2d2044d3d1c9ce666005e22ff5dd5117417116fe
[linux-3.10.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define IPW2100_RX_DEBUG        /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 0;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __func__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct work_struct *work);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_delayed_work(priv->workqueue, &priv->reset_work,
684                                            0);
685
686                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
687                         priv->reset_backoff++;
688
689                 wake_up_interruptible(&priv->wait_command_queue);
690         } else
691                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
692                                priv->net_dev->name);
693
694 }
695
696 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
697 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
698                                    struct host_command *cmd)
699 {
700         struct list_head *element;
701         struct ipw2100_tx_packet *packet;
702         unsigned long flags;
703         int err = 0;
704
705         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
706                      command_types[cmd->host_command], cmd->host_command,
707                      cmd->host_command_length);
708         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
709                    cmd->host_command_length);
710
711         spin_lock_irqsave(&priv->low_lock, flags);
712
713         if (priv->fatal_error) {
714                 IPW_DEBUG_INFO
715                     ("Attempt to send command while hardware in fatal error condition.\n");
716                 err = -EIO;
717                 goto fail_unlock;
718         }
719
720         if (!(priv->status & STATUS_RUNNING)) {
721                 IPW_DEBUG_INFO
722                     ("Attempt to send command while hardware is not running.\n");
723                 err = -EIO;
724                 goto fail_unlock;
725         }
726
727         if (priv->status & STATUS_CMD_ACTIVE) {
728                 IPW_DEBUG_INFO
729                     ("Attempt to send command while another command is pending.\n");
730                 err = -EBUSY;
731                 goto fail_unlock;
732         }
733
734         if (list_empty(&priv->msg_free_list)) {
735                 IPW_DEBUG_INFO("no available msg buffers\n");
736                 goto fail_unlock;
737         }
738
739         priv->status |= STATUS_CMD_ACTIVE;
740         priv->messages_sent++;
741
742         element = priv->msg_free_list.next;
743
744         packet = list_entry(element, struct ipw2100_tx_packet, list);
745         packet->jiffy_start = jiffies;
746
747         /* initialize the firmware command packet */
748         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
749         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
750         packet->info.c_struct.cmd->host_command_len_reg =
751             cmd->host_command_length;
752         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753
754         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
755                cmd->host_command_parameters,
756                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757
758         list_del(element);
759         DEC_STAT(&priv->msg_free_stat);
760
761         list_add_tail(element, &priv->msg_pend_list);
762         INC_STAT(&priv->msg_pend_stat);
763
764         ipw2100_tx_send_commands(priv);
765         ipw2100_tx_send_data(priv);
766
767         spin_unlock_irqrestore(&priv->low_lock, flags);
768
769         /*
770          * We must wait for this command to complete before another
771          * command can be sent...  but if we wait more than 3 seconds
772          * then there is a problem.
773          */
774
775         err =
776             wait_event_interruptible_timeout(priv->wait_command_queue,
777                                              !(priv->
778                                                status & STATUS_CMD_ACTIVE),
779                                              HOST_COMPLETE_TIMEOUT);
780
781         if (err == 0) {
782                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
783                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
784                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
785                 priv->status &= ~STATUS_CMD_ACTIVE;
786                 schedule_reset(priv);
787                 return -EIO;
788         }
789
790         if (priv->fatal_error) {
791                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
792                        priv->net_dev->name);
793                 return -EIO;
794         }
795
796         /* !!!!! HACK TEST !!!!!
797          * When lots of debug trace statements are enabled, the driver
798          * doesn't seem to have as many firmware restart cycles...
799          *
800          * As a test, we're sticking in a 1/100s delay here */
801         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802
803         return 0;
804
805       fail_unlock:
806         spin_unlock_irqrestore(&priv->low_lock, flags);
807
808         return err;
809 }
810
811 /*
812  * Verify the values and data access of the hardware
813  * No locks needed or used.  No functions called.
814  */
815 static int ipw2100_verify(struct ipw2100_priv *priv)
816 {
817         u32 data1, data2;
818         u32 address;
819
820         u32 val1 = 0x76543210;
821         u32 val2 = 0xFEDCBA98;
822
823         /* Domain 0 check - all values should be DOA_DEBUG */
824         for (address = IPW_REG_DOA_DEBUG_AREA_START;
825              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
826                 read_register(priv->net_dev, address, &data1);
827                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
828                         return -EIO;
829         }
830
831         /* Domain 1 check - use arbitrary read/write compare  */
832         for (address = 0; address < 5; address++) {
833                 /* The memory area is not used now */
834                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835                                val1);
836                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837                                val2);
838                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839                               &data1);
840                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841                               &data2);
842                 if (val1 == data1 && val2 == data2)
843                         return 0;
844         }
845
846         return -EIO;
847 }
848
849 /*
850  *
851  * Loop until the CARD_DISABLED bit is the same value as the
852  * supplied parameter
853  *
854  * TODO: See if it would be more efficient to do a wait/wake
855  *       cycle and have the completion event trigger the wakeup
856  *
857  */
858 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
859 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 {
861         int i;
862         u32 card_state;
863         u32 len = sizeof(card_state);
864         int err;
865
866         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
867                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
868                                           &card_state, &len);
869                 if (err) {
870                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
871                                        "failed.\n");
872                         return 0;
873                 }
874
875                 /* We'll break out if either the HW state says it is
876                  * in the state we want, or if HOST_COMPLETE command
877                  * finishes */
878                 if ((card_state == state) ||
879                     ((priv->status & STATUS_ENABLED) ?
