2 libata-core.c - helper library for ATA
4 Copyright 2003-2004 Red Hat, Inc. All rights reserved.
5 Copyright 2003-2004 Jeff Garzik
7 The contents of this file are subject to the Open
8 Software License version 1.1 that can be found at
9 http://www.opensource.org/licenses/osl-1.1.txt and is included herein
12 Alternatively, the contents of this file may be used under the terms
13 of the GNU General Public License version 2 (the "GPL") as distributed
14 in the kernel source COPYING file, in which case the provisions of
15 the GPL are applicable instead of the above. If you wish to allow
16 the use of your version of this file only under the terms of the
17 GPL and not to allow others to use your version of this file under
18 the OSL, indicate your decision by deleting the provisions above and
19 replace them with the notice and other provisions required by the GPL.
20 If you do not delete the provisions above, a recipient may use your
21 version of this file under either the OSL or the GPL.
25 #include <linux/config.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/pci.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
32 #include <linux/highmem.h>
33 #include <linux/spinlock.h>
34 #include <linux/blkdev.h>
35 #include <linux/delay.h>
36 #include <linux/timer.h>
37 #include <linux/interrupt.h>
38 #include <linux/completion.h>
39 #include <linux/suspend.h>
40 #include <linux/workqueue.h>
41 #include <scsi/scsi.h>
43 #include "scsi_priv.h"
44 #include <scsi/scsi_host.h>
45 #include <linux/libata.h>
47 #include <asm/semaphore.h>
48 #include <asm/byteorder.h>
52 static unsigned int ata_busy_sleep (struct ata_port *ap,
53 unsigned long tmout_pat,
55 static void ata_set_mode(struct ata_port *ap);
56 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
57 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift);
58 static int fgb(u32 bitmap);
59 static int ata_choose_xfer_mode(struct ata_port *ap,
61 unsigned int *xfer_shift_out);
62 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat);
63 static void __ata_qc_complete(struct ata_queued_cmd *qc);
65 static unsigned int ata_unique_id = 1;
66 static struct workqueue_struct *ata_wq;
68 MODULE_AUTHOR("Jeff Garzik");
69 MODULE_DESCRIPTION("Library module for ATA devices");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_VERSION);
74 * ata_tf_load - send taskfile registers to host controller
75 * @ap: Port to which output is sent
76 * @tf: ATA taskfile register set
78 * Outputs ATA taskfile to standard ATA host controller.
81 * Inherited from caller.
84 static void ata_tf_load_pio(struct ata_port *ap, struct ata_taskfile *tf)
86 struct ata_ioports *ioaddr = &ap->ioaddr;
87 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
89 if (tf->ctl != ap->last_ctl) {
90 outb(tf->ctl, ioaddr->ctl_addr);
91 ap->last_ctl = tf->ctl;
95 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
96 outb(tf->hob_feature, ioaddr->feature_addr);
97 outb(tf->hob_nsect, ioaddr->nsect_addr);
98 outb(tf->hob_lbal, ioaddr->lbal_addr);
99 outb(tf->hob_lbam, ioaddr->lbam_addr);
100 outb(tf->hob_lbah, ioaddr->lbah_addr);
101 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
110 outb(tf->feature, ioaddr->feature_addr);
111 outb(tf->nsect, ioaddr->nsect_addr);
112 outb(tf->lbal, ioaddr->lbal_addr);
113 outb(tf->lbam, ioaddr->lbam_addr);
114 outb(tf->lbah, ioaddr->lbah_addr);
115 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
123 if (tf->flags & ATA_TFLAG_DEVICE) {
124 outb(tf->device, ioaddr->device_addr);
125 VPRINTK("device 0x%X\n", tf->device);
132 * ata_tf_load_mmio - send taskfile registers to host controller
133 * @ap: Port to which output is sent
134 * @tf: ATA taskfile register set
136 * Outputs ATA taskfile to standard ATA host controller using MMIO.
139 * Inherited from caller.
142 static void ata_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf)
144 struct ata_ioports *ioaddr = &ap->ioaddr;
145 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
147 if (tf->ctl != ap->last_ctl) {
148 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
149 ap->last_ctl = tf->ctl;
153 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
154 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
155 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
156 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
157 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
158 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
159 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
168 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
169 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
170 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
171 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
172 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
173 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
181 if (tf->flags & ATA_TFLAG_DEVICE) {
182 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
183 VPRINTK("device 0x%X\n", tf->device);
191 * ata_tf_load - send taskfile registers to host controller
192 * @ap: Port to which output is sent
193 * @tf: ATA taskfile register set
195 * Outputs ATA taskfile to standard ATA host controller using MMIO
196 * or PIO as indicated by the ATA_FLAG_MMIO flag.
197 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
198 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
199 * hob_lbal, hob_lbam, and hob_lbah.
201 * This function waits for idle (!BUSY and !DRQ) after writing
202 * registers. If the control register has a new value, this
203 * function also waits for idle after writing control and before
204 * writing the remaining registers.
206 * May be used as the tf_load() entry in ata_port_operations.
209 * Inherited from caller.
211 void ata_tf_load(struct ata_port *ap, struct ata_taskfile *tf)
213 if (ap->flags & ATA_FLAG_MMIO)
214 ata_tf_load_mmio(ap, tf);
216 ata_tf_load_pio(ap, tf);
220 * ata_exec_command_pio - issue ATA command to host controller
221 * @ap: port to which command is being issued
222 * @tf: ATA taskfile register set
224 * Issues PIO write to ATA command register, with proper
225 * synchronization with interrupt handler / other threads.
228 * spin_lock_irqsave(host_set lock)
231 static void ata_exec_command_pio(struct ata_port *ap, struct ata_taskfile *tf)
233 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
235 outb(tf->command, ap->ioaddr.command_addr);
241 * ata_exec_command_mmio - issue ATA command to host controller
242 * @ap: port to which command is being issued
243 * @tf: ATA taskfile register set
245 * Issues MMIO write to ATA command register, with proper
246 * synchronization with interrupt handler / other threads.
249 * spin_lock_irqsave(host_set lock)
252 static void ata_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf)
254 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
256 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
262 * ata_exec_command - issue ATA command to host controller
263 * @ap: port to which command is being issued
264 * @tf: ATA taskfile register set
266 * Issues PIO/MMIO write to ATA command register, with proper
267 * synchronization with interrupt handler / other threads.
270 * spin_lock_irqsave(host_set lock)
272 void ata_exec_command(struct ata_port *ap, struct ata_taskfile *tf)
274 if (ap->flags & ATA_FLAG_MMIO)
275 ata_exec_command_mmio(ap, tf);
277 ata_exec_command_pio(ap, tf);
281 * ata_exec - issue ATA command to host controller
282 * @ap: port to which command is being issued
283 * @tf: ATA taskfile register set
285 * Issues PIO/MMIO write to ATA command register, with proper
286 * synchronization with interrupt handler / other threads.
289 * Obtains host_set lock.
292 static inline void ata_exec(struct ata_port *ap, struct ata_taskfile *tf)
296 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
297 spin_lock_irqsave(&ap->host_set->lock, flags);
298 ap->ops->exec_command(ap, tf);
299 spin_unlock_irqrestore(&ap->host_set->lock, flags);
303 * ata_tf_to_host - issue ATA taskfile to host controller
304 * @ap: port to which command is being issued
305 * @tf: ATA taskfile register set
307 * Issues ATA taskfile register set to ATA host controller,
308 * with proper synchronization with interrupt handler and
312 * Obtains host_set lock.
315 static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf)
317 ap->ops->tf_load(ap, tf);
323 * ata_tf_to_host_nolock - issue ATA taskfile to host controller
324 * @ap: port to which command is being issued
325 * @tf: ATA taskfile register set
327 * Issues ATA taskfile register set to ATA host controller,
328 * with proper synchronization with interrupt handler and
332 * spin_lock_irqsave(host_set lock)
335 void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf)
337 ap->ops->tf_load(ap, tf);
338 ap->ops->exec_command(ap, tf);
342 * ata_tf_read_pio - input device's ATA taskfile shadow registers
343 * @ap: Port from which input is read
344 * @tf: ATA taskfile register set for storing input
346 * Reads ATA taskfile registers for currently-selected device
350 * Inherited from caller.
353 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
355 struct ata_ioports *ioaddr = &ap->ioaddr;
357 tf->nsect = inb(ioaddr->nsect_addr);
358 tf->lbal = inb(ioaddr->lbal_addr);
359 tf->lbam = inb(ioaddr->lbam_addr);
360 tf->lbah = inb(ioaddr->lbah_addr);
361 tf->device = inb(ioaddr->device_addr);
363 if (tf->flags & ATA_TFLAG_LBA48) {
364 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
365 tf->hob_feature = inb(ioaddr->error_addr);
366 tf->hob_nsect = inb(ioaddr->nsect_addr);
367 tf->hob_lbal = inb(ioaddr->lbal_addr);
368 tf->hob_lbam = inb(ioaddr->lbam_addr);
369 tf->hob_lbah = inb(ioaddr->lbah_addr);
374 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
375 * @ap: Port from which input is read
376 * @tf: ATA taskfile register set for storing input
378 * Reads ATA taskfile registers for currently-selected device
382 * Inherited from caller.
