4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
26 * The ring buffer header is special. We must manually up keep it.
28 int ring_buffer_print_entry_header(struct trace_seq *s)
32 ret = trace_seq_printf(s, "# compressed entry header\n");
33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
35 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
36 ret = trace_seq_printf(s, "\n");
37 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING);
39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND);
41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
61 * Here's some silly ASCII art.
64 * |reader| RING BUFFER
66 * +------+ +---+ +---+ +---+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
93 * +------------------------------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
101 * | New +---+ +---+ +---+
104 * +------------------------------+
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
111 * We will be using cmpxchg soon to make all this lockless.
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
145 RB_BUFFERS_ON_BIT = 0,
146 RB_BUFFERS_DISABLED_BIT = 1,
150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 * tracing_on - enable all tracing buffers
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
164 void tracing_on(void)
166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
168 EXPORT_SYMBOL_GPL(tracing_on);
171 * tracing_off - turn off all tracing buffers
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
178 void tracing_off(void)
180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182 EXPORT_SYMBOL_GPL(tracing_off);
185 * tracing_off_permanent - permanently disable ring buffers
187 * This function, once called, will disable all ring buffers
190 void tracing_off_permanent(void)
192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
196 * tracing_is_on - show state of ring buffers enabled
198 int tracing_is_on(void)
200 return ring_buffer_flags == RB_BUFFERS_ON;
202 EXPORT_SYMBOL_GPL(tracing_is_on);
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT 4U
206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
217 static inline int rb_null_event(struct ring_buffer_event *event)
219 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
222 static void rb_event_set_padding(struct ring_buffer_event *event)
224 /* padding has a NULL time_delta */
225 event->type_len = RINGBUF_TYPE_PADDING;
226 event->time_delta = 0;
230 rb_event_data_length(struct ring_buffer_event *event)
235 length = event->type_len * RB_ALIGNMENT;
237 length = event->array[0];
238 return length + RB_EVNT_HDR_SIZE;
241 /* inline for ring buffer fast paths */
243 rb_event_length(struct ring_buffer_event *event)
245 switch (event->type_len) {
246 case RINGBUF_TYPE_PADDING:
247 if (rb_null_event(event))
250 return event->array[0] + RB_EVNT_HDR_SIZE;
252 case RINGBUF_TYPE_TIME_EXTEND:
253 return RB_LEN_TIME_EXTEND;
255 case RINGBUF_TYPE_TIME_STAMP:
256 return RB_LEN_TIME_STAMP;
258 case RINGBUF_TYPE_DATA:
259 return rb_event_data_length(event);
268 * ring_buffer_event_length - return the length of the event
269 * @event: the event to get the length of
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 unsigned length = rb_event_length(event);
274 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 length -= RB_EVNT_HDR_SIZE;
277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278 length -= sizeof(event->array[0]);
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283 /* inline for ring buffer fast paths */
285 rb_event_data(struct ring_buffer_event *event)
287 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288 /* If length is in len field, then array[0] has the data */
290 return (void *)&event->array[0];
291 /* Otherwise length is in array[0] and array[1] has the data */
292 return (void *)&event->array[1];
296 * ring_buffer_event_data - return the data of the event
297 * @event: the event to get the data from
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
301 return rb_event_data(event);
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
305 #define for_each_buffer_cpu(buffer, cpu) \
306 for_each_cpu(cpu, buffer->cpumask)
309 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST (~TS_MASK)
312 struct buffer_data_page {
313 u64 time_stamp; /* page time stamp */
314 local_t commit; /* write committed index */
315 unsigned char data[]; /* data of buffer page */
319 * Note, the buffer_page list must be first. The buffer pages
320 * are allocated in cache lines, which means that each buffer
321 * page will be at the beginning of a cache line, and thus
322 * the least significant bits will be zero. We use this to
323 * add flags in the list struct pointers, to make the ring buffer
327 struct list_head list; /* list of buffer pages */
328 local_t write; /* index for next write */
329 unsigned read; /* index for next read */
330 local_t entries; /* entries on this page */
331 struct buffer_data_page *page; /* Actual data page */
335 * The buffer page counters, write and entries, must be reset
336 * atomically when crossing page boundaries. To synchronize this
337 * update, two counters are inserted into the number. One is
338 * the actual counter for the write position or count on the page.
340 * The other is a counter of updaters. Before an update happens
341 * the update partition of the counter is incremented. This will
342 * allow the updater to update the counter atomically.
344 * The counter is 20 bits, and the state data is 12.
346 #define RB_WRITE_MASK 0xfffff
347 #define RB_WRITE_INTCNT (1 << 20)
349 static void rb_init_page(struct buffer_data_page *bpage)
351 local_set(&bpage->commit, 0);
355 * ring_buffer_page_len - the size of data on the page.
356 * @page: The page to read
358 * Returns the amount of data on the page, including buffer page header.
360 size_t ring_buffer_page_len(void *page)
362 return local_read(&((struct buffer_data_page *)page)->commit)
367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
370 static void free_buffer_page(struct buffer_page *bpage)
372 free_page((unsigned long)bpage->page);
377 * We need to fit the time_stamp delta into 27 bits.
379 static inline int test_time_stamp(u64 delta)
381 if (delta & TS_DELTA_TEST)
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
394 int ring_buffer_print_page_header(struct trace_seq *s)
396 struct buffer_data_page field;
399 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)sizeof(field.time_stamp),
402 (unsigned int)is_signed_type(u64));
404 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
405 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 (unsigned int)offsetof(typeof(field), commit),
407 (unsigned int)sizeof(field.commit),
408 (unsigned int)is_signed_type(long));
410 ret = trace_seq_printf(s, "\tfield: char data;\t"
411 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 (unsigned int)offsetof(typeof(field), data),
413 (unsigned int)BUF_PAGE_SIZE,
414 (unsigned int)is_signed_type(char));
420 * head_page == tail_page && head == tail then buffer is empty.
422 struct ring_buffer_per_cpu {
424 struct ring_buffer *buffer;
425 spinlock_t reader_lock; /* serialize readers */
426 arch_spinlock_t lock;
427 struct lock_class_key lock_key;
428 struct list_head *pages;
429 struct buffer_page *head_page; /* read from head */
430 struct buffer_page *tail_page; /* write to tail */
431 struct buffer_page *commit_page; /* committed pages */
432 struct buffer_page *reader_page;
433 local_t commit_overrun;
441 atomic_t record_disabled;
448 atomic_t record_disabled;
449 cpumask_var_t cpumask;
451 struct lock_class_key *reader_lock_key;
455 struct ring_buffer_per_cpu **buffers;
457 #ifdef CONFIG_HOTPLUG_CPU
458 struct notifier_block cpu_notify;
463 struct ring_buffer_iter {
464 struct ring_buffer_per_cpu *cpu_buffer;
466 struct buffer_page *head_page;
467 struct buffer_page *cache_reader_page;
468 unsigned long cache_read;
472 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
473 #define RB_WARN_ON(b, cond) \
475 int _____ret = unlikely(cond); \
477 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
478 struct ring_buffer_per_cpu *__b = \
480 atomic_inc(&__b->buffer->record_disabled); \
482 atomic_inc(&b->record_disabled); \
488 /* Up this if you want to test the TIME_EXTENTS and normalization */
489 #define DEBUG_SHIFT 0
491 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
493 /* shift to debug/test normalization and TIME_EXTENTS */
494 return buffer->clock() << DEBUG_SHIFT;
497 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
501 preempt_disable_notrace();
502 time = rb_time_stamp(buffer);
503 preempt_enable_no_resched_notrace();
507 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
509 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
512 /* Just stupid testing the normalize function and deltas */
515 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
518 * Making the ring buffer lockless makes things tricky.
519 * Although writes only happen on the CPU that they are on,
520 * and they only need to worry about interrupts. Reads can
523 * The reader page is always off the ring buffer, but when the
524 * reader finishes with a page, it needs to swap its page with
525 * a new one from the buffer. The reader needs to take from
526 * the head (writes go to the tail). But if a writer is in overwrite
527 * mode and wraps, it must push the head page forward.
529 * Here lies the problem.
531 * The reader must be careful to replace only the head page, and
532 * not another one. As described at the top of the file in the
533 * ASCII art, the reader sets its old page to point to the next
534 * page after head. It then sets the page after head to point to
535 * the old reader page. But if the writer moves the head page
536 * during this operation, the reader could end up with the tail.
538 * We use cmpxchg to help prevent this race. We also do something
539 * special with the page before head. We set the LSB to 1.
541 * When the writer must push the page forward, it will clear the
542 * bit that points to the head page, move the head, and then set
543 * the bit that points to the new head page.