880                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
881                         if (state == IPW_HW_STATE_ENABLED)
882                                 priv->status |= STATUS_ENABLED;
883                         else
884                                 priv->status &= ~STATUS_ENABLED;
885
886                         return 0;
887                 }
888
889                 udelay(50);
890         }
891
892         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
893                        state ? "DISABLED" : "ENABLED");
894         return -EIO;
895 }
896
897 /*********************************************************************
898     Procedure   :   sw_reset_and_clock
899     Purpose     :   Asserts s/w reset, asserts clock initialization
900                     and waits for clock stabilization
901  ********************************************************************/
902 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 {
904         int i;
905         u32 r;
906
907         // assert s/w reset
908         write_register(priv->net_dev, IPW_REG_RESET_REG,
909                        IPW_AUX_HOST_RESET_REG_SW_RESET);
910
911         // wait for clock stabilization
912         for (i = 0; i < 1000; i++) {
913                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914
915                 // check clock ready bit
916                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
917                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
918                         break;
919         }
920
921         if (i == 1000)
922                 return -EIO;    // TODO: better error value
923
924         /* set "initialization complete" bit to move adapter to
925          * D0 state */
926         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
927                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928
929         /* wait for clock stabilization */
930         for (i = 0; i < 10000; i++) {
931                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932
933                 /* check clock ready bit */
934                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
935                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
936                         break;
937         }
938
939         if (i == 10000)
940                 return -EIO;    /* TODO: better error value */
941
942         /* set D0 standby bit */
943         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
944         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946
947         return 0;
948 }
949
950 /*********************************************************************
951     Procedure   :   ipw2100_download_firmware
952     Purpose     :   Initiaze adapter after power on.
953                     The sequence is:
954                     1. assert s/w reset first!
955                     2. awake clocks & wait for clock stabilization
956                     3. hold ARC (don't ask me why...)
957                     4. load Dino ucode and reset/clock init again
958                     5. zero-out shared mem
959                     6. download f/w
960  *******************************************************************/
961 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 {
963         u32 address;
964         int err;
965
966 #ifndef CONFIG_PM
967         /* Fetch the firmware and microcode */
968         struct ipw2100_fw ipw2100_firmware;
969 #endif
970
971         if (priv->fatal_error) {
972                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
973                                 "fatal error %d.  Interface must be brought down.\n",
974                                 priv->net_dev->name, priv->fatal_error);
975                 return -EINVAL;
976         }
977 #ifdef CONFIG_PM
978         if (!ipw2100_firmware.version) {
979                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980                 if (err) {
981                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
982                                         priv->net_dev->name, err);
983                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
984                         goto fail;
985                 }
986         }
987 #else
988         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989         if (err) {
990                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
991                                 priv->net_dev->name, err);
992                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
993                 goto fail;
994         }
995 #endif
996         priv->firmware_version = ipw2100_firmware.version;
997
998         /* s/w reset and clock stabilization */
999         err = sw_reset_and_clock(priv);
1000         if (err) {
1001                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1002                                 priv->net_dev->name, err);
1003                 goto fail;
1004         }
1005
1006         err = ipw2100_verify(priv);
1007         if (err) {
1008                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1009                                 priv->net_dev->name, err);
1010                 goto fail;
1011         }
1012
1013         /* Hold ARC */
1014         write_nic_dword(priv->net_dev,
1015                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016
1017         /* allow ARC to run */
1018         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019
1020         /* load microcode */
1021         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022         if (err) {
1023                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1024                        priv->net_dev->name, err);
1025                 goto fail;
1026         }
1027
1028         /* release ARC */
1029         write_nic_dword(priv->net_dev,
1030                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031
1032         /* s/w reset and clock stabilization (again!!!) */
1033         err = sw_reset_and_clock(priv);
1034         if (err) {
1035                 printk(KERN_ERR DRV_NAME
1036                        ": %s: sw_reset_and_clock failed: %d\n",
1037                        priv->net_dev->name, err);
1038                 goto fail;
1039         }
1040
1041         /* load f/w */
1042         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043         if (err) {
1044                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1045                                 priv->net_dev->name, err);
1046                 goto fail;
1047         }
1048 #ifndef CONFIG_PM
1049         /*
1050          * When the .resume method of the driver is called, the other
1051          * part of the system, i.e. the ide driver could still stay in
1052          * the suspend stage. This prevents us from loading the firmware
1053          * from the disk.  --YZ
1054          */
1055
1056         /* free any storage allocated for firmware image */
1057         ipw2100_release_firmware(priv, &ipw2100_firmware);
1058 #endif
1059
1060         /* zero out Domain 1 area indirectly (Si requirement) */
1061         for (address = IPW_HOST_FW_SHARED_AREA0;
1062              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1063                 write_nic_dword(priv->net_dev, address, 0);
1064         for (address = IPW_HOST_FW_SHARED_AREA1;
1065              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1066                 write_nic_dword(priv->net_dev, address, 0);
1067         for (address = IPW_HOST_FW_SHARED_AREA2;
1068              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1069                 write_nic_dword(priv->net_dev, address, 0);
1070         for (address = IPW_HOST_FW_SHARED_AREA3;
