2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2,
20 * as published by the Free Software Foundation.
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
51 #include <net/ip.h> /* for sysctl_local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/semaphore.h>
55 #include <asm/ioctls.h>
56 #include <linux/bitops.h>
57 #include <linux/interrupt.h>
58 #include <linux/netdevice.h> /* for network interface checks */
59 #include <linux/netlink.h>
60 #include <linux/tcp.h>
61 #include <linux/udp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h> /* for Unix socket types */
64 #include <net/af_unix.h> /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
79 #include "selinux_netlabel.h"
81 #define XATTR_SELINUX_SUFFIX "selinux"
82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84 extern unsigned int policydb_loaded_version;
85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
86 extern int selinux_compat_net;
88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
89 int selinux_enforcing = 0;
91 static int __init enforcing_setup(char *str)
93 selinux_enforcing = simple_strtol(str,NULL,0);
96 __setup("enforcing=", enforcing_setup);
99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102 static int __init selinux_enabled_setup(char *str)
104 selinux_enabled = simple_strtol(str, NULL, 0);
107 __setup("selinux=", selinux_enabled_setup);
109 int selinux_enabled = 1;
112 /* Original (dummy) security module. */
113 static struct security_operations *original_ops = NULL;
115 /* Minimal support for a secondary security module,
116 just to allow the use of the dummy or capability modules.
117 The owlsm module can alternatively be used as a secondary
118 module as long as CONFIG_OWLSM_FD is not enabled. */
119 static struct security_operations *secondary_ops = NULL;
121 /* Lists of inode and superblock security structures initialized
122 before the policy was loaded. */
123 static LIST_HEAD(superblock_security_head);
124 static DEFINE_SPINLOCK(sb_security_lock);
126 static kmem_cache_t *sel_inode_cache;
128 /* Return security context for a given sid or just the context
129 length if the buffer is null or length is 0 */
130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
136 rc = security_sid_to_context(sid, &context, &len);
140 if (!buffer || !size)
141 goto getsecurity_exit;
145 goto getsecurity_exit;
147 memcpy(buffer, context, len);
154 /* Allocate and free functions for each kind of security blob. */
156 static int task_alloc_security(struct task_struct *task)
158 struct task_security_struct *tsec;
160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 task->security = tsec;
171 static void task_free_security(struct task_struct *task)
173 struct task_security_struct *tsec = task->security;
174 task->security = NULL;
178 static int inode_alloc_security(struct inode *inode)
180 struct task_security_struct *tsec = current->security;
181 struct inode_security_struct *isec;
183 isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
187 memset(isec, 0, sizeof(*isec));
188 init_MUTEX(&isec->sem);
189 INIT_LIST_HEAD(&isec->list);
191 isec->sid = SECINITSID_UNLABELED;
192 isec->sclass = SECCLASS_FILE;
193 isec->task_sid = tsec->sid;
194 inode->i_security = isec;
199 static void inode_free_security(struct inode *inode)
201 struct inode_security_struct *isec = inode->i_security;
202 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204 spin_lock(&sbsec->isec_lock);
205 if (!list_empty(&isec->list))
206 list_del_init(&isec->list);
207 spin_unlock(&sbsec->isec_lock);
209 inode->i_security = NULL;
210 kmem_cache_free(sel_inode_cache, isec);
213 static int file_alloc_security(struct file *file)
215 struct task_security_struct *tsec = current->security;
216 struct file_security_struct *fsec;
218 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
223 fsec->sid = tsec->sid;
224 fsec->fown_sid = tsec->sid;
225 file->f_security = fsec;
230 static void file_free_security(struct file *file)
232 struct file_security_struct *fsec = file->f_security;
233 file->f_security = NULL;
237 static int superblock_alloc_security(struct super_block *sb)
239 struct superblock_security_struct *sbsec;
241 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
245 init_MUTEX(&sbsec->sem);
246 INIT_LIST_HEAD(&sbsec->list);
247 INIT_LIST_HEAD(&sbsec->isec_head);
248 spin_lock_init(&sbsec->isec_lock);
250 sbsec->sid = SECINITSID_UNLABELED;
251 sbsec->def_sid = SECINITSID_FILE;
252 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253 sb->s_security = sbsec;
258 static void superblock_free_security(struct super_block *sb)
260 struct superblock_security_struct *sbsec = sb->s_security;
262 spin_lock(&sb_security_lock);
263 if (!list_empty(&sbsec->list))
264 list_del_init(&sbsec->list);
265 spin_unlock(&sb_security_lock);
267 sb->s_security = NULL;
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 struct sk_security_struct *ssec;
275 ssec = kzalloc(sizeof(*ssec), priority);
280 ssec->peer_sid = SECINITSID_UNLABELED;
281 ssec->sid = SECINITSID_UNLABELED;
282 sk->sk_security = ssec;
284 selinux_netlbl_sk_security_init(ssec, family);
289 static void sk_free_security(struct sock *sk)
291 struct sk_security_struct *ssec = sk->sk_security;
293 sk->sk_security = NULL;
297 /* The security server must be initialized before
298 any labeling or access decisions can be provided. */
299 extern int ss_initialized;
301 /* The file system's label must be initialized prior to use. */
303 static char *labeling_behaviors[6] = {
305 "uses transition SIDs",
307 "uses genfs_contexts",
308 "not configured for labeling",
309 "uses mountpoint labeling",
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314 static inline int inode_doinit(struct inode *inode)
316 return inode_doinit_with_dentry(inode, NULL);
326 static match_table_t tokens = {
327 {Opt_context, "context=%s"},
328 {Opt_fscontext, "fscontext=%s"},
329 {Opt_defcontext, "defcontext=%s"},
330 {Opt_rootcontext, "rootcontext=%s"},
333 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
335 static int may_context_mount_sb_relabel(u32 sid,
336 struct superblock_security_struct *sbsec,
337 struct task_security_struct *tsec)
341 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342 FILESYSTEM__RELABELFROM, NULL);
346 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347 FILESYSTEM__RELABELTO, NULL);
351 static int may_context_mount_inode_relabel(u32 sid,
352 struct superblock_security_struct *sbsec,
353 struct task_security_struct *tsec)
356 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357 FILESYSTEM__RELABELFROM, NULL);
361 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362 FILESYSTEM__ASSOCIATE, NULL);
366 static int try_context_mount(struct super_block *sb, void *data)
368 char *context = NULL, *defcontext = NULL;
369 char *fscontext = NULL, *rootcontext = NULL;
372 int alloc = 0, rc = 0, seen = 0;
373 struct task_security_struct *tsec = current->security;
374 struct superblock_security_struct *sbsec = sb->s_security;
379 name = sb->s_type->name;
381 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
383 /* NFS we understand. */
384 if (!strcmp(name, "nfs")) {
385 struct nfs_mount_data *d = data;
387 if (d->version < NFS_MOUNT_VERSION)
391 context = d->context;
398 /* Standard string-based options. */
399 char *p, *options = data;
401 while ((p = strsep(&options, ",")) != NULL) {
403 substring_t args[MAX_OPT_ARGS];
408 token = match_token(p, tokens, args);
412 if (seen & (Opt_context|Opt_defcontext)) {
414 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
417 context = match_strdup(&args[0]);
428 if (seen & Opt_fscontext) {
430 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
433 fscontext = match_strdup(&args[0]);
440 seen |= Opt_fscontext;
443 case Opt_rootcontext:
444 if (seen & Opt_rootcontext) {
446 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
449 rootcontext = match_strdup(&args[0]);
456 seen |= Opt_rootcontext;
460 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
462 printk(KERN_WARNING "SELinux: "
463 "defcontext option is invalid "
464 "for this filesystem type\n");
467 if (seen & (Opt_context|Opt_defcontext)) {
469 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
472 defcontext = match_strdup(&args[0]);
479 seen |= Opt_defcontext;
484 printk(KERN_WARNING "SELinux: unknown mount "
495 /* sets the context of the superblock for the fs being mounted. */
497 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
499 printk(KERN_WARNING "SELinux: security_context_to_sid"
500 "(%s) failed for (dev %s, type %s) errno=%d\n",
501 fscontext, sb->s_id, name, rc);
505 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
513 * Switch to using mount point labeling behavior.