545 * We also don't want an interrupt coming in and moving the head
546 * page on another writer. Thus we use the second LSB to catch
549 * head->list->prev->next bit 1 bit 0
552 * Points to head page 0 1
555 * Note we can not trust the prev pointer of the head page, because:
557 * +----+ +-----+ +-----+
558 * | |------>| T |---X--->| N |
560 * +----+ +-----+ +-----+
563 * +----------| R |----------+ |
567 * Key: ---X--> HEAD flag set in pointer
572 * (see __rb_reserve_next() to see where this happens)
574 * What the above shows is that the reader just swapped out
575 * the reader page with a page in the buffer, but before it
576 * could make the new header point back to the new page added
577 * it was preempted by a writer. The writer moved forward onto
578 * the new page added by the reader and is about to move forward
581 * You can see, it is legitimate for the previous pointer of
582 * the head (or any page) not to point back to itself. But only
586 #define RB_PAGE_NORMAL 0UL
587 #define RB_PAGE_HEAD 1UL
588 #define RB_PAGE_UPDATE 2UL
591 #define RB_FLAG_MASK 3UL
593 /* PAGE_MOVED is not part of the mask */
594 #define RB_PAGE_MOVED 4UL
597 * rb_list_head - remove any bit
599 static struct list_head *rb_list_head(struct list_head *list)
601 unsigned long val = (unsigned long)list;
603 return (struct list_head *)(val & ~RB_FLAG_MASK);
607 * rb_is_head_page - test if the given page is the head page
609 * Because the reader may move the head_page pointer, we can
610 * not trust what the head page is (it may be pointing to
611 * the reader page). But if the next page is a header page,
612 * its flags will be non zero.
615 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
616 struct buffer_page *page, struct list_head *list)
620 val = (unsigned long)list->next;
622 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
623 return RB_PAGE_MOVED;
625 return val & RB_FLAG_MASK;
631 * The unique thing about the reader page, is that, if the
632 * writer is ever on it, the previous pointer never points
633 * back to the reader page.
635 static int rb_is_reader_page(struct buffer_page *page)
637 struct list_head *list = page->list.prev;
639 return rb_list_head(list->next) != &page->list;
643 * rb_set_list_to_head - set a list_head to be pointing to head.
645 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
646 struct list_head *list)
650 ptr = (unsigned long *)&list->next;
651 *ptr |= RB_PAGE_HEAD;
652 *ptr &= ~RB_PAGE_UPDATE;
656 * rb_head_page_activate - sets up head page
658 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
660 struct buffer_page *head;
662 head = cpu_buffer->head_page;
667 * Set the previous list pointer to have the HEAD flag.
669 rb_set_list_to_head(cpu_buffer, head->list.prev);
672 static void rb_list_head_clear(struct list_head *list)
674 unsigned long *ptr = (unsigned long *)&list->next;
676 *ptr &= ~RB_FLAG_MASK;
680 * rb_head_page_dactivate - clears head page ptr (for free list)
683 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
685 struct list_head *hd;
687 /* Go through the whole list and clear any pointers found. */
688 rb_list_head_clear(cpu_buffer->pages);
690 list_for_each(hd, cpu_buffer->pages)
691 rb_list_head_clear(hd);
694 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
695 struct buffer_page *head,
696 struct buffer_page *prev,
697 int old_flag, int new_flag)
699 struct list_head *list;
700 unsigned long val = (unsigned long)&head->list;
705 val &= ~RB_FLAG_MASK;
707 ret = cmpxchg((unsigned long *)&list->next,
708 val | old_flag, val | new_flag);
710 /* check if the reader took the page */
711 if ((ret & ~RB_FLAG_MASK) != val)
712 return RB_PAGE_MOVED;
714 return ret & RB_FLAG_MASK;
717 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
718 struct buffer_page *head,
719 struct buffer_page *prev,
722 return rb_head_page_set(cpu_buffer, head, prev,
723 old_flag, RB_PAGE_UPDATE);
726 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
727 struct buffer_page *head,
728 struct buffer_page *prev,
731 return rb_head_page_set(cpu_buffer, head, prev,
732 old_flag, RB_PAGE_HEAD);
735 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
736 struct buffer_page *head,
737 struct buffer_page *prev,
740 return rb_head_page_set(cpu_buffer, head, prev,
741 old_flag, RB_PAGE_NORMAL);
744 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
745 struct buffer_page **bpage)
747 struct list_head *p = rb_list_head((*bpage)->list.next);
749 *bpage = list_entry(p, struct buffer_page, list);
752 static struct buffer_page *
753 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
755 struct buffer_page *head;
756 struct buffer_page *page;
757 struct list_head *list;
760 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
764 list = cpu_buffer->pages;
765 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
768 page = head = cpu_buffer->head_page;
770 * It is possible that the writer moves the header behind
771 * where we started, and we miss in one loop.
772 * A second loop should grab the header, but we'll do
773 * three loops just because I'm paranoid.
775 for (i = 0; i < 3; i++) {
777 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
778 cpu_buffer->head_page = page;
781 rb_inc_page(cpu_buffer, &page);
782 } while (page != head);
785 RB_WARN_ON(cpu_buffer, 1);
790 static int rb_head_page_replace(struct buffer_page *old,
791 struct buffer_page *new)
793 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
797 val = *ptr & ~RB_FLAG_MASK;
800 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
806 * rb_tail_page_update - move the tail page forward
808 * Returns 1 if moved tail page, 0 if someone else did.
810 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
811 struct buffer_page *tail_page,
812 struct buffer_page *next_page)
814 struct buffer_page *old_tail;
815 unsigned long old_entries;
816 unsigned long old_write;
820 * The tail page now needs to be moved forward.
822 * We need to reset the tail page, but without messing
823 * with possible erasing of data brought in by interrupts
824 * that have moved the tail page and are currently on it.
826 * We add a counter to the write field to denote this.
828 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
829 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
832 * Just make sure we have seen our old_write and synchronize
833 * with any interrupts that come in.
838 * If the tail page is still the same as what we think
839 * it is, then it is up to us to update the tail
842 if (tail_page == cpu_buffer->tail_page) {
843 /* Zero the write counter */
844 unsigned long val = old_write & ~RB_WRITE_MASK;
845 unsigned long eval = old_entries & ~RB_WRITE_MASK;
848 * This will only succeed if an interrupt did
849 * not come in and change it. In which case, we
850 * do not want to modify it.
852 * We add (void) to let the compiler know that we do not care
853 * about the return value of these functions. We use the
854 * cmpxchg to only update if an interrupt did not already
855 * do it for us. If the cmpxchg fails, we don't care.
857 (void)local_cmpxchg(&next_page->write, old_write, val);
858 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
861 * No need to worry about races with clearing out the commit.
862 * it only can increment when a commit takes place. But that
863 * only happens in the outer most nested commit.
865 local_set(&next_page->page->commit, 0);
867 old_tail = cmpxchg(&cpu_buffer->tail_page,
868 tail_page, next_page);
870 if (old_tail == tail_page)
877 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
878 struct buffer_page *bpage)
880 unsigned long val = (unsigned long)bpage;
882 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
889 * rb_check_list - make sure a pointer to a list has the last bits zero
891 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
892 struct list_head *list)
894 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
896 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
902 * check_pages - integrity check of buffer pages
903 * @cpu_buffer: CPU buffer with pages to test
905 * As a safety measure we check to make sure the data pages have not
908 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
910 struct list_head *head = cpu_buffer->pages;
911 struct buffer_page *bpage, *tmp;
913 rb_head_page_deactivate(cpu_buffer);
915 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
917 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
920 if (rb_check_list(cpu_buffer, head))
923 list_for_each_entry_safe(bpage, tmp, head, list) {
924 if (RB_WARN_ON(cpu_buffer,
925 bpage->list.next->prev != &bpage->list))
927 if (RB_WARN_ON(cpu_buffer,
928 bpage->list.prev->next != &bpage->list))
930 if (rb_check_list(cpu_buffer, &bpage->list))
934 rb_head_page_activate(cpu_buffer);
939 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page *bpage, *tmp;
949 for (i = 0; i < nr_pages; i++) {
950 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
951 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
955 rb_check_bpage(cpu_buffer, bpage);
957 list_add(&bpage->list, &pages);
959 addr = __get_free_page(GFP_KERNEL);
962 bpage->page = (void *)addr;
963 rb_init_page(bpage->page);
967 * The ring buffer page list is a circular list that does not
968 * start and end with a list head. All page list items point to
971 cpu_buffer->pages = pages.next;
974 rb_check_pages(cpu_buffer);
979 list_for_each_entry_safe(bpage, tmp, &pages, list) {
980 list_del_init(&bpage->list);
981 free_buffer_page(bpage);
986 static struct ring_buffer_per_cpu *
987 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
989 struct ring_buffer_per_cpu *cpu_buffer;
990 struct buffer_page *bpage;
994 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
995 GFP_KERNEL, cpu_to_node(cpu));
999 cpu_buffer->cpu = cpu;
1000 cpu_buffer->buffer = buffer;
1001 spin_lock_init(&cpu_buffer->reader_lock);
1002 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1003 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1005 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1006 GFP_KERNEL, cpu_to_node(cpu));
1008 goto fail_free_buffer;
1010 rb_check_bpage(cpu_buffer, bpage);
1012 cpu_buffer->reader_page = bpage;
1013 addr = __get_free_page(GFP_KERNEL);
1015 goto fail_free_reader;
1016 bpage->page = (void *)addr;
1017 rb_init_page(bpage->page);
1019 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1021 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1023 goto fail_free_reader;
1025 cpu_buffer->head_page
1026 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1027 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1029 rb_head_page_activate(cpu_buffer);
1034 free_buffer_page(cpu_buffer->reader_page);
1041 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1043 struct list_head *head = cpu_buffer->pages;
1044 struct buffer_page *bpage, *tmp;
1046 free_buffer_page(cpu_buffer->reader_page);
1048 rb_head_page_deactivate(cpu_buffer);
1051 list_for_each_entry_safe(bpage, tmp, head, list) {
1052 list_del_init(&bpage->list);
1053 free_buffer_page(bpage);
1055 bpage = list_entry(head, struct buffer_page, list);
1056 free_buffer_page(bpage);
1062 #ifdef CONFIG_HOTPLUG_CPU
1063 static int rb_cpu_notify(struct notifier_block *self,
1064 unsigned long action, void *hcpu);
1068 * ring_buffer_alloc - allocate a new ring_buffer
1069 * @size: the size in bytes per cpu that is needed.
