]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - mm/mmap.c
[PATCH] Fix get_compat_sigevent()
[linux-3.10.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@redhat.com>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/init.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/personality.h>
20 #include <linux/security.h>
21 #include <linux/hugetlb.h>
22 #include <linux/profile.h>
23 #include <linux/module.h>
24 #include <linux/mount.h>
25 #include <linux/mempolicy.h>
26 #include <linux/rmap.h>
27
28 #include <asm/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlb.h>
31
32 /*
33  * WARNING: the debugging will use recursive algorithms so never enable this
34  * unless you know what you are doing.
35  */
36 #undef DEBUG_MM_RB
37
38 /* description of effects of mapping type and prot in current implementation.
39  * this is due to the limited x86 page protection hardware.  The expected
40  * behavior is in parens:
41  *
42  * map_type     prot
43  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
44  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
45  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
46  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
47  *              
48  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
49  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
50  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
51  *
52  */
53 pgprot_t protection_map[16] = {
54         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
55         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
56 };
57
58 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
59 int sysctl_overcommit_ratio = 50;       /* default is 50% */
60 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
61 atomic_t vm_committed_space = ATOMIC_INIT(0);
62
63 /*
64  * Check that a process has enough memory to allocate a new virtual
65  * mapping. 0 means there is enough memory for the allocation to
66  * succeed and -ENOMEM implies there is not.
67  *
68  * We currently support three overcommit policies, which are set via the
69  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
70  *
71  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
72  * Additional code 2002 Jul 20 by Robert Love.
73  *
74  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
75  *
76  * Note this is a helper function intended to be used by LSMs which
77  * wish to use this logic.
78  */
79 int __vm_enough_memory(long pages, int cap_sys_admin)
80 {
81         unsigned long free, allowed;
82
83         vm_acct_memory(pages);
84
85         /*
86          * Sometimes we want to use more memory than we have
87          */
88         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
89                 return 0;
90
91         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
92                 unsigned long n;
93
94                 free = get_page_cache_size();
95                 free += nr_swap_pages;
96
97                 /*
98                  * Any slabs which are created with the
99                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
100                  * which are reclaimable, under pressure.  The dentry
101                  * cache and most inode caches should fall into this
102                  */
103                 free += atomic_read(&slab_reclaim_pages);
104
105                 /*
106                  * Leave the last 3% for root
107                  */
108                 if (!cap_sys_admin)
109                         free -= free / 32;
110
111                 if (free > pages)
112                         return 0;
113
114                 /*
115                  * nr_free_pages() is very expensive on large systems,
116                  * only call if we're about to fail.
117                  */
118                 n = nr_free_pages();
119                 if (!cap_sys_admin)
120                         n -= n / 32;
121                 free += n;
122
123                 if (free > pages)
124                         return 0;
125                 vm_unacct_memory(pages);
126                 return -ENOMEM;
127         }
128
129         allowed = (totalram_pages - hugetlb_total_pages())
130                 * sysctl_overcommit_ratio / 100;
131         /*
132          * Leave the last 3% for root
133          */
134         if (!cap_sys_admin)
135                 allowed -= allowed / 32;
136         allowed += total_swap_pages;
137
138         /* Don't let a single process grow too big:
139            leave 3% of the size of this process for other processes */
140         allowed -= current->mm->total_vm / 32;
141
142         if (atomic_read(&vm_committed_space) < allowed)
143                 return 0;
144
145         vm_unacct_memory(pages);
146
147         return -ENOMEM;
148 }
149
150 EXPORT_SYMBOL(sysctl_overcommit_memory);
151 EXPORT_SYMBOL(sysctl_overcommit_ratio);
152 EXPORT_SYMBOL(sysctl_max_map_count);
153 EXPORT_SYMBOL(vm_committed_space);
154 EXPORT_SYMBOL(__vm_enough_memory);
155
156 /*
157  * Requires inode->i_mapping->i_mmap_lock
158  */
159 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
160                 struct file *file, struct address_space *mapping)
161 {
162         if (vma->vm_flags & VM_DENYWRITE)
163                 atomic_inc(&file->f_dentry->d_inode->i_writecount);
164         if (vma->vm_flags & VM_SHARED)
165                 mapping->i_mmap_writable--;
166
167         flush_dcache_mmap_lock(mapping);
168         if (unlikely(vma->vm_flags & VM_NONLINEAR))
169                 list_del_init(&vma->shared.vm_set.list);
170         else
171                 vma_prio_tree_remove(vma, &mapping->i_mmap);
172         flush_dcache_mmap_unlock(mapping);
173 }
174
175 /*
176  * Remove one vm structure and free it.
177  */
178 static void remove_vm_struct(struct vm_area_struct *vma)
179 {
180         struct file *file = vma->vm_file;
181
182         might_sleep();
183         if (file) {
184                 struct address_space *mapping = file->f_mapping;
185                 spin_lock(&mapping->i_mmap_lock);
186                 __remove_shared_vm_struct(vma, file, mapping);
187                 spin_unlock(&mapping->i_mmap_lock);
188         }
189         if (vma->vm_ops && vma->vm_ops->close)
190                 vma->vm_ops->close(vma);
191         if (file)
192                 fput(file);
193         anon_vma_unlink(vma);
194         mpol_free(vma_policy(vma));
195         kmem_cache_free(vm_area_cachep, vma);
196 }
197
198 /*
199  *  sys_brk() for the most part doesn't need the global kernel
200  *  lock, except when an application is doing something nasty
201  *  like trying to un-brk an area that has already been mapped
202  *  to a regular file.  in this case, the unmapping will need
203  *  to invoke file system routines that need the global lock.
204  */
205 asmlinkage unsigned long sys_brk(unsigned long brk)
206 {
207         unsigned long rlim, retval;
208         unsigned long newbrk, oldbrk;
209         struct mm_struct *mm = current->mm;
210
211         down_write(&mm->mmap_sem);
212
213         if (brk < mm->end_code)
214                 goto out;
215         newbrk = PAGE_ALIGN(brk);
216         oldbrk = PAGE_ALIGN(mm->brk);
217         if (oldbrk == newbrk)
218                 goto set_brk;
219
220         /* Always allow shrinking brk. */
221         if (brk <= mm->brk) {
222                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
223                         goto set_brk;
224                 goto out;
225         }
226
227         /* Check against rlimit.. */
228         rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
229         if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
230                 goto out;
231
232         /* Check against existing mmap mappings. */
233         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
234                 goto out;
235
236         /* Ok, looks good - let it rip. */
237         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
238                 goto out;
239 set_brk:
240         mm->brk = brk;
241 out:
242         retval = mm->brk;
243         up_write(&mm->mmap_sem);
244         return retval;
245 }
246
247 #ifdef DEBUG_MM_RB
248 static int browse_rb(struct rb_root *root)
249 {
250         int i = 0, j;
251         struct rb_node *nd, *pn = NULL;
252         unsigned long prev = 0, pend = 0;
253
254         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
255                 struct vm_area_struct *vma;
256                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
257                 if (vma->vm_start < prev)
258                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
259                 if (vma->vm_start < pend)
260                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
261                 if (vma->vm_start > vma->vm_end)
262                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
263                 i++;
264                 pn = nd;
265         }
266         j = 0;
267         for (nd = pn; nd; nd = rb_prev(nd)) {
268                 j++;
269         }
270         if (i != j)
271                 printk("backwards %d, forwards %d\n", j, i), i = 0;
272         return i;
273 }
274
275 void validate_mm(struct mm_struct *mm)
276 {
277         int bug = 0;
278         int i = 0;
279         struct vm_area_struct *tmp = mm->mmap;
280         while (tmp) {
281                 tmp = tmp->vm_next;
282                 i++;
283         }
284         if (i != mm->map_count)
285                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
286         i = browse_rb(&mm->mm_rb);
287         if (i != mm->map_count)
288                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
289         if (bug)
290                 BUG();
291 }
292 #else
293 #define validate_mm(mm) do { } while (0)
294 #endif
295
296 static struct vm_area_struct *
297 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
298                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
299                 struct rb_node ** rb_parent)
300 {
301         struct vm_area_struct * vma;
302         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