514 * sets the label used on all file below the mountpoint, and will set
515 * the superblock context if not already set.
518 rc = security_context_to_sid(context, strlen(context), &sid);
520 printk(KERN_WARNING "SELinux: security_context_to_sid"
521 "(%s) failed for (dev %s, type %s) errno=%d\n",
522 context, sb->s_id, name, rc);
527 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
532 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
536 sbsec->mntpoint_sid = sid;
538 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
542 struct inode *inode = sb->s_root->d_inode;
543 struct inode_security_struct *isec = inode->i_security;
544 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
546 printk(KERN_WARNING "SELinux: security_context_to_sid"
547 "(%s) failed for (dev %s, type %s) errno=%d\n",
548 rootcontext, sb->s_id, name, rc);
552 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
557 isec->initialized = 1;
561 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
563 printk(KERN_WARNING "SELinux: security_context_to_sid"
564 "(%s) failed for (dev %s, type %s) errno=%d\n",
565 defcontext, sb->s_id, name, rc);
569 if (sid == sbsec->def_sid)
572 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
576 sbsec->def_sid = sid;
590 static int superblock_doinit(struct super_block *sb, void *data)
592 struct superblock_security_struct *sbsec = sb->s_security;
593 struct dentry *root = sb->s_root;
594 struct inode *inode = root->d_inode;
598 if (sbsec->initialized)
601 if (!ss_initialized) {
602 /* Defer initialization until selinux_complete_init,
603 after the initial policy is loaded and the security
604 server is ready to handle calls. */
605 spin_lock(&sb_security_lock);
606 if (list_empty(&sbsec->list))
607 list_add(&sbsec->list, &superblock_security_head);
608 spin_unlock(&sb_security_lock);
612 /* Determine the labeling behavior to use for this filesystem type. */
613 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
615 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
616 __FUNCTION__, sb->s_type->name, rc);
620 rc = try_context_mount(sb, data);
624 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625 /* Make sure that the xattr handler exists and that no
626 error other than -ENODATA is returned by getxattr on
627 the root directory. -ENODATA is ok, as this may be
628 the first boot of the SELinux kernel before we have
629 assigned xattr values to the filesystem. */
630 if (!inode->i_op->getxattr) {
631 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632 "xattr support\n", sb->s_id, sb->s_type->name);
636 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637 if (rc < 0 && rc != -ENODATA) {
638 if (rc == -EOPNOTSUPP)
639 printk(KERN_WARNING "SELinux: (dev %s, type "
640 "%s) has no security xattr handler\n",
641 sb->s_id, sb->s_type->name);
643 printk(KERN_WARNING "SELinux: (dev %s, type "
644 "%s) getxattr errno %d\n", sb->s_id,
645 sb->s_type->name, -rc);
650 if (strcmp(sb->s_type->name, "proc") == 0)
653 sbsec->initialized = 1;
655 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657 sb->s_id, sb->s_type->name);
660 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661 sb->s_id, sb->s_type->name,
662 labeling_behaviors[sbsec->behavior-1]);
665 /* Initialize the root inode. */
666 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
668 /* Initialize any other inodes associated with the superblock, e.g.
669 inodes created prior to initial policy load or inodes created
670 during get_sb by a pseudo filesystem that directly
672 spin_lock(&sbsec->isec_lock);
674 if (!list_empty(&sbsec->isec_head)) {
675 struct inode_security_struct *isec =
676 list_entry(sbsec->isec_head.next,
677 struct inode_security_struct, list);
678 struct inode *inode = isec->inode;
679 spin_unlock(&sbsec->isec_lock);
680 inode = igrab(inode);
682 if (!IS_PRIVATE (inode))
686 spin_lock(&sbsec->isec_lock);
687 list_del_init(&isec->list);
690 spin_unlock(&sbsec->isec_lock);
696 static inline u16 inode_mode_to_security_class(umode_t mode)
698 switch (mode & S_IFMT) {
700 return SECCLASS_SOCK_FILE;
702 return SECCLASS_LNK_FILE;
704 return SECCLASS_FILE;
706 return SECCLASS_BLK_FILE;
710 return SECCLASS_CHR_FILE;
712 return SECCLASS_FIFO_FILE;
716 return SECCLASS_FILE;
719 static inline int default_protocol_stream(int protocol)
721 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
724 static inline int default_protocol_dgram(int protocol)
726 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
736 return SECCLASS_UNIX_STREAM_SOCKET;
738 return SECCLASS_UNIX_DGRAM_SOCKET;
745 if (default_protocol_stream(protocol))
746 return SECCLASS_TCP_SOCKET;
748 return SECCLASS_RAWIP_SOCKET;
750 if (default_protocol_dgram(protocol))
751 return SECCLASS_UDP_SOCKET;
753 return SECCLASS_RAWIP_SOCKET;
755 return SECCLASS_RAWIP_SOCKET;
761 return SECCLASS_NETLINK_ROUTE_SOCKET;
762 case NETLINK_FIREWALL:
763 return SECCLASS_NETLINK_FIREWALL_SOCKET;
764 case NETLINK_INET_DIAG:
765 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
767 return SECCLASS_NETLINK_NFLOG_SOCKET;
769 return SECCLASS_NETLINK_XFRM_SOCKET;
770 case NETLINK_SELINUX:
771 return SECCLASS_NETLINK_SELINUX_SOCKET;
773 return SECCLASS_NETLINK_AUDIT_SOCKET;
775 return SECCLASS_NETLINK_IP6FW_SOCKET;
776 case NETLINK_DNRTMSG:
777 return SECCLASS_NETLINK_DNRT_SOCKET;
778 case NETLINK_KOBJECT_UEVENT:
779 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
781 return SECCLASS_NETLINK_SOCKET;
784 return SECCLASS_PACKET_SOCKET;
786 return SECCLASS_KEY_SOCKET;
788 return SECCLASS_APPLETALK_SOCKET;
791 return SECCLASS_SOCKET;
794 #ifdef CONFIG_PROC_FS
795 static int selinux_proc_get_sid(struct proc_dir_entry *de,
800 char *buffer, *path, *end;
802 buffer = (char*)__get_free_page(GFP_KERNEL);
812 while (de && de != de->parent) {
813 buflen -= de->namelen + 1;
817 memcpy(end, de->name, de->namelen);
822 rc = security_genfs_sid("proc", path, tclass, sid);
823 free_page((unsigned long)buffer);
827 static int selinux_proc_get_sid(struct proc_dir_entry *de,
835 /* The inode's security attributes must be initialized before first use. */
836 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
838 struct superblock_security_struct *sbsec = NULL;
839 struct inode_security_struct *isec = inode->i_security;
841 struct dentry *dentry;
842 #define INITCONTEXTLEN 255
843 char *context = NULL;
848 if (isec->initialized)
853 if (isec->initialized)
856 sbsec = inode->i_sb->s_security;
857 if (!sbsec->initialized) {
858 /* Defer initialization until selinux_complete_init,
859 after the initial policy is loaded and the security
860 server is ready to handle calls. */
861 spin_lock(&sbsec->isec_lock);
862 if (list_empty(&isec->list))
863 list_add(&isec->list, &sbsec->isec_head);
864 spin_unlock(&sbsec->isec_lock);
868 switch (sbsec->behavior) {
869 case SECURITY_FS_USE_XATTR:
870 if (!inode->i_op->getxattr) {
871 isec->sid = sbsec->def_sid;
875 /* Need a dentry, since the xattr API requires one.