385 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
387 struct ata_ioports *ioaddr = &ap->ioaddr;
389 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
390 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
391 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
392 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
393 tf->device = readb((void __iomem *)ioaddr->device_addr);
395 if (tf->flags & ATA_TFLAG_LBA48) {
396 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
397 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
398 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
399 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
400 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
401 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
407 * ata_tf_read - input device's ATA taskfile shadow registers
408 * @ap: Port from which input is read
409 * @tf: ATA taskfile register set for storing input
411 * Reads ATA taskfile registers for currently-selected device
414 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
415 * is set, also reads the hob registers.
417 * May be used as the tf_read() entry in ata_port_operations.
420 * Inherited from caller.
422 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
424 if (ap->flags & ATA_FLAG_MMIO)
425 ata_tf_read_mmio(ap, tf);
427 ata_tf_read_pio(ap, tf);
431 * ata_check_status_pio - Read device status reg & clear interrupt
432 * @ap: port where the device is
434 * Reads ATA taskfile status register for currently-selected device
435 * and return its value. This also clears pending interrupts
439 * Inherited from caller.
441 static u8 ata_check_status_pio(struct ata_port *ap)
443 return inb(ap->ioaddr.status_addr);
447 * ata_check_status_mmio - Read device status reg & clear interrupt
448 * @ap: port where the device is
450 * Reads ATA taskfile status register for currently-selected device
451 * via MMIO and return its value. This also clears pending interrupts
455 * Inherited from caller.
457 static u8 ata_check_status_mmio(struct ata_port *ap)
459 return readb((void __iomem *) ap->ioaddr.status_addr);
464 * ata_check_status - Read device status reg & clear interrupt
465 * @ap: port where the device is
467 * Reads ATA taskfile status register for currently-selected device
468 * and return its value. This also clears pending interrupts
471 * May be used as the check_status() entry in ata_port_operations.
474 * Inherited from caller.
476 u8 ata_check_status(struct ata_port *ap)
478 if (ap->flags & ATA_FLAG_MMIO)
479 return ata_check_status_mmio(ap);
480 return ata_check_status_pio(ap);
485 * ata_altstatus - Read device alternate status reg
486 * @ap: port where the device is
488 * Reads ATA taskfile alternate status register for
489 * currently-selected device and return its value.
491 * Note: may NOT be used as the check_altstatus() entry in
492 * ata_port_operations.
495 * Inherited from caller.
497 u8 ata_altstatus(struct ata_port *ap)
499 if (ap->ops->check_altstatus)
500 return ap->ops->check_altstatus(ap);
502 if (ap->flags & ATA_FLAG_MMIO)
503 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
504 return inb(ap->ioaddr.altstatus_addr);
509 * ata_chk_err - Read device error reg
510 * @ap: port where the device is
512 * Reads ATA taskfile error register for
513 * currently-selected device and return its value.
515 * Note: may NOT be used as the check_err() entry in
516 * ata_port_operations.
519 * Inherited from caller.
521 u8 ata_chk_err(struct ata_port *ap)
523 if (ap->ops->check_err)
524 return ap->ops->check_err(ap);
526 if (ap->flags & ATA_FLAG_MMIO) {
527 return readb((void __iomem *) ap->ioaddr.error_addr);
529 return inb(ap->ioaddr.error_addr);
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
535 * @fis: Buffer into which data will output
536 * @pmp: Port multiplier port
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
542 * Inherited from caller.
545 void ata_tf_to_fis(struct ata_taskfile *tf, u8 *fis, u8 pmp)
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
549 bit 7 indicates Command FIS */
550 fis[2] = tf->command;
551 fis[3] = tf->feature;
558 fis[8] = tf->hob_lbal;
559 fis[9] = tf->hob_lbam;
560 fis[10] = tf->hob_lbah;
561 fis[11] = tf->hob_feature;
564 fis[13] = tf->hob_nsect;
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
579 * Converts a standard ATA taskfile to a Serial ATA
580 * FIS structure (Register - Host to Device).
583 * Inherited from caller.
586 void ata_tf_from_fis(u8 *fis, struct ata_taskfile *tf)
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
601 tf->hob_nsect = fis[13];
605 * ata_prot_to_cmd - determine which read/write opcodes to use
606 * @protocol: ATA_PROT_xxx taskfile protocol
607 * @lba48: true is lba48 is present
609 * Given necessary input, determine which read/write commands
610 * to use to transfer data.
615 static int ata_prot_to_cmd(int protocol, int lba48)
617 int rcmd = 0, wcmd = 0;
622 rcmd = ATA_CMD_PIO_READ_EXT;
623 wcmd = ATA_CMD_PIO_WRITE_EXT;
625 rcmd = ATA_CMD_PIO_READ;
626 wcmd = ATA_CMD_PIO_WRITE;
632 rcmd = ATA_CMD_READ_EXT;
633 wcmd = ATA_CMD_WRITE_EXT;
636 wcmd = ATA_CMD_WRITE;
644 return rcmd | (wcmd << 8);
648 * ata_dev_set_protocol - set taskfile protocol and r/w commands
649 * @dev: device to examine and configure
651 * Examine the device configuration, after we have
652 * read the identify-device page and configured the
653 * data transfer mode. Set internal state related to
654 * the ATA taskfile protocol (pio, pio mult, dma, etc.)
655 * and calculate the proper read/write commands to use.
660 static void ata_dev_set_protocol(struct ata_device *dev)
662 int pio = (dev->flags & ATA_DFLAG_PIO);
663 int lba48 = (dev->flags & ATA_DFLAG_LBA48);
667 proto = dev->xfer_protocol = ATA_PROT_PIO;
669 proto = dev->xfer_protocol = ATA_PROT_DMA;
671 cmd = ata_prot_to_cmd(proto, lba48);
675 dev->read_cmd = cmd & 0xff;
676 dev->write_cmd = (cmd >> 8) & 0xff;
679 static const char * xfer_mode_str[] = {
699 * ata_udma_string - convert UDMA bit offset to string
700 * @mask: mask of bits supported; only highest bit counts.
702 * Determine string which represents the highest speed
703 * (highest bit in @udma_mask).
709 * Constant C string representing highest speed listed in
710 * @udma_mask, or the constant C string "<n/a>".
713 static const char *ata_mode_string(unsigned int mask)
717 for (i = 7; i >= 0; i--)
720 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
723 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
730 return xfer_mode_str[i];
734 * ata_pio_devchk - PATA device presence detection
735 * @ap: ATA channel to examine
736 * @device: Device to examine (starting at zero)
738 * This technique was originally described in
739 * Hale Landis's ATADRVR (www.ata-atapi.com), and
740 * later found its way into the ATA/ATAPI spec.
742 * Write a pattern to the ATA shadow registers,
743 * and if a device is present, it will respond by
744 * correctly storing and echoing back the
745 * ATA shadow register contents.
751 static unsigned int ata_pio_devchk(struct ata_port *ap,
754 struct ata_ioports *ioaddr = &ap->ioaddr;
757 ap->ops->dev_select(ap, device);
759 outb(0x55, ioaddr->nsect_addr);
760 outb(0xaa, ioaddr->lbal_addr);
762 outb(0xaa, ioaddr->nsect_addr);
763 outb(0x55, ioaddr->lbal_addr);
765 outb(0x55, ioaddr->nsect_addr);
766 outb(0xaa, ioaddr->lbal_addr);
768 nsect = inb(ioaddr->nsect_addr);
769 lbal = inb(ioaddr->lbal_addr);
771 if ((nsect == 0x55) && (lbal == 0xaa))
772 return 1; /* we found a device */
774 return 0; /* nothing found */
778 * ata_mmio_devchk - PATA device presence detection
779 * @ap: ATA channel to examine
780 * @device: Device to examine (starting at zero)
782 * This technique was originally described in
783 * Hale Landis's ATADRVR (www.ata-atapi.com), and
784 * later found its way into the ATA/ATAPI spec.
786 * Write a pattern to the ATA shadow registers,
787 * and if a device is present, it will respond by
788 * correctly storing and echoing back the
789 * ATA shadow register contents.
795 static unsigned int ata_mmio_devchk(struct ata_port *ap,
798 struct ata_ioports *ioaddr = &ap->ioaddr;
801 ap->ops->dev_select(ap, device);
803 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
804 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
806 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
807 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
809 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
810 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
812 nsect = readb((void __iomem *) ioaddr->nsect_addr);
813 lbal = readb((void __iomem *) ioaddr->lbal_addr);
815 if ((nsect == 0x55) && (lbal == 0xaa))
816 return 1; /* we found a device */
818 return 0; /* nothing found */
822 * ata_devchk - PATA device presence detection
823 * @ap: ATA channel to examine
824 * @device: Device to examine (starting at zero)
826 * Dispatch ATA device presence detection, depending
827 * on whether we are using PIO or MMIO to talk to the
828 * ATA shadow registers.
834 static unsigned int ata_devchk(struct ata_port *ap,
837 if (ap->flags & ATA_FLAG_MMIO)
838 return ata_mmio_devchk(ap, device);
839 return ata_pio_devchk(ap, device);
843 * ata_dev_classify - determine device type based on ATA-spec signature
844 * @tf: ATA taskfile register set for device to be identified
846 * Determine from taskfile register contents whether a device is
847 * ATA or ATAPI, as per "Signature and persistence" section
848 * of ATA/PI spec (volume 1, sect 5.14).