1071              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1072                 write_nic_dword(priv->net_dev, address, 0);
1073         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1074              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1075                 write_nic_dword(priv->net_dev, address, 0);
1076
1077         return 0;
1078
1079       fail:
1080         ipw2100_release_firmware(priv, &ipw2100_firmware);
1081         return err;
1082 }
1083
1084 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 {
1086         if (priv->status & STATUS_INT_ENABLED)
1087                 return;
1088         priv->status |= STATUS_INT_ENABLED;
1089         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090 }
1091
1092 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 {
1094         if (!(priv->status & STATUS_INT_ENABLED))
1095                 return;
1096         priv->status &= ~STATUS_INT_ENABLED;
1097         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098 }
1099
1100 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 {
1102         struct ipw2100_ordinals *ord = &priv->ordinals;
1103
1104         IPW_DEBUG_INFO("enter\n");
1105
1106         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1107                       &ord->table1_addr);
1108
1109         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1110                       &ord->table2_addr);
1111
1112         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1113         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114
1115         ord->table2_size &= 0x0000FFFF;
1116
1117         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1118         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1119         IPW_DEBUG_INFO("exit\n");
1120 }
1121
1122 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 {
1124         u32 reg = 0;
1125         /*
1126          * Set GPIO 3 writable by FW; GPIO 1 writable
1127          * by driver and enable clock
1128          */
1129         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1130                IPW_BIT_GPIO_LED_OFF);
1131         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132 }
1133
1134 static int rf_kill_active(struct ipw2100_priv *priv)
1135 {
1136 #define MAX_RF_KILL_CHECKS 5
1137 #define RF_KILL_CHECK_DELAY 40
1138
1139         unsigned short value = 0;
1140         u32 reg = 0;
1141         int i;
1142
1143         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1144                 priv->status &= ~STATUS_RF_KILL_HW;
1145                 return 0;
1146         }
1147
1148         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1149                 udelay(RF_KILL_CHECK_DELAY);
1150                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1151                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152         }
1153
1154         if (value == 0)
1155                 priv->status |= STATUS_RF_KILL_HW;
1156         else
1157                 priv->status &= ~STATUS_RF_KILL_HW;
1158
1159         return (value == 0);
1160 }
1161
1162 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 {
1164         u32 addr, len;
1165         u32 val;
1166
1167         /*
1168          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169          */
1170         len = sizeof(addr);
1171         if (ipw2100_get_ordinal
1172             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1173                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1174                                __LINE__);
1175                 return -EIO;
1176         }
1177
1178         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179
1180         /*
1181          * EEPROM version is the byte at offset 0xfd in firmware
1182          * We read 4 bytes, then shift out the byte we actually want */
1183         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1184         priv->eeprom_version = (val >> 24) & 0xFF;
1185         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186
1187         /*
1188          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189          *
1190          *  notice that the EEPROM bit is reverse polarity, i.e.
1191          *     bit = 0  signifies HW RF kill switch is supported
1192          *     bit = 1  signifies HW RF kill switch is NOT supported
1193          */
1194         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1195         if (!((val >> 24) & 0x01))
1196                 priv->hw_features |= HW_FEATURE_RFKILL;
1197
1198         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1199                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200
1201         return 0;
1202 }
1203
1204 /*
1205  * Start firmware execution after power on and intialization
1206  * The sequence is:
1207  *  1. Release ARC
1208  *  2. Wait for f/w initialization completes;
1209  */
1210 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 {
1212         int i;
1213         u32 inta, inta_mask, gpio;
1214
1215         IPW_DEBUG_INFO("enter\n");
1216
1217         if (priv->status & STATUS_RUNNING)
1218                 return 0;
1219
1220         /*
1221          * Initialize the hw - drive adapter to DO state by setting
1222          * init_done bit. Wait for clk_ready bit and Download
1223          * fw & dino ucode
1224          */
1225         if (ipw2100_download_firmware(priv)) {
1226                 printk(KERN_ERR DRV_NAME
1227                        ": %s: Failed to power on the adapter.\n",
1228                        priv->net_dev->name);
1229                 return -EIO;
1230         }
1231
1232         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1233          * in the firmware RBD and TBD ring queue */
1234         ipw2100_queues_initialize(priv);
1235
1236         ipw2100_hw_set_gpio(priv);
1237
1238         /* TODO -- Look at disabling interrupts here to make sure none
1239          * get fired during FW initialization */
1240
1241         /* Release ARC - clear reset bit */
1242         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243
1244         /* wait for f/w intialization complete */
1245         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1246         i = 5000;
1247         do {
1248                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1249                 /* Todo... wait for sync command ... */
1250
1251                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252
1253                 /* check "init done" bit */
1254                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1255                         /* reset "init done" bit */
1256                         write_register(priv->net_dev, IPW_REG_INTA,
1257                                        IPW2100_INTA_FW_INIT_DONE);
1258                         break;
1259                 }
1260
1261                 /* check error conditions : we check these after the firmware
1262                  * check so that if there is an error, the interrupt handler
1263                  * will see it and the adapter will be reset */
1264                 if (inta &
1265                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1266                         /* clear error conditions */
1267                         write_register(priv->net_dev, IPW_REG_INTA,
1268                                        IPW2100_INTA_FATAL_ERROR |
1269                                        IPW2100_INTA_PARITY_ERROR);
1270                 }
1271         } while (--i);
1272
1273         /* Clear out any pending INTAs since we aren't supposed to have
1274          * interrupts enabled at this point... */
1275         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1276         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1277         inta &= IPW_INTERRUPT_MASK;
1278         /* Clear out any pending interrupts */