303
304         __rb_link = &mm->mm_rb.rb_node;
305         rb_prev = __rb_parent = NULL;
306         vma = NULL;
307
308         while (*__rb_link) {
309                 struct vm_area_struct *vma_tmp;
310
311                 __rb_parent = *__rb_link;
312                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
313
314                 if (vma_tmp->vm_end > addr) {
315                         vma = vma_tmp;
316                         if (vma_tmp->vm_start <= addr)
317                                 return vma;
318                         __rb_link = &__rb_parent->rb_left;
319                 } else {
320                         rb_prev = __rb_parent;
321                         __rb_link = &__rb_parent->rb_right;
322                 }
323         }
324
325         *pprev = NULL;
326         if (rb_prev)
327                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
328         *rb_link = __rb_link;
329         *rb_parent = __rb_parent;
330         return vma;
331 }
332
333 static inline void
334 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
335                 struct vm_area_struct *prev, struct rb_node *rb_parent)
336 {
337         if (prev) {
338                 vma->vm_next = prev->vm_next;
339                 prev->vm_next = vma;
340         } else {
341                 mm->mmap = vma;
342                 if (rb_parent)
343                         vma->vm_next = rb_entry(rb_parent,
344                                         struct vm_area_struct, vm_rb);
345                 else
346                         vma->vm_next = NULL;
347         }
348 }
349
350 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
351                 struct rb_node **rb_link, struct rb_node *rb_parent)
352 {
353         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
354         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
355 }
356
357 static inline void __vma_link_file(struct vm_area_struct *vma)
358 {
359         struct file * file;
360
361         file = vma->vm_file;
362         if (file) {
363                 struct address_space *mapping = file->f_mapping;
364
365                 if (vma->vm_flags & VM_DENYWRITE)
366                         atomic_dec(&file->f_dentry->d_inode->i_writecount);
367                 if (vma->vm_flags & VM_SHARED)
368                         mapping->i_mmap_writable++;
369
370                 flush_dcache_mmap_lock(mapping);
371                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
372                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
373                 else
374                         vma_prio_tree_insert(vma, &mapping->i_mmap);
375                 flush_dcache_mmap_unlock(mapping);
376         }
377 }
378
379 static void
380 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
381         struct vm_area_struct *prev, struct rb_node **rb_link,
382         struct rb_node *rb_parent)
383 {
384         __vma_link_list(mm, vma, prev, rb_parent);
385         __vma_link_rb(mm, vma, rb_link, rb_parent);
386         __anon_vma_link(vma);
387 }
388
389 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
390                         struct vm_area_struct *prev, struct rb_node **rb_link,
391                         struct rb_node *rb_parent)
392 {
393         struct address_space *mapping = NULL;
394
395         if (vma->vm_file)
396                 mapping = vma->vm_file->f_mapping;
397
398         if (mapping) {
399                 spin_lock(&mapping->i_mmap_lock);
400                 vma->vm_truncate_count = mapping->truncate_count;
401         }
402         anon_vma_lock(vma);
403
404         __vma_link(mm, vma, prev, rb_link, rb_parent);
405         __vma_link_file(vma);
406
407         anon_vma_unlock(vma);
408         if (mapping)
409                 spin_unlock(&mapping->i_mmap_lock);
410
411         mm->map_count++;
412         validate_mm(mm);
413 }
414
415 /*
416  * Helper for vma_adjust in the split_vma insert case:
417  * insert vm structure into list and rbtree and anon_vma,
418  * but it has already been inserted into prio_tree earlier.
419  */
420 static void
421 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
422 {
423         struct vm_area_struct * __vma, * prev;
424         struct rb_node ** rb_link, * rb_parent;
425
426         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
427         if (__vma && __vma->vm_start < vma->vm_end)
428                 BUG();
429         __vma_link(mm, vma, prev, rb_link, rb_parent);
430         mm->map_count++;
431 }
432
433 static inline void
434 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
435                 struct vm_area_struct *prev)
436 {
437         prev->vm_next = vma->vm_next;
438         rb_erase(&vma->vm_rb, &mm->mm_rb);
439         if (mm->mmap_cache == vma)
440                 mm->mmap_cache = prev;
441 }
442
443 /*
444  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
445  * is already present in an i_mmap tree without adjusting the tree.
446  * The following helper function should be used when such adjustments
447  * are necessary.  The "insert" vma (if any) is to be inserted
448  * before we drop the necessary locks.
449  */
450 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
451         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
452 {
453         struct mm_struct *mm = vma->vm_mm;
454         struct vm_area_struct *next = vma->vm_next;
455         struct vm_area_struct *importer = NULL;
456         struct address_space *mapping = NULL;
457         struct prio_tree_root *root = NULL;
458         struct file *file = vma->vm_file;
459         struct anon_vma *anon_vma = NULL;
460         long adjust_next = 0;
461         int remove_next = 0;
462
463         if (next && !insert) {
464                 if (end >= next->vm_end) {
465                         /*
466                          * vma expands, overlapping all the next, and
467                          * perhaps the one after too (mprotect case 6).
468                          */
469 again:                  remove_next = 1 + (end > next->vm_end);
470                         end = next->vm_end;
471                         anon_vma = next->anon_vma;
472                         importer = vma;
473                 } else if (end > next->vm_start) {
474                         /*
475                          * vma expands, overlapping part of the next:
476                          * mprotect case 5 shifting the boundary up.
477                          */
478                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
479                         anon_vma = next->anon_vma;
480                         importer = vma;
481                 } else if (end < vma->vm_end) {
482                         /*
483                          * vma shrinks, and !insert tells it's not
484                          * split_vma inserting another: so it must be
485                          * mprotect case 4 shifting the boundary down.
486                          */
487                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
488                         anon_vma = next->anon_vma;
489                         importer = next;
490                 }
491         }
492
493         if (file) {
494                 mapping = file->f_mapping;
495                 if (!(vma->vm_flags & VM_NONLINEAR))
496                         root = &mapping->i_mmap;
497                 spin_lock(&mapping->i_mmap_lock);
498                 if (importer &&
499                     vma->vm_truncate_count != next->vm_truncate_count) {
500                         /*
501                          * unmap_mapping_range might be in progress:
502                          * ensure that the expanding vma is rescanned.
503                          */
504                         importer->vm_truncate_count = 0;
505                 }
506                 if (insert) {
507                         insert->vm_truncate_count = vma->vm_truncate_count;
508                         /*
509                          * Put into prio_tree now, so instantiated pages
510                          * are visible to arm/parisc __flush_dcache_page
511                          * throughout; but we cannot insert into address
512                          * space until vma start or end is updated.
513                          */
514                         __vma_link_file(insert);
515                 }
516         }
517
518         /*
519          * When changing only vma->vm_end, we don't really need
520          * anon_vma lock: but is that case worth optimizing out?
521          */
522         if (vma->anon_vma)
523                 anon_vma = vma->anon_vma;
524         if (anon_vma) {
525                 spin_lock(&anon_vma->lock);
526                 /*
527                  * Easily overlooked: when mprotect shifts the boundary,
528                  * make sure the expanding vma has anon_vma set if the
529                  * shrinking vma had, to cover any anon pages imported.
530                  */
531                 if (importer && !importer->anon_vma) {
532                         importer->anon_vma = anon_vma;
533                         __anon_vma_link(importer);
534                 }
535         }
536
537         if (root) {
538                 flush_dcache_mmap_lock(mapping);
539                 vma_prio_tree_remove(vma, root);
540                 if (adjust_next)
541                         vma_prio_tree_remove(next, root);
542         }
543
544         vma->vm_start = start;
545         vma->vm_end = end;
546         vma->vm_pgoff = pgoff;
547         if (adjust_next) {
548                 next->vm_start += adjust_next << PAGE_SHIFT;
549                 next->vm_pgoff += adjust_next;
550         }
551
552         if (root) {
553                 if (adjust_next)
554                         vma_prio_tree_insert(next, root);
555                 vma_prio_tree_insert(vma, root);
556                 flush_dcache_mmap_unlock(mapping);
557         }
558
559         if (remove_next) {
560                 /*
561                  * vma_merge has merged next into vma, and needs
562                  * us to remove next before dropping the locks.