854 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
855 * the event of failure.
858 unsigned int ata_dev_classify(struct ata_taskfile *tf)
860 /* Apple's open source Darwin code hints that some devices only
861 * put a proper signature into the LBA mid/high registers,
862 * So, we only check those. It's sufficient for uniqueness.
865 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
866 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
867 DPRINTK("found ATA device by sig\n");
871 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
872 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
873 DPRINTK("found ATAPI device by sig\n");
874 return ATA_DEV_ATAPI;
877 DPRINTK("unknown device\n");
878 return ATA_DEV_UNKNOWN;
882 * ata_dev_try_classify - Parse returned ATA device signature
883 * @ap: ATA channel to examine
884 * @device: Device to examine (starting at zero)
886 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
887 * an ATA/ATAPI-defined set of values is placed in the ATA
888 * shadow registers, indicating the results of device detection
891 * Select the ATA device, and read the values from the ATA shadow
892 * registers. Then parse according to the Error register value,
893 * and the spec-defined values examined by ata_dev_classify().
899 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
901 struct ata_device *dev = &ap->device[device];
902 struct ata_taskfile tf;
906 ap->ops->dev_select(ap, device);
908 memset(&tf, 0, sizeof(tf));
910 err = ata_chk_err(ap);
911 ap->ops->tf_read(ap, &tf);
913 dev->class = ATA_DEV_NONE;
915 /* see if device passed diags */
918 else if ((device == 0) && (err == 0x81))
923 /* determine if device if ATA or ATAPI */
924 class = ata_dev_classify(&tf);
925 if (class == ATA_DEV_UNKNOWN)
927 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
936 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
937 * @id: IDENTIFY DEVICE results we will examine
938 * @s: string into which data is output
939 * @ofs: offset into identify device page
940 * @len: length of string to return. must be an even number.
942 * The strings in the IDENTIFY DEVICE page are broken up into
943 * 16-bit chunks. Run through the string, and output each
944 * 8-bit chunk linearly, regardless of platform.
950 void ata_dev_id_string(u16 *id, unsigned char *s,
951 unsigned int ofs, unsigned int len)
971 * ata_noop_dev_select - Select device 0/1 on ATA bus
972 * @ap: ATA channel to manipulate
973 * @device: ATA device (numbered from zero) to select
975 * This function performs no actual function.
977 * May be used as the dev_select() entry in ata_port_operations.
982 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
988 * ata_std_dev_select - Select device 0/1 on ATA bus
989 * @ap: ATA channel to manipulate
990 * @device: ATA device (numbered from zero) to select
992 * Use the method defined in the ATA specification to
993 * make either device 0, or device 1, active on the
994 * ATA channel. Works with both PIO and MMIO.
996 * May be used as the dev_select() entry in ata_port_operations.
1002 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1007 tmp = ATA_DEVICE_OBS;
1009 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1011 if (ap->flags & ATA_FLAG_MMIO) {
1012 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
1014 outb(tmp, ap->ioaddr.device_addr);
1016 ata_pause(ap); /* needed; also flushes, for mmio */
1020 * ata_dev_select - Select device 0/1 on ATA bus
1021 * @ap: ATA channel to manipulate
1022 * @device: ATA device (numbered from zero) to select
1023 * @wait: non-zero to wait for Status register BSY bit to clear
1024 * @can_sleep: non-zero if context allows sleeping
1026 * Use the method defined in the ATA specification to
1027 * make either device 0, or device 1, active on the
1030 * This is a high-level version of ata_std_dev_select(),
1031 * which additionally provides the services of inserting
1032 * the proper pauses and status polling, where needed.
1038 void ata_dev_select(struct ata_port *ap, unsigned int device,
1039 unsigned int wait, unsigned int can_sleep)
1041 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
1042 ap->id, device, wait);
1047 ap->ops->dev_select(ap, device);
1050 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1057 * ata_dump_id - IDENTIFY DEVICE info debugging output
1058 * @dev: Device whose IDENTIFY DEVICE page we will dump
1060 * Dump selected 16-bit words from a detected device's
1061 * IDENTIFY PAGE page.
1067 static inline void ata_dump_id(struct ata_device *dev)
1069 DPRINTK("49==0x%04x "
1079 DPRINTK("80==0x%04x "
1089 DPRINTK("88==0x%04x "
1096 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1097 * @ap: port on which device we wish to probe resides
1098 * @device: device bus address, starting at zero
1100 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1101 * command, and read back the 512-byte device information page.
1102 * The device information page is fed to us via the standard
1103 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1104 * using standard PIO-IN paths)
1106 * After reading the device information page, we use several
1107 * bits of information from it to initialize data structures
1108 * that will be used during the lifetime of the ata_device.
1109 * Other data from the info page is used to disqualify certain
1110 * older ATA devices we do not wish to support.
1113 * Inherited from caller. Some functions called by this function
1114 * obtain the host_set lock.
1117 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1119 struct ata_device *dev = &ap->device[device];
1122 unsigned long xfer_modes;
1124 unsigned int using_edd;
1125 DECLARE_COMPLETION(wait);
1126 struct ata_queued_cmd *qc;
1127 unsigned long flags;
1130 if (!ata_dev_present(dev)) {
1131 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1136 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1141 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1143 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1144 dev->class == ATA_DEV_NONE);
1146 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1148 qc = ata_qc_new_init(ap, dev);
1151 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1152 qc->dma_dir = DMA_FROM_DEVICE;
1153 qc->tf.protocol = ATA_PROT_PIO;
1157 if (dev->class == ATA_DEV_ATA) {
1158 qc->tf.command = ATA_CMD_ID_ATA;
1159 DPRINTK("do ATA identify\n");
1161 qc->tf.command = ATA_CMD_ID_ATAPI;
1162 DPRINTK("do ATAPI identify\n");
1165 qc->waiting = &wait;
1166 qc->complete_fn = ata_qc_complete_noop;
1168 spin_lock_irqsave(&ap->host_set->lock, flags);
1169 rc = ata_qc_issue(qc);
1170 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1175 wait_for_completion(&wait);
1177 status = ata_chk_status(ap);
1178 if (status & ATA_ERR) {
1180 * arg! EDD works for all test cases, but seems to return
1181 * the ATA signature for some ATAPI devices. Until the
1182 * reason for this is found and fixed, we fix up the mess
1183 * here. If IDENTIFY DEVICE returns command aborted
1184 * (as ATAPI devices do), then we issue an
1185 * IDENTIFY PACKET DEVICE.
1187 * ATA software reset (SRST, the default) does not appear
1188 * to have this problem.
1190 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1191 u8 err = ata_chk_err(ap);
1192 if (err & ATA_ABORTED) {
1193 dev->class = ATA_DEV_ATAPI;
1204 swap_buf_le16(dev->id, ATA_ID_WORDS);
1206 /* print device capabilities */
1207 printk(KERN_DEBUG "ata%u: dev %u cfg "
1208 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1209 ap->id, device, dev->id[49],
1210 dev->id[82], dev->id[83], dev->id[84],
1211 dev->id[85], dev->id[86], dev->id[87],
1215 * common ATA, ATAPI feature tests
1218 /* we require LBA and DMA support (bits 8 & 9 of word 49) */
1219 if (!ata_id_has_dma(dev->id) || !ata_id_has_lba(dev->id)) {
1220 printk(KERN_DEBUG "ata%u: no dma/lba\n", ap->id);
1224 /* quick-n-dirty find max transfer mode; for printk only */
1225 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1227 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1229 xfer_modes = (dev->id[ATA_ID_PIO_MODES]) << (ATA_SHIFT_PIO + 3);
1230 xfer_modes |= (0x7 << ATA_SHIFT_PIO);
1235 /* ATA-specific feature tests */
1236 if (dev->class == ATA_DEV_ATA) {
1237 if (!ata_id_is_ata(dev->id)) /* sanity check */
1240 tmp = dev->id[ATA_ID_MAJOR_VER];
1241 for (i = 14; i >= 1; i--)
1245 /* we require at least ATA-3 */
1247 printk(KERN_DEBUG "ata%u: no ATA-3\n", ap->id);
1251 if (ata_id_has_lba48(dev->id)) {
1252 dev->flags |= ATA_DFLAG_LBA48;
1253 dev->n_sectors = ata_id_u64(dev->id, 100);
1255 dev->n_sectors = ata_id_u32(dev->id, 60);
1258 ap->host->max_cmd_len = 16;
1260 /* print device info to dmesg */
1261 printk(KERN_INFO "ata%u: dev %u ATA, max %s, %Lu sectors:%s\n",
1263 ata_mode_string(xfer_modes),
1264 (unsigned long long)dev->n_sectors,
1265 dev->flags & ATA_DFLAG_LBA48 ? " lba48" : "");
1268 /* ATAPI-specific feature tests */
1270 if (ata_id_is_ata(dev->id)) /* sanity check */
1273 rc = atapi_cdb_len(dev->id);
1274 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1275 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1278 ap->cdb_len = (unsigned int) rc;
1279 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1281 /* print device info to dmesg */
1282 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1284 ata_mode_string(xfer_modes));
1287 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1291 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1294 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1295 DPRINTK("EXIT, err\n");
1299 static inline u8 ata_dev_knobble(struct ata_port *ap)
1301 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1305 * ata_dev_config - Run device specific handlers and check for
1306 * SATA->PATA bridges
1313 void ata_dev_config(struct ata_port *ap, unsigned int i)
1315 /* limit bridge transfers to udma5, 200 sectors */
1316 if (ata_dev_knobble(ap)) {
1317 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1318 ap->id, ap->device->devno);
1319 ap->udma_mask &= ATA_UDMA5;
1320 ap->host->max_sectors = ATA_MAX_SECTORS;
1321 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1322 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1325 if (ap->ops->dev_config)
1326 ap->ops->dev_config(ap, &ap->device[i]);
1330 * ata_bus_probe - Reset and probe ATA bus
1333 * Master ATA bus probing function. Initiates a hardware-dependent
1334 * bus reset, then attempts to identify any devices found on
1338 * PCI/etc. bus probe sem.
