428
2429         ctxt = sidtab_search(&sidtab, sid);
2430         if (!ctxt) {
2431                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2432                           "selinux_audit_rule_match: unrecognized SID %d\n",
2433                           sid);
2434                 match = -ENOENT;
2435                 goto out;
2436         }
2437
2438         /* a field/op pair that is not caught here will simply fall through
2439            without a match */
2440         switch (field) {
2441         case AUDIT_SUBJ_USER:
2442         case AUDIT_OBJ_USER:
2443                 switch (op) {
2444                 case AUDIT_EQUAL:
2445                         match = (ctxt->user == rule->au_ctxt.user);
2446                         break;
2447                 case AUDIT_NOT_EQUAL:
2448                         match = (ctxt->user != rule->au_ctxt.user);
2449                         break;
2450                 }
2451                 break;
2452         case AUDIT_SUBJ_ROLE:
2453         case AUDIT_OBJ_ROLE:
2454                 switch (op) {
2455                 case AUDIT_EQUAL:
2456                         match = (ctxt->role == rule->au_ctxt.role);
2457                         break;
2458                 case AUDIT_NOT_EQUAL:
2459                         match = (ctxt->role != rule->au_ctxt.role);
2460                         break;
2461                 }
2462                 break;
2463         case AUDIT_SUBJ_TYPE:
2464         case AUDIT_OBJ_TYPE:
2465                 switch (op) {
2466                 case AUDIT_EQUAL:
2467                         match = (ctxt->type == rule->au_ctxt.type);
2468                         break;
2469                 case AUDIT_NOT_EQUAL:
2470                         match = (ctxt->type != rule->au_ctxt.type);
2471                         break;
2472                 }
2473                 break;
2474         case AUDIT_SUBJ_SEN:
2475         case AUDIT_SUBJ_CLR:
2476         case AUDIT_OBJ_LEV_LOW:
2477         case AUDIT_OBJ_LEV_HIGH:
2478                 level = ((field == AUDIT_SUBJ_SEN ||
2479                           field == AUDIT_OBJ_LEV_LOW) ?
2480                          &ctxt->range.level[0] : &ctxt->range.level[1]);
2481                 switch (op) {
2482                 case AUDIT_EQUAL:
2483                         match = mls_level_eq(&rule->au_ctxt.range.level[0],
2484                                              level);
2485                         break;
2486                 case AUDIT_NOT_EQUAL:
2487                         match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2488                                               level);
2489                         break;
2490                 case AUDIT_LESS_THAN:
2491                         match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2492                                                level) &&
2493                                  !mls_level_eq(&rule->au_ctxt.range.level[0],
2494                                                level));
2495                         break;
2496                 case AUDIT_LESS_THAN_OR_EQUAL:
2497                         match = mls_level_dom(&rule->au_ctxt.range.level[0],
2498                                               level);
2499                         break;
2500                 case AUDIT_GREATER_THAN:
2501                         match = (mls_level_dom(level,
2502                                               &rule->au_ctxt.range.level[0]) &&
2503                                  !mls_level_eq(level,
2504                                                &rule->au_ctxt.range.level[0]));
2505                         break;
2506                 case AUDIT_GREATER_THAN_OR_EQUAL:
2507                         match = mls_level_dom(level,
2508                                               &rule->au_ctxt.range.level[0]);
2509                         break;
2510                 }
2511         }
2512
2513 out:
2514         POLICY_RDUNLOCK;
2515         return match;
2516 }
2517
2518 static int (*aurule_callback)(void) = NULL;
2519
2520 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2521                                u16 class, u32 perms, u32 *retained)
2522 {
2523         int err = 0;
2524
2525         if (event == AVC_CALLBACK_RESET && aurule_callback)
2526                 err = aurule_callback();
2527         return err;
2528 }
2529
2530 static int __init aurule_init(void)
2531 {
2532         int err;
2533
2534         err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2535                                SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2536         if (err)
2537                 panic("avc_add_callback() failed, error %d\n", err);
2538
2539         return err;
2540 }
2541 __initcall(aurule_init);
2542
2543 void selinux_audit_set_callback(int (*callback)(void))
2544 {
2545         aurule_callback = callback;
2546 }
2547
2548 #ifdef CONFIG_NETLABEL
2549 /**
2550  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2551  * @secattr: the NetLabel packet security attributes
2552  * @sid: the SELinux SID
2553  *
2554  * Description:
2555  * Attempt to cache the context in @ctx, which was derived from the packet in
2556  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2557  * already been initialized.