563                  */
564                 __vma_unlink(mm, next, vma);
565                 if (file)
566                         __remove_shared_vm_struct(next, file, mapping);
567                 if (next->anon_vma)
568                         __anon_vma_merge(vma, next);
569         } else if (insert) {
570                 /*
571                  * split_vma has split insert from vma, and needs
572                  * us to insert it before dropping the locks
573                  * (it may either follow vma or precede it).
574                  */
575                 __insert_vm_struct(mm, insert);
576         }
577
578         if (anon_vma)
579                 spin_unlock(&anon_vma->lock);
580         if (mapping)
581                 spin_unlock(&mapping->i_mmap_lock);
582
583         if (remove_next) {
584                 if (file)
585                         fput(file);
586                 mm->map_count--;
587                 mpol_free(vma_policy(next));
588                 kmem_cache_free(vm_area_cachep, next);
589                 /*
590                  * In mprotect's case 6 (see comments on vma_merge),
591                  * we must remove another next too. It would clutter
592                  * up the code too much to do both in one go.
593                  */
594                 if (remove_next == 2) {
595                         next = vma->vm_next;
596                         goto again;
597                 }
598         }
599
600         validate_mm(mm);
601 }
602
603 /*
604  * If the vma has a ->close operation then the driver probably needs to release
605  * per-vma resources, so we don't attempt to merge those.
606  */
607 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
608
609 static inline int is_mergeable_vma(struct vm_area_struct *vma,
610                         struct file *file, unsigned long vm_flags)
611 {
612         if (vma->vm_flags != vm_flags)
613                 return 0;
614         if (vma->vm_file != file)
615                 return 0;
616         if (vma->vm_ops && vma->vm_ops->close)
617                 return 0;
618         return 1;
619 }
620
621 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
622                                         struct anon_vma *anon_vma2)
623 {
624         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
625 }
626
627 /*
628  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
629  * in front of (at a lower virtual address and file offset than) the vma.
630  *
631  * We cannot merge two vmas if they have differently assigned (non-NULL)
632  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
633  *
634  * We don't check here for the merged mmap wrapping around the end of pagecache
635  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
636  * wrap, nor mmaps which cover the final page at index -1UL.
637  */
638 static int
639 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
640         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
641 {
642         if (is_mergeable_vma(vma, file, vm_flags) &&
643             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
644                 if (vma->vm_pgoff == vm_pgoff)
645                         return 1;
646         }
647         return 0;
648 }
649
650 /*
651  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
652  * beyond (at a higher virtual address and file offset than) the vma.
653  *
654  * We cannot merge two vmas if they have differently assigned (non-NULL)
655  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
656  */
657 static int
658 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
659         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
660 {
661         if (is_mergeable_vma(vma, file, vm_flags) &&
662             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
663                 pgoff_t vm_pglen;
664                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
665                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
666                         return 1;
667         }
668         return 0;
669 }
670
671 /*
672  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
673  * whether that can be merged with its predecessor or its successor.
674  * Or both (it neatly fills a hole).
675  *
676  * In most cases - when called for mmap, brk or mremap - [addr,end) is
677  * certain not to be mapped by the time vma_merge is called; but when
678  * called for mprotect, it is certain to be already mapped (either at
679  * an offset within prev, or at the start of next), and the flags of
680  * this area are about to be changed to vm_flags - and the no-change
681  * case has already been eliminated.
682  *
683  * The following mprotect cases have to be considered, where AAAA is
684  * the area passed down from mprotect_fixup, never extending beyond one
685  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
686  *
687  *     AAAA             AAAA                AAAA          AAAA
688  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
689  *    cannot merge    might become    might become    might become
690  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
691  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
692  *    mremap move:                                    PPPPNNNNNNNN 8
693  *        AAAA
694  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
695  *    might become    case 1 below    case 2 below    case 3 below
696  *
697  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
698  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
699  */
700 struct vm_area_struct *vma_merge(struct mm_struct *mm,
701                         struct vm_area_struct *prev, unsigned long addr,
702                         unsigned long end, unsigned long vm_flags,
703                         struct anon_vma *anon_vma, struct file *file,
704                         pgoff_t pgoff, struct mempolicy *policy)
705 {
706         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
707         struct vm_area_struct *area, *next;
708
709         /*
710          * We later require that vma->vm_flags == vm_flags,
711          * so this tests vma->vm_flags & VM_SPECIAL, too.
712          */
713         if (vm_flags & VM_SPECIAL)
714                 return NULL;
715
716         if (prev)
717                 next = prev->vm_next;
718         else
719                 next = mm->mmap;
720         area = next;
721         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
722                 next = next->vm_next;
723
724         /*
725          * Can it merge with the predecessor?
726          */
727         if (prev && prev->vm_end == addr &&
728                         mpol_equal(vma_policy(prev), policy) &&
729                         can_vma_merge_after(prev, vm_flags,
730                                                 anon_vma, file, pgoff)) {
731                 /*
732                  * OK, it can.  Can we now merge in the successor as well?
733                  */
734                 if (next && end == next->vm_start &&
735                                 mpol_equal(policy, vma_policy(next)) &&
736                                 can_vma_merge_before(next, vm_flags,
737                                         anon_vma, file, pgoff+pglen) &&
738                                 is_mergeable_anon_vma(prev->anon_vma,
739                                                       next->anon_vma)) {
740                                                         /* cases 1, 6 */
741                         vma_adjust(prev, prev->vm_start,
742                                 next->vm_end, prev->vm_pgoff, NULL);
743                 } else                                  /* cases 2, 5, 7 */
744                         vma_adjust(prev, prev->vm_start,
745                                 end, prev->vm_pgoff, NULL);
746                 return prev;
747         }
748
749         /*
750          * Can this new request be merged in front of next?
751          */
752         if (next && end == next->vm_start &&
753                         mpol_equal(policy, vma_policy(next)) &&
754                         can_vma_merge_before(next, vm_flags,
755                                         anon_vma, file, pgoff+pglen)) {
756                 if (prev && addr < prev->vm_end)        /* case 4 */
757                         vma_adjust(prev, prev->vm_start,
758                                 addr, prev->vm_pgoff, NULL);
759                 else                                    /* cases 3, 8 */
760                         vma_adjust(area, addr, next->vm_end,
761                                 next->vm_pgoff - pglen, NULL);
762                 return area;
763         }
764
765         return NULL;
766 }
767
768 /*
769  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
770  * neighbouring vmas for a suitable anon_vma, before it goes off
771  * to allocate a new anon_vma.  It checks because a repetitive
772  * sequence of mprotects and faults may otherwise lead to distinct
773  * anon_vmas being allocated, preventing vma merge in subsequent
774  * mprotect.
775  */
776 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
777 {
778         struct vm_area_struct *near;
779         unsigned long vm_flags;
780
781         near = vma->vm_next;
782         if (!near)
783                 goto try_prev;
784
785         /*
786          * Since only mprotect tries to remerge vmas, match flags
787          * which might be mprotected into each other later on.
788          * Neither mlock nor madvise tries to remerge at present,
789          * so leave their flags as obstructing a merge.
790          */
791         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
792         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
793
794         if (near->anon_vma && vma->vm_end == near->vm_start &&
795                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
796                         can_vma_merge_before(near, vm_flags,
797                                 NULL, vma->vm_file, vma->vm_pgoff +
798                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
799                 return near->anon_vma;
800 try_prev:
801         /*
802          * It is potentially slow to have to call find_vma_prev here.
803          * But it's only on the first write fault on the vma, not
804          * every time, and we could devise a way to avoid it later
805          * (e.g. stash info in next's anon_vma_node when assigning
806          * an anon_vma, or when trying vma_merge).  Another time.
807          */
808         if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
809                 BUG();
810         if (!near)
811                 goto none;
812
813         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
814         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
815
816         if (near->anon_vma && near->vm_end == vma->vm_start &&
817                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
818                         can_vma_merge_after(near, vm_flags,
819                                 NULL, vma->vm_file, vma->vm_pgoff))
820                 return near->anon_vma;
821 none:
822         /*
823          * There's no absolute need to look only at touching neighbours:
824          * we could search further afield for "compatible" anon_vmas.
825          * But it would probably just be a waste of time searching,
826          * or lead to too many vmas hanging off the same anon_vma.
827          * We're trying to allow mprotect remerging later on,
828          * not trying to minimize memory used for anon_vmas.