876 Life would be simpler if we could just pass the inode. */
878 /* Called from d_instantiate or d_splice_alias. */
879 dentry = dget(opt_dentry);
881 /* Called from selinux_complete_init, try to find a dentry. */
882 dentry = d_find_alias(inode);
885 printk(KERN_WARNING "%s: no dentry for dev=%s "
886 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
891 len = INITCONTEXTLEN;
892 context = kmalloc(len, GFP_KERNEL);
898 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
901 /* Need a larger buffer. Query for the right size. */
902 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
910 context = kmalloc(len, GFP_KERNEL);
916 rc = inode->i_op->getxattr(dentry,
922 if (rc != -ENODATA) {
923 printk(KERN_WARNING "%s: getxattr returned "
924 "%d for dev=%s ino=%ld\n", __FUNCTION__,
925 -rc, inode->i_sb->s_id, inode->i_ino);
929 /* Map ENODATA to the default file SID */
930 sid = sbsec->def_sid;
933 rc = security_context_to_sid_default(context, rc, &sid,
936 printk(KERN_WARNING "%s: context_to_sid(%s) "
937 "returned %d for dev=%s ino=%ld\n",
938 __FUNCTION__, context, -rc,
939 inode->i_sb->s_id, inode->i_ino);
941 /* Leave with the unlabeled SID */
949 case SECURITY_FS_USE_TASK:
950 isec->sid = isec->task_sid;
952 case SECURITY_FS_USE_TRANS:
953 /* Default to the fs SID. */
954 isec->sid = sbsec->sid;
956 /* Try to obtain a transition SID. */
957 isec->sclass = inode_mode_to_security_class(inode->i_mode);
958 rc = security_transition_sid(isec->task_sid,
966 case SECURITY_FS_USE_MNTPOINT:
967 isec->sid = sbsec->mntpoint_sid;
970 /* Default to the fs superblock SID. */
971 isec->sid = sbsec->sid;
974 struct proc_inode *proci = PROC_I(inode);
976 isec->sclass = inode_mode_to_security_class(inode->i_mode);
977 rc = selinux_proc_get_sid(proci->pde,
988 isec->initialized = 1;
991 if (isec->sclass == SECCLASS_FILE)
992 isec->sclass = inode_mode_to_security_class(inode->i_mode);
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1006 /* Commonly granted from child to parent. */
1007 perm = PROCESS__SIGCHLD;
1010 /* Cannot be caught or ignored */
1011 perm = PROCESS__SIGKILL;
1014 /* Cannot be caught or ignored */
1015 perm = PROCESS__SIGSTOP;
1018 /* All other signals. */
1019 perm = PROCESS__SIGNAL;
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027 fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029 struct task_struct *tsk2,
1032 struct task_security_struct *tsec1, *tsec2;
1034 tsec1 = tsk1->security;
1035 tsec2 = tsk2->security;
1036 return avc_has_perm(tsec1->sid, tsec2->sid,
1037 SECCLASS_PROCESS, perms, NULL);
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1044 struct task_security_struct *tsec;
1045 struct avc_audit_data ad;
1047 tsec = tsk->security;
1049 AVC_AUDIT_DATA_INIT(&ad,CAP);
1053 return avc_has_perm(tsec->sid, tsec->sid,
1054 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1061 struct task_security_struct *tsec;
1063 tsec = tsk->security;
1065 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066 SECCLASS_SYSTEM, perms, NULL);
1069 /* Check whether a task has a particular permission to an inode.
1070 The 'adp' parameter is optional and allows other audit
1071 data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073 struct inode *inode,
1075 struct avc_audit_data *adp)
1077 struct task_security_struct *tsec;
1078 struct inode_security_struct *isec;
1079 struct avc_audit_data ad;
1081 tsec = tsk->security;
1082 isec = inode->i_security;
1086 AVC_AUDIT_DATA_INIT(&ad, FS);
1087 ad.u.fs.inode = inode;
1090 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094 the dentry to help the auditing code to more easily generate the
1095 pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097 struct vfsmount *mnt,
1098 struct dentry *dentry,
1101 struct inode *inode = dentry->d_inode;
1102 struct avc_audit_data ad;
1103 AVC_AUDIT_DATA_INIT(&ad,FS);
1105 ad.u.fs.dentry = dentry;
1106 return inode_has_perm(tsk, inode, av, &ad);
1109 /* Check whether a task can use an open file descriptor to
1110 access an inode in a given way. Check access to the
1111 descriptor itself, and then use dentry_has_perm to
1112 check a particular permission to the file.
1113 Access to the descriptor is implicitly granted if it
1114 has the same SID as the process. If av is zero, then
1115 access to the file is not checked, e.g. for cases
1116 where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1121 struct task_security_struct *tsec = tsk->security;
1122 struct file_security_struct *fsec = file->f_security;
1123 struct vfsmount *mnt = file->f_vfsmnt;
1124 struct dentry *dentry = file->f_dentry;
1125 struct inode *inode = dentry->d_inode;
1126 struct avc_audit_data ad;
1129 AVC_AUDIT_DATA_INIT(&ad, FS);
1131 ad.u.fs.dentry = dentry;
1133 if (tsec->sid != fsec->sid) {
1134 rc = avc_has_perm(tsec->sid, fsec->sid,
1142 /* av is zero if only checking access to the descriptor. */
1144 return inode_has_perm(tsk, inode, av, &ad);
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151 struct dentry *dentry,
1154 struct task_security_struct *tsec;
1155 struct inode_security_struct *dsec;
1156 struct superblock_security_struct *sbsec;
1158 struct avc_audit_data ad;
1161 tsec = current->security;
1162 dsec = dir->i_security;
1163 sbsec = dir->i_sb->s_security;
1165 AVC_AUDIT_DATA_INIT(&ad, FS);
1166 ad.u.fs.dentry = dentry;
1168 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169 DIR__ADD_NAME | DIR__SEARCH,
1174 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175 newsid = tsec->create_sid;
1177 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1183 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1187 return avc_has_perm(newsid, sbsec->sid,
1188 SECCLASS_FILESYSTEM,
1189 FILESYSTEM__ASSOCIATE, &ad);
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194 struct task_struct *ctx)
1196 struct task_security_struct *tsec;
1198 tsec = ctx->security;
1200 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1204 #define MAY_UNLINK 1
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209 struct dentry *dentry,
1213 struct task_security_struct *tsec;
1214 struct inode_security_struct *dsec, *isec;
1215 struct avc_audit_data ad;
1219 tsec = current->security;
1220 dsec = dir->i_security;
1221 isec = dentry->d_inode->i_security;
1223 AVC_AUDIT_DATA_INIT(&ad, FS);
1224 ad.u.fs.dentry = dentry;
1227 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1243 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1247 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1251 static inline int may_rename(struct inode *old_dir,
1252 struct dentry *old_dentry,
1253 struct inode *new_dir,
1254 struct dentry *new_dentry)
1256 struct task_security_struct *tsec;
1257 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258 struct avc_audit_data ad;
1260 int old_is_dir, new_is_dir;
1263 tsec = current->security;
1264 old_dsec = old_dir->i_security;
1265 old_isec = old_dentry->d_inode->i_security;
1266 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267 new_dsec = new_dir->i_security;
1269 AVC_AUDIT_DATA_INIT(&ad, FS);
1271 ad.u.fs.dentry = old_dentry;
1272 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1276 rc = avc_has_perm(tsec->sid, old_isec->sid,
1277 old_isec->sclass, FILE__RENAME, &ad);
1280 if (old_is_dir && new_dir != old_dir) {
1281 rc = avc_has_perm(tsec->sid, old_isec->sid,
1282 old_isec->sclass, DIR__REPARENT, &ad);
1287 ad.u.fs.dentry = new_dentry;
1288 av = DIR__ADD_NAME | DIR__SEARCH;
1289 if (new_dentry->d_inode)
1290 av |= DIR__REMOVE_NAME;
1291 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1294 if (new_dentry->d_inode) {
1295 new_isec = new_dentry->d_inode->i_security;
1296 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297 rc = avc_has_perm(tsec->sid, new_isec->sid,
1299 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309 struct super_block *sb,
1311 struct avc_audit_data *ad)