1341 * Zero on success, non-zero on error.
1344 static int ata_bus_probe(struct ata_port *ap)
1346 unsigned int i, found = 0;
1348 ap->ops->phy_reset(ap);
1349 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1352 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1353 ata_dev_identify(ap, i);
1354 if (ata_dev_present(&ap->device[i])) {
1356 ata_dev_config(ap,i);
1360 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1361 goto err_out_disable;
1364 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1365 goto err_out_disable;
1370 ap->ops->port_disable(ap);
1376 * ata_port_probe - Mark port as enabled
1377 * @ap: Port for which we indicate enablement
1379 * Modify @ap data structure such that the system
1380 * thinks that the entire port is enabled.
1382 * LOCKING: host_set lock, or some other form of
1386 void ata_port_probe(struct ata_port *ap)
1388 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1392 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1393 * @ap: SATA port associated with target SATA PHY.
1395 * This function issues commands to standard SATA Sxxx
1396 * PHY registers, to wake up the phy (and device), and
1397 * clear any reset condition.
1400 * PCI/etc. bus probe sem.
1403 void __sata_phy_reset(struct ata_port *ap)
1406 unsigned long timeout = jiffies + (HZ * 5);
1408 if (ap->flags & ATA_FLAG_SATA_RESET) {
1409 /* issue phy wake/reset */
1410 scr_write_flush(ap, SCR_CONTROL, 0x301);
1411 /* Couldn't find anything in SATA I/II specs, but
1412 * AHCI-1.1 10.4.2 says at least 1 ms. */
1415 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1417 /* wait for phy to become ready, if necessary */
1420 sstatus = scr_read(ap, SCR_STATUS);
1421 if ((sstatus & 0xf) != 1)
1423 } while (time_before(jiffies, timeout));
1425 /* TODO: phy layer with polling, timeouts, etc. */
1426 if (sata_dev_present(ap))
1429 sstatus = scr_read(ap, SCR_STATUS);
1430 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1432 ata_port_disable(ap);
1435 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1438 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1439 ata_port_disable(ap);
1443 ap->cbl = ATA_CBL_SATA;
1447 * sata_phy_reset - Reset SATA bus.
1448 * @ap: SATA port associated with target SATA PHY.
1450 * This function resets the SATA bus, and then probes
1451 * the bus for devices.
1454 * PCI/etc. bus probe sem.
1457 void sata_phy_reset(struct ata_port *ap)
1459 __sata_phy_reset(ap);
1460 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1466 * ata_port_disable - Disable port.
1467 * @ap: Port to be disabled.
1469 * Modify @ap data structure such that the system
1470 * thinks that the entire port is disabled, and should
1471 * never attempt to probe or communicate with devices
1474 * LOCKING: host_set lock, or some other form of
1478 void ata_port_disable(struct ata_port *ap)
1480 ap->device[0].class = ATA_DEV_NONE;
1481 ap->device[1].class = ATA_DEV_NONE;
1482 ap->flags |= ATA_FLAG_PORT_DISABLED;
1488 } xfer_mode_classes[] = {
1489 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1490 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1491 { ATA_SHIFT_PIO, XFER_PIO_0 },
1494 static inline u8 base_from_shift(unsigned int shift)
1498 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1499 if (xfer_mode_classes[i].shift == shift)
1500 return xfer_mode_classes[i].base;
1505 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1510 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1513 if (dev->xfer_shift == ATA_SHIFT_PIO)
1514 dev->flags |= ATA_DFLAG_PIO;
1516 ata_dev_set_xfermode(ap, dev);
1518 base = base_from_shift(dev->xfer_shift);
1519 ofs = dev->xfer_mode - base;
1520 idx = ofs + dev->xfer_shift;
1521 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1523 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1524 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1526 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1527 ap->id, dev->devno, xfer_mode_str[idx]);
1530 static int ata_host_set_pio(struct ata_port *ap)
1536 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1539 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1543 base = base_from_shift(ATA_SHIFT_PIO);
1544 xfer_mode = base + x;
1546 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1547 (int)base, (int)xfer_mode, mask, x);
1549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1550 struct ata_device *dev = &ap->device[i];
1551 if (ata_dev_present(dev)) {
1552 dev->pio_mode = xfer_mode;
1553 dev->xfer_mode = xfer_mode;
1554 dev->xfer_shift = ATA_SHIFT_PIO;
1555 if (ap->ops->set_piomode)
1556 ap->ops->set_piomode(ap, dev);
1563 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1564 unsigned int xfer_shift)
1568 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1569 struct ata_device *dev = &ap->device[i];
1570 if (ata_dev_present(dev)) {
1571 dev->dma_mode = xfer_mode;
1572 dev->xfer_mode = xfer_mode;
1573 dev->xfer_shift = xfer_shift;
1574 if (ap->ops->set_dmamode)
1575 ap->ops->set_dmamode(ap, dev);
1581 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1582 * @ap: port on which timings will be programmed
1584 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1587 * PCI/etc. bus probe sem.
1590 static void ata_set_mode(struct ata_port *ap)
1592 unsigned int i, xfer_shift;
1596 /* step 1: always set host PIO timings */
1597 rc = ata_host_set_pio(ap);
1601 /* step 2: choose the best data xfer mode */
1602 xfer_mode = xfer_shift = 0;
1603 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1607 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1608 if (xfer_shift != ATA_SHIFT_PIO)
1609 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1611 /* step 4: update devices' xfer mode */
1612 ata_dev_set_mode(ap, &ap->device[0]);
1613 ata_dev_set_mode(ap, &ap->device[1]);
1615 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1618 if (ap->ops->post_set_mode)
1619 ap->ops->post_set_mode(ap);
1621 for (i = 0; i < 2; i++) {
1622 struct ata_device *dev = &ap->device[i];
1623 ata_dev_set_protocol(dev);
1629 ata_port_disable(ap);
1633 * ata_busy_sleep - sleep until BSY clears, or timeout
1634 * @ap: port containing status register to be polled
1635 * @tmout_pat: impatience timeout
1636 * @tmout: overall timeout
1638 * Sleep until ATA Status register bit BSY clears,
1639 * or a timeout occurs.
1645 static unsigned int ata_busy_sleep (struct ata_port *ap,
1646 unsigned long tmout_pat,
1647 unsigned long tmout)
1649 unsigned long timer_start, timeout;
1652 status = ata_busy_wait(ap, ATA_BUSY, 300);
1653 timer_start = jiffies;
1654 timeout = timer_start + tmout_pat;
1655 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1657 status = ata_busy_wait(ap, ATA_BUSY, 3);
1660 if (status & ATA_BUSY)
1661 printk(KERN_WARNING "ata%u is slow to respond, "
1662 "please be patient\n", ap->id);
1664 timeout = timer_start + tmout;
1665 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1667 status = ata_chk_status(ap);
1670 if (status & ATA_BUSY) {
1671 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1672 ap->id, tmout / HZ);
1679 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1681 struct ata_ioports *ioaddr = &ap->ioaddr;
1682 unsigned int dev0 = devmask & (1 << 0);
1683 unsigned int dev1 = devmask & (1 << 1);
1684 unsigned long timeout;
1686 /* if device 0 was found in ata_devchk, wait for its
1690 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1692 /* if device 1 was found in ata_devchk, wait for
1693 * register access, then wait for BSY to clear
1695 timeout = jiffies + ATA_TMOUT_BOOT;
1699 ap->ops->dev_select(ap, 1);
1700 if (ap->flags & ATA_FLAG_MMIO) {
1701 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1702 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1704 nsect = inb(ioaddr->nsect_addr);
1705 lbal = inb(ioaddr->lbal_addr);
1707 if ((nsect == 1) && (lbal == 1))
1709 if (time_after(jiffies, timeout)) {
1713 msleep(50); /* give drive a breather */
1716 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1718 /* is all this really necessary? */
1719 ap->ops->dev_select(ap, 0);
1721 ap->ops->dev_select(ap, 1);
1723 ap->ops->dev_select(ap, 0);
1727 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1728 * @ap: Port to reset and probe
1730 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1731 * probe the bus. Not often used these days.
1734 * PCI/etc. bus probe sem.