829          */
830         return NULL;
831 }
832
833 #ifdef CONFIG_PROC_FS
834 void __vm_stat_account(struct mm_struct *mm, unsigned long flags,
835                                                 struct file *file, long pages)
836 {
837         const unsigned long stack_flags
838                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
839
840 #ifdef CONFIG_HUGETLB
841         if (flags & VM_HUGETLB) {
842                 if (!(flags & VM_DONTCOPY))
843                         mm->shared_vm += pages;
844                 return;
845         }
846 #endif /* CONFIG_HUGETLB */
847
848         if (file) {
849                 mm->shared_vm += pages;
850                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
851                         mm->exec_vm += pages;
852         } else if (flags & stack_flags)
853                 mm->stack_vm += pages;
854         if (flags & (VM_RESERVED|VM_IO))
855                 mm->reserved_vm += pages;
856 }
857 #endif /* CONFIG_PROC_FS */
858
859 /*
860  * The caller must hold down_write(current->mm->mmap_sem).
861  */
862
863 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
864                         unsigned long len, unsigned long prot,
865                         unsigned long flags, unsigned long pgoff)
866 {
867         struct mm_struct * mm = current->mm;
868         struct vm_area_struct * vma, * prev;
869         struct inode *inode;
870         unsigned int vm_flags;
871         int correct_wcount = 0;
872         int error;
873         struct rb_node ** rb_link, * rb_parent;
874         int accountable = 1;
875         unsigned long charged = 0, reqprot = prot;
876
877         if (file) {
878                 if (is_file_hugepages(file))
879                         accountable = 0;
880
881                 if (!file->f_op || !file->f_op->mmap)
882                         return -ENODEV;
883
884                 if ((prot & PROT_EXEC) &&
885                     (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
886                         return -EPERM;
887         }
888         /*
889          * Does the application expect PROT_READ to imply PROT_EXEC?
890          *
891          * (the exception is when the underlying filesystem is noexec
892          *  mounted, in which case we dont add PROT_EXEC.)
893          */
894         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
895                 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
896                         prot |= PROT_EXEC;
897
898         if (!len)
899                 return -EINVAL;
900
901         /* Careful about overflows.. */
902         len = PAGE_ALIGN(len);
903         if (!len || len > TASK_SIZE)
904                 return -ENOMEM;
905
906         /* offset overflow? */
907         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
908                return -EOVERFLOW;
909
910         /* Too many mappings? */
911         if (mm->map_count > sysctl_max_map_count)
912                 return -ENOMEM;
913
914         /* Obtain the address to map to. we verify (or select) it and ensure
915          * that it represents a valid section of the address space.
916          */
917         addr = get_unmapped_area(file, addr, len, pgoff, flags);
918         if (addr & ~PAGE_MASK)
919                 return addr;
920
921         /* Do simple checking here so the lower-level routines won't have
922          * to. we assume access permissions have been handled by the open
923          * of the memory object, so we don't do any here.
924          */
925         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
926                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
927
928         if (flags & MAP_LOCKED) {
929                 if (!can_do_mlock())
930                         return -EPERM;
931                 vm_flags |= VM_LOCKED;
932         }
933         /* mlock MCL_FUTURE? */
934         if (vm_flags & VM_LOCKED) {
935                 unsigned long locked, lock_limit;
936                 locked = mm->locked_vm << PAGE_SHIFT;
937                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
938                 locked += len;
939                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
940                         return -EAGAIN;
941         }
942
943         inode = file ? file->f_dentry->d_inode : NULL;
944
945         if (file) {
946                 switch (flags & MAP_TYPE) {
947                 case MAP_SHARED:
948                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
949                                 return -EACCES;
950
951                         /*
952                          * Make sure we don't allow writing to an append-only
953                          * file..
954                          */
955                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
956                                 return -EACCES;
957
958                         /*
959                          * Make sure there are no mandatory locks on the file.
960                          */
961                         if (locks_verify_locked(inode))
962                                 return -EAGAIN;
963
964                         vm_flags |= VM_SHARED | VM_MAYSHARE;
965                         if (!(file->f_mode & FMODE_WRITE))
966                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
967
968                         /* fall through */
969                 case MAP_PRIVATE:
970                         if (!(file->f_mode & FMODE_READ))
971                                 return -EACCES;
972                         break;
973
974                 default:
975                         return -EINVAL;
976                 }
977         } else {
978                 switch (flags & MAP_TYPE) {
979                 case MAP_SHARED:
980                         vm_flags |= VM_SHARED | VM_MAYSHARE;
981                         break;
982                 case MAP_PRIVATE:
983                         /*
984                          * Set pgoff according to addr for anon_vma.
985                          */
986                         pgoff = addr >> PAGE_SHIFT;
987                         break;
988                 default:
989                         return -EINVAL;
990                 }
991         }
992
993         error = security_file_mmap(file, reqprot, prot, flags);
994         if (error)
995                 return error;
996                 
997         /* Clear old maps */
998         error = -ENOMEM;
999 munmap_back:
1000         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1001         if (vma && vma->vm_start < addr + len) {
1002                 if (do_munmap(mm, addr, len))
1003                         return -ENOMEM;
1004                 goto munmap_back;
1005         }
1006
1007         /* Check against address space limit. */
1008         if ((mm->total_vm << PAGE_SHIFT) + len
1009             > current->signal->rlim[RLIMIT_AS].rlim_cur)
1010                 return -ENOMEM;
1011
1012         if (accountable && (!(flags & MAP_NORESERVE) ||
1013                             sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1014                 if (vm_flags & VM_SHARED) {
1015                         /* Check memory availability in shmem_file_setup? */
1016                         vm_flags |= VM_ACCOUNT;
1017                 } else if (vm_flags & VM_WRITE) {
1018                         /*
1019                          * Private writable mapping: check memory availability
1020                          */
1021                         charged = len >> PAGE_SHIFT;
1022                         if (security_vm_enough_memory(charged))
1023                                 return -ENOMEM;
1024                         vm_flags |= VM_ACCOUNT;
1025                 }
1026         }
1027
1028         /*
1029          * Can we just expand an old private anonymous mapping?
1030          * The VM_SHARED test is necessary because shmem_zero_setup
1031          * will create the file object for a shared anonymous map below.
1032          */
1033         if (!file && !(vm_flags & VM_SHARED) &&
1034             vma_merge(mm, prev, addr, addr + len, vm_flags,
1035                                         NULL, NULL, pgoff, NULL))
1036                 goto out;
1037
1038         /*
1039          * Determine the object being mapped and call the appropriate
1040          * specific mapper. the address has already been validated, but
1041          * not unmapped, but the maps are removed from the list.
1042          */
1043         vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1044         if (!vma) {
1045                 error = -ENOMEM;
1046                 goto unacct_error;
1047         }
1048         memset(vma, 0, sizeof(*vma));
1049
1050         vma->vm_mm = mm;
1051         vma->vm_start = addr;
1052         vma->vm_end = addr + len;
1053         vma->vm_flags = vm_flags;
1054         vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1055         vma->vm_pgoff = pgoff;
1056
1057         if (file) {
1058                 error = -EINVAL;
1059                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1060                         goto free_vma;
1061                 if (vm_flags & VM_DENYWRITE) {
1062                         error = deny_write_access(file);
1063                         if (error)
1064                                 goto free_vma;
1065                         correct_wcount = 1;
1066                 }
1067                 vma->vm_file = file;
1068                 get_file(file);
1069                 error = file->f_op->mmap(file, vma);
1070                 if (error)
1071                         goto unmap_and_free_vma;
1072         } else if (vm_flags & VM_SHARED) {
1073                 error = shmem_zero_setup(vma);
1074                 if (error)
1075                         goto free_vma;
1076         }
1077
1078         /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1079          * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1080          * that memory reservation must be checked; but that reservation
1081          * belongs to shared memory object, not to vma: so now clear it.
1082          */
1083         if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1084                 vma->vm_flags &= ~VM_ACCOUNT;
1085
1086         /* Can addr have changed??