1070 * @flags: attributes to set for the ring buffer.
1072 * Currently the only flag that is available is the RB_FL_OVERWRITE
1073 * flag. This flag means that the buffer will overwrite old data
1074 * when the buffer wraps. If this flag is not set, the buffer will
1075 * drop data when the tail hits the head.
1077 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1078 struct lock_class_key *key)
1080 struct ring_buffer *buffer;
1084 /* keep it in its own cache line */
1085 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1090 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1091 goto fail_free_buffer;
1093 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1094 buffer->flags = flags;
1095 buffer->clock = trace_clock_local;
1096 buffer->reader_lock_key = key;
1098 /* need at least two pages */
1099 if (buffer->pages < 2)
1103 * In case of non-hotplug cpu, if the ring-buffer is allocated
1104 * in early initcall, it will not be notified of secondary cpus.
1105 * In that off case, we need to allocate for all possible cpus.
1107 #ifdef CONFIG_HOTPLUG_CPU
1109 cpumask_copy(buffer->cpumask, cpu_online_mask);
1111 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1113 buffer->cpus = nr_cpu_ids;
1115 bsize = sizeof(void *) * nr_cpu_ids;
1116 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1118 if (!buffer->buffers)
1119 goto fail_free_cpumask;
1121 for_each_buffer_cpu(buffer, cpu) {
1122 buffer->buffers[cpu] =
1123 rb_allocate_cpu_buffer(buffer, cpu);
1124 if (!buffer->buffers[cpu])
1125 goto fail_free_buffers;
1128 #ifdef CONFIG_HOTPLUG_CPU
1129 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1130 buffer->cpu_notify.priority = 0;
1131 register_cpu_notifier(&buffer->cpu_notify);
1135 mutex_init(&buffer->mutex);
1140 for_each_buffer_cpu(buffer, cpu) {
1141 if (buffer->buffers[cpu])
1142 rb_free_cpu_buffer(buffer->buffers[cpu]);
1144 kfree(buffer->buffers);
1147 free_cpumask_var(buffer->cpumask);
1154 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1157 * ring_buffer_free - free a ring buffer.
1158 * @buffer: the buffer to free.
1161 ring_buffer_free(struct ring_buffer *buffer)
1167 #ifdef CONFIG_HOTPLUG_CPU
1168 unregister_cpu_notifier(&buffer->cpu_notify);
1171 for_each_buffer_cpu(buffer, cpu)
1172 rb_free_cpu_buffer(buffer->buffers[cpu]);
1176 kfree(buffer->buffers);
1177 free_cpumask_var(buffer->cpumask);
1181 EXPORT_SYMBOL_GPL(ring_buffer_free);
1183 void ring_buffer_set_clock(struct ring_buffer *buffer,
1186 buffer->clock = clock;
1189 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1192 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1194 struct buffer_page *bpage;
1195 struct list_head *p;
1198 spin_lock_irq(&cpu_buffer->reader_lock);
1199 rb_head_page_deactivate(cpu_buffer);
1201 for (i = 0; i < nr_pages; i++) {
1202 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1204 p = cpu_buffer->pages->next;
1205 bpage = list_entry(p, struct buffer_page, list);
1206 list_del_init(&bpage->list);
1207 free_buffer_page(bpage);
1209 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1212 rb_reset_cpu(cpu_buffer);
1213 rb_check_pages(cpu_buffer);
1215 spin_unlock_irq(&cpu_buffer->reader_lock);
1219 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1220 struct list_head *pages, unsigned nr_pages)
1222 struct buffer_page *bpage;
1223 struct list_head *p;
1226 spin_lock_irq(&cpu_buffer->reader_lock);
1227 rb_head_page_deactivate(cpu_buffer);
1229 for (i = 0; i < nr_pages; i++) {
1230 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1233 bpage = list_entry(p, struct buffer_page, list);
1234 list_del_init(&bpage->list);
1235 list_add_tail(&bpage->list, cpu_buffer->pages);
1237 rb_reset_cpu(cpu_buffer);
1238 rb_check_pages(cpu_buffer);
1240 spin_unlock_irq(&cpu_buffer->reader_lock);
1244 * ring_buffer_resize - resize the ring buffer
1245 * @buffer: the buffer to resize.
1246 * @size: the new size.
1248 * Minimum size is 2 * BUF_PAGE_SIZE.
1250 * Returns -1 on failure.
1252 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1254 struct ring_buffer_per_cpu *cpu_buffer;
1255 unsigned nr_pages, rm_pages, new_pages;
1256 struct buffer_page *bpage, *tmp;
1257 unsigned long buffer_size;
1263 * Always succeed at resizing a non-existent buffer:
1268 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1269 size *= BUF_PAGE_SIZE;
1270 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1272 /* we need a minimum of two pages */
1273 if (size < BUF_PAGE_SIZE * 2)
1274 size = BUF_PAGE_SIZE * 2;
1276 if (size == buffer_size)
1279 atomic_inc(&buffer->record_disabled);
1281 /* Make sure all writers are done with this buffer. */
1282 synchronize_sched();
1284 mutex_lock(&buffer->mutex);
1287 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1289 if (size < buffer_size) {
1291 /* easy case, just free pages */
1292 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1295 rm_pages = buffer->pages - nr_pages;
1297 for_each_buffer_cpu(buffer, cpu) {
1298 cpu_buffer = buffer->buffers[cpu];
1299 rb_remove_pages(cpu_buffer, rm_pages);
1305 * This is a bit more difficult. We only want to add pages
1306 * when we can allocate enough for all CPUs. We do this
1307 * by allocating all the pages and storing them on a local
1308 * link list. If we succeed in our allocation, then we
1309 * add these pages to the cpu_buffers. Otherwise we just free
1310 * them all and return -ENOMEM;
1312 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1315 new_pages = nr_pages - buffer->pages;
1317 for_each_buffer_cpu(buffer, cpu) {
1318 for (i = 0; i < new_pages; i++) {
1319 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1321 GFP_KERNEL, cpu_to_node(cpu));
1324 list_add(&bpage->list, &pages);
1325 addr = __get_free_page(GFP_KERNEL);
1328 bpage->page = (void *)addr;
1329 rb_init_page(bpage->page);
1333 for_each_buffer_cpu(buffer, cpu) {
1334 cpu_buffer = buffer->buffers[cpu];
1335 rb_insert_pages(cpu_buffer, &pages, new_pages);
1338 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1342 buffer->pages = nr_pages;
1344 mutex_unlock(&buffer->mutex);
1346 atomic_dec(&buffer->record_disabled);
1351 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1352 list_del_init(&bpage->list);
1353 free_buffer_page(bpage);
1356 mutex_unlock(&buffer->mutex);
1357 atomic_dec(&buffer->record_disabled);
1361 * Something went totally wrong, and we are too paranoid
1362 * to even clean up the mess.
1366 mutex_unlock(&buffer->mutex);
1367 atomic_dec(&buffer->record_disabled);
1370 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1372 static inline void *
1373 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1375 return bpage->data + index;
1378 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1380 return bpage->page->data + index;
1383 static inline struct ring_buffer_event *
1384 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1386 return __rb_page_index(cpu_buffer->reader_page,
1387 cpu_buffer->reader_page->read);
1390 static inline struct ring_buffer_event *
1391 rb_iter_head_event(struct ring_buffer_iter *iter)
1393 return __rb_page_index(iter->head_page, iter->head);
1396 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 return local_read(&bpage->write) & RB_WRITE_MASK;
1401 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1403 return local_read(&bpage->page->commit);
1406 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1408 return local_read(&bpage->entries) & RB_WRITE_MASK;
1411 /* Size is determined by what has been commited */
1412 static inline unsigned rb_page_size(struct buffer_page *bpage)
1414 return rb_page_commit(bpage);
1417 static inline unsigned
1418 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1420 return rb_page_commit(cpu_buffer->commit_page);
1423 static inline unsigned
1424 rb_event_index(struct ring_buffer_event *event)
1426 unsigned long addr = (unsigned long)event;
1428 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1432 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1433 struct ring_buffer_event *event)
1435 unsigned long addr = (unsigned long)event;
1436 unsigned long index;
1438 index = rb_event_index(event);
1441 return cpu_buffer->commit_page->page == (void *)addr &&
1442 rb_commit_index(cpu_buffer) == index;
1446 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1448 unsigned long max_count;
1451 * We only race with interrupts and NMIs on this CPU.