1738 static unsigned int ata_bus_edd(struct ata_port *ap)
1740 struct ata_taskfile tf;
1742 /* set up execute-device-diag (bus reset) taskfile */
1743 /* also, take interrupts to a known state (disabled) */
1744 DPRINTK("execute-device-diag\n");
1745 ata_tf_init(ap, &tf, 0);
1747 tf.command = ATA_CMD_EDD;
1748 tf.protocol = ATA_PROT_NODATA;
1751 ata_tf_to_host(ap, &tf);
1753 /* spec says at least 2ms. but who knows with those
1754 * crazy ATAPI devices...
1758 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1761 static unsigned int ata_bus_softreset(struct ata_port *ap,
1762 unsigned int devmask)
1764 struct ata_ioports *ioaddr = &ap->ioaddr;
1766 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1768 /* software reset. causes dev0 to be selected */
1769 if (ap->flags & ATA_FLAG_MMIO) {
1770 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1771 udelay(20); /* FIXME: flush */
1772 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1773 udelay(20); /* FIXME: flush */
1774 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1776 outb(ap->ctl, ioaddr->ctl_addr);
1778 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1780 outb(ap->ctl, ioaddr->ctl_addr);
1783 /* spec mandates ">= 2ms" before checking status.
1784 * We wait 150ms, because that was the magic delay used for
1785 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1786 * between when the ATA command register is written, and then
1787 * status is checked. Because waiting for "a while" before
1788 * checking status is fine, post SRST, we perform this magic
1789 * delay here as well.
1793 ata_bus_post_reset(ap, devmask);
1799 * ata_bus_reset - reset host port and associated ATA channel
1800 * @ap: port to reset
1802 * This is typically the first time we actually start issuing
1803 * commands to the ATA channel. We wait for BSY to clear, then
1804 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1805 * result. Determine what devices, if any, are on the channel
1806 * by looking at the device 0/1 error register. Look at the signature
1807 * stored in each device's taskfile registers, to determine if
1808 * the device is ATA or ATAPI.
1811 * PCI/etc. bus probe sem.
1812 * Obtains host_set lock.
1815 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1818 void ata_bus_reset(struct ata_port *ap)
1820 struct ata_ioports *ioaddr = &ap->ioaddr;
1821 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1823 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1825 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1827 /* determine if device 0/1 are present */
1828 if (ap->flags & ATA_FLAG_SATA_RESET)
1831 dev0 = ata_devchk(ap, 0);
1833 dev1 = ata_devchk(ap, 1);
1837 devmask |= (1 << 0);
1839 devmask |= (1 << 1);
1841 /* select device 0 again */
1842 ap->ops->dev_select(ap, 0);
1844 /* issue bus reset */
1845 if (ap->flags & ATA_FLAG_SRST)
1846 rc = ata_bus_softreset(ap, devmask);
1847 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1848 /* set up device control */
1849 if (ap->flags & ATA_FLAG_MMIO)
1850 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1852 outb(ap->ctl, ioaddr->ctl_addr);
1853 rc = ata_bus_edd(ap);
1860 * determine by signature whether we have ATA or ATAPI devices
1862 err = ata_dev_try_classify(ap, 0);
1863 if ((slave_possible) && (err != 0x81))
1864 ata_dev_try_classify(ap, 1);
1866 /* re-enable interrupts */
1867 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1870 /* is double-select really necessary? */
1871 if (ap->device[1].class != ATA_DEV_NONE)
1872 ap->ops->dev_select(ap, 1);
1873 if (ap->device[0].class != ATA_DEV_NONE)
1874 ap->ops->dev_select(ap, 0);
1876 /* if no devices were detected, disable this port */
1877 if ((ap->device[0].class == ATA_DEV_NONE) &&
1878 (ap->device[1].class == ATA_DEV_NONE))
1881 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1882 /* set up device control for ATA_FLAG_SATA_RESET */
1883 if (ap->flags & ATA_FLAG_MMIO)
1884 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1886 outb(ap->ctl, ioaddr->ctl_addr);
1893 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1894 ap->ops->port_disable(ap);
1899 static void ata_pr_blacklisted(struct ata_port *ap, struct ata_device *dev)
1901 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
1902 ap->id, dev->devno);
1905 static const char * ata_dma_blacklist [] = {
1924 "Toshiba CD-ROM XM-6202B",
1925 "TOSHIBA CD-ROM XM-1702BC",
1927 "E-IDE CD-ROM CR-840",
1930 "SAMSUNG CD-ROM SC-148C",
1931 "SAMSUNG CD-ROM SC",
1933 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
1937 static int ata_dma_blacklisted(struct ata_port *ap, struct ata_device *dev)
1939 unsigned char model_num[40];
1944 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
1947 len = strnlen(s, sizeof(model_num));
1949 /* ATAPI specifies that empty space is blank-filled; remove blanks */
1950 while ((len > 0) && (s[len - 1] == ' ')) {
1955 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
1956 if (!strncmp(ata_dma_blacklist[i], s, len))
1962 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift)
1964 struct ata_device *master, *slave;
1967 master = &ap->device[0];
1968 slave = &ap->device[1];
1970 assert (ata_dev_present(master) || ata_dev_present(slave));
1972 if (shift == ATA_SHIFT_UDMA) {
1973 mask = ap->udma_mask;
1974 if (ata_dev_present(master)) {
1975 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
1976 if (ata_dma_blacklisted(ap, master)) {
1978 ata_pr_blacklisted(ap, master);
1981 if (ata_dev_present(slave)) {
1982 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
1983 if (ata_dma_blacklisted(ap, slave)) {
1985 ata_pr_blacklisted(ap, slave);
1989 else if (shift == ATA_SHIFT_MWDMA) {
1990 mask = ap->mwdma_mask;
1991 if (ata_dev_present(master)) {
1992 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
1993 if (ata_dma_blacklisted(ap, master)) {
1995 ata_pr_blacklisted(ap, master);
1998 if (ata_dev_present(slave)) {
1999 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2000 if (ata_dma_blacklisted(ap, slave)) {
2002 ata_pr_blacklisted(ap, slave);
2006 else if (shift == ATA_SHIFT_PIO) {
2007 mask = ap->pio_mask;
2008 if (ata_dev_present(master)) {
2009 /* spec doesn't return explicit support for
2010 * PIO0-2, so we fake it
2012 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2017 if (ata_dev_present(slave)) {
2018 /* spec doesn't return explicit support for
2019 * PIO0-2, so we fake it
2021 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2028 mask = 0xffffffff; /* shut up compiler warning */
2035 /* find greatest bit */
2036 static int fgb(u32 bitmap)
2041 for (i = 0; i < 32; i++)
2042 if (bitmap & (1 << i))
2049 * ata_choose_xfer_mode - attempt to find best transfer mode
2050 * @ap: Port for which an xfer mode will be selected
2051 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2052 * @xfer_shift_out: (output) bit shift that selects this mode
2054 * Based on host and device capabilities, determine the
2055 * maximum transfer mode that is amenable to all.
2058 * PCI/etc. bus probe sem.
2061 * Zero on success, negative on error.
2064 static int ata_choose_xfer_mode(struct ata_port *ap,
2066 unsigned int *xfer_shift_out)
2068 unsigned int mask, shift;
2071 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2072 shift = xfer_mode_classes[i].shift;
2073 mask = ata_get_mode_mask(ap, shift);
2077 *xfer_mode_out = xfer_mode_classes[i].base + x;
2078 *xfer_shift_out = shift;
2087 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2088 * @ap: Port associated with device @dev
2089 * @dev: Device to which command will be sent
2091 * Issue SET FEATURES - XFER MODE command to device @dev
2095 * PCI/etc. bus probe sem.
2098 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2100 DECLARE_COMPLETION(wait);
2101 struct ata_queued_cmd *qc;
2103 unsigned long flags;
2105 /* set up set-features taskfile */
2106 DPRINTK("set features - xfer mode\n");
2108 qc = ata_qc_new_init(ap, dev);
2111 qc->tf.command = ATA_CMD_SET_FEATURES;
2112 qc->tf.feature = SETFEATURES_XFER;
2113 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2114 qc->tf.protocol = ATA_PROT_NODATA;
2115 qc->tf.nsect = dev->xfer_mode;
2117 qc->waiting = &wait;
2118 qc->complete_fn = ata_qc_complete_noop;
2120 spin_lock_irqsave(&ap->host_set->lock, flags);
2121 rc = ata_qc_issue(qc);
2122 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2125 ata_port_disable(ap);
2127 wait_for_completion(&wait);
2133 * ata_sg_clean - Unmap DMA memory associated with command
2134 * @qc: Command containing DMA memory to be released
2136 * Unmap all mapped DMA memory associated with this command.
2139 * spin_lock_irqsave(host_set lock)
2142 static void ata_sg_clean(struct ata_queued_cmd *qc)
2144 struct ata_port *ap = qc->ap;
2145 struct scatterlist *sg = qc->sg;
2146 int dir = qc->dma_dir;
2148 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2151 if (qc->flags & ATA_QCFLAG_SINGLE)
2152 assert(qc->n_elem == 1);
2154 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2156 if (qc->flags & ATA_QCFLAG_SG)
2157 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2159 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2160 sg_dma_len(&sg[0]), dir);
2162 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2167 * ata_fill_sg - Fill PCI IDE PRD table
2168 * @qc: Metadata associated with taskfile to be transferred
2170 * Fill PCI IDE PRD (scatter-gather) table with segments
2171 * associated with the current disk command.