1313 struct task_security_struct *tsec;
1314 struct superblock_security_struct *sbsec;
1316 tsec = tsk->security;
1317 sbsec = sb->s_security;
1318 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1327 if ((mode & S_IFMT) != S_IFDIR) {
1328 if (mask & MAY_EXEC)
1329 av |= FILE__EXECUTE;
1330 if (mask & MAY_READ)
1333 if (mask & MAY_APPEND)
1335 else if (mask & MAY_WRITE)
1339 if (mask & MAY_EXEC)
1341 if (mask & MAY_WRITE)
1343 if (mask & MAY_READ)
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1355 if (file->f_mode & FMODE_READ)
1357 if (file->f_mode & FMODE_WRITE) {
1358 if (file->f_flags & O_APPEND)
1367 /* Set an inode's SID to a specified value. */
1368 static int inode_security_set_sid(struct inode *inode, u32 sid)
1370 struct inode_security_struct *isec = inode->i_security;
1371 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1373 if (!sbsec->initialized) {
1374 /* Defer initialization to selinux_complete_init. */
1379 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1381 isec->initialized = 1;
1386 /* Hook functions begin here. */
1388 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1390 struct task_security_struct *psec = parent->security;
1391 struct task_security_struct *csec = child->security;
1394 rc = secondary_ops->ptrace(parent,child);
1398 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1399 /* Save the SID of the tracing process for later use in apply_creds. */
1400 if (!(child->ptrace & PT_PTRACED) && !rc)
1401 csec->ptrace_sid = psec->sid;
1405 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1406 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1410 error = task_has_perm(current, target, PROCESS__GETCAP);
1414 return secondary_ops->capget(target, effective, inheritable, permitted);
1417 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1418 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1422 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1426 return task_has_perm(current, target, PROCESS__SETCAP);
1429 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1430 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1432 secondary_ops->capset_set(target, effective, inheritable, permitted);
1435 static int selinux_capable(struct task_struct *tsk, int cap)
1439 rc = secondary_ops->capable(tsk, cap);
1443 return task_has_capability(tsk,cap);
1446 static int selinux_sysctl(ctl_table *table, int op)
1450 struct task_security_struct *tsec;
1454 rc = secondary_ops->sysctl(table, op);
1458 tsec = current->security;
1460 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1461 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1463 /* Default to the well-defined sysctl SID. */
1464 tsid = SECINITSID_SYSCTL;
1467 /* The op values are "defined" in sysctl.c, thereby creating
1468 * a bad coupling between this module and sysctl.c */
1470 error = avc_has_perm(tsec->sid, tsid,
1471 SECCLASS_DIR, DIR__SEARCH, NULL);
1479 error = avc_has_perm(tsec->sid, tsid,
1480 SECCLASS_FILE, av, NULL);
1486 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1499 rc = superblock_has_perm(current,
1501 FILESYSTEM__QUOTAMOD, NULL);
1506 rc = superblock_has_perm(current,
1508 FILESYSTEM__QUOTAGET, NULL);
1511 rc = 0; /* let the kernel handle invalid cmds */
1517 static int selinux_quota_on(struct dentry *dentry)
1519 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1522 static int selinux_syslog(int type)
1526 rc = secondary_ops->syslog(type);
1531 case 3: /* Read last kernel messages */
1532 case 10: /* Return size of the log buffer */
1533 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1535 case 6: /* Disable logging to console */
1536 case 7: /* Enable logging to console */
1537 case 8: /* Set level of messages printed to console */
1538 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1540 case 0: /* Close log */
1541 case 1: /* Open log */
1542 case 2: /* Read from log */
1543 case 4: /* Read/clear last kernel messages */
1544 case 5: /* Clear ring buffer */
1546 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1553 * Check that a process has enough memory to allocate a new virtual
1554 * mapping. 0 means there is enough memory for the allocation to
1555 * succeed and -ENOMEM implies there is not.
1557 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1558 * if the capability is granted, but __vm_enough_memory requires 1 if
1559 * the capability is granted.
1561 * Do not audit the selinux permission check, as this is applied to all
1562 * processes that allocate mappings.
1564 static int selinux_vm_enough_memory(long pages)
1566 int rc, cap_sys_admin = 0;
1567 struct task_security_struct *tsec = current->security;
1569 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1571 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1572 SECCLASS_CAPABILITY,
1573 CAP_TO_MASK(CAP_SYS_ADMIN),
1579 return __vm_enough_memory(pages, cap_sys_admin);
1582 /* binprm security operations */
1584 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1586 struct bprm_security_struct *bsec;
1588 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1593 bsec->sid = SECINITSID_UNLABELED;
1596 bprm->security = bsec;
1600 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1602 struct task_security_struct *tsec;
1603 struct inode *inode = bprm->file->f_dentry->d_inode;
1604 struct inode_security_struct *isec;
1605 struct bprm_security_struct *bsec;
1607 struct avc_audit_data ad;
1610 rc = secondary_ops->bprm_set_security(bprm);
1614 bsec = bprm->security;
1619 tsec = current->security;
1620 isec = inode->i_security;
1622 /* Default to the current task SID. */
1623 bsec->sid = tsec->sid;
1625 /* Reset fs, key, and sock SIDs on execve. */
1626 tsec->create_sid = 0;
1627 tsec->keycreate_sid = 0;
1628 tsec->sockcreate_sid = 0;
1630 if (tsec->exec_sid) {
1631 newsid = tsec->exec_sid;
1632 /* Reset exec SID on execve. */
1635 /* Check for a default transition on this program. */
1636 rc = security_transition_sid(tsec->sid, isec->sid,
1637 SECCLASS_PROCESS, &newsid);
1642 AVC_AUDIT_DATA_INIT(&ad, FS);
1643 ad.u.fs.mnt = bprm->file->f_vfsmnt;
1644 ad.u.fs.dentry = bprm->file->f_dentry;
1646 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1649 if (tsec->sid == newsid) {
1650 rc = avc_has_perm(tsec->sid, isec->sid,
1651 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1655 /* Check permissions for the transition. */
1656 rc = avc_has_perm(tsec->sid, newsid,
1657 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1661 rc = avc_has_perm(newsid, isec->sid,
1662 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1666 /* Clear any possibly unsafe personality bits on exec: */
1667 current->personality &= ~PER_CLEAR_ON_SETID;
1669 /* Set the security field to the new SID. */
1677 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1679 return secondary_ops->bprm_check_security(bprm);
1683 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1685 struct task_security_struct *tsec = current->security;
1688 if (tsec->osid != tsec->sid) {
1689 /* Enable secure mode for SIDs transitions unless
1690 the noatsecure permission is granted between
1691 the two SIDs, i.e. ahp returns 0. */
1692 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1694 PROCESS__NOATSECURE, NULL);
1697 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1700 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1702 kfree(bprm->security);
1703 bprm->security = NULL;
1706 extern struct vfsmount *selinuxfs_mount;
1707 extern struct dentry *selinux_null;
1709 /* Derived from fs/exec.c:flush_old_files. */
1710 static inline void flush_unauthorized_files(struct files_struct * files)
1712 struct avc_audit_data ad;
1713 struct file *file, *devnull = NULL;
1714 struct tty_struct *tty = current->signal->tty;
1715 struct fdtable *fdt;
1720 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1722 /* Revalidate access to controlling tty.