1087          *
1088          * Answer: Yes, several device drivers can do it in their
1089          *         f_op->mmap method. -DaveM
1090          */
1091         addr = vma->vm_start;
1092         pgoff = vma->vm_pgoff;
1093         vm_flags = vma->vm_flags;
1094
1095         if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1096                         vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1097                 file = vma->vm_file;
1098                 vma_link(mm, vma, prev, rb_link, rb_parent);
1099                 if (correct_wcount)
1100                         atomic_inc(&inode->i_writecount);
1101         } else {
1102                 if (file) {
1103                         if (correct_wcount)
1104                                 atomic_inc(&inode->i_writecount);
1105                         fput(file);
1106                 }
1107                 mpol_free(vma_policy(vma));
1108                 kmem_cache_free(vm_area_cachep, vma);
1109         }
1110 out:    
1111         mm->total_vm += len >> PAGE_SHIFT;
1112         __vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1113         if (vm_flags & VM_LOCKED) {
1114                 mm->locked_vm += len >> PAGE_SHIFT;
1115                 make_pages_present(addr, addr + len);
1116         }
1117         if (flags & MAP_POPULATE) {
1118                 up_write(&mm->mmap_sem);
1119                 sys_remap_file_pages(addr, len, 0,
1120                                         pgoff, flags & MAP_NONBLOCK);
1121                 down_write(&mm->mmap_sem);
1122         }
1123         return addr;
1124
1125 unmap_and_free_vma:
1126         if (correct_wcount)
1127                 atomic_inc(&inode->i_writecount);
1128         vma->vm_file = NULL;
1129         fput(file);
1130
1131         /* Undo any partial mapping done by a device driver. */
1132         zap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, NULL);
1133 free_vma:
1134         kmem_cache_free(vm_area_cachep, vma);
1135 unacct_error:
1136         if (charged)
1137                 vm_unacct_memory(charged);
1138         return error;
1139 }
1140
1141 EXPORT_SYMBOL(do_mmap_pgoff);
1142
1143 /* Get an address range which is currently unmapped.
1144  * For shmat() with addr=0.
1145  *
1146  * Ugly calling convention alert:
1147  * Return value with the low bits set means error value,
1148  * ie
1149  *      if (ret & ~PAGE_MASK)
1150  *              error = ret;
1151  *
1152  * This function "knows" that -ENOMEM has the bits set.
1153  */
1154 #ifndef HAVE_ARCH_UNMAPPED_AREA
1155 unsigned long
1156 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1157                 unsigned long len, unsigned long pgoff, unsigned long flags)
1158 {
1159         struct mm_struct *mm = current->mm;
1160         struct vm_area_struct *vma;
1161         unsigned long start_addr;
1162
1163         if (len > TASK_SIZE)
1164                 return -ENOMEM;
1165
1166         if (addr) {
1167                 addr = PAGE_ALIGN(addr);
1168                 vma = find_vma(mm, addr);
1169                 if (TASK_SIZE - len >= addr &&
1170                     (!vma || addr + len <= vma->vm_start))
1171                         return addr;
1172         }
1173         start_addr = addr = mm->free_area_cache;
1174
1175 full_search:
1176         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1177                 /* At this point:  (!vma || addr < vma->vm_end). */
1178                 if (TASK_SIZE - len < addr) {
1179                         /*
1180                          * Start a new search - just in case we missed
1181                          * some holes.
1182                          */
1183                         if (start_addr != TASK_UNMAPPED_BASE) {
1184                                 start_addr = addr = TASK_UNMAPPED_BASE;
1185                                 goto full_search;
1186                         }
1187                         return -ENOMEM;
1188                 }
1189                 if (!vma || addr + len <= vma->vm_start) {
1190                         /*
1191                          * Remember the place where we stopped the search:
1192                          */
1193                         mm->free_area_cache = addr + len;
1194                         return addr;
1195                 }
1196                 addr = vma->vm_end;
1197         }
1198 }
1199 #endif  
1200
1201 void arch_unmap_area(struct vm_area_struct *area)
1202 {
1203         /*
1204          * Is this a new hole at the lowest possible address?
1205          */
1206         if (area->vm_start >= TASK_UNMAPPED_BASE &&
1207                         area->vm_start < area->vm_mm->free_area_cache)
1208                 area->vm_mm->free_area_cache = area->vm_start;
1209 }
1210
1211 /*
1212  * This mmap-allocator allocates new areas top-down from below the
1213  * stack's low limit (the base):
1214  */
1215 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1216 unsigned long
1217 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1218                           const unsigned long len, const unsigned long pgoff,
1219                           const unsigned long flags)
1220 {
1221         struct vm_area_struct *vma;
1222         struct mm_struct *mm = current->mm;
1223         unsigned long addr = addr0;
1224
1225         /* requested length too big for entire address space */
1226         if (len > TASK_SIZE)
1227                 return -ENOMEM;
1228
1229         /* requesting a specific address */
1230         if (addr) {
1231                 addr = PAGE_ALIGN(addr);
1232                 vma = find_vma(mm, addr);
1233                 if (TASK_SIZE - len >= addr &&
1234                                 (!vma || addr + len <= vma->vm_start))
1235                         return addr;
1236         }
1237
1238         /* either no address requested or can't fit in requested address hole */
1239         addr = mm->free_area_cache;
1240
1241         /* make sure it can fit in the remaining address space */
1242         if (addr >= len) {
1243                 vma = find_vma(mm, addr-len);
1244                 if (!vma || addr <= vma->vm_start)
1245                         /* remember the address as a hint for next time */
1246                         return (mm->free_area_cache = addr-len);
1247         }
1248
1249         addr = mm->mmap_base-len;
1250
1251         do {
1252                 /*
1253                  * Lookup failure means no vma is above this address,
1254                  * else if new region fits below vma->vm_start,
1255                  * return with success:
1256                  */
1257                 vma = find_vma(mm, addr);
1258                 if (!vma || addr+len <= vma->vm_start)
1259                         /* remember the address as a hint for next time */
1260                         return (mm->free_area_cache = addr);
1261
1262                 /* try just below the current vma->vm_start */
1263                 addr = vma->vm_start-len;
1264         } while (len <= vma->vm_start);
1265
1266         /*
1267          * A failed mmap() very likely causes application failure,
1268          * so fall back to the bottom-up function here. This scenario
1269          * can happen with large stack limits and large mmap()
1270          * allocations.
1271          */
1272         mm->free_area_cache = TASK_UNMAPPED_BASE;
1273         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1274         /*
1275          * Restore the topdown base:
1276          */
1277         mm->free_area_cache = mm->mmap_base;
1278
1279         return addr;
1280 }
1281 #endif
1282
1283 void arch_unmap_area_topdown(struct vm_area_struct *area)
1284 {
1285         /*
1286          * Is this a new hole at the highest possible address?
1287          */
1288         if (area->vm_end > area->vm_mm->free_area_cache)
1289                 area->vm_mm->free_area_cache = area->vm_end;
1290
1291         /* dont allow allocations above current base */
1292         if (area->vm_mm->free_area_cache > area->vm_mm->mmap_base)
1293                 area->vm_mm->free_area_cache = area->vm_mm->mmap_base;
1294 }
1295
1296 unsigned long
1297 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1298                 unsigned long pgoff, unsigned long flags)
1299 {
1300         if (flags & MAP_FIXED) {
1301                 unsigned long ret;
1302
1303                 if (addr > TASK_SIZE - len)
1304                         return -ENOMEM;
1305                 if (addr & ~PAGE_MASK)
1306                         return -EINVAL;
1307                 if (file && is_file_hugepages(file))  {
1308                         /*
1309                          * Check if the given range is hugepage aligned, and
1310                          * can be made suitable for hugepages.
1311                          */
1312                         ret = prepare_hugepage_range(addr, len);
1313                 } else {
1314                         /*
1315                          * Ensure that a normal request is not falling in a
1316                          * reserved hugepage range.  For some archs like IA-64,
1317                          * there is a separate region for hugepages.