2174 * spin_lock_irqsave(host_set lock)
2177 static void ata_fill_sg(struct ata_queued_cmd *qc)
2179 struct scatterlist *sg = qc->sg;
2180 struct ata_port *ap = qc->ap;
2181 unsigned int idx, nelem;
2184 assert(qc->n_elem > 0);
2187 for (nelem = qc->n_elem; nelem; nelem--,sg++) {
2191 /* determine if physical DMA addr spans 64K boundary.
2192 * Note h/w doesn't support 64-bit, so we unconditionally
2193 * truncate dma_addr_t to u32.
2195 addr = (u32) sg_dma_address(sg);
2196 sg_len = sg_dma_len(sg);
2199 offset = addr & 0xffff;
2201 if ((offset + sg_len) > 0x10000)
2202 len = 0x10000 - offset;
2204 ap->prd[idx].addr = cpu_to_le32(addr);
2205 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2206 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2215 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2218 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2219 * @qc: Metadata associated with taskfile to check
2221 * Allow low-level driver to filter ATA PACKET commands, returning
2222 * a status indicating whether or not it is OK to use DMA for the
2223 * supplied PACKET command.
2226 * spin_lock_irqsave(host_set lock)
2228 * RETURNS: 0 when ATAPI DMA can be used
2231 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2233 struct ata_port *ap = qc->ap;
2234 int rc = 0; /* Assume ATAPI DMA is OK by default */
2236 if (ap->ops->check_atapi_dma)
2237 rc = ap->ops->check_atapi_dma(qc);
2242 * ata_qc_prep - Prepare taskfile for submission
2243 * @qc: Metadata associated with taskfile to be prepared
2245 * Prepare ATA taskfile for submission.
2248 * spin_lock_irqsave(host_set lock)
2250 void ata_qc_prep(struct ata_queued_cmd *qc)
2252 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2259 * ata_sg_init_one - Associate command with memory buffer
2260 * @qc: Command to be associated
2261 * @buf: Memory buffer
2262 * @buflen: Length of memory buffer, in bytes.
2264 * Initialize the data-related elements of queued_cmd @qc
2265 * to point to a single memory buffer, @buf of byte length @buflen.
2268 * spin_lock_irqsave(host_set lock)
2274 * ata_sg_init_one - Prepare a one-entry scatter-gather list.
2275 * @qc: Queued command
2276 * @buf: transfer buffer
2277 * @buflen: length of buf
2279 * Builds a single-entry scatter-gather list to initiate a
2280 * transfer utilizing the specified buffer.
2284 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2286 struct scatterlist *sg;
2288 qc->flags |= ATA_QCFLAG_SINGLE;
2290 memset(&qc->sgent, 0, sizeof(qc->sgent));
2291 qc->sg = &qc->sgent;
2296 sg->page = virt_to_page(buf);
2297 sg->offset = (unsigned long) buf & ~PAGE_MASK;
2298 sg->length = buflen;
2302 * ata_sg_init - Associate command with scatter-gather table.
2303 * @qc: Command to be associated
2304 * @sg: Scatter-gather table.
2305 * @n_elem: Number of elements in s/g table.
2307 * Initialize the data-related elements of queued_cmd @qc
2308 * to point to a scatter-gather table @sg, containing @n_elem
2312 * spin_lock_irqsave(host_set lock)
2317 * ata_sg_init - Assign a scatter gather list to a queued command
2318 * @qc: Queued command
2319 * @sg: Scatter-gather list
2320 * @n_elem: length of sg list
2322 * Attaches a scatter-gather list to a queued command.
2327 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2328 unsigned int n_elem)
2330 qc->flags |= ATA_QCFLAG_SG;
2332 qc->n_elem = n_elem;
2336 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2337 * @qc: Command with memory buffer to be mapped.
2339 * DMA-map the memory buffer associated with queued_cmd @qc.
2342 * spin_lock_irqsave(host_set lock)
2345 * Zero on success, negative on error.
2348 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2350 struct ata_port *ap = qc->ap;
2351 int dir = qc->dma_dir;
2352 struct scatterlist *sg = qc->sg;
2353 dma_addr_t dma_address;
2355 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2357 if (dma_mapping_error(dma_address))
2360 sg_dma_address(sg) = dma_address;
2361 sg_dma_len(sg) = sg->length;
2363 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2364 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2370 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2371 * @qc: Command with scatter-gather table to be mapped.
2373 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2376 * spin_lock_irqsave(host_set lock)
2379 * Zero on success, negative on error.
2383 static int ata_sg_setup(struct ata_queued_cmd *qc)
2385 struct ata_port *ap = qc->ap;
2386 struct scatterlist *sg = qc->sg;
2389 VPRINTK("ENTER, ata%u\n", ap->id);
2390 assert(qc->flags & ATA_QCFLAG_SG);
2393 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2397 DPRINTK("%d sg elements mapped\n", n_elem);
2399 qc->n_elem = n_elem;
2409 * None. (executing in kernel thread context)
2415 static unsigned long ata_pio_poll(struct ata_port *ap)
2418 unsigned int poll_state = PIO_ST_UNKNOWN;
2419 unsigned int reg_state = PIO_ST_UNKNOWN;
2420 const unsigned int tmout_state = PIO_ST_TMOUT;
2422 switch (ap->pio_task_state) {
2425 poll_state = PIO_ST_POLL;
2429 case PIO_ST_LAST_POLL:
2430 poll_state = PIO_ST_LAST_POLL;
2431 reg_state = PIO_ST_LAST;
2438 status = ata_chk_status(ap);
2439 if (status & ATA_BUSY) {
2440 if (time_after(jiffies, ap->pio_task_timeout)) {
2441 ap->pio_task_state = tmout_state;
2444 ap->pio_task_state = poll_state;
2445 return ATA_SHORT_PAUSE;
2448 ap->pio_task_state = reg_state;
2453 * ata_pio_complete -
2457 * None. (executing in kernel thread context)
2460 static void ata_pio_complete (struct ata_port *ap)
2462 struct ata_queued_cmd *qc;
2466 * This is purely hueristic. This is a fast path.
2467 * Sometimes when we enter, BSY will be cleared in
2468 * a chk-status or two. If not, the drive is probably seeking
2469 * or something. Snooze for a couple msecs, then
2470 * chk-status again. If still busy, fall back to
2471 * PIO_ST_POLL state.
2473 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2474 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2476 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2477 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2478 ap->pio_task_state = PIO_ST_LAST_POLL;
2479 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2484 drv_stat = ata_wait_idle(ap);
2485 if (!ata_ok(drv_stat)) {
2486 ap->pio_task_state = PIO_ST_ERR;
2490 qc = ata_qc_from_tag(ap, ap->active_tag);
2493 ap->pio_task_state = PIO_ST_IDLE;
2497 ata_qc_complete(qc, drv_stat);
2503 * @buf: Buffer to swap
2504 * @buf_words: Number of 16-bit words in buffer.
2506 * Swap halves of 16-bit words if needed to convert from
2507 * little-endian byte order to native cpu byte order, or
2512 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2517 for (i = 0; i < buf_words; i++)
2518 buf[i] = le16_to_cpu(buf[i]);
2519 #endif /* __BIG_ENDIAN */
2522 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2523 unsigned int buflen, int write_data)
2526 unsigned int words = buflen >> 1;
2527 u16 *buf16 = (u16 *) buf;
2528 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2531 for (i = 0; i < words; i++)
2532 writew(le16_to_cpu(buf16[i]), mmio);
2534 for (i = 0; i < words; i++)
2535 buf16[i] = cpu_to_le16(readw(mmio));
2539 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2540 unsigned int buflen, int write_data)
2542 unsigned int dwords = buflen >> 1;
2545 outsw(ap->ioaddr.data_addr, buf, dwords);
2547 insw(ap->ioaddr.data_addr, buf, dwords);
2550 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2551 unsigned int buflen, int do_write)
2553 if (ap->flags & ATA_FLAG_MMIO)
2554 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2556 ata_pio_data_xfer(ap, buf, buflen, do_write);
2559 static void ata_pio_sector(struct ata_queued_cmd *qc)
2561 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2562 struct scatterlist *sg = qc->sg;
2563 struct ata_port *ap = qc->ap;
2565 unsigned int offset;
2568 if (qc->cursect == (qc->nsect - 1))
2569 ap->pio_task_state = PIO_ST_LAST;
2571 page = sg[qc->cursg].page;
2572 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2574 /* get the current page and offset */
2575 page = nth_page(page, (offset >> PAGE_SHIFT));
2576 offset %= PAGE_SIZE;
2578 buf = kmap(page) + offset;
2583 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
2588 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2590 /* do the actual data transfer */
2591 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2592 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
2597 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
2599 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2600 struct scatterlist *sg = qc->sg;
2601 struct ata_port *ap = qc->ap;
2604 unsigned int offset, count;
2606 if (qc->curbytes == qc->nbytes - bytes)
2607 ap->pio_task_state = PIO_ST_LAST;
2610 sg = &qc->sg[qc->cursg];
2613 offset = sg->offset + qc->cursg_ofs;
2615 /* get the current page and offset */
2616 page = nth_page(page, (offset >> PAGE_SHIFT));
2617 offset %= PAGE_SIZE;
2619 /* don't overrun current sg */
2620 count = min(sg->length - qc->cursg_ofs, bytes);
2622 /* don't cross page boundaries */
2623 count = min(count, (unsigned int)PAGE_SIZE - offset);
2625 buf = kmap(page) + offset;
2628 qc->curbytes += count;
2629 qc->cursg_ofs += count;
2631 if (qc->cursg_ofs == sg->length) {
2636 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2638 /* do the actual data transfer */
2639 ata_data_xfer(ap, buf, count, do_write);
2648 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
2650 struct ata_port *ap = qc->ap;
2651 struct ata_device *dev = qc->dev;
2652 unsigned int ireason, bc_lo, bc_hi, bytes;
2653 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
2655 ap->ops->tf_read(ap, &qc->tf);
2656 ireason = qc->tf.nsect;
2657 bc_lo = qc->tf.lbam;
2658 bc_hi = qc->tf.lbah;
2659 bytes = (bc_hi << 8) | bc_lo;
2661 /* shall be cleared to zero, indicating xfer of data */
2662 if (ireason & (1 << 0))
2665 /* make sure transfer direction matches expected */
2666 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
2667 if (do_write != i_write)
2670 __atapi_pio_bytes(qc, bytes);
2675 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
2676 ap->id, dev->devno);
2677 ap->pio_task_state = PIO_ST_ERR;
2685 * None. (executing in kernel thread context)
2688 static void ata_pio_block(struct ata_port *ap)
2690 struct ata_queued_cmd *qc;
2694 * This is purely hueristic. This is a fast path.