1723 Use inode_has_perm on the tty inode directly rather
1724 than using file_has_perm, as this particular open
1725 file may belong to another process and we are only
1726 interested in the inode-based check here. */
1727 struct inode *inode = file->f_dentry->d_inode;
1728 if (inode_has_perm(current, inode,
1729 FILE__READ | FILE__WRITE, NULL)) {
1730 /* Reset controlling tty. */
1731 current->signal->tty = NULL;
1732 current->signal->tty_old_pgrp = 0;
1738 /* Revalidate access to inherited open files. */
1740 AVC_AUDIT_DATA_INIT(&ad,FS);
1742 spin_lock(&files->file_lock);
1744 unsigned long set, i;
1749 fdt = files_fdtable(files);
1750 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1752 set = fdt->open_fds->fds_bits[j];
1755 spin_unlock(&files->file_lock);
1756 for ( ; set ; i++,set >>= 1) {
1761 if (file_has_perm(current,
1763 file_to_av(file))) {
1765 fd = get_unused_fd();
1775 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1782 fd_install(fd, devnull);
1787 spin_lock(&files->file_lock);
1790 spin_unlock(&files->file_lock);
1793 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1795 struct task_security_struct *tsec;
1796 struct bprm_security_struct *bsec;
1800 secondary_ops->bprm_apply_creds(bprm, unsafe);
1802 tsec = current->security;
1804 bsec = bprm->security;
1807 tsec->osid = tsec->sid;
1809 if (tsec->sid != sid) {
1810 /* Check for shared state. If not ok, leave SID
1811 unchanged and kill. */
1812 if (unsafe & LSM_UNSAFE_SHARE) {
1813 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1814 PROCESS__SHARE, NULL);
1821 /* Check for ptracing, and update the task SID if ok.
1822 Otherwise, leave SID unchanged and kill. */
1823 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1824 rc = avc_has_perm(tsec->ptrace_sid, sid,
1825 SECCLASS_PROCESS, PROCESS__PTRACE,
1837 * called after apply_creds without the task lock held
1839 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1841 struct task_security_struct *tsec;
1842 struct rlimit *rlim, *initrlim;
1843 struct itimerval itimer;
1844 struct bprm_security_struct *bsec;
1847 tsec = current->security;
1848 bsec = bprm->security;
1851 force_sig_specific(SIGKILL, current);
1854 if (tsec->osid == tsec->sid)
1857 /* Close files for which the new task SID is not authorized. */
1858 flush_unauthorized_files(current->files);
1860 /* Check whether the new SID can inherit signal state
1861 from the old SID. If not, clear itimers to avoid
1862 subsequent signal generation and flush and unblock
1863 signals. This must occur _after_ the task SID has
1864 been updated so that any kill done after the flush
1865 will be checked against the new SID. */
1866 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1867 PROCESS__SIGINH, NULL);
1869 memset(&itimer, 0, sizeof itimer);
1870 for (i = 0; i < 3; i++)
1871 do_setitimer(i, &itimer, NULL);
1872 flush_signals(current);
1873 spin_lock_irq(¤t->sighand->siglock);
1874 flush_signal_handlers(current, 1);
1875 sigemptyset(¤t->blocked);
1876 recalc_sigpending();
1877 spin_unlock_irq(¤t->sighand->siglock);
1880 /* Check whether the new SID can inherit resource limits
1881 from the old SID. If not, reset all soft limits to
1882 the lower of the current task's hard limit and the init
1883 task's soft limit. Note that the setting of hard limits
1884 (even to lower them) can be controlled by the setrlimit
1885 check. The inclusion of the init task's soft limit into
1886 the computation is to avoid resetting soft limits higher
1887 than the default soft limit for cases where the default
1888 is lower than the hard limit, e.g. RLIMIT_CORE or
1890 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1891 PROCESS__RLIMITINH, NULL);
1893 for (i = 0; i < RLIM_NLIMITS; i++) {
1894 rlim = current->signal->rlim + i;
1895 initrlim = init_task.signal->rlim+i;
1896 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1898 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1900 * This will cause RLIMIT_CPU calculations
1903 current->it_prof_expires = jiffies_to_cputime(1);
1907 /* Wake up the parent if it is waiting so that it can
1908 recheck wait permission to the new task SID. */
1909 wake_up_interruptible(¤t->parent->signal->wait_chldexit);
1912 /* superblock security operations */
1914 static int selinux_sb_alloc_security(struct super_block *sb)
1916 return superblock_alloc_security(sb);
1919 static void selinux_sb_free_security(struct super_block *sb)
1921 superblock_free_security(sb);
1924 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1929 return !memcmp(prefix, option, plen);
1932 static inline int selinux_option(char *option, int len)
1934 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1935 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1936 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1937 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1940 static inline void take_option(char **to, char *from, int *first, int len)
1948 memcpy(*to, from, len);
1952 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1954 int fnosec, fsec, rc = 0;
1955 char *in_save, *in_curr, *in_end;
1956 char *sec_curr, *nosec_save, *nosec;
1961 /* Binary mount data: just copy */
1962 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1963 copy_page(sec_curr, in_curr);
1967 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1975 in_save = in_end = orig;
1978 if (*in_end == ',' || *in_end == '\0') {
1979 int len = in_end - in_curr;
1981 if (selinux_option(in_curr, len))
1982 take_option(&sec_curr, in_curr, &fsec, len);
1984 take_option(&nosec, in_curr, &fnosec, len);
1986 in_curr = in_end + 1;
1988 } while (*in_end++);
1990 strcpy(in_save, nosec_save);
1991 free_page((unsigned long)nosec_save);
1996 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1998 struct avc_audit_data ad;
2001 rc = superblock_doinit(sb, data);
2005 AVC_AUDIT_DATA_INIT(&ad,FS);
2006 ad.u.fs.dentry = sb->s_root;
2007 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2010 static int selinux_sb_statfs(struct dentry *dentry)
2012 struct avc_audit_data ad;
2014 AVC_AUDIT_DATA_INIT(&ad,FS);
2015 ad.u.fs.dentry = dentry->d_sb->s_root;
2016 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2019 static int selinux_mount(char * dev_name,
2020 struct nameidata *nd,
2022 unsigned long flags,
2027 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2031 if (flags & MS_REMOUNT)
2032 return superblock_has_perm(current, nd->mnt->mnt_sb,
2033 FILESYSTEM__REMOUNT, NULL);
2035 return dentry_has_perm(current, nd->mnt, nd->dentry,
2039 static int selinux_umount(struct vfsmount *mnt, int flags)
2043 rc = secondary_ops->sb_umount(mnt, flags);
2047 return superblock_has_perm(current,mnt->mnt_sb,
2048 FILESYSTEM__UNMOUNT,NULL);
2051 /* inode security operations */
2053 static int selinux_inode_alloc_security(struct inode *inode)
2055 return inode_alloc_security(inode);
2058 static void selinux_inode_free_security(struct inode *inode)
2060 inode_free_security(inode);
2063 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2064 char **name, void **value,
2067 struct task_security_struct *tsec;
2068 struct inode_security_struct *dsec;
2069 struct superblock_security_struct *sbsec;
2072 char *namep = NULL, *context;
2074 tsec = current->security;
2075 dsec = dir->i_security;
2076 sbsec = dir->i_sb->s_security;
2078 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2079 newsid = tsec->create_sid;
2081 rc = security_transition_sid(tsec->sid, dsec->sid,
2082 inode_mode_to_security_class(inode->i_mode),
2085 printk(KERN_WARNING "%s: "
2086 "security_transition_sid failed, rc=%d (dev=%s "
2089 -rc, inode->i_sb->s_id, inode->i_ino);
2094 inode_security_set_sid(inode, newsid);