1452 * If we own the commit event, then we can commit
1453 * all others that interrupted us, since the interruptions
1454 * are in stack format (they finish before they come
1455 * back to us). This allows us to do a simple loop to
1456 * assign the commit to the tail.
1459 max_count = cpu_buffer->buffer->pages * 100;
1461 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1462 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1464 if (RB_WARN_ON(cpu_buffer,
1465 rb_is_reader_page(cpu_buffer->tail_page)))
1467 local_set(&cpu_buffer->commit_page->page->commit,
1468 rb_page_write(cpu_buffer->commit_page));
1469 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1470 cpu_buffer->write_stamp =
1471 cpu_buffer->commit_page->page->time_stamp;
1472 /* add barrier to keep gcc from optimizing too much */
1475 while (rb_commit_index(cpu_buffer) !=
1476 rb_page_write(cpu_buffer->commit_page)) {
1478 local_set(&cpu_buffer->commit_page->page->commit,
1479 rb_page_write(cpu_buffer->commit_page));
1480 RB_WARN_ON(cpu_buffer,
1481 local_read(&cpu_buffer->commit_page->page->commit) &
1486 /* again, keep gcc from optimizing */
1490 * If an interrupt came in just after the first while loop
1491 * and pushed the tail page forward, we will be left with
1492 * a dangling commit that will never go forward.
1494 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1498 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1500 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1501 cpu_buffer->reader_page->read = 0;
1504 static void rb_inc_iter(struct ring_buffer_iter *iter)
1506 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1509 * The iterator could be on the reader page (it starts there).
1510 * But the head could have moved, since the reader was
1511 * found. Check for this case and assign the iterator
1512 * to the head page instead of next.
1514 if (iter->head_page == cpu_buffer->reader_page)
1515 iter->head_page = rb_set_head_page(cpu_buffer);
1517 rb_inc_page(cpu_buffer, &iter->head_page);
1519 iter->read_stamp = iter->head_page->page->time_stamp;
1524 * ring_buffer_update_event - update event type and data
1525 * @event: the even to update
1526 * @type: the type of event
1527 * @length: the size of the event field in the ring buffer
1529 * Update the type and data fields of the event. The length
1530 * is the actual size that is written to the ring buffer,
1531 * and with this, we can determine what to place into the
1535 rb_update_event(struct ring_buffer_event *event,
1536 unsigned type, unsigned length)
1538 event->type_len = type;
1542 case RINGBUF_TYPE_PADDING:
1543 case RINGBUF_TYPE_TIME_EXTEND:
1544 case RINGBUF_TYPE_TIME_STAMP:
1548 length -= RB_EVNT_HDR_SIZE;
1549 if (length > RB_MAX_SMALL_DATA)
1550 event->array[0] = length;
1552 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1560 * rb_handle_head_page - writer hit the head page
1562 * Returns: +1 to retry page
1567 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1568 struct buffer_page *tail_page,
1569 struct buffer_page *next_page)
1571 struct buffer_page *new_head;
1576 entries = rb_page_entries(next_page);
1579 * The hard part is here. We need to move the head
1580 * forward, and protect against both readers on
1581 * other CPUs and writers coming in via interrupts.
1583 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1587 * type can be one of four:
1588 * NORMAL - an interrupt already moved it for us
1589 * HEAD - we are the first to get here.
1590 * UPDATE - we are the interrupt interrupting
1592 * MOVED - a reader on another CPU moved the next
1593 * pointer to its reader page. Give up
1600 * We changed the head to UPDATE, thus
1601 * it is our responsibility to update
1604 local_add(entries, &cpu_buffer->overrun);
1607 * The entries will be zeroed out when we move the
1611 /* still more to do */
1614 case RB_PAGE_UPDATE:
1616 * This is an interrupt that interrupt the
1617 * previous update. Still more to do.
1620 case RB_PAGE_NORMAL:
1622 * An interrupt came in before the update
1623 * and processed this for us.
1624 * Nothing left to do.
1629 * The reader is on another CPU and just did
1630 * a swap with our next_page.
1635 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1640 * Now that we are here, the old head pointer is
1641 * set to UPDATE. This will keep the reader from
1642 * swapping the head page with the reader page.
1643 * The reader (on another CPU) will spin till
1646 * We just need to protect against interrupts
1647 * doing the job. We will set the next pointer
1648 * to HEAD. After that, we set the old pointer
1649 * to NORMAL, but only if it was HEAD before.
1650 * otherwise we are an interrupt, and only
1651 * want the outer most commit to reset it.
1653 new_head = next_page;
1654 rb_inc_page(cpu_buffer, &new_head);
1656 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1660 * Valid returns are:
1661 * HEAD - an interrupt came in and already set it.
1662 * NORMAL - One of two things:
1663 * 1) We really set it.
1664 * 2) A bunch of interrupts came in and moved
1665 * the page forward again.
1669 case RB_PAGE_NORMAL:
1673 RB_WARN_ON(cpu_buffer, 1);
1678 * It is possible that an interrupt came in,
1679 * set the head up, then more interrupts came in
1680 * and moved it again. When we get back here,
1681 * the page would have been set to NORMAL but we
1682 * just set it back to HEAD.
1684 * How do you detect this? Well, if that happened
1685 * the tail page would have moved.
1687 if (ret == RB_PAGE_NORMAL) {
1689 * If the tail had moved passed next, then we need
1690 * to reset the pointer.
1692 if (cpu_buffer->tail_page != tail_page &&
1693 cpu_buffer->tail_page != next_page)
1694 rb_head_page_set_normal(cpu_buffer, new_head,
1700 * If this was the outer most commit (the one that
1701 * changed the original pointer from HEAD to UPDATE),
1702 * then it is up to us to reset it to NORMAL.
1704 if (type == RB_PAGE_HEAD) {
1705 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1708 if (RB_WARN_ON(cpu_buffer,
1709 ret != RB_PAGE_UPDATE))
1716 static unsigned rb_calculate_event_length(unsigned length)
1718 struct ring_buffer_event event; /* Used only for sizeof array */
1720 /* zero length can cause confusions */
1724 if (length > RB_MAX_SMALL_DATA)
1725 length += sizeof(event.array[0]);
1727 length += RB_EVNT_HDR_SIZE;
1728 length = ALIGN(length, RB_ALIGNMENT);
1734 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1735 struct buffer_page *tail_page,
1736 unsigned long tail, unsigned long length)
1738 struct ring_buffer_event *event;
1741 * Only the event that crossed the page boundary
1742 * must fill the old tail_page with padding.
1744 if (tail >= BUF_PAGE_SIZE) {
1745 local_sub(length, &tail_page->write);
1749 event = __rb_page_index(tail_page, tail);
1750 kmemcheck_annotate_bitfield(event, bitfield);
1753 * If this event is bigger than the minimum size, then
1754 * we need to be careful that we don't subtract the
1755 * write counter enough to allow another writer to slip
1757 * We put in a discarded commit instead, to make sure
1758 * that this space is not used again.
1760 * If we are less than the minimum size, we don't need to
1763 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1764 /* No room for any events */
1766 /* Mark the rest of the page with padding */
1767 rb_event_set_padding(event);
1769 /* Set the write back to the previous setting */
1770 local_sub(length, &tail_page->write);
1774 /* Put in a discarded event */
1775 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1776 event->type_len = RINGBUF_TYPE_PADDING;
1777 /* time delta must be non zero */
1778 event->time_delta = 1;
1780 /* Set write to end of buffer */
1781 length = (tail + length) - BUF_PAGE_SIZE;
1782 local_sub(length, &tail_page->write);
1785 static struct ring_buffer_event *
1786 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1787 unsigned long length, unsigned long tail,
1788 struct buffer_page *tail_page, u64 *ts)
1790 struct buffer_page *commit_page = cpu_buffer->commit_page;
1791 struct ring_buffer *buffer = cpu_buffer->buffer;
1792 struct buffer_page *next_page;
1795 next_page = tail_page;
1797 rb_inc_page(cpu_buffer, &next_page);
1800 * If for some reason, we had an interrupt storm that made
1801 * it all the way around the buffer, bail, and warn
1804 if (unlikely(next_page == commit_page)) {
1805 local_inc(&cpu_buffer->commit_overrun);
1810 * This is where the fun begins!