1318                          */
1319                         ret = is_hugepage_only_range(current->mm, addr, len);
1320                 }
1321                 if (ret)
1322                         return -EINVAL;
1323                 return addr;
1324         }
1325
1326         if (file && file->f_op && file->f_op->get_unmapped_area)
1327                 return file->f_op->get_unmapped_area(file, addr, len,
1328                                                 pgoff, flags);
1329
1330         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
1331 }
1332
1333 EXPORT_SYMBOL(get_unmapped_area);
1334
1335 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1336 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1337 {
1338         struct vm_area_struct *vma = NULL;
1339
1340         if (mm) {
1341                 /* Check the cache first. */
1342                 /* (Cache hit rate is typically around 35%.) */
1343                 vma = mm->mmap_cache;
1344                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1345                         struct rb_node * rb_node;
1346
1347                         rb_node = mm->mm_rb.rb_node;
1348                         vma = NULL;
1349
1350                         while (rb_node) {
1351                                 struct vm_area_struct * vma_tmp;
1352
1353                                 vma_tmp = rb_entry(rb_node,
1354                                                 struct vm_area_struct, vm_rb);
1355
1356                                 if (vma_tmp->vm_end > addr) {
1357                                         vma = vma_tmp;
1358                                         if (vma_tmp->vm_start <= addr)
1359                                                 break;
1360                                         rb_node = rb_node->rb_left;
1361                                 } else
1362                                         rb_node = rb_node->rb_right;
1363                         }
1364                         if (vma)
1365                                 mm->mmap_cache = vma;
1366                 }
1367         }
1368         return vma;
1369 }
1370
1371 EXPORT_SYMBOL(find_vma);
1372
1373 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1374 struct vm_area_struct *
1375 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1376                         struct vm_area_struct **pprev)
1377 {
1378         struct vm_area_struct *vma = NULL, *prev = NULL;
1379         struct rb_node * rb_node;
1380         if (!mm)
1381                 goto out;
1382
1383         /* Guard against addr being lower than the first VMA */
1384         vma = mm->mmap;
1385
1386         /* Go through the RB tree quickly. */
1387         rb_node = mm->mm_rb.rb_node;
1388
1389         while (rb_node) {
1390                 struct vm_area_struct *vma_tmp;
1391                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1392
1393                 if (addr < vma_tmp->vm_end) {
1394                         rb_node = rb_node->rb_left;
1395                 } else {
1396                         prev = vma_tmp;
1397                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1398                                 break;
1399                         rb_node = rb_node->rb_right;
1400                 }
1401         }
1402
1403 out:
1404         *pprev = prev;
1405         return prev ? prev->vm_next : vma;
1406 }
1407
1408 /*
1409  * Verify that the stack growth is acceptable and
1410  * update accounting. This is shared with both the
1411  * grow-up and grow-down cases.
1412  */
1413 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1414 {
1415         struct mm_struct *mm = vma->vm_mm;
1416         struct rlimit *rlim = current->signal->rlim;
1417
1418         /* address space limit tests */
1419         if (mm->total_vm + grow > rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT)
1420                 return -ENOMEM;
1421
1422         /* Stack limit test */
1423         if (size > rlim[RLIMIT_STACK].rlim_cur)
1424                 return -ENOMEM;
1425
1426         /* mlock limit tests */
1427         if (vma->vm_flags & VM_LOCKED) {
1428                 unsigned long locked;
1429                 unsigned long limit;
1430                 locked = mm->locked_vm + grow;
1431                 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1432                 if (locked > limit && !capable(CAP_IPC_LOCK))
1433                         return -ENOMEM;
1434         }
1435
1436         /*
1437          * Overcommit..  This must be the final test, as it will
1438          * update security statistics.
1439          */
1440         if (security_vm_enough_memory(grow))
1441                 return -ENOMEM;
1442
1443         /* Ok, everything looks good - let it rip */
1444         mm->total_vm += grow;
1445         if (vma->vm_flags & VM_LOCKED)
1446                 mm->locked_vm += grow;
1447         __vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1448         return 0;
1449 }
1450
1451 #ifdef CONFIG_STACK_GROWSUP
1452 /*
1453  * vma is the first one with address > vma->vm_end.  Have to extend vma.
1454  */
1455 int expand_stack(struct vm_area_struct * vma, unsigned long address)
1456 {
1457         int error;
1458
1459         if (!(vma->vm_flags & VM_GROWSUP))
1460                 return -EFAULT;
1461
1462         /*
1463          * We must make sure the anon_vma is allocated
1464          * so that the anon_vma locking is not a noop.
1465          */
1466         if (unlikely(anon_vma_prepare(vma)))
1467                 return -ENOMEM;
1468         anon_vma_lock(vma);
1469
1470         /*
1471          * vma->vm_start/vm_end cannot change under us because the caller
1472          * is required to hold the mmap_sem in read mode.  We need the
1473          * anon_vma lock to serialize against concurrent expand_stacks.
1474          */
1475         address += 4 + PAGE_SIZE - 1;
1476         address &= PAGE_MASK;
1477         error = 0;
1478
1479         /* Somebody else might have raced and expanded it already */
1480         if (address > vma->vm_end) {
1481                 unsigned long size, grow;
1482
1483                 size = address - vma->vm_start;
1484                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1485
1486                 error = acct_stack_growth(vma, size, grow);
1487                 if (!error)
1488                         vma->vm_end = address;
1489         }
1490         anon_vma_unlock(vma);
1491         return error;
1492 }
1493
1494 struct vm_area_struct *
1495 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1496 {
1497         struct vm_area_struct *vma, *prev;
1498
1499         addr &= PAGE_MASK;
1500         vma = find_vma_prev(mm, addr, &prev);
1501         if (vma && (vma->vm_start <= addr))
1502                 return vma;
1503         if (!prev || expand_stack(prev, addr))
1504                 return NULL;
1505         if (prev->vm_flags & VM_LOCKED) {
1506                 make_pages_present(addr, prev->vm_end);
1507         }
1508         return prev;
1509 }
1510 #else
1511 /*
1512  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1513  */
1514 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1515 {
1516         int error;
1517
1518         /*
1519          * We must make sure the anon_vma is allocated
1520          * so that the anon_vma locking is not a noop.
1521          */
1522         if (unlikely(anon_vma_prepare(vma)))
1523                 return -ENOMEM;
1524         anon_vma_lock(vma);
1525
1526         /*
1527          * vma->vm_start/vm_end cannot change under us because the caller
1528          * is required to hold the mmap_sem in read mode.  We need the
1529          * anon_vma lock to serialize against concurrent expand_stacks.
1530          */
1531         address &= PAGE_MASK;
1532         error = 0;
1533
1534         /* Somebody else might have raced and expanded it already */
1535         if (address < vma->vm_start) {
1536                 unsigned long size, grow;
1537
1538                 size = vma->vm_end - address;
1539                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1540
1541                 error = acct_stack_growth(vma, size, grow);
1542                 if (!error) {
1543                         vma->vm_start = address;
1544                         vma->vm_pgoff -= grow;
1545                 }
1546         }
1547         anon_vma_unlock(vma);
1548         return error;
1549 }
1550
1551 struct vm_area_struct *
1552 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1553 {
1554         struct vm_area_struct * vma;
1555         unsigned long start;
1556
1557         addr &= PAGE_MASK;
1558         vma = find_vma(mm,addr);
1559         if (!vma)
1560                 return NULL;
1561         if (vma->vm_start <= addr)
1562                 return vma;
1563         if (!(vma->vm_flags & VM_GROWSDOWN))
1564                 return NULL;
1565         start = vma->vm_start;
1566         if (expand_stack(vma, addr))
1567                 return NULL;
1568         if (vma->vm_flags & VM_LOCKED) {
1569                 make_pages_present(addr, start);
1570         }
1571         return vma;
1572 }
1573 #endif
1574
1575 /*
1576  * Try to free as many page directory entries as we can,
1577  * without having to work very hard at actually scanning
1578  * the page tables themselves.
1579  *
1580  * Right now we try to free page tables if we have a nice
1581  * PGDIR-aligned area that got free'd up. We could be more
1582  * granular if we want to, but this is fast and simple,
1583  * and covers the bad cases.
1584  *
1585  * "prev", if it exists, points to a vma before the one
1586  * we just free'd - but there's no telling how much before.