2096 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2100 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2107 rc = security_sid_to_context(newsid, &context, &clen);
2119 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2121 return may_create(dir, dentry, SECCLASS_FILE);
2124 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2128 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2131 return may_link(dir, old_dentry, MAY_LINK);
2134 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2138 rc = secondary_ops->inode_unlink(dir, dentry);
2141 return may_link(dir, dentry, MAY_UNLINK);
2144 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2146 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2149 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2151 return may_create(dir, dentry, SECCLASS_DIR);
2154 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2156 return may_link(dir, dentry, MAY_RMDIR);
2159 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2163 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2167 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2170 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2171 struct inode *new_inode, struct dentry *new_dentry)
2173 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2176 static int selinux_inode_readlink(struct dentry *dentry)
2178 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2181 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2185 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2188 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2191 static int selinux_inode_permission(struct inode *inode, int mask,
2192 struct nameidata *nd)
2196 rc = secondary_ops->inode_permission(inode, mask, nd);
2201 /* No permission to check. Existence test. */
2205 return inode_has_perm(current, inode,
2206 file_mask_to_av(inode->i_mode, mask), NULL);
2209 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2213 rc = secondary_ops->inode_setattr(dentry, iattr);
2217 if (iattr->ia_valid & ATTR_FORCE)
2220 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2221 ATTR_ATIME_SET | ATTR_MTIME_SET))
2222 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2224 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2227 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2229 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2232 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2234 struct task_security_struct *tsec = current->security;
2235 struct inode *inode = dentry->d_inode;
2236 struct inode_security_struct *isec = inode->i_security;
2237 struct superblock_security_struct *sbsec;
2238 struct avc_audit_data ad;
2242 if (strcmp(name, XATTR_NAME_SELINUX)) {
2243 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2244 sizeof XATTR_SECURITY_PREFIX - 1) &&
2245 !capable(CAP_SYS_ADMIN)) {
2246 /* A different attribute in the security namespace.
2247 Restrict to administrator. */
2251 /* Not an attribute we recognize, so just check the
2252 ordinary setattr permission. */
2253 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2256 sbsec = inode->i_sb->s_security;
2257 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2260 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2263 AVC_AUDIT_DATA_INIT(&ad,FS);
2264 ad.u.fs.dentry = dentry;
2266 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2267 FILE__RELABELFROM, &ad);
2271 rc = security_context_to_sid(value, size, &newsid);
2275 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2276 FILE__RELABELTO, &ad);
2280 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2285 return avc_has_perm(newsid,
2287 SECCLASS_FILESYSTEM,
2288 FILESYSTEM__ASSOCIATE,
2292 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2293 void *value, size_t size, int flags)
2295 struct inode *inode = dentry->d_inode;
2296 struct inode_security_struct *isec = inode->i_security;
2300 if (strcmp(name, XATTR_NAME_SELINUX)) {
2301 /* Not an attribute we recognize, so nothing to do. */
2305 rc = security_context_to_sid(value, size, &newsid);
2307 printk(KERN_WARNING "%s: unable to obtain SID for context "
2308 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2316 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2318 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2321 static int selinux_inode_listxattr (struct dentry *dentry)
2323 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2326 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2328 if (strcmp(name, XATTR_NAME_SELINUX)) {
2329 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2330 sizeof XATTR_SECURITY_PREFIX - 1) &&
2331 !capable(CAP_SYS_ADMIN)) {
2332 /* A different attribute in the security namespace.
2333 Restrict to administrator. */
2337 /* Not an attribute we recognize, so just check the
2338 ordinary setattr permission. Might want a separate
2339 permission for removexattr. */
2340 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2343 /* No one is allowed to remove a SELinux security label.
2344 You can change the label, but all data must be labeled. */
2348 static const char *selinux_inode_xattr_getsuffix(void)
2350 return XATTR_SELINUX_SUFFIX;
2354 * Copy the in-core inode security context value to the user. If the
2355 * getxattr() prior to this succeeded, check to see if we need to
2356 * canonicalize the value to be finally returned to the user.
2358 * Permission check is handled by selinux_inode_getxattr hook.
2360 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2362 struct inode_security_struct *isec = inode->i_security;
2364 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2367 return selinux_getsecurity(isec->sid, buffer, size);
2370 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2371 const void *value, size_t size, int flags)
2373 struct inode_security_struct *isec = inode->i_security;
2377 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2380 if (!value || !size)
2383 rc = security_context_to_sid((void*)value, size, &newsid);
2391 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2393 const int len = sizeof(XATTR_NAME_SELINUX);
2394 if (buffer && len <= buffer_size)
2395 memcpy(buffer, XATTR_NAME_SELINUX, len);
2399 /* file security operations */
2401 static int selinux_file_permission(struct file *file, int mask)
2404 struct inode *inode = file->f_dentry->d_inode;
2407 /* No permission to check. Existence test. */
2411 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2412 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2415 rc = file_has_perm(current, file,
2416 file_mask_to_av(inode->i_mode, mask));
2420 return selinux_netlbl_inode_permission(inode, mask);
2423 static int selinux_file_alloc_security(struct file *file)
2425 return file_alloc_security(file);
2428 static void selinux_file_free_security(struct file *file)
2430 file_free_security(file);
2433 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2445 case EXT2_IOC_GETFLAGS:
2447 case EXT2_IOC_GETVERSION:
2448 error = file_has_perm(current, file, FILE__GETATTR);
2451 case EXT2_IOC_SETFLAGS:
2453 case EXT2_IOC_SETVERSION:
2454 error = file_has_perm(current, file, FILE__SETATTR);
2457 /* sys_ioctl() checks */
2461 error = file_has_perm(current, file, 0);
2466 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2469 /* default case assumes that the command will go
2470 * to the file's ioctl() function.
2473 error = file_has_perm(current, file, FILE__IOCTL);
2479 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2481 #ifndef CONFIG_PPC32
2482 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2484 * We are making executable an anonymous mapping or a
2485 * private file mapping that will also be writable.
2486 * This has an additional check.