1812 * We are fighting against races between a reader that
1813 * could be on another CPU trying to swap its reader
1814 * page with the buffer head.
1816 * We are also fighting against interrupts coming in and
1817 * moving the head or tail on us as well.
1819 * If the next page is the head page then we have filled
1820 * the buffer, unless the commit page is still on the
1823 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1826 * If the commit is not on the reader page, then
1827 * move the header page.
1829 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1831 * If we are not in overwrite mode,
1832 * this is easy, just stop here.
1834 if (!(buffer->flags & RB_FL_OVERWRITE))
1837 ret = rb_handle_head_page(cpu_buffer,
1846 * We need to be careful here too. The
1847 * commit page could still be on the reader
1848 * page. We could have a small buffer, and
1849 * have filled up the buffer with events
1850 * from interrupts and such, and wrapped.
1852 * Note, if the tail page is also the on the
1853 * reader_page, we let it move out.
1855 if (unlikely((cpu_buffer->commit_page !=
1856 cpu_buffer->tail_page) &&
1857 (cpu_buffer->commit_page ==
1858 cpu_buffer->reader_page))) {
1859 local_inc(&cpu_buffer->commit_overrun);
1865 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1868 * Nested commits always have zero deltas, so
1869 * just reread the time stamp
1871 *ts = rb_time_stamp(buffer);
1872 next_page->page->time_stamp = *ts;
1877 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1879 /* fail and let the caller try again */
1880 return ERR_PTR(-EAGAIN);
1884 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1889 static struct ring_buffer_event *
1890 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1891 unsigned type, unsigned long length, u64 *ts)
1893 struct buffer_page *tail_page;
1894 struct ring_buffer_event *event;
1895 unsigned long tail, write;
1897 tail_page = cpu_buffer->tail_page;
1898 write = local_add_return(length, &tail_page->write);
1900 /* set write to only the index of the write */
1901 write &= RB_WRITE_MASK;
1902 tail = write - length;
1904 /* See if we shot pass the end of this buffer page */
1905 if (write > BUF_PAGE_SIZE)
1906 return rb_move_tail(cpu_buffer, length, tail,
1909 /* We reserved something on the buffer */
1911 event = __rb_page_index(tail_page, tail);
1912 kmemcheck_annotate_bitfield(event, bitfield);
1913 rb_update_event(event, type, length);
1915 /* The passed in type is zero for DATA */
1917 local_inc(&tail_page->entries);
1920 * If this is the first commit on the page, then update
1924 tail_page->page->time_stamp = *ts;
1930 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1931 struct ring_buffer_event *event)
1933 unsigned long new_index, old_index;
1934 struct buffer_page *bpage;
1935 unsigned long index;
1938 new_index = rb_event_index(event);
1939 old_index = new_index + rb_event_length(event);
1940 addr = (unsigned long)event;
1943 bpage = cpu_buffer->tail_page;
1945 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1946 unsigned long write_mask =
1947 local_read(&bpage->write) & ~RB_WRITE_MASK;
1949 * This is on the tail page. It is possible that
1950 * a write could come in and move the tail page
1951 * and write to the next page. That is fine
1952 * because we just shorten what is on this page.
1954 old_index += write_mask;
1955 new_index += write_mask;
1956 index = local_cmpxchg(&bpage->write, old_index, new_index);
1957 if (index == old_index)
1961 /* could not discard */
1966 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1967 u64 *ts, u64 *delta)
1969 struct ring_buffer_event *event;
1973 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1974 printk(KERN_WARNING "Delta way too big! %llu"
1975 " ts=%llu write stamp = %llu\n",
1976 (unsigned long long)*delta,
1977 (unsigned long long)*ts,
1978 (unsigned long long)cpu_buffer->write_stamp);
1983 * The delta is too big, we to add a
1986 event = __rb_reserve_next(cpu_buffer,
1987 RINGBUF_TYPE_TIME_EXTEND,
1993 if (PTR_ERR(event) == -EAGAIN)
1996 /* Only a commited time event can update the write stamp */
1997 if (rb_event_is_commit(cpu_buffer, event)) {
1999 * If this is the first on the page, then it was
2000 * updated with the page itself. Try to discard it
2001 * and if we can't just make it zero.
2003 if (rb_event_index(event)) {
2004 event->time_delta = *delta & TS_MASK;
2005 event->array[0] = *delta >> TS_SHIFT;
2007 /* try to discard, since we do not need this */
2008 if (!rb_try_to_discard(cpu_buffer, event)) {
2009 /* nope, just zero it */
2010 event->time_delta = 0;
2011 event->array[0] = 0;
2014 cpu_buffer->write_stamp = *ts;
2015 /* let the caller know this was the commit */
2018 /* Try to discard the event */
2019 if (!rb_try_to_discard(cpu_buffer, event)) {
2020 /* Darn, this is just wasted space */
2021 event->time_delta = 0;
2022 event->array[0] = 0;
2032 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2034 local_inc(&cpu_buffer->committing);
2035 local_inc(&cpu_buffer->commits);
2038 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2040 unsigned long commits;
2042 if (RB_WARN_ON(cpu_buffer,
2043 !local_read(&cpu_buffer->committing)))
2047 commits = local_read(&cpu_buffer->commits);
2048 /* synchronize with interrupts */
2050 if (local_read(&cpu_buffer->committing) == 1)
2051 rb_set_commit_to_write(cpu_buffer);
2053 local_dec(&cpu_buffer->committing);
2055 /* synchronize with interrupts */
2059 * Need to account for interrupts coming in between the
2060 * updating of the commit page and the clearing of the
2061 * committing counter.
2063 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2064 !local_read(&cpu_buffer->committing)) {
2065 local_inc(&cpu_buffer->committing);
2070 static struct ring_buffer_event *
2071 rb_reserve_next_event(struct ring_buffer *buffer,
2072 struct ring_buffer_per_cpu *cpu_buffer,
2073 unsigned long length)
2075 struct ring_buffer_event *event;
2080 rb_start_commit(cpu_buffer);
2082 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2084 * Due to the ability to swap a cpu buffer from a buffer
2085 * it is possible it was swapped before we committed.
2086 * (committing stops a swap). We check for it here and
2087 * if it happened, we have to fail the write.
2090 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2091 local_dec(&cpu_buffer->committing);
2092 local_dec(&cpu_buffer->commits);
2097 length = rb_calculate_event_length(length);
2100 * We allow for interrupts to reenter here and do a trace.
2101 * If one does, it will cause this original code to loop
2102 * back here. Even with heavy interrupts happening, this
2103 * should only happen a few times in a row. If this happens
2104 * 1000 times in a row, there must be either an interrupt
2105 * storm or we have something buggy.
2108 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2111 ts = rb_time_stamp(cpu_buffer->buffer);
2114 * Only the first commit can update the timestamp.
2115 * Yes there is a race here. If an interrupt comes in
2116 * just after the conditional and it traces too, then it
2117 * will also check the deltas. More than one timestamp may
2118 * also be made. But only the entry that did the actual
2119 * commit will be something other than zero.
2121 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2122 rb_page_write(cpu_buffer->tail_page) ==
2123 rb_commit_index(cpu_buffer))) {
2126 diff = ts - cpu_buffer->write_stamp;
2128 /* make sure this diff is calculated here */
2131 /* Did the write stamp get updated already? */
2132 if (unlikely(ts < cpu_buffer->write_stamp))
2136 if (unlikely(test_time_stamp(delta))) {
2138 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2139 if (commit == -EBUSY)
2142 if (commit == -EAGAIN)
2145 RB_WARN_ON(cpu_buffer, commit < 0);
2150 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2151 if (unlikely(PTR_ERR(event) == -EAGAIN))
2157 if (!rb_event_is_commit(cpu_buffer, event))
2160 event->time_delta = delta;
2165 rb_end_commit(cpu_buffer);
2169 #ifdef CONFIG_TRACING
2171 #define TRACE_RECURSIVE_DEPTH 16
2173 static int trace_recursive_lock(void)
2175 current->trace_recursion++;
2177 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2180 /* Disable all tracing before we do anything else */
2181 tracing_off_permanent();
2183 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2184 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2185 current->trace_recursion,
2186 hardirq_count() >> HARDIRQ_SHIFT,
2187 softirq_count() >> SOFTIRQ_SHIFT,
2194 static void trace_recursive_unlock(void)
2196 WARN_ON_ONCE(!current->trace_recursion);
2198 current->trace_recursion--;
2203 #define trace_recursive_lock() (0)
2204 #define trace_recursive_unlock() do { } while (0)
2208 static DEFINE_PER_CPU(int, rb_need_resched);
2211 * ring_buffer_lock_reserve - reserve a part of the buffer
2212 * @buffer: the ring buffer to reserve from
2213 * @length: the length of the data to reserve (excluding event header)
2215 * Returns a reseverd event on the ring buffer to copy directly to.
2216 * The user of this interface will need to get the body to write into
2217 * and can use the ring_buffer_event_data() interface.