1587  */
1588 static void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev,
1589         unsigned long start, unsigned long end)
1590 {
1591         unsigned long first = start & PGDIR_MASK;
1592         unsigned long last = end + PGDIR_SIZE - 1;
1593         struct mm_struct *mm = tlb->mm;
1594
1595         if (last > MM_VM_SIZE(mm) || last < end)
1596                 last = MM_VM_SIZE(mm);
1597
1598         if (!prev) {
1599                 prev = mm->mmap;
1600                 if (!prev)
1601                         goto no_mmaps;
1602                 if (prev->vm_end > start) {
1603                         if (last > prev->vm_start)
1604                                 last = prev->vm_start;
1605                         goto no_mmaps;
1606                 }
1607         }
1608         for (;;) {
1609                 struct vm_area_struct *next = prev->vm_next;
1610
1611                 if (next) {
1612                         if (next->vm_start < start) {
1613                                 prev = next;
1614                                 continue;
1615                         }
1616                         if (last > next->vm_start)
1617                                 last = next->vm_start;
1618                 }
1619                 if (prev->vm_end > first)
1620                         first = prev->vm_end;
1621                 break;
1622         }
1623 no_mmaps:
1624         if (last < first)       /* for arches with discontiguous pgd indices */
1625                 return;
1626         if (first < FIRST_USER_PGD_NR * PGDIR_SIZE)
1627                 first = FIRST_USER_PGD_NR * PGDIR_SIZE;
1628         /* No point trying to free anything if we're in the same pte page */
1629         if ((first & PMD_MASK) < (last & PMD_MASK)) {
1630                 clear_page_range(tlb, first, last);
1631                 flush_tlb_pgtables(mm, first, last);
1632         }
1633 }
1634
1635 /* Normal function to fix up a mapping
1636  * This function is the default for when an area has no specific
1637  * function.  This may be used as part of a more specific routine.
1638  *
1639  * By the time this function is called, the area struct has been
1640  * removed from the process mapping list.
1641  */
1642 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area)
1643 {
1644         size_t len = area->vm_end - area->vm_start;
1645
1646         area->vm_mm->total_vm -= len >> PAGE_SHIFT;
1647         if (area->vm_flags & VM_LOCKED)
1648                 area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
1649         vm_stat_unaccount(area);
1650         area->vm_mm->unmap_area(area);
1651         remove_vm_struct(area);
1652 }
1653
1654 /*
1655  * Update the VMA and inode share lists.
1656  *
1657  * Ok - we have the memory areas we should free on the 'free' list,
1658  * so release them, and do the vma updates.
1659  */
1660 static void unmap_vma_list(struct mm_struct *mm,
1661         struct vm_area_struct *mpnt)
1662 {
1663         do {
1664                 struct vm_area_struct *next = mpnt->vm_next;
1665                 unmap_vma(mm, mpnt);
1666                 mpnt = next;
1667         } while (mpnt != NULL);
1668         validate_mm(mm);
1669 }
1670
1671 /*
1672  * Get rid of page table information in the indicated region.
1673  *
1674  * Called with the page table lock held.
1675  */
1676 static void unmap_region(struct mm_struct *mm,
1677         struct vm_area_struct *vma,
1678         struct vm_area_struct *prev,
1679         unsigned long start,
1680         unsigned long end)
1681 {
1682         struct mmu_gather *tlb;
1683         unsigned long nr_accounted = 0;
1684
1685         lru_add_drain();
1686         tlb = tlb_gather_mmu(mm, 0);
1687         unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL);
1688         vm_unacct_memory(nr_accounted);
1689
1690         if (is_hugepage_only_range(mm, start, end - start))
1691                 hugetlb_free_pgtables(tlb, prev, start, end);
1692         else
1693                 free_pgtables(tlb, prev, start, end);
1694         tlb_finish_mmu(tlb, start, end);
1695 }
1696
1697 /*
1698  * Create a list of vma's touched by the unmap, removing them from the mm's
1699  * vma list as we go..
1700  */
1701 static void
1702 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1703         struct vm_area_struct *prev, unsigned long end)
1704 {
1705         struct vm_area_struct **insertion_point;
1706         struct vm_area_struct *tail_vma = NULL;
1707
1708         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1709         do {
1710                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1711                 mm->map_count--;
1712                 tail_vma = vma;
1713                 vma = vma->vm_next;
1714         } while (vma && vma->vm_start < end);
1715         *insertion_point = vma;
1716         tail_vma->vm_next = NULL;
1717         mm->mmap_cache = NULL;          /* Kill the cache. */
1718 }
1719
1720 /*
1721  * Split a vma into two pieces at address 'addr', a new vma is allocated
1722  * either for the first part or the the tail.
1723  */
1724 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1725               unsigned long addr, int new_below)
1726 {
1727         struct mempolicy *pol;
1728         struct vm_area_struct *new;
1729
1730         if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1731                 return -EINVAL;
1732
1733         if (mm->map_count >= sysctl_max_map_count)
1734                 return -ENOMEM;
1735
1736         new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1737         if (!new)
1738                 return -ENOMEM;
1739
1740         /* most fields are the same, copy all, and then fixup */
1741         *new = *vma;
1742
1743         if (new_below)
1744                 new->vm_end = addr;
1745         else {
1746                 new->vm_start = addr;
1747                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1748         }
1749
1750         pol = mpol_copy(vma_policy(vma));
1751         if (IS_ERR(pol)) {
1752                 kmem_cache_free(vm_area_cachep, new);
1753                 return PTR_ERR(pol);
1754         }
1755         vma_set_policy(new, pol);
1756
1757         if (new->vm_file)
1758                 get_file(new->vm_file);
1759
1760         if (new->vm_ops && new->vm_ops->open)
1761                 new->vm_ops->open(new);
1762
1763         if (new_below)
1764                 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1765                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1766         else
1767                 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1768
1769         return 0;
1770 }
1771
1772 /* Munmap is split into 2 main parts -- this part which finds
1773  * what needs doing, and the areas themselves, which do the
1774  * work.  This now handles partial unmappings.
1775  * Jeremy Fitzhardinge <jeremy@goop.org>
1776  */
1777 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1778 {
1779         unsigned long end;
1780         struct vm_area_struct *mpnt, *prev, *last;
1781
1782         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1783                 return -EINVAL;
1784
1785         if ((len = PAGE_ALIGN(len)) == 0)
1786                 return -EINVAL;
1787
1788         /* Find the first overlapping VMA */
1789         mpnt = find_vma_prev(mm, start, &prev);
1790         if (!mpnt)
1791                 return 0;
1792         /* we have  start < mpnt->vm_end  */
1793
1794         /* if it doesn't overlap, we have nothing.. */
1795         end = start + len;
1796         if (mpnt->vm_start >= end)
1797                 return 0;
1798
1799         /*
1800          * If we need to split any vma, do it now to save pain later.
1801          *
1802          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1803          * unmapped vm_area_struct will remain in use: so lower split_vma
1804          * places tmp vma above, and higher split_vma places tmp vma below.
1805          */
1806         if (start > mpnt->vm_start) {
1807                 int error = split_vma(mm, mpnt, start, 0);
1808                 if (error)
1809                         return error;
1810                 prev = mpnt;
1811         }
1812
1813         /* Does it split the last one? */
1814         last = find_vma(mm, end);
1815         if (last && end > last->vm_start) {
1816                 int error = split_vma(mm, last, end, 1);
1817                 if (error)
1818                         return error;
1819         }
1820         mpnt = prev? prev->vm_next: mm->mmap;
1821
1822         /*
1823          * Remove the vma's, and unmap the actual pages
1824          */
1825         detach_vmas_to_be_unmapped(mm, mpnt, prev, end);
1826         spin_lock(&mm->page_table_lock);
1827         unmap_region(mm, mpnt, prev, start, end);
1828         spin_unlock(&mm->page_table_lock);
1829
1830         /* Fix up all other VM information */
1831         unmap_vma_list(mm, mpnt);
1832
1833         return 0;
1834 }
1835
1836 EXPORT_SYMBOL(do_munmap);
1837
1838 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1839 {
1840         int ret;
1841         struct mm_struct *mm = current->mm;
1842
1843         profile_munmap(addr);
1844
1845         down_write(&mm->mmap_sem);
1846         ret = do_munmap(mm, addr, len);
1847         up_write(&mm->mmap_sem);
1848         return ret;
1849 }
1850
1851 static inline void verify_mm_writelocked(struct mm_struct *mm)
1852 {
1853 #ifdef CONFIG_DEBUG_KERNEL
1854         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1855                 WARN_ON(1);
1856                 up_read(&mm->mmap_sem);
1857         }
1858 #endif
1859 }
1860
1861 /*
1862  *  this is really a simplified "do_mmap".  it only handles
1863  *  anonymous maps.  eventually we may be able to do some
1864  *  brk-specific accounting here.