2488 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2495 /* read access is always possible with a mapping */
2496 u32 av = FILE__READ;
2498 /* write access only matters if the mapping is shared */
2499 if (shared && (prot & PROT_WRITE))
2502 if (prot & PROT_EXEC)
2503 av |= FILE__EXECUTE;
2505 return file_has_perm(current, file, av);
2510 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2511 unsigned long prot, unsigned long flags)
2515 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2519 if (selinux_checkreqprot)
2522 return file_map_prot_check(file, prot,
2523 (flags & MAP_TYPE) == MAP_SHARED);
2526 static int selinux_file_mprotect(struct vm_area_struct *vma,
2527 unsigned long reqprot,
2532 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2536 if (selinux_checkreqprot)
2539 #ifndef CONFIG_PPC32
2540 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2542 if (vma->vm_start >= vma->vm_mm->start_brk &&
2543 vma->vm_end <= vma->vm_mm->brk) {
2544 rc = task_has_perm(current, current,
2546 } else if (!vma->vm_file &&
2547 vma->vm_start <= vma->vm_mm->start_stack &&
2548 vma->vm_end >= vma->vm_mm->start_stack) {
2549 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2550 } else if (vma->vm_file && vma->anon_vma) {
2552 * We are making executable a file mapping that has
2553 * had some COW done. Since pages might have been
2554 * written, check ability to execute the possibly
2555 * modified content. This typically should only
2556 * occur for text relocations.
2558 rc = file_has_perm(current, vma->vm_file,
2566 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2569 static int selinux_file_lock(struct file *file, unsigned int cmd)
2571 return file_has_perm(current, file, FILE__LOCK);
2574 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2581 if (!file->f_dentry || !file->f_dentry->d_inode) {
2586 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2587 err = file_has_perm(current, file,FILE__WRITE);
2596 /* Just check FD__USE permission */
2597 err = file_has_perm(current, file, 0);
2602 #if BITS_PER_LONG == 32
2607 if (!file->f_dentry || !file->f_dentry->d_inode) {
2611 err = file_has_perm(current, file, FILE__LOCK);
2618 static int selinux_file_set_fowner(struct file *file)
2620 struct task_security_struct *tsec;
2621 struct file_security_struct *fsec;
2623 tsec = current->security;
2624 fsec = file->f_security;
2625 fsec->fown_sid = tsec->sid;
2630 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2631 struct fown_struct *fown, int signum)
2635 struct task_security_struct *tsec;
2636 struct file_security_struct *fsec;
2638 /* struct fown_struct is never outside the context of a struct file */
2639 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2641 tsec = tsk->security;
2642 fsec = file->f_security;
2645 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2647 perm = signal_to_av(signum);
2649 return avc_has_perm(fsec->fown_sid, tsec->sid,
2650 SECCLASS_PROCESS, perm, NULL);
2653 static int selinux_file_receive(struct file *file)
2655 return file_has_perm(current, file, file_to_av(file));
2658 /* task security operations */
2660 static int selinux_task_create(unsigned long clone_flags)
2664 rc = secondary_ops->task_create(clone_flags);
2668 return task_has_perm(current, current, PROCESS__FORK);
2671 static int selinux_task_alloc_security(struct task_struct *tsk)
2673 struct task_security_struct *tsec1, *tsec2;
2676 tsec1 = current->security;
2678 rc = task_alloc_security(tsk);
2681 tsec2 = tsk->security;
2683 tsec2->osid = tsec1->osid;
2684 tsec2->sid = tsec1->sid;
2686 /* Retain the exec, fs, key, and sock SIDs across fork */
2687 tsec2->exec_sid = tsec1->exec_sid;
2688 tsec2->create_sid = tsec1->create_sid;
2689 tsec2->keycreate_sid = tsec1->keycreate_sid;
2690 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2692 /* Retain ptracer SID across fork, if any.
2693 This will be reset by the ptrace hook upon any
2694 subsequent ptrace_attach operations. */
2695 tsec2->ptrace_sid = tsec1->ptrace_sid;
2700 static void selinux_task_free_security(struct task_struct *tsk)
2702 task_free_security(tsk);
2705 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2707 /* Since setuid only affects the current process, and
2708 since the SELinux controls are not based on the Linux
2709 identity attributes, SELinux does not need to control
2710 this operation. However, SELinux does control the use
2711 of the CAP_SETUID and CAP_SETGID capabilities using the
2716 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2718 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2721 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2723 /* See the comment for setuid above. */
2727 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2729 return task_has_perm(current, p, PROCESS__SETPGID);
2732 static int selinux_task_getpgid(struct task_struct *p)
2734 return task_has_perm(current, p, PROCESS__GETPGID);
2737 static int selinux_task_getsid(struct task_struct *p)
2739 return task_has_perm(current, p, PROCESS__GETSESSION);
2742 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2744 selinux_get_task_sid(p, secid);
2747 static int selinux_task_setgroups(struct group_info *group_info)
2749 /* See the comment for setuid above. */
2753 static int selinux_task_setnice(struct task_struct *p, int nice)
2757 rc = secondary_ops->task_setnice(p, nice);
2761 return task_has_perm(current,p, PROCESS__SETSCHED);
2764 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2766 return task_has_perm(current, p, PROCESS__SETSCHED);
2769 static int selinux_task_getioprio(struct task_struct *p)
2771 return task_has_perm(current, p, PROCESS__GETSCHED);
2774 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2776 struct rlimit *old_rlim = current->signal->rlim + resource;
2779 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2783 /* Control the ability to change the hard limit (whether
2784 lowering or raising it), so that the hard limit can
2785 later be used as a safe reset point for the soft limit
2786 upon context transitions. See selinux_bprm_apply_creds. */
2787 if (old_rlim->rlim_max != new_rlim->rlim_max)
2788 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2793 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2795 return task_has_perm(current, p, PROCESS__SETSCHED);
2798 static int selinux_task_getscheduler(struct task_struct *p)
2800 return task_has_perm(current, p, PROCESS__GETSCHED);
2803 static int selinux_task_movememory(struct task_struct *p)
2805 return task_has_perm(current, p, PROCESS__SETSCHED);
2808 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2813 struct task_security_struct *tsec;
2815 rc = secondary_ops->task_kill(p, info, sig, secid);
2819 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2823 perm = PROCESS__SIGNULL; /* null signal; existence test */
2825 perm = signal_to_av(sig);
2828 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2830 rc = task_has_perm(current, p, perm);
2834 static int selinux_task_prctl(int option,
2840 /* The current prctl operations do not appear to require
2841 any SELinux controls since they merely observe or modify
2842 the state of the current process. */
2846 static int selinux_task_wait(struct task_struct *p)
2850 perm = signal_to_av(p->exit_signal);
2852 return task_has_perm(p, current, perm);
2855 static void selinux_task_reparent_to_init(struct task_struct *p)
2857 struct task_security_struct *tsec;
2859 secondary_ops->task_reparent_to_init(p);
2862 tsec->osid = tsec->sid;
2863 tsec->sid = SECINITSID_KERNEL;
2867 static void selinux_task_to_inode(struct task_struct *p,
2868 struct inode *inode)
2870 struct task_security_struct *tsec = p->security;
2871 struct inode_security_struct *isec = inode->i_security;
2873 isec->sid = tsec->sid;