2219 * The length is the length of the data needed, not the event length
2220 * which also includes the event header.
2222 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2223 * If NULL is returned, then nothing has been allocated or locked.
2225 struct ring_buffer_event *
2226 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2228 struct ring_buffer_per_cpu *cpu_buffer;
2229 struct ring_buffer_event *event;
2232 if (ring_buffer_flags != RB_BUFFERS_ON)
2235 if (atomic_read(&buffer->record_disabled))
2238 /* If we are tracing schedule, we don't want to recurse */
2239 resched = ftrace_preempt_disable();
2241 if (trace_recursive_lock())
2244 cpu = raw_smp_processor_id();
2246 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2249 cpu_buffer = buffer->buffers[cpu];
2251 if (atomic_read(&cpu_buffer->record_disabled))
2254 if (length > BUF_MAX_DATA_SIZE)
2257 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2262 * Need to store resched state on this cpu.
2263 * Only the first needs to.
2266 if (preempt_count() == 1)
2267 per_cpu(rb_need_resched, cpu) = resched;
2272 trace_recursive_unlock();
2275 ftrace_preempt_enable(resched);
2278 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2281 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2282 struct ring_buffer_event *event)
2285 * The event first in the commit queue updates the
2288 if (rb_event_is_commit(cpu_buffer, event))
2289 cpu_buffer->write_stamp += event->time_delta;
2292 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2293 struct ring_buffer_event *event)
2295 local_inc(&cpu_buffer->entries);
2296 rb_update_write_stamp(cpu_buffer, event);
2297 rb_end_commit(cpu_buffer);
2301 * ring_buffer_unlock_commit - commit a reserved
2302 * @buffer: The buffer to commit to
2303 * @event: The event pointer to commit.
2305 * This commits the data to the ring buffer, and releases any locks held.
2307 * Must be paired with ring_buffer_lock_reserve.
2309 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2310 struct ring_buffer_event *event)
2312 struct ring_buffer_per_cpu *cpu_buffer;
2313 int cpu = raw_smp_processor_id();
2315 cpu_buffer = buffer->buffers[cpu];
2317 rb_commit(cpu_buffer, event);
2319 trace_recursive_unlock();
2322 * Only the last preempt count needs to restore preemption.
2324 if (preempt_count() == 1)
2325 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2327 preempt_enable_no_resched_notrace();
2331 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2333 static inline void rb_event_discard(struct ring_buffer_event *event)
2335 /* array[0] holds the actual length for the discarded event */
2336 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2337 event->type_len = RINGBUF_TYPE_PADDING;
2338 /* time delta must be non zero */
2339 if (!event->time_delta)
2340 event->time_delta = 1;
2344 * Decrement the entries to the page that an event is on.
2345 * The event does not even need to exist, only the pointer
2346 * to the page it is on. This may only be called before the commit
2350 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2351 struct ring_buffer_event *event)
2353 unsigned long addr = (unsigned long)event;
2354 struct buffer_page *bpage = cpu_buffer->commit_page;
2355 struct buffer_page *start;
2359 /* Do the likely case first */
2360 if (likely(bpage->page == (void *)addr)) {
2361 local_dec(&bpage->entries);
2366 * Because the commit page may be on the reader page we
2367 * start with the next page and check the end loop there.
2369 rb_inc_page(cpu_buffer, &bpage);
2372 if (bpage->page == (void *)addr) {
2373 local_dec(&bpage->entries);
2376 rb_inc_page(cpu_buffer, &bpage);
2377 } while (bpage != start);
2379 /* commit not part of this buffer?? */
2380 RB_WARN_ON(cpu_buffer, 1);
2384 * ring_buffer_commit_discard - discard an event that has not been committed
2385 * @buffer: the ring buffer
2386 * @event: non committed event to discard
2388 * Sometimes an event that is in the ring buffer needs to be ignored.
2389 * This function lets the user discard an event in the ring buffer
2390 * and then that event will not be read later.
2392 * This function only works if it is called before the the item has been
2393 * committed. It will try to free the event from the ring buffer
2394 * if another event has not been added behind it.
2396 * If another event has been added behind it, it will set the event
2397 * up as discarded, and perform the commit.
2399 * If this function is called, do not call ring_buffer_unlock_commit on
2402 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2403 struct ring_buffer_event *event)
2405 struct ring_buffer_per_cpu *cpu_buffer;
2408 /* The event is discarded regardless */
2409 rb_event_discard(event);
2411 cpu = smp_processor_id();
2412 cpu_buffer = buffer->buffers[cpu];
2415 * This must only be called if the event has not been
2416 * committed yet. Thus we can assume that preemption
2417 * is still disabled.
2419 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2421 rb_decrement_entry(cpu_buffer, event);
2422 if (rb_try_to_discard(cpu_buffer, event))
2426 * The commit is still visible by the reader, so we
2427 * must still update the timestamp.
2429 rb_update_write_stamp(cpu_buffer, event);
2431 rb_end_commit(cpu_buffer);
2433 trace_recursive_unlock();
2436 * Only the last preempt count needs to restore preemption.
2438 if (preempt_count() == 1)
2439 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2441 preempt_enable_no_resched_notrace();
2444 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2447 * ring_buffer_write - write data to the buffer without reserving
2448 * @buffer: The ring buffer to write to.
2449 * @length: The length of the data being written (excluding the event header)
2450 * @data: The data to write to the buffer.
2452 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2453 * one function. If you already have the data to write to the buffer, it
2454 * may be easier to simply call this function.
2456 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2457 * and not the length of the event which would hold the header.
2459 int ring_buffer_write(struct ring_buffer *buffer,
2460 unsigned long length,
2463 struct ring_buffer_per_cpu *cpu_buffer;
2464 struct ring_buffer_event *event;
2469 if (ring_buffer_flags != RB_BUFFERS_ON)
2472 if (atomic_read(&buffer->record_disabled))
2475 resched = ftrace_preempt_disable();
2477 cpu = raw_smp_processor_id();
2479 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2482 cpu_buffer = buffer->buffers[cpu];
2484 if (atomic_read(&cpu_buffer->record_disabled))
2487 if (length > BUF_MAX_DATA_SIZE)
2490 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2494 body = rb_event_data(event);
2496 memcpy(body, data, length);
2498 rb_commit(cpu_buffer, event);
2502 ftrace_preempt_enable(resched);
2506 EXPORT_SYMBOL_GPL(ring_buffer_write);
2508 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2510 struct buffer_page *reader = cpu_buffer->reader_page;
2511 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2512 struct buffer_page *commit = cpu_buffer->commit_page;
2514 /* In case of error, head will be NULL */
2515 if (unlikely(!head))
2518 return reader->read == rb_page_commit(reader) &&
2519 (commit == reader ||
2521 head->read == rb_page_commit(commit)));
2525 * ring_buffer_record_disable - stop all writes into the buffer
2526 * @buffer: The ring buffer to stop writes to.
2528 * This prevents all writes to the buffer. Any attempt to write
2529 * to the buffer after this will fail and return NULL.
2531 * The caller should call synchronize_sched() after this.
2533 void ring_buffer_record_disable(struct ring_buffer *buffer)
2535 atomic_inc(&buffer->record_disabled);
2537 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2540 * ring_buffer_record_enable - enable writes to the buffer
2541 * @buffer: The ring buffer to enable writes
2543 * Note, multiple disables will need the same number of enables
2544 * to truely enable the writing (much like preempt_disable).
2546 void ring_buffer_record_enable(struct ring_buffer *buffer)
2548 atomic_dec(&buffer->record_disabled);
2550 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2553 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2554 * @buffer: The ring buffer to stop writes to.
2555 * @cpu: The CPU buffer to stop
2557 * This prevents all writes to the buffer. Any attempt to write
2558 * to the buffer after this will fail and return NULL.
2560 * The caller should call synchronize_sched() after this.
2562 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2564 struct ring_buffer_per_cpu *cpu_buffer;
2566 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2569 cpu_buffer = buffer->buffers[cpu];
2570 atomic_inc(&cpu_buffer->record_disabled);
2572 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2575 * ring_buffer_record_enable_cpu - enable writes to the buffer
2576 * @buffer: The ring buffer to enable writes
2577 * @cpu: The CPU to enable.
2579 * Note, multiple disables will need the same number of enables
2580 * to truely enable the writing (much like preempt_disable).
2582 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2584 struct ring_buffer_per_cpu *cpu_buffer;
2586 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2589 cpu_buffer = buffer->buffers[cpu];
2590 atomic_dec(&cpu_buffer->record_disabled);
2592 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2595 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2596 * @buffer: The ring buffer
2597 * @cpu: The per CPU buffer to get the entries from.