1279         if (inta & inta_mask)
1280                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281
1282         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1283                      i ? "SUCCESS" : "FAILED");
1284
1285         if (!i) {
1286                 printk(KERN_WARNING DRV_NAME
1287                        ": %s: Firmware did not initialize.\n",
1288                        priv->net_dev->name);
1289                 return -EIO;
1290         }
1291
1292         /* allow firmware to write to GPIO1 & GPIO3 */
1293         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294
1295         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296
1297         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298
1299         /* Ready to receive commands */
1300         priv->status |= STATUS_RUNNING;
1301
1302         /* The adapter has been reset; we are not associated */
1303         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304
1305         IPW_DEBUG_INFO("exit\n");
1306
1307         return 0;
1308 }
1309
1310 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 {
1312         if (!priv->fatal_error)
1313                 return;
1314
1315         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1316         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1317         priv->fatal_error = 0;
1318 }
1319
1320 /* NOTE: Our interrupt is disabled when this method is called */
1321 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 {
1323         u32 reg;
1324         int i;
1325
1326         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327
1328         ipw2100_hw_set_gpio(priv);
1329
1330         /* Step 1. Stop Master Assert */
1331         write_register(priv->net_dev, IPW_REG_RESET_REG,
1332                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333
1334         /* Step 2. Wait for stop Master Assert
1335          *         (not more then 50us, otherwise ret error */
1336         i = 5;
1337         do {
1338                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1339                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340
1341                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1342                         break;
1343         } while (--i);
1344
1345         priv->status &= ~STATUS_RESET_PENDING;
1346
1347         if (!i) {
1348                 IPW_DEBUG_INFO
1349                     ("exit - waited too long for master assert stop\n");
1350                 return -EIO;
1351         }
1352
1353         write_register(priv->net_dev, IPW_REG_RESET_REG,
1354                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1355
1356         /* Reset any fatal_error conditions */
1357         ipw2100_reset_fatalerror(priv);
1358
1359         /* At this point, the adapter is now stopped and disabled */
1360         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1361                           STATUS_ASSOCIATED | STATUS_ENABLED);
1362
1363         return 0;
1364 }
1365
1366 /*
1367  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368  *
1369  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370  *
1371  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1372  * if STATUS_ASSN_LOST is sent.
1373  */
1374 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375 {
1376
1377 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378
1379         struct host_command cmd = {
1380                 .host_command = CARD_DISABLE_PHY_OFF,
1381                 .host_command_sequence = 0,
1382                 .host_command_length = 0,
1383         };
1384         int err, i;
1385         u32 val1, val2;
1386
1387         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388
1389         /* Turn off the radio */
1390         err = ipw2100_hw_send_command(priv, &cmd);
1391         if (err)
1392                 return err;
1393
1394         for (i = 0; i < 2500; i++) {
1395                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1396                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397
1398                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1399                     (val2 & IPW2100_COMMAND_PHY_OFF))
1400                         return 0;
1401
1402                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403         }
1404
1405         return -EIO;
1406 }
1407
1408 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 {
1410         struct host_command cmd = {
1411                 .host_command = HOST_COMPLETE,
1412                 .host_command_sequence = 0,
1413                 .host_command_length = 0
1414         };
1415         int err = 0;
1416
1417         IPW_DEBUG_HC("HOST_COMPLETE\n");
1418
1419         if (priv->status & STATUS_ENABLED)
1420                 return 0;
1421
1422         mutex_lock(&priv->adapter_mutex);
1423
1424         if (rf_kill_active(priv)) {
1425                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1426                 goto fail_up;
1427         }
1428
1429         err = ipw2100_hw_send_command(priv, &cmd);
1430         if (err) {
1431                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1432                 goto fail_up;
1433         }
1434
1435         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436         if (err) {
1437                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1438                                priv->net_dev->name);
1439                 goto fail_up;
1440         }
1441
1442         if (priv->stop_hang_check) {
1443                 priv->stop_hang_check = 0;
1444                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445         }
1446
1447       fail_up:
1448         mutex_unlock(&priv->adapter_mutex);
1449         return err;
1450 }
1451
1452 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 {
1454 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455
1456         struct host_command cmd = {
1457                 .host_command = HOST_PRE_POWER_DOWN,
1458                 .host_command_sequence = 0,
1459                 .host_command_length = 0,
1460         };
1461         int err, i;
1462         u32 reg;
1463
1464         if (!(priv->status & STATUS_RUNNING))
1465                 return 0;
1466
1467         priv->status |= STATUS_STOPPING;
1468
1469         /* We can only shut down the card if the firmware is operational.  So,
1470          * if we haven't reset since a fatal_error, then we can not send the
1471          * shutdown commands. */
1472         if (!priv->fatal_error) {
1473                 /* First, make sure the adapter is enabled so that the PHY_OFF
1474                  * command can shut it down */
1475                 ipw2100_enable_adapter(priv);
1476
1477                 err = ipw2100_hw_phy_off(priv);
1478                 if (err)
1479                         printk(KERN_WARNING DRV_NAME
1480                                ": Error disabling radio %d\n", err);
1481
1482                 /*
1483                  * If in D0-standby mode going directly to D3 may cause a
1484                  * PCI bus violation.  Therefore we must change out of the D0
1485                  * state.
1486                  *
1487                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1488                  * hardware from going into standby mode and will transition
1489                  * out of D0-standby if it is already in that state.
1490                  *
1491                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1492                  * driver upon completion.  Once received, the driver can
1493                  * proceed to the D3 state.
1494                  *
1495                  * Prepare for power down command to fw.  This command would
1496                  * take HW out of D0-standby and prepare it for D3 state.