2874 isec->initialized = 1;
2878 /* Returns error only if unable to parse addresses */
2879 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2881 int offset, ihlen, ret = -EINVAL;
2882 struct iphdr _iph, *ih;
2884 offset = skb->nh.raw - skb->data;
2885 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2889 ihlen = ih->ihl * 4;
2890 if (ihlen < sizeof(_iph))
2893 ad->u.net.v4info.saddr = ih->saddr;
2894 ad->u.net.v4info.daddr = ih->daddr;
2897 switch (ih->protocol) {
2899 struct tcphdr _tcph, *th;
2901 if (ntohs(ih->frag_off) & IP_OFFSET)
2905 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2909 ad->u.net.sport = th->source;
2910 ad->u.net.dport = th->dest;
2915 struct udphdr _udph, *uh;
2917 if (ntohs(ih->frag_off) & IP_OFFSET)
2921 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2925 ad->u.net.sport = uh->source;
2926 ad->u.net.dport = uh->dest;
2937 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2939 /* Returns error only if unable to parse addresses */
2940 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2943 int ret = -EINVAL, offset;
2944 struct ipv6hdr _ipv6h, *ip6;
2946 offset = skb->nh.raw - skb->data;
2947 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2951 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2952 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2955 nexthdr = ip6->nexthdr;
2956 offset += sizeof(_ipv6h);
2957 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2963 struct tcphdr _tcph, *th;
2965 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2969 ad->u.net.sport = th->source;
2970 ad->u.net.dport = th->dest;
2975 struct udphdr _udph, *uh;
2977 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2981 ad->u.net.sport = uh->source;
2982 ad->u.net.dport = uh->dest;
2986 /* includes fragments */
2996 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2997 char **addrp, int *len, int src)
3001 switch (ad->u.net.family) {
3003 ret = selinux_parse_skb_ipv4(skb, ad);
3007 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3008 &ad->u.net.v4info.daddr);
3011 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3013 ret = selinux_parse_skb_ipv6(skb, ad);
3017 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3018 &ad->u.net.v6info.daddr);
3028 /* socket security operations */
3029 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3032 struct inode_security_struct *isec;
3033 struct task_security_struct *tsec;
3034 struct avc_audit_data ad;
3037 tsec = task->security;
3038 isec = SOCK_INODE(sock)->i_security;
3040 if (isec->sid == SECINITSID_KERNEL)
3043 AVC_AUDIT_DATA_INIT(&ad,NET);
3044 ad.u.net.sk = sock->sk;
3045 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3051 static int selinux_socket_create(int family, int type,
3052 int protocol, int kern)
3055 struct task_security_struct *tsec;
3061 tsec = current->security;
3062 newsid = tsec->sockcreate_sid ? : tsec->sid;
3063 err = avc_has_perm(tsec->sid, newsid,
3064 socket_type_to_security_class(family, type,
3065 protocol), SOCKET__CREATE, NULL);
3071 static int selinux_socket_post_create(struct socket *sock, int family,
3072 int type, int protocol, int kern)
3075 struct inode_security_struct *isec;
3076 struct task_security_struct *tsec;
3077 struct sk_security_struct *sksec;
3080 isec = SOCK_INODE(sock)->i_security;
3082 tsec = current->security;
3083 newsid = tsec->sockcreate_sid ? : tsec->sid;
3084 isec->sclass = socket_type_to_security_class(family, type, protocol);
3085 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3086 isec->initialized = 1;
3089 sksec = sock->sk->sk_security;
3090 sksec->sid = isec->sid;
3091 err = selinux_netlbl_socket_post_create(sock,
3099 /* Range of port numbers used to automatically bind.
3100 Need to determine whether we should perform a name_bind
3101 permission check between the socket and the port number. */
3102 #define ip_local_port_range_0 sysctl_local_port_range[0]
3103 #define ip_local_port_range_1 sysctl_local_port_range[1]
3105 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3110 err = socket_has_perm(current, sock, SOCKET__BIND);
3115 * If PF_INET or PF_INET6, check name_bind permission for the port.
3116 * Multiple address binding for SCTP is not supported yet: we just
3117 * check the first address now.
3119 family = sock->sk->sk_family;
3120 if (family == PF_INET || family == PF_INET6) {
3122 struct inode_security_struct *isec;
3123 struct task_security_struct *tsec;
3124 struct avc_audit_data ad;
3125 struct sockaddr_in *addr4 = NULL;
3126 struct sockaddr_in6 *addr6 = NULL;
3127 unsigned short snum;
3128 struct sock *sk = sock->sk;
3129 u32 sid, node_perm, addrlen;
3131 tsec = current->security;
3132 isec = SOCK_INODE(sock)->i_security;
3134 if (family == PF_INET) {
3135 addr4 = (struct sockaddr_in *)address;
3136 snum = ntohs(addr4->sin_port);
3137 addrlen = sizeof(addr4->sin_addr.s_addr);
3138 addrp = (char *)&addr4->sin_addr.s_addr;
3140 addr6 = (struct sockaddr_in6 *)address;
3141 snum = ntohs(addr6->sin6_port);
3142 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3143 addrp = (char *)&addr6->sin6_addr.s6_addr;
3146 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3147 snum > ip_local_port_range_1)) {
3148 err = security_port_sid(sk->sk_family, sk->sk_type,
3149 sk->sk_protocol, snum, &sid);
3152 AVC_AUDIT_DATA_INIT(&ad,NET);
3153 ad.u.net.sport = htons(snum);
3154 ad.u.net.family = family;
3155 err = avc_has_perm(isec->sid, sid,
3157 SOCKET__NAME_BIND, &ad);
3162 switch(isec->sclass) {
3163 case SECCLASS_TCP_SOCKET:
3164 node_perm = TCP_SOCKET__NODE_BIND;
3167 case SECCLASS_UDP_SOCKET:
3168 node_perm = UDP_SOCKET__NODE_BIND;
3172 node_perm = RAWIP_SOCKET__NODE_BIND;
3176 err = security_node_sid(family, addrp, addrlen, &sid);
3180 AVC_AUDIT_DATA_INIT(&ad,NET);
3181 ad.u.net.sport = htons(snum);
3182 ad.u.net.family = family;
3184 if (family == PF_INET)
3185 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3187 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3189 err = avc_has_perm(isec->sid, sid,
3190 isec->sclass, node_perm, &ad);
3198 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3200 struct inode_security_struct *isec;
3203 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3208 * If a TCP socket, check name_connect permission for the port.
3210 isec = SOCK_INODE(sock)->i_security;
3211 if (isec->sclass == SECCLASS_TCP_SOCKET) {
3212 struct sock *sk = sock->sk;
3213 struct avc_audit_data ad;
3214 struct sockaddr_in *addr4 = NULL;
3215 struct sockaddr_in6 *addr6 = NULL;
3216 unsigned short snum;
3219 if (sk->sk_family == PF_INET) {
3220 addr4 = (struct sockaddr_in *)address;
3221 if (addrlen < sizeof(struct sockaddr_in))
3223 snum = ntohs(addr4->sin_port);
3225 addr6 = (struct sockaddr_in6 *)address;
3226 if (addrlen < SIN6_LEN_RFC2133)
3228 snum = ntohs(addr6->sin6_port);
3231 err = security_port_sid(sk->sk_family, sk->sk_type,
3232 sk->sk_protocol, snum, &sid);
3236 AVC_AUDIT_DATA_INIT(&ad,NET);
3237 ad.u.net.dport = htons(snum);
3238 ad.u.net.family = sk->sk_family;
3239 err = avc_has_perm(isec->sid, sid, isec->sclass,
3240 TCP_SOCKET__NAME_CONNECT, &ad);
3249 static int selinux_socket_listen(struct socket *sock, int backlog)
3251 return socket_has_perm(current, sock, SOCKET__LISTEN);
3254 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3257 struct inode_security_struct *isec;
3258 struct inode_security_struct *newisec;
3260 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3264 newisec = SOCK_INODE(newsock)->i_security;
3266 isec = SOCK_INODE(sock)->i_security;
3267 newisec->sclass = isec->sclass;
3268 newisec->sid = isec->sid;
3269 newisec->initialized = 1;
3274 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3279 rc = socket_has_perm(current, sock, SOCKET__WRITE);