2599 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2601 struct ring_buffer_per_cpu *cpu_buffer;
2604 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2607 cpu_buffer = buffer->buffers[cpu];
2608 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2613 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2616 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2617 * @buffer: The ring buffer
2618 * @cpu: The per CPU buffer to get the number of overruns from
2620 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2622 struct ring_buffer_per_cpu *cpu_buffer;
2625 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2628 cpu_buffer = buffer->buffers[cpu];
2629 ret = local_read(&cpu_buffer->overrun);
2633 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2636 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2637 * @buffer: The ring buffer
2638 * @cpu: The per CPU buffer to get the number of overruns from
2641 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2643 struct ring_buffer_per_cpu *cpu_buffer;
2646 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2649 cpu_buffer = buffer->buffers[cpu];
2650 ret = local_read(&cpu_buffer->commit_overrun);
2654 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2657 * ring_buffer_entries - get the number of entries in a buffer
2658 * @buffer: The ring buffer
2660 * Returns the total number of entries in the ring buffer
2663 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2665 struct ring_buffer_per_cpu *cpu_buffer;
2666 unsigned long entries = 0;
2669 /* if you care about this being correct, lock the buffer */
2670 for_each_buffer_cpu(buffer, cpu) {
2671 cpu_buffer = buffer->buffers[cpu];
2672 entries += (local_read(&cpu_buffer->entries) -
2673 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2678 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2681 * ring_buffer_overruns - get the number of overruns in buffer
2682 * @buffer: The ring buffer
2684 * Returns the total number of overruns in the ring buffer
2687 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2689 struct ring_buffer_per_cpu *cpu_buffer;
2690 unsigned long overruns = 0;
2693 /* if you care about this being correct, lock the buffer */
2694 for_each_buffer_cpu(buffer, cpu) {
2695 cpu_buffer = buffer->buffers[cpu];
2696 overruns += local_read(&cpu_buffer->overrun);
2701 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2703 static void rb_iter_reset(struct ring_buffer_iter *iter)
2705 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2707 /* Iterator usage is expected to have record disabled */
2708 if (list_empty(&cpu_buffer->reader_page->list)) {
2709 iter->head_page = rb_set_head_page(cpu_buffer);
2710 if (unlikely(!iter->head_page))
2712 iter->head = iter->head_page->read;
2714 iter->head_page = cpu_buffer->reader_page;
2715 iter->head = cpu_buffer->reader_page->read;
2718 iter->read_stamp = cpu_buffer->read_stamp;
2720 iter->read_stamp = iter->head_page->page->time_stamp;
2721 iter->cache_reader_page = cpu_buffer->reader_page;
2722 iter->cache_read = cpu_buffer->read;
2726 * ring_buffer_iter_reset - reset an iterator
2727 * @iter: The iterator to reset
2729 * Resets the iterator, so that it will start from the beginning
2732 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2734 struct ring_buffer_per_cpu *cpu_buffer;
2735 unsigned long flags;
2740 cpu_buffer = iter->cpu_buffer;
2742 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2743 rb_iter_reset(iter);
2744 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2746 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2749 * ring_buffer_iter_empty - check if an iterator has no more to read
2750 * @iter: The iterator to check
2752 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2754 struct ring_buffer_per_cpu *cpu_buffer;
2756 cpu_buffer = iter->cpu_buffer;
2758 return iter->head_page == cpu_buffer->commit_page &&
2759 iter->head == rb_commit_index(cpu_buffer);
2761 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2764 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2765 struct ring_buffer_event *event)
2769 switch (event->type_len) {
2770 case RINGBUF_TYPE_PADDING:
2773 case RINGBUF_TYPE_TIME_EXTEND:
2774 delta = event->array[0];
2776 delta += event->time_delta;
2777 cpu_buffer->read_stamp += delta;
2780 case RINGBUF_TYPE_TIME_STAMP:
2781 /* FIXME: not implemented */
2784 case RINGBUF_TYPE_DATA:
2785 cpu_buffer->read_stamp += event->time_delta;
2795 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2796 struct ring_buffer_event *event)
2800 switch (event->type_len) {
2801 case RINGBUF_TYPE_PADDING:
2804 case RINGBUF_TYPE_TIME_EXTEND:
2805 delta = event->array[0];
2807 delta += event->time_delta;
2808 iter->read_stamp += delta;
2811 case RINGBUF_TYPE_TIME_STAMP:
2812 /* FIXME: not implemented */
2815 case RINGBUF_TYPE_DATA:
2816 iter->read_stamp += event->time_delta;
2825 static struct buffer_page *
2826 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2828 struct buffer_page *reader = NULL;
2829 unsigned long flags;
2833 local_irq_save(flags);
2834 arch_spin_lock(&cpu_buffer->lock);
2838 * This should normally only loop twice. But because the
2839 * start of the reader inserts an empty page, it causes
2840 * a case where we will loop three times. There should be no
2841 * reason to loop four times (that I know of).
2843 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2848 reader = cpu_buffer->reader_page;
2850 /* If there's more to read, return this page */
2851 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2854 /* Never should we have an index greater than the size */
2855 if (RB_WARN_ON(cpu_buffer,
2856 cpu_buffer->reader_page->read > rb_page_size(reader)))
2859 /* check if we caught up to the tail */
2861 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2865 * Reset the reader page to size zero.
2867 local_set(&cpu_buffer->reader_page->write, 0);
2868 local_set(&cpu_buffer->reader_page->entries, 0);
2869 local_set(&cpu_buffer->reader_page->page->commit, 0);
2873 * Splice the empty reader page into the list around the head.
2875 reader = rb_set_head_page(cpu_buffer);
2876 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2877 cpu_buffer->reader_page->list.prev = reader->list.prev;
2880 * cpu_buffer->pages just needs to point to the buffer, it
2881 * has no specific buffer page to point to. Lets move it out
2882 * of our way so we don't accidently swap it.
2884 cpu_buffer->pages = reader->list.prev;
2886 /* The reader page will be pointing to the new head */
2887 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2890 * Here's the tricky part.
2892 * We need to move the pointer past the header page.
2893 * But we can only do that if a writer is not currently
2894 * moving it. The page before the header page has the
2895 * flag bit '1' set if it is pointing to the page we want.
2896 * but if the writer is in the process of moving it
2897 * than it will be '2' or already moved '0'.
2900 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2903 * If we did not convert it, then we must try again.
2909 * Yeah! We succeeded in replacing the page.
2911 * Now make the new head point back to the reader page.
2913 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2914 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2916 /* Finally update the reader page to the new head */
2917 cpu_buffer->reader_page = reader;
2918 rb_reset_reader_page(cpu_buffer);
2923 arch_spin_unlock(&cpu_buffer->lock);
2924 local_irq_restore(flags);
2929 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2931 struct ring_buffer_event *event;
2932 struct buffer_page *reader;
2935 reader = rb_get_reader_page(cpu_buffer);
2937 /* This function should not be called when buffer is empty */
2938 if (RB_WARN_ON(cpu_buffer, !reader))
2941 event = rb_reader_event(cpu_buffer);
2943 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2946 rb_update_read_stamp(cpu_buffer, event);
2948 length = rb_event_length(event);
2949 cpu_buffer->reader_page->read += length;
2952 static void rb_advance_iter(struct ring_buffer_iter *iter)
2954 struct ring_buffer *buffer;
2955 struct ring_buffer_per_cpu *cpu_buffer;
2956 struct ring_buffer_event *event;
2959 cpu_buffer = iter->cpu_buffer;
2960 buffer = cpu_buffer->buffer;
2963 * Check if we are at the end of the buffer.
2965 if (iter->head >= rb_page_size(iter->head_page)) {
2966 /* discarded commits can make the page empty */
2967 if (iter->head_page == cpu_buffer->commit_page)
2973 event = rb_iter_head_event(iter);
2975 length = rb_event_length(event);
2978 * This should not be called to advance the header if we are
2979 * at the tail of the buffer.
2981 if (RB_WARN_ON(cpu_buffer,
2982 (iter->head_page == cpu_buffer->commit_page) &&
2983 (iter->head + length > rb_commit_index(cpu_buffer))))
2986 rb_update_iter_read_stamp(iter, event);
2988 iter->head += length;
2990 /* check for end of page padding */
2991 if ((iter->head >= rb_page_size(iter->head_page)) &&
2992 (iter->head_page != cpu_buffer->commit_page))
2993 rb_advance_iter(iter);
2996 static struct ring_buffer_event *
2997 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
2999 struct ring_buffer_event *event;
3000 struct buffer_page *reader;
3005 * We repeat when a timestamp is encountered. It is possible
3006 * to get multiple timestamps from an interrupt entering just
3007 * as one timestamp is about to be written, or from discarded
3008 * commits. The most that we can have is the number on a single page.
3010 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3013 reader = rb_get_reader_page(cpu_buffer);
3017 event = rb_reader_event(cpu_buffer);
3019 switch (event->type_len) {
3020 case RINGBUF_TYPE_PADDING:
3021 if (rb_null_event(event))
3022 RB_WARN_ON(cpu_buffer, 1);
3024 * Because the writer could be discarding every
3025 * event it creates (which would probably be bad)
3026 * if we were to go back to "again" then we may never
3027 * catch up, and will trigger the warn on, or lock
3028 * the box. Return the padding, and we will release
3029 * the current locks, and try again.