1497                  *
1498                  * Currently FW does not support event notification for this
1499                  * event. Therefore, skip waiting for it.  Just wait a fixed
1500                  * 100ms
1501                  */
1502                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503
1504                 err = ipw2100_hw_send_command(priv, &cmd);
1505                 if (err)
1506                         printk(KERN_WARNING DRV_NAME ": "
1507                                "%s: Power down command failed: Error %d\n",
1508                                priv->net_dev->name, err);
1509                 else
1510                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511         }
1512
1513         priv->status &= ~STATUS_ENABLED;
1514
1515         /*
1516          * Set GPIO 3 writable by FW; GPIO 1 writable
1517          * by driver and enable clock
1518          */
1519         ipw2100_hw_set_gpio(priv);
1520
1521         /*
1522          * Power down adapter.  Sequence:
1523          * 1. Stop master assert (RESET_REG[9]=1)
1524          * 2. Wait for stop master (RESET_REG[8]==1)
1525          * 3. S/w reset assert (RESET_REG[7] = 1)
1526          */
1527
1528         /* Stop master assert */
1529         write_register(priv->net_dev, IPW_REG_RESET_REG,
1530                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531
1532         /* wait stop master not more than 50 usec.
1533          * Otherwise return error. */
1534         for (i = 5; i > 0; i--) {
1535                 udelay(10);
1536
1537                 /* Check master stop bit */
1538                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539
1540                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1541                         break;
1542         }
1543
1544         if (i == 0)
1545                 printk(KERN_WARNING DRV_NAME
1546                        ": %s: Could now power down adapter.\n",
1547                        priv->net_dev->name);
1548
1549         /* assert s/w reset */
1550         write_register(priv->net_dev, IPW_REG_RESET_REG,
1551                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1552
1553         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554
1555         return 0;
1556 }
1557
1558 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 {
1560         struct host_command cmd = {
1561                 .host_command = CARD_DISABLE,
1562                 .host_command_sequence = 0,
1563                 .host_command_length = 0
1564         };
1565         int err = 0;
1566
1567         IPW_DEBUG_HC("CARD_DISABLE\n");
1568
1569         if (!(priv->status & STATUS_ENABLED))
1570                 return 0;
1571
1572         /* Make sure we clear the associated state */
1573         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574
1575         if (!priv->stop_hang_check) {
1576                 priv->stop_hang_check = 1;
1577                 cancel_delayed_work(&priv->hang_check);
1578         }
1579
1580         mutex_lock(&priv->adapter_mutex);
1581
1582         err = ipw2100_hw_send_command(priv, &cmd);
1583         if (err) {
1584                 printk(KERN_WARNING DRV_NAME
1585                        ": exit - failed to send CARD_DISABLE command\n");
1586                 goto fail_up;
1587         }
1588
1589         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590         if (err) {
1591                 printk(KERN_WARNING DRV_NAME
1592                        ": exit - card failed to change to DISABLED\n");
1593                 goto fail_up;
1594         }
1595
1596         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597
1598       fail_up:
1599         mutex_unlock(&priv->adapter_mutex);
1600         return err;
1601 }
1602
1603 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 {
1605         struct host_command cmd = {
1606                 .host_command = SET_SCAN_OPTIONS,
1607                 .host_command_sequence = 0,
1608                 .host_command_length = 8
1609         };
1610         int err;
1611
1612         IPW_DEBUG_INFO("enter\n");
1613
1614         IPW_DEBUG_SCAN("setting scan options\n");
1615
1616         cmd.host_command_parameters[0] = 0;
1617
1618         if (!(priv->config & CFG_ASSOCIATE))
1619                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1620         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1621                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1622         if (priv->config & CFG_PASSIVE_SCAN)
1623                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624
1625         cmd.host_command_parameters[1] = priv->channel_mask;
1626
1627         err = ipw2100_hw_send_command(priv, &cmd);
1628
1629         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1630                      cmd.host_command_parameters[0]);
1631
1632         return err;
1633 }
1634
1635 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 {
1637         struct host_command cmd = {
1638                 .host_command = BROADCAST_SCAN,
1639                 .host_command_sequence = 0,
1640                 .host_command_length = 4
1641         };
1642         int err;
1643
1644         IPW_DEBUG_HC("START_SCAN\n");
1645
1646         cmd.host_command_parameters[0] = 0;
1647
1648         /* No scanning if in monitor mode */
1649         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1650                 return 1;
1651
1652         if (priv->status & STATUS_SCANNING) {
1653                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1654                 return 0;
1655         }
1656
1657         IPW_DEBUG_INFO("enter\n");
1658
1659         /* Not clearing here; doing so makes iwlist always return nothing...
1660          *
1661          * We should modify the table logic to use aging tables vs. clearing
1662          * the table on each scan start.