1865  */
1866 unsigned long do_brk(unsigned long addr, unsigned long len)
1867 {
1868         struct mm_struct * mm = current->mm;
1869         struct vm_area_struct * vma, * prev;
1870         unsigned long flags;
1871         struct rb_node ** rb_link, * rb_parent;
1872         pgoff_t pgoff = addr >> PAGE_SHIFT;
1873
1874         len = PAGE_ALIGN(len);
1875         if (!len)
1876                 return addr;
1877
1878         if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1879                 return -EINVAL;
1880
1881         /*
1882          * mlock MCL_FUTURE?
1883          */
1884         if (mm->def_flags & VM_LOCKED) {
1885                 unsigned long locked, lock_limit;
1886                 locked = mm->locked_vm << PAGE_SHIFT;
1887                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1888                 locked += len;
1889                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1890                         return -EAGAIN;
1891         }
1892
1893         /*
1894          * mm->mmap_sem is required to protect against another thread
1895          * changing the mappings in case we sleep.
1896          */
1897         verify_mm_writelocked(mm);
1898
1899         /*
1900          * Clear old maps.  this also does some error checking for us
1901          */
1902  munmap_back:
1903         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1904         if (vma && vma->vm_start < addr + len) {
1905                 if (do_munmap(mm, addr, len))
1906                         return -ENOMEM;
1907                 goto munmap_back;
1908         }
1909
1910         /* Check against address space limits *after* clearing old maps... */
1911         if ((mm->total_vm << PAGE_SHIFT) + len
1912             > current->signal->rlim[RLIMIT_AS].rlim_cur)
1913                 return -ENOMEM;
1914
1915         if (mm->map_count > sysctl_max_map_count)
1916                 return -ENOMEM;
1917
1918         if (security_vm_enough_memory(len >> PAGE_SHIFT))
1919                 return -ENOMEM;
1920
1921         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1922
1923         /* Can we just expand an old private anonymous mapping? */
1924         if (vma_merge(mm, prev, addr, addr + len, flags,
1925                                         NULL, NULL, pgoff, NULL))
1926                 goto out;
1927
1928         /*
1929          * create a vma struct for an anonymous mapping
1930          */
1931         vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1932         if (!vma) {
1933                 vm_unacct_memory(len >> PAGE_SHIFT);
1934                 return -ENOMEM;
1935         }
1936         memset(vma, 0, sizeof(*vma));
1937
1938         vma->vm_mm = mm;
1939         vma->vm_start = addr;
1940         vma->vm_end = addr + len;
1941         vma->vm_pgoff = pgoff;
1942         vma->vm_flags = flags;
1943         vma->vm_page_prot = protection_map[flags & 0x0f];
1944         vma_link(mm, vma, prev, rb_link, rb_parent);
1945 out:
1946         mm->total_vm += len >> PAGE_SHIFT;
1947         if (flags & VM_LOCKED) {
1948                 mm->locked_vm += len >> PAGE_SHIFT;
1949                 make_pages_present(addr, addr + len);
1950         }
1951         return addr;
1952 }
1953
1954 EXPORT_SYMBOL(do_brk);
1955
1956 /* Release all mmaps. */
1957 void exit_mmap(struct mm_struct *mm)
1958 {
1959         struct mmu_gather *tlb;
1960         struct vm_area_struct *vma;
1961         unsigned long nr_accounted = 0;
1962
1963         lru_add_drain();
1964
1965         spin_lock(&mm->page_table_lock);
1966
1967         tlb = tlb_gather_mmu(mm, 1);
1968         flush_cache_mm(mm);
1969         /* Use ~0UL here to ensure all VMAs in the mm are unmapped */
1970         mm->map_count -= unmap_vmas(&tlb, mm, mm->mmap, 0,
1971                                         ~0UL, &nr_accounted, NULL);
1972         vm_unacct_memory(nr_accounted);
1973         BUG_ON(mm->map_count);  /* This is just debugging */
1974         clear_page_range(tlb, FIRST_USER_PGD_NR * PGDIR_SIZE, MM_VM_SIZE(mm));
1975         
1976         tlb_finish_mmu(tlb, 0, MM_VM_SIZE(mm));
1977
1978         vma = mm->mmap;
1979         mm->mmap = mm->mmap_cache = NULL;
1980         mm->mm_rb = RB_ROOT;
1981         set_mm_counter(mm, rss, 0);
1982         mm->total_vm = 0;
1983         mm->locked_vm = 0;
1984
1985         spin_unlock(&mm->page_table_lock);
1986
1987         /*
1988          * Walk the list again, actually closing and freeing it
1989          * without holding any MM locks.
1990          */
1991         while (vma) {
1992                 struct vm_area_struct *next = vma->vm_next;
1993                 remove_vm_struct(vma);
1994                 vma = next;
1995         }
1996 }
1997
1998 /* Insert vm structure into process list sorted by address
1999  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2000  * then i_mmap_lock is taken here.
2001  */
2002 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2003 {
2004         struct vm_area_struct * __vma, * prev;
2005         struct rb_node ** rb_link, * rb_parent;
2006
2007         /*
2008          * The vm_pgoff of a purely anonymous vma should be irrelevant
2009          * until its first write fault, when page's anon_vma and index
2010          * are set.  But now set the vm_pgoff it will almost certainly
2011          * end up with (unless mremap moves it elsewhere before that
2012          * first wfault), so /proc/pid/maps tells a consistent story.
2013          *
2014          * By setting it to reflect the virtual start address of the
2015          * vma, merges and splits can happen in a seamless way, just
2016          * using the existing file pgoff checks and manipulations.
2017          * Similarly in do_mmap_pgoff and in do_brk.
2018          */
2019         if (!vma->vm_file) {
2020                 BUG_ON(vma->anon_vma);
2021                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2022         }
2023         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2024         if (__vma && __vma->vm_start < vma->vm_end)
2025                 return -ENOMEM;
2026         vma_link(mm, vma, prev, rb_link, rb_parent);
2027         return 0;
2028 }
2029
2030 /*
2031  * Copy the vma structure to a new location in the same mm,
2032  * prior to moving page table entries, to effect an mremap move.
2033  */
2034 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2035         unsigned long addr, unsigned long len, pgoff_t pgoff)
2036 {
2037         struct vm_area_struct *vma = *vmap;
2038         unsigned long vma_start = vma->vm_start;
2039         struct mm_struct *mm = vma->vm_mm;
2040         struct vm_area_struct *new_vma, *prev;
2041         struct rb_node **rb_link, *rb_parent;
2042         struct mempolicy *pol;
2043
2044         /*
2045          * If anonymous vma has not yet been faulted, update new pgoff
2046          * to match new location, to increase its chance of merging.
2047          */
2048         if (!vma->vm_file && !vma->anon_vma)
2049                 pgoff = addr >> PAGE_SHIFT;
2050
2051         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2052         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2053                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2054         if (new_vma) {
2055                 /*
2056                  * Source vma may have been merged into new_vma
2057                  */
2058                 if (vma_start >= new_vma->vm_start &&
2059                     vma_start < new_vma->vm_end)
2060                         *vmap = new_vma;
2061         } else {
2062                 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2063                 if (new_vma) {
2064                         *new_vma = *vma;
2065                         pol = mpol_copy(vma_policy(vma));
2066                         if (IS_ERR(pol)) {
2067                                 kmem_cache_free(vm_area_cachep, new_vma);
2068                                 return NULL;
2069                         }
2070                         vma_set_policy(new_vma, pol);
2071                         new_vma->vm_start = addr;
2072                         new_vma->vm_end = addr + len;
2073                         new_vma->vm_pgoff = pgoff;
2074                         if (new_vma->vm_file)
2075                                 get_file(new_vma->vm_file);
2076                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2077                                 new_vma->vm_ops->open(new_vma);
2078                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2079                 }
2080         }
2081         return new_vma;
2082 }