3033 case RINGBUF_TYPE_TIME_EXTEND:
3034 /* Internal data, OK to advance */
3035 rb_advance_reader(cpu_buffer);
3038 case RINGBUF_TYPE_TIME_STAMP:
3039 /* FIXME: not implemented */
3040 rb_advance_reader(cpu_buffer);
3043 case RINGBUF_TYPE_DATA:
3045 *ts = cpu_buffer->read_stamp + event->time_delta;
3046 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3047 cpu_buffer->cpu, ts);
3057 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3059 static struct ring_buffer_event *
3060 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3062 struct ring_buffer *buffer;
3063 struct ring_buffer_per_cpu *cpu_buffer;
3064 struct ring_buffer_event *event;
3067 cpu_buffer = iter->cpu_buffer;
3068 buffer = cpu_buffer->buffer;
3071 * Check if someone performed a consuming read to
3072 * the buffer. A consuming read invalidates the iterator
3073 * and we need to reset the iterator in this case.
3075 if (unlikely(iter->cache_read != cpu_buffer->read ||
3076 iter->cache_reader_page != cpu_buffer->reader_page))
3077 rb_iter_reset(iter);
3080 if (ring_buffer_iter_empty(iter))
3084 * We repeat when a timestamp is encountered.
3085 * We can get multiple timestamps by nested interrupts or also
3086 * if filtering is on (discarding commits). Since discarding
3087 * commits can be frequent we can get a lot of timestamps.
3088 * But we limit them by not adding timestamps if they begin
3089 * at the start of a page.
3091 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3094 if (rb_per_cpu_empty(cpu_buffer))
3097 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3102 event = rb_iter_head_event(iter);
3104 switch (event->type_len) {
3105 case RINGBUF_TYPE_PADDING:
3106 if (rb_null_event(event)) {
3110 rb_advance_iter(iter);
3113 case RINGBUF_TYPE_TIME_EXTEND:
3114 /* Internal data, OK to advance */
3115 rb_advance_iter(iter);
3118 case RINGBUF_TYPE_TIME_STAMP:
3119 /* FIXME: not implemented */
3120 rb_advance_iter(iter);
3123 case RINGBUF_TYPE_DATA:
3125 *ts = iter->read_stamp + event->time_delta;
3126 ring_buffer_normalize_time_stamp(buffer,
3127 cpu_buffer->cpu, ts);
3137 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3139 static inline int rb_ok_to_lock(void)
3142 * If an NMI die dumps out the content of the ring buffer
3143 * do not grab locks. We also permanently disable the ring
3144 * buffer too. A one time deal is all you get from reading
3145 * the ring buffer from an NMI.
3147 if (likely(!in_nmi()))
3150 tracing_off_permanent();
3155 * ring_buffer_peek - peek at the next event to be read
3156 * @buffer: The ring buffer to read
3157 * @cpu: The cpu to peak at
3158 * @ts: The timestamp counter of this event.
3160 * This will return the event that will be read next, but does
3161 * not consume the data.
3163 struct ring_buffer_event *
3164 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3166 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3167 struct ring_buffer_event *event;
3168 unsigned long flags;
3171 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3174 dolock = rb_ok_to_lock();
3176 local_irq_save(flags);
3178 spin_lock(&cpu_buffer->reader_lock);
3179 event = rb_buffer_peek(cpu_buffer, ts);
3180 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3181 rb_advance_reader(cpu_buffer);
3183 spin_unlock(&cpu_buffer->reader_lock);
3184 local_irq_restore(flags);
3186 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3193 * ring_buffer_iter_peek - peek at the next event to be read
3194 * @iter: The ring buffer iterator
3195 * @ts: The timestamp counter of this event.
3197 * This will return the event that will be read next, but does
3198 * not increment the iterator.
3200 struct ring_buffer_event *
3201 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3203 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3204 struct ring_buffer_event *event;
3205 unsigned long flags;
3208 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3209 event = rb_iter_peek(iter, ts);
3210 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3212 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3219 * ring_buffer_consume - return an event and consume it
3220 * @buffer: The ring buffer to get the next event from
3222 * Returns the next event in the ring buffer, and that event is consumed.
3223 * Meaning, that sequential reads will keep returning a different event,
3224 * and eventually empty the ring buffer if the producer is slower.
3226 struct ring_buffer_event *
3227 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3229 struct ring_buffer_per_cpu *cpu_buffer;
3230 struct ring_buffer_event *event = NULL;
3231 unsigned long flags;
3234 dolock = rb_ok_to_lock();
3237 /* might be called in atomic */
3240 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243 cpu_buffer = buffer->buffers[cpu];
3244 local_irq_save(flags);
3246 spin_lock(&cpu_buffer->reader_lock);
3248 event = rb_buffer_peek(cpu_buffer, ts);
3250 rb_advance_reader(cpu_buffer);
3253 spin_unlock(&cpu_buffer->reader_lock);
3254 local_irq_restore(flags);
3259 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3264 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3267 * ring_buffer_read_start - start a non consuming read of the buffer
3268 * @buffer: The ring buffer to read from
3269 * @cpu: The cpu buffer to iterate over
3271 * This starts up an iteration through the buffer. It also disables
3272 * the recording to the buffer until the reading is finished.
3273 * This prevents the reading from being corrupted. This is not
3274 * a consuming read, so a producer is not expected.
3276 * Must be paired with ring_buffer_finish.
3278 struct ring_buffer_iter *
3279 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3281 struct ring_buffer_per_cpu *cpu_buffer;
3282 struct ring_buffer_iter *iter;
3283 unsigned long flags;
3285 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3288 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3292 cpu_buffer = buffer->buffers[cpu];
3294 iter->cpu_buffer = cpu_buffer;
3296 atomic_inc(&cpu_buffer->record_disabled);
3297 synchronize_sched();
3299 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3300 arch_spin_lock(&cpu_buffer->lock);
3301 rb_iter_reset(iter);
3302 arch_spin_unlock(&cpu_buffer->lock);
3303 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3307 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3310 * ring_buffer_finish - finish reading the iterator of the buffer
3311 * @iter: The iterator retrieved by ring_buffer_start
3313 * This re-enables the recording to the buffer, and frees the
3317 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3319 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3321 atomic_dec(&cpu_buffer->record_disabled);
3324 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3327 * ring_buffer_read - read the next item in the ring buffer by the iterator
3328 * @iter: The ring buffer iterator
3329 * @ts: The time stamp of the event read.
3331 * This reads the next event in the ring buffer and increments the iterator.
3333 struct ring_buffer_event *
3334 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3336 struct ring_buffer_event *event;
3337 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3338 unsigned long flags;
3340 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3342 event = rb_iter_peek(iter, ts);
3346 if (event->type_len == RINGBUF_TYPE_PADDING)
3349 rb_advance_iter(iter);
3351 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3355 EXPORT_SYMBOL_GPL(ring_buffer_read);
3358 * ring_buffer_size - return the size of the ring buffer (in bytes)
3359 * @buffer: The ring buffer.
3361 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3363 return BUF_PAGE_SIZE * buffer->pages;
3365 EXPORT_SYMBOL_GPL(ring_buffer_size);
3368 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3370 rb_head_page_deactivate(cpu_buffer);
3372 cpu_buffer->head_page
3373 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3374 local_set(&cpu_buffer->head_page->write, 0);
3375 local_set(&cpu_buffer->head_page->entries, 0);
3376 local_set(&cpu_buffer->head_page->page->commit, 0);
3378 cpu_buffer->head_page->read = 0;
3380 cpu_buffer->tail_page = cpu_buffer->head_page;
3381 cpu_buffer->commit_page = cpu_buffer->head_page;
3383 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3384 local_set(&cpu_buffer->reader_page->write, 0);
3385 local_set(&cpu_buffer->reader_page->entries, 0);
3386 local_set(&cpu_buffer->reader_page->page->commit, 0);
3387 cpu_buffer->reader_page->read = 0;
3389 local_set(&cpu_buffer->commit_overrun, 0);
3390 local_set(&cpu_buffer->overrun, 0);
3391 local_set(&cpu_buffer->entries, 0);
3392 local_set(&cpu_buffer->committing, 0);
3393 local_set(&cpu_buffer->commits, 0);
3394 cpu_buffer->read = 0;
3396 cpu_buffer->write_stamp = 0;
3397 cpu_buffer->read_stamp = 0;
3399 rb_head_page_activate(cpu_buffer);
3403 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3404 * @buffer: The ring buffer to reset a per cpu buffer of
3405 * @cpu: The CPU buffer to be reset
3407 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3409 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3410 unsigned long flags;
3412 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3415 atomic_inc(&cpu_buffer->record_disabled);
3417 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3419 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3422 arch_spin_lock(&cpu_buffer->lock);
3424 rb_reset_cpu(cpu_buffer);
3426 arch_spin_unlock(&cpu_buffer->lock);
3429 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);