1663          */
1664         IPW_DEBUG_SCAN("starting scan\n");
1665
1666         priv->status |= STATUS_SCANNING;
1667         err = ipw2100_hw_send_command(priv, &cmd);
1668         if (err)
1669                 priv->status &= ~STATUS_SCANNING;
1670
1671         IPW_DEBUG_INFO("exit\n");
1672
1673         return err;
1674 }
1675
1676 static const struct ieee80211_geo ipw_geos[] = {
1677         {                       /* Restricted */
1678          "---",
1679          .bg_channels = 14,
1680          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1681                 {2427, 4}, {2432, 5}, {2437, 6},
1682                 {2442, 7}, {2447, 8}, {2452, 9},
1683                 {2457, 10}, {2462, 11}, {2467, 12},
1684                 {2472, 13}, {2484, 14}},
1685          },
1686 };
1687
1688 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 {
1690         unsigned long flags;
1691         int rc = 0;
1692         u32 lock;
1693         u32 ord_len = sizeof(lock);
1694
1695         /* Quite if manually disabled. */
1696         if (priv->status & STATUS_RF_KILL_SW) {
1697                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1698                                "switch\n", priv->net_dev->name);
1699                 return 0;
1700         }
1701
1702         /* the ipw2100 hardware really doesn't want power management delays
1703          * longer than 175usec
1704          */
1705         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1706
1707         /* If the interrupt is enabled, turn it off... */
1708         spin_lock_irqsave(&priv->low_lock, flags);
1709         ipw2100_disable_interrupts(priv);
1710
1711         /* Reset any fatal_error conditions */
1712         ipw2100_reset_fatalerror(priv);
1713         spin_unlock_irqrestore(&priv->low_lock, flags);
1714
1715         if (priv->status & STATUS_POWERED ||
1716             (priv->status & STATUS_RESET_PENDING)) {
1717                 /* Power cycle the card ... */
1718                 if (ipw2100_power_cycle_adapter(priv)) {
1719                         printk(KERN_WARNING DRV_NAME
1720                                ": %s: Could not cycle adapter.\n",
1721                                priv->net_dev->name);
1722                         rc = 1;
1723                         goto exit;
1724                 }
1725         } else
1726                 priv->status |= STATUS_POWERED;
1727
1728         /* Load the firmware, start the clocks, etc. */
1729         if (ipw2100_start_adapter(priv)) {
1730                 printk(KERN_ERR DRV_NAME
1731                        ": %s: Failed to start the firmware.\n",
1732                        priv->net_dev->name);
1733                 rc = 1;
1734                 goto exit;
1735         }
1736
1737         ipw2100_initialize_ordinals(priv);
1738
1739         /* Determine capabilities of this particular HW configuration */
1740         if (ipw2100_get_hw_features(priv)) {
1741                 printk(KERN_ERR DRV_NAME
1742                        ": %s: Failed to determine HW features.\n",
1743                        priv->net_dev->name);
1744                 rc = 1;
1745                 goto exit;
1746         }
1747
1748         /* Initialize the geo */
1749         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1750                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1751                 return 0;
1752         }
1753         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1754
1755         lock = LOCK_NONE;
1756         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1757                 printk(KERN_ERR DRV_NAME
1758                        ": %s: Failed to clear ordinal lock.\n",
1759                        priv->net_dev->name);
1760                 rc = 1;
1761                 goto exit;
1762         }
1763
1764         priv->status &= ~STATUS_SCANNING;
1765
1766         if (rf_kill_active(priv)) {
1767                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1768                        priv->net_dev->name);
1769
1770                 if (priv->stop_rf_kill) {
1771                         priv->stop_rf_kill = 0;
1772                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1773                                            round_jiffies_relative(HZ));
1774                 }
1775
1776                 deferred = 1;
1777         }
1778
1779         /* Turn on the interrupt so that commands can be processed */
1780         ipw2100_enable_interrupts(priv);
1781
1782         /* Send all of the commands that must be sent prior to
1783          * HOST_COMPLETE */
1784         if (ipw2100_adapter_setup(priv)) {
1785                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1786                        priv->net_dev->name);
1787                 rc = 1;
1788                 goto exit;
1789         }
1790
1791         if (!deferred) {
1792                 /* Enable the adapter - sends HOST_COMPLETE */
1793                 if (ipw2100_enable_adapter(priv)) {
1794                         printk(KERN_ERR DRV_NAME ": "
1795                                "%s: failed in call to enable adapter.\n",
1796                                priv->net_dev->name);
1797                         ipw2100_hw_stop_adapter(priv);
1798                         rc = 1;
1799                         goto exit;
1800                 }
1801
1802                 /* Start a scan . . . */
1803                 ipw2100_set_scan_options(priv);
1804                 ipw2100_start_scan(priv);
1805         }
1806
1807       exit:
1808         return rc;
1809 }
1810
1811 /* Called by register_netdev() */
1812 static int ipw2100_net_init(struct net_device *dev)
1813 {
1814         struct ipw2100_priv *priv = ieee80211_priv(dev);
1815         return ipw2100_up(priv, 1);
1816 }
1817
1818 static void ipw2100_down(struct ipw2100_priv *priv)
1819 {
1820         unsigned long flags;
1821         union iwreq_data wrqu = {
1822                 .ap_addr = {
1823                             .sa_family = ARPHRD_ETHER}
1824         };
1825         int associated = priv->status & STATUS_ASSOCIATED;
1826
1827         /* Kill the RF switch timer */
1828         if (!priv->stop_rf_kill) {
1829                 priv->stop_rf_kill = 1;
1830                 cancel_delayed_work(&priv->rf_kill);
1831         }
1832
1833         /* Kill the firmare hang check timer */
1834         if (!priv->stop_hang_check) {
1835                 priv->stop_hang_check = 1;
1836                 cancel_delayed_work(&priv->hang_check);
1837         }
1838
1839         /* Kill any pending resets */
1840         if (priv->status & STATUS_RESET_PENDING)
1841                 cancel_delayed_work(&priv->reset_work);
1842
1843         /* Make sure the interrupt is on so that FW commands will be
1844          * processed correctly */
1845         spin_lock_irqsave(&priv->low_lock, flags);
1846         ipw2100_enable_interrupts(priv);
1847         spin_unlock_irqrestore(&priv->low_lock, flags);
1848
1849         if (ipw2100_hw_stop_adapter(priv))
1850                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1851                        priv->net_dev->name);
1852
1853         /* Do not disable the interrupt until _after_ we disable
1854          * the adaptor.  Otherwise the CARD_DISABLE command will never
1855          * be ack'd by the firmware */