2558  *
2559  */
2560 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2561                                       u32 sid)
2562 {
2563         u32 *sid_cache;
2564
2565         sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2566         if (sid_cache == NULL)
2567                 return;
2568         secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2569         if (secattr->cache == NULL) {
2570                 kfree(sid_cache);
2571                 return;
2572         }
2573
2574         *sid_cache = sid;
2575         secattr->cache->free = kfree;
2576         secattr->cache->data = sid_cache;
2577         secattr->flags |= NETLBL_SECATTR_CACHE;
2578 }
2579
2580 /**
2581  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2582  * @secattr: the NetLabel packet security attributes
2583  * @sid: the SELinux SID
2584  *
2585  * Description:
2586  * Convert the given NetLabel security attributes in @secattr into a
2587  * SELinux SID.  If the @secattr field does not contain a full SELinux
2588  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2589  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2590  * allow the @secattr to be used by NetLabel to cache the secattr to SID
2591  * conversion for future lookups.  Returns zero on success, negative values on
2592  * failure.
2593  *
2594  */
2595 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2596                                    u32 *sid)
2597 {
2598         int rc = -EIDRM;
2599         struct context *ctx;
2600         struct context ctx_new;
2601
2602         if (!ss_initialized) {
2603                 *sid = SECSID_NULL;
2604                 return 0;
2605         }
2606
2607         POLICY_RDLOCK;
2608
2609         if (secattr->flags & NETLBL_SECATTR_CACHE) {
2610                 *sid = *(u32 *)secattr->cache->data;
2611                 rc = 0;
2612         } else if (secattr->flags & NETLBL_SECATTR_SECID) {
2613                 *sid = secattr->attr.secid;
2614                 rc = 0;
2615         } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2616                 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2617                 if (ctx == NULL)
2618                         goto netlbl_secattr_to_sid_return;
2619
2620                 ctx_new.user = ctx->user;
2621                 ctx_new.role = ctx->role;
2622                 ctx_new.type = ctx->type;
2623                 mls_import_netlbl_lvl(&ctx_new, secattr);
2624                 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2625                         if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2626                                                   secattr->attr.mls.cat) != 0)
2627                                 goto netlbl_secattr_to_sid_return;
2628                         ctx_new.range.level[1].cat.highbit =
2629                                 ctx_new.range.level[0].cat.highbit;
2630                         ctx_new.range.level[1].cat.node =
2631                                 ctx_new.range.level[0].cat.node;
2632                 } else {
2633                         ebitmap_init(&ctx_new.range.level[0].cat);
2634                         ebitmap_init(&ctx_new.range.level[1].cat);
2635                 }
2636                 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2637                         goto netlbl_secattr_to_sid_return_cleanup;
2638
2639                 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2640                 if (rc != 0)
2641                         goto netlbl_secattr_to_sid_return_cleanup;
2642
2643                 security_netlbl_cache_add(secattr, *sid);
2644
2645                 ebitmap_destroy(&ctx_new.range.level[0].cat);
2646         } else {
2647                 *sid = SECSID_NULL;
2648                 rc = 0;
2649         }
2650
2651 netlbl_secattr_to_sid_return:
2652         POLICY_RDUNLOCK;
2653         return rc;
2654 netlbl_secattr_to_sid_return_cleanup:
2655         ebitmap_destroy(&ctx_new.range.level[0].cat);
2656         goto netlbl_secattr_to_sid_return;
2657 }
2658
2659 /**
2660  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2661  * @sid: the SELinux SID
2662  * @secattr: the NetLabel packet security attributes
2663  *
2664  * Description:
2665  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2666  * Returns zero on success, negative values on failure.
2667  *
2668  */
2669 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2670 {
2671         int rc = -ENOENT;
2672         struct context *ctx;
2673
2674         if (!ss_initialized)
2675                 return 0;
2676
2677         POLICY_RDLOCK;
2678         ctx = sidtab_search(&sidtab, sid);
2679         if (ctx == NULL)
2680                 goto netlbl_sid_to_secattr_failure;
2681         secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2682                                   GFP_ATOMIC);
2683         secattr->flags |= NETLBL_SECATTR_DOMAIN;
2684         mls_export_netlbl_lvl(ctx, secattr);
2685         rc = mls_export_netlbl_cat(ctx, secattr);
2686         if (rc != 0)
2687                 goto netlbl_sid_to_secattr_failure;
2688         POLICY_RDUNLOCK;
2689
2690         return 0;
2691
2692 netlbl_sid_to_secattr_failure:
2693         POLICY_RDUNLOCK;
2694         return rc;
2695 }
2696 #endif /* CONFIG_NETLABEL */