2695 * Sometimes when we enter, BSY will be cleared in
2696 * a chk-status or two. If not, the drive is probably seeking
2697 * or something. Snooze for a couple msecs, then
2698 * chk-status again. If still busy, fall back to
2699 * PIO_ST_POLL state.
2701 status = ata_busy_wait(ap, ATA_BUSY, 5);
2702 if (status & ATA_BUSY) {
2704 status = ata_busy_wait(ap, ATA_BUSY, 10);
2705 if (status & ATA_BUSY) {
2706 ap->pio_task_state = PIO_ST_POLL;
2707 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2712 qc = ata_qc_from_tag(ap, ap->active_tag);
2715 if (is_atapi_taskfile(&qc->tf)) {
2716 /* no more data to transfer or unsupported ATAPI command */
2717 if ((status & ATA_DRQ) == 0) {
2718 ap->pio_task_state = PIO_ST_IDLE;
2722 ata_qc_complete(qc, status);
2726 atapi_pio_bytes(qc);
2728 /* handle BSY=0, DRQ=0 as error */
2729 if ((status & ATA_DRQ) == 0) {
2730 ap->pio_task_state = PIO_ST_ERR;
2738 static void ata_pio_error(struct ata_port *ap)
2740 struct ata_queued_cmd *qc;
2743 qc = ata_qc_from_tag(ap, ap->active_tag);
2746 drv_stat = ata_chk_status(ap);
2747 printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n",
2750 ap->pio_task_state = PIO_ST_IDLE;
2754 ata_qc_complete(qc, drv_stat | ATA_ERR);
2757 static void ata_pio_task(void *_data)
2759 struct ata_port *ap = _data;
2760 unsigned long timeout = 0;
2762 switch (ap->pio_task_state) {
2771 ata_pio_complete(ap);
2775 case PIO_ST_LAST_POLL:
2776 timeout = ata_pio_poll(ap);
2786 queue_delayed_work(ata_wq, &ap->pio_task,
2789 queue_work(ata_wq, &ap->pio_task);
2792 static void atapi_request_sense(struct ata_port *ap, struct ata_device *dev,
2793 struct scsi_cmnd *cmd)
2795 DECLARE_COMPLETION(wait);
2796 struct ata_queued_cmd *qc;
2797 unsigned long flags;
2800 DPRINTK("ATAPI request sense\n");
2802 qc = ata_qc_new_init(ap, dev);
2805 /* FIXME: is this needed? */
2806 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
2808 ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer));
2809 qc->dma_dir = DMA_FROM_DEVICE;
2811 memset(&qc->cdb, 0, ap->cdb_len);
2812 qc->cdb[0] = REQUEST_SENSE;
2813 qc->cdb[4] = SCSI_SENSE_BUFFERSIZE;
2815 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2816 qc->tf.command = ATA_CMD_PACKET;
2818 qc->tf.protocol = ATA_PROT_ATAPI;
2819 qc->tf.lbam = (8 * 1024) & 0xff;
2820 qc->tf.lbah = (8 * 1024) >> 8;
2821 qc->nbytes = SCSI_SENSE_BUFFERSIZE;
2823 qc->waiting = &wait;
2824 qc->complete_fn = ata_qc_complete_noop;
2826 spin_lock_irqsave(&ap->host_set->lock, flags);
2827 rc = ata_qc_issue(qc);
2828 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2831 ata_port_disable(ap);
2833 wait_for_completion(&wait);
2839 * ata_qc_timeout - Handle timeout of queued command
2840 * @qc: Command that timed out
2842 * Some part of the kernel (currently, only the SCSI layer)
2843 * has noticed that the active command on port @ap has not
2844 * completed after a specified length of time. Handle this
2845 * condition by disabling DMA (if necessary) and completing
2846 * transactions, with error if necessary.
2848 * This also handles the case of the "lost interrupt", where
2849 * for some reason (possibly hardware bug, possibly driver bug)
2850 * an interrupt was not delivered to the driver, even though the
2851 * transaction completed successfully.
2854 * Inherited from SCSI layer (none, can sleep)
2857 static void ata_qc_timeout(struct ata_queued_cmd *qc)
2859 struct ata_port *ap = qc->ap;
2860 struct ata_device *dev = qc->dev;
2861 u8 host_stat = 0, drv_stat;
2865 /* FIXME: doesn't this conflict with timeout handling? */
2866 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
2867 struct scsi_cmnd *cmd = qc->scsicmd;
2869 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
2871 /* finish completing original command */
2872 __ata_qc_complete(qc);
2874 atapi_request_sense(ap, dev, cmd);
2876 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
2877 scsi_finish_command(cmd);
2883 /* hack alert! We cannot use the supplied completion
2884 * function from inside the ->eh_strategy_handler() thread.
2885 * libata is the only user of ->eh_strategy_handler() in
2886 * any kernel, so the default scsi_done() assumes it is
2887 * not being called from the SCSI EH.
2889 qc->scsidone = scsi_finish_command;
2891 switch (qc->tf.protocol) {
2894 case ATA_PROT_ATAPI_DMA:
2895 host_stat = ap->ops->bmdma_status(ap);
2897 /* before we do anything else, clear DMA-Start bit */
2898 ap->ops->bmdma_stop(ap);
2904 drv_stat = ata_chk_status(ap);
2906 /* ack bmdma irq events */
2907 ap->ops->irq_clear(ap);
2909 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
2910 ap->id, qc->tf.command, drv_stat, host_stat);
2912 /* complete taskfile transaction */
2913 ata_qc_complete(qc, drv_stat);
2921 * ata_eng_timeout - Handle timeout of queued command
2922 * @ap: Port on which timed-out command is active
2924 * Some part of the kernel (currently, only the SCSI layer)
2925 * has noticed that the active command on port @ap has not
2926 * completed after a specified length of time. Handle this
2927 * condition by disabling DMA (if necessary) and completing
2928 * transactions, with error if necessary.
2930 * This also handles the case of the "lost interrupt", where
2931 * for some reason (possibly hardware bug, possibly driver bug)
2932 * an interrupt was not delivered to the driver, even though the
2933 * transaction completed successfully.
2936 * Inherited from SCSI layer (none, can sleep)
2939 void ata_eng_timeout(struct ata_port *ap)
2941 struct ata_queued_cmd *qc;
2945 qc = ata_qc_from_tag(ap, ap->active_tag);
2947 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
2959 * ata_qc_new - Request an available ATA command, for queueing
2960 * @ap: Port associated with device @dev
2961 * @dev: Device from whom we request an available command structure
2967 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
2969 struct ata_queued_cmd *qc = NULL;
2972 for (i = 0; i < ATA_MAX_QUEUE; i++)
2973 if (!test_and_set_bit(i, &ap->qactive)) {
2974 qc = ata_qc_from_tag(ap, i);
2985 * ata_qc_new_init - Request an available ATA command, and initialize it
2986 * @ap: Port associated with device @dev
2987 * @dev: Device from whom we request an available command structure
2993 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
2994 struct ata_device *dev)
2996 struct ata_queued_cmd *qc;
2998 qc = ata_qc_new(ap);
3005 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3007 qc->nbytes = qc->curbytes = 0;
3009 ata_tf_init(ap, &qc->tf, dev->devno);
3011 if (dev->flags & ATA_DFLAG_LBA48)
3012 qc->tf.flags |= ATA_TFLAG_LBA48;
3018 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat)
3023 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3025 struct ata_port *ap = qc->ap;
3026 unsigned int tag, do_clear = 0;
3030 if (likely(ata_tag_valid(tag))) {
3031 if (tag == ap->active_tag)
3032 ap->active_tag = ATA_TAG_POISON;
3033 qc->tag = ATA_TAG_POISON;
3038 struct completion *waiting = qc->waiting;
3043 if (likely(do_clear))
3044 clear_bit(tag, &ap->qactive);
3048 * ata_qc_free - free unused ata_queued_cmd
3049 * @qc: Command to complete
3051 * Designed to free unused ata_queued_cmd object
3052 * in case something prevents using it.