1856         spin_lock_irqsave(&priv->low_lock, flags);
1857         ipw2100_disable_interrupts(priv);
1858         spin_unlock_irqrestore(&priv->low_lock, flags);
1859
1860         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1861                         PM_QOS_DEFAULT_VALUE);
1862
1863         /* We have to signal any supplicant if we are disassociating */
1864         if (associated)
1865                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1866
1867         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1868         netif_carrier_off(priv->net_dev);
1869         netif_stop_queue(priv->net_dev);
1870 }
1871
1872 static void ipw2100_reset_adapter(struct work_struct *work)
1873 {
1874         struct ipw2100_priv *priv =
1875                 container_of(work, struct ipw2100_priv, reset_work.work);
1876         unsigned long flags;
1877         union iwreq_data wrqu = {
1878                 .ap_addr = {
1879                             .sa_family = ARPHRD_ETHER}
1880         };
1881         int associated = priv->status & STATUS_ASSOCIATED;
1882
1883         spin_lock_irqsave(&priv->low_lock, flags);
1884         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1885         priv->resets++;
1886         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1887         priv->status |= STATUS_SECURITY_UPDATED;
1888
1889         /* Force a power cycle even if interface hasn't been opened
1890          * yet */
1891         cancel_delayed_work(&priv->reset_work);
1892         priv->status |= STATUS_RESET_PENDING;
1893         spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895         mutex_lock(&priv->action_mutex);
1896         /* stop timed checks so that they don't interfere with reset */
1897         priv->stop_hang_check = 1;
1898         cancel_delayed_work(&priv->hang_check);
1899
1900         /* We have to signal any supplicant if we are disassociating */
1901         if (associated)
1902                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1903
1904         ipw2100_up(priv, 0);
1905         mutex_unlock(&priv->action_mutex);
1906
1907 }
1908
1909 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1910 {
1911
1912 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1913         int ret, len, essid_len;
1914         char essid[IW_ESSID_MAX_SIZE];
1915         u32 txrate;
1916         u32 chan;
1917         char *txratename;
1918         u8 bssid[ETH_ALEN];
1919         DECLARE_SSID_BUF(ssid);
1920
1921         /*
1922          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1923          *      an actual MAC of the AP. Seems like FW sets this
1924          *      address too late. Read it later and expose through
1925          *      /proc or schedule a later task to query and update
1926          */
1927
1928         essid_len = IW_ESSID_MAX_SIZE;
1929         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1930                                   essid, &essid_len);
1931         if (ret) {
1932                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1933                                __LINE__);
1934                 return;
1935         }
1936
1937         len = sizeof(u32);
1938         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1939         if (ret) {
1940                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1941                                __LINE__);
1942                 return;
1943         }
1944
1945         len = sizeof(u32);
1946         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1947         if (ret) {
1948                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1949                                __LINE__);
1950                 return;
1951         }
1952         len = ETH_ALEN;
1953         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1954         if (ret) {
1955                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1956                                __LINE__);
1957                 return;
1958         }
1959         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1960
1961         switch (txrate) {
1962         case TX_RATE_1_MBIT:
1963                 txratename = "1Mbps";
1964                 break;
1965         case TX_RATE_2_MBIT:
1966                 txratename = "2Mbsp";
1967                 break;
1968         case TX_RATE_5_5_MBIT:
1969                 txratename = "5.5Mbps";
1970                 break;
1971         case TX_RATE_11_MBIT:
1972                 txratename = "11Mbps";
1973                 break;
1974         default:
1975                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1976                 txratename = "unknown rate";
1977                 break;
1978         }
1979
1980         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
1981                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
1982                        txratename, chan, bssid);
1983
1984         /* now we copy read ssid into dev */
1985         if (!(priv->config & CFG_STATIC_ESSID)) {
1986                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1987                 memcpy(priv->essid, essid, priv->essid_len);
1988         }
1989         priv->channel = chan;
1990         memcpy(priv->bssid, bssid, ETH_ALEN);
1991
1992         priv->status |= STATUS_ASSOCIATING;
1993         priv->connect_start = get_seconds();
1994
1995         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1996 }
1997
1998 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1999                              int length, int batch_mode)
2000 {
2001         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2002         struct host_command cmd = {
2003                 .host_command = SSID,
2004                 .host_command_sequence = 0,
2005                 .host_command_length = ssid_len
2006         };
2007         int err;
2008         DECLARE_SSID_BUF(ssid);
2009
2010         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2011
2012         if (ssid_len)
2013                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2014
2015         if (!batch_mode) {
2016                 err = ipw2100_disable_adapter(priv);
2017                 if (err)
2018                         return err;
2019         }
2020
2021         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2022          * disable auto association -- so we cheat by setting a bogus SSID */
2023         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2024                 int i;
2025                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2026                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2027                         bogus[i] = 0x18 + i;
2028                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2029         }
2030
2031         /* NOTE:  We always send the SSID command even if the provided ESSID is
2032          * the same as what we currently think is set. */
2033
2034         err = ipw2100_hw_send_command(priv, &cmd);
2035         if (!err) {
2036                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2037                 memcpy(priv->essid, essid, ssid_len);
2038                 priv->essid_len = ssid_len;
2039         }
2040
2041         if (!batch_mode) {
2042                 if (ipw2100_enable_adapter(priv))