3055 * spin_lock_irqsave(host_set lock)
3058 void ata_qc_free(struct ata_queued_cmd *qc)
3060 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3061 assert(qc->waiting == NULL); /* nothing should be waiting */
3063 __ata_qc_complete(qc);
3067 * ata_qc_complete - Complete an active ATA command
3068 * @qc: Command to complete
3069 * @drv_stat: ATA Status register contents
3071 * Indicate to the mid and upper layers that an ATA
3072 * command has completed, with either an ok or not-ok status.
3075 * spin_lock_irqsave(host_set lock)
3079 void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
3083 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3084 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3086 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3089 /* call completion callback */
3090 rc = qc->complete_fn(qc, drv_stat);
3091 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3093 /* if callback indicates not to complete command (non-zero),
3094 * return immediately
3099 __ata_qc_complete(qc);
3104 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3106 struct ata_port *ap = qc->ap;
3108 switch (qc->tf.protocol) {
3110 case ATA_PROT_ATAPI_DMA:
3113 case ATA_PROT_ATAPI:
3115 case ATA_PROT_PIO_MULT:
3116 if (ap->flags & ATA_FLAG_PIO_DMA)
3129 * ata_qc_issue - issue taskfile to device
3130 * @qc: command to issue to device
3132 * Prepare an ATA command to submission to device.
3133 * This includes mapping the data into a DMA-able
3134 * area, filling in the S/G table, and finally
3135 * writing the taskfile to hardware, starting the command.
3138 * spin_lock_irqsave(host_set lock)
3141 * Zero on success, negative on error.
3144 int ata_qc_issue(struct ata_queued_cmd *qc)
3146 struct ata_port *ap = qc->ap;
3148 if (ata_should_dma_map(qc)) {
3149 if (qc->flags & ATA_QCFLAG_SG) {
3150 if (ata_sg_setup(qc))
3152 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3153 if (ata_sg_setup_one(qc))
3157 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3160 ap->ops->qc_prep(qc);
3162 qc->ap->active_tag = qc->tag;
3163 qc->flags |= ATA_QCFLAG_ACTIVE;
3165 return ap->ops->qc_issue(qc);
3173 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3174 * @qc: command to issue to device
3176 * Using various libata functions and hooks, this function
3177 * starts an ATA command. ATA commands are grouped into
3178 * classes called "protocols", and issuing each type of protocol
3179 * is slightly different.
3181 * May be used as the qc_issue() entry in ata_port_operations.
3184 * spin_lock_irqsave(host_set lock)
3187 * Zero on success, negative on error.
3190 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3192 struct ata_port *ap = qc->ap;
3194 ata_dev_select(ap, qc->dev->devno, 1, 0);
3196 switch (qc->tf.protocol) {
3197 case ATA_PROT_NODATA:
3198 ata_tf_to_host_nolock(ap, &qc->tf);
3202 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3203 ap->ops->bmdma_setup(qc); /* set up bmdma */
3204 ap->ops->bmdma_start(qc); /* initiate bmdma */
3207 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3208 ata_qc_set_polling(qc);
3209 ata_tf_to_host_nolock(ap, &qc->tf);
3210 ap->pio_task_state = PIO_ST;
3211 queue_work(ata_wq, &ap->pio_task);
3214 case ATA_PROT_ATAPI:
3215 ata_qc_set_polling(qc);
3216 ata_tf_to_host_nolock(ap, &qc->tf);
3217 queue_work(ata_wq, &ap->packet_task);
3220 case ATA_PROT_ATAPI_NODATA:
3221 ata_tf_to_host_nolock(ap, &qc->tf);
3222 queue_work(ata_wq, &ap->packet_task);
3225 case ATA_PROT_ATAPI_DMA:
3226 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3227 ap->ops->bmdma_setup(qc); /* set up bmdma */
3228 queue_work(ata_wq, &ap->packet_task);
3240 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3241 * @qc: Info associated with this ATA transaction.
3244 * spin_lock_irqsave(host_set lock)
3247 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3249 struct ata_port *ap = qc->ap;
3250 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3252 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3254 /* load PRD table addr. */
3255 mb(); /* make sure PRD table writes are visible to controller */
3256 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3258 /* specify data direction, triple-check start bit is clear */
3259 dmactl = readb(mmio + ATA_DMA_CMD);
3260 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3262 dmactl |= ATA_DMA_WR;
3263 writeb(dmactl, mmio + ATA_DMA_CMD);
3265 /* issue r/w command */
3266 ap->ops->exec_command(ap, &qc->tf);
3270 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3271 * @qc: Info associated with this ATA transaction.
3274 * spin_lock_irqsave(host_set lock)
3277 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3279 struct ata_port *ap = qc->ap;
3280 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3283 /* start host DMA transaction */
3284 dmactl = readb(mmio + ATA_DMA_CMD);
3285 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3287 /* Strictly, one may wish to issue a readb() here, to
3288 * flush the mmio write. However, control also passes
3289 * to the hardware at this point, and it will interrupt
3290 * us when we are to resume control. So, in effect,
3291 * we don't care when the mmio write flushes.
3292 * Further, a read of the DMA status register _immediately_
3293 * following the write may not be what certain flaky hardware
3294 * is expected, so I think it is best to not add a readb()
3295 * without first all the MMIO ATA cards/mobos.
3296 * Or maybe I'm just being paranoid.
3301 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3302 * @qc: Info associated with this ATA transaction.
3305 * spin_lock_irqsave(host_set lock)
3308 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3310 struct ata_port *ap = qc->ap;
3311 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3314 /* load PRD table addr. */
3315 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3317 /* specify data direction, triple-check start bit is clear */
3318 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3319 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3321 dmactl |= ATA_DMA_WR;
3322 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3324 /* issue r/w command */
3325 ap->ops->exec_command(ap, &qc->tf);
3329 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3330 * @qc: Info associated with this ATA transaction.
3333 * spin_lock_irqsave(host_set lock)
3336 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3338 struct ata_port *ap = qc->ap;
3341 /* start host DMA transaction */
3342 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3343 outb(dmactl | ATA_DMA_START,
3344 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3349 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3350 * @qc: Info associated with this ATA transaction.
3352 * Writes the ATA_DMA_START flag to the DMA command register.
3354 * May be used as the bmdma_start() entry in ata_port_operations.
3357 * spin_lock_irqsave(host_set lock)
3359 void ata_bmdma_start(struct ata_queued_cmd *qc)
3361 if (qc->ap->flags & ATA_FLAG_MMIO)
3362 ata_bmdma_start_mmio(qc);
3364 ata_bmdma_start_pio(qc);
3369 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3370 * @qc: Info associated with this ATA transaction.
3372 * Writes address of PRD table to device's PRD Table Address
3373 * register, sets the DMA control register, and calls
3374 * ops->exec_command() to start the transfer.
3376 * May be used as the bmdma_setup() entry in ata_port_operations.
3379 * spin_lock_irqsave(host_set lock)
3381 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3383 if (qc->ap->flags & ATA_FLAG_MMIO)
3384 ata_bmdma_setup_mmio(qc);
3386 ata_bmdma_setup_pio(qc);
3391 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3392 * @ap: Port associated with this ATA transaction.
3394 * Clear interrupt and error flags in DMA status register.
3396 * May be used as the irq_clear() entry in ata_port_operations.
3399 * spin_lock_irqsave(host_set lock)
3402 void ata_bmdma_irq_clear(struct ata_port *ap)
3404 if (ap->flags & ATA_FLAG_MMIO) {
3405 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3406 writeb(readb(mmio), mmio);
3408 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3409 outb(inb(addr), addr);
3416 * ata_bmdma_status - Read PCI IDE BMDMA status
3417 * @ap: Port associated with this ATA transaction.
3419 * Read and return BMDMA status register.
3421 * May be used as the bmdma_status() entry in ata_port_operations.
3424 * spin_lock_irqsave(host_set lock)
3427 u8 ata_bmdma_status(struct ata_port *ap)
3430 if (ap->flags & ATA_FLAG_MMIO) {
3431 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3432 host_stat = readb(mmio + ATA_DMA_STATUS);
3434 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3440 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3441 * @ap: Port associated with this ATA transaction.
3443 * Clears the ATA_DMA_START flag in the dma control register
3445 * May be used as the bmdma_stop() entry in ata_port_operations.
3448 * spin_lock_irqsave(host_set lock)
3451 void ata_bmdma_stop(struct ata_port *ap)
3453 if (ap->flags & ATA_FLAG_MMIO) {
3454 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3456 /* clear start/stop bit */
3457 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3458 mmio + ATA_DMA_CMD);