2043                         err = -EIO;
2044         }
2045
2046         return err;
2047 }
2048
2049 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2050 {
2051         DECLARE_SSID_BUF(ssid);
2052
2053         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2054                   "disassociated: '%s' %pM \n",
2055                   print_ssid(ssid, priv->essid, priv->essid_len),
2056                   priv->bssid);
2057
2058         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2059
2060         if (priv->status & STATUS_STOPPING) {
2061                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2062                 return;
2063         }
2064
2065         memset(priv->bssid, 0, ETH_ALEN);
2066         memset(priv->ieee->bssid, 0, ETH_ALEN);
2067
2068         netif_carrier_off(priv->net_dev);
2069         netif_stop_queue(priv->net_dev);
2070
2071         if (!(priv->status & STATUS_RUNNING))
2072                 return;
2073
2074         if (priv->status & STATUS_SECURITY_UPDATED)
2075                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2076
2077         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2078 }
2079
2080 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2081 {
2082         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2083                        priv->net_dev->name);
2084
2085         /* RF_KILL is now enabled (else we wouldn't be here) */
2086         priv->status |= STATUS_RF_KILL_HW;
2087
2088         /* Make sure the RF Kill check timer is running */
2089         priv->stop_rf_kill = 0;
2090         cancel_delayed_work(&priv->rf_kill);
2091         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2092                            round_jiffies_relative(HZ));
2093 }
2094
2095 static void send_scan_event(void *data)
2096 {
2097         struct ipw2100_priv *priv = data;
2098         union iwreq_data wrqu;
2099
2100         wrqu.data.length = 0;
2101         wrqu.data.flags = 0;
2102         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2103 }
2104
2105 static void ipw2100_scan_event_later(struct work_struct *work)
2106 {
2107         send_scan_event(container_of(work, struct ipw2100_priv,
2108                                         scan_event_later.work));
2109 }
2110
2111 static void ipw2100_scan_event_now(struct work_struct *work)
2112 {
2113         send_scan_event(container_of(work, struct ipw2100_priv,
2114                                         scan_event_now));
2115 }
2116
2117 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2118 {
2119         IPW_DEBUG_SCAN("scan complete\n");
2120         /* Age the scan results... */
2121         priv->ieee->scans++;
2122         priv->status &= ~STATUS_SCANNING;
2123
2124         /* Only userspace-requested scan completion events go out immediately */
2125         if (!priv->user_requested_scan) {
2126                 if (!delayed_work_pending(&priv->scan_event_later))
2127                         queue_delayed_work(priv->workqueue,
2128                                         &priv->scan_event_later,
2129                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2130         } else {
2131                 priv->user_requested_scan = 0;
2132                 cancel_delayed_work(&priv->scan_event_later);
2133                 queue_work(priv->workqueue, &priv->scan_event_now);
2134         }
2135 }
2136
2137 #ifdef CONFIG_IPW2100_DEBUG
2138 #define IPW2100_HANDLER(v, f) { v, f, # v }
2139 struct ipw2100_status_indicator {
2140         int status;
2141         void (*cb) (struct ipw2100_priv * priv, u32 status);
2142         char *name;
2143 };
2144 #else
2145 #define IPW2100_HANDLER(v, f) { v, f }
2146 struct ipw2100_status_indicator {
2147         int status;
2148         void (*cb) (struct ipw2100_priv * priv, u32 status);
2149 };
2150 #endif                          /* CONFIG_IPW2100_DEBUG */
2151
2152 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2153 {
2154         IPW_DEBUG_SCAN("Scanning...\n");
2155         priv->status |= STATUS_SCANNING;
2156 }
2157
2158 static const struct ipw2100_status_indicator status_handlers[] = {
2159         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2160         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2161         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2162         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2163         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2164         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2165         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2166         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2167         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2168         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2169         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2170         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2171         IPW2100_HANDLER(-1, NULL)
2172 };
2173
2174 static void isr_status_change(struct ipw2100_priv *priv, int status)
2175 {
2176         int i;
2177
2178         if (status == IPW_STATE_SCANNING &&
2179             priv->status & STATUS_ASSOCIATED &&
2180             !(priv->status & STATUS_SCANNING)) {
2181                 IPW_DEBUG_INFO("Scan detected while associated, with "
2182                                "no scan request.  Restarting firmware.\n");
2183
2184                 /* Wake up any sleeping jobs */
2185                 schedule_reset(priv);
2186         }
2187
2188         for (i = 0; status_handlers[i].status != -1; i++) {
2189                 if (status == status_handlers[i].status) {
2190                         IPW_DEBUG_NOTIF("Status change: %s\n",
2191                                         status_handlers[i].name);
2192                         if (status_handlers[i].cb)
2193                                 status_handlers[i].cb(priv, status);
2194                         priv->wstats.status = status;
2195                         return;
2196                 }
2197         }
2198
2199         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2200 }
2201
2202 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2203                                     struct ipw2100_cmd_header *cmd)
2204 {
2205 #ifdef CONFIG_IPW2100_DEBUG
2206         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2207                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2208                              command_types[cmd->host_command_reg],
2209                              cmd->host_command_reg);
2210         }
2211 #endif
2212         if (cmd->host_command_reg == HOST_COMPLETE)
2213                 priv->status |= STATUS_ENABLED;
2214
2215         if (cmd->host_command_reg == CARD_DISABLE)
2216                 priv->status &= ~STATUS_ENABLED;
2217
2218         priv->status &= ~STATUS_CMD_ACTIVE;
2219
2220         wake_up_interruptible(&priv->wait_command_queue);
2221 }
2222
2223 #ifdef CONFIG_IPW2100_DEBUG
2224 static const char *frame_types[] = {
2225         "COMMAND_STATUS_VAL",
2226         "STATUS_CHANGE_VAL",
2227         "P80211_DATA_VAL",
2228         "P8023_DATA_VAL",
2229         "HOST_NOTIFICATION_VAL"
2230 };
2231 #endif
2232
2233 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2234                                     struct ipw2100_rx_packet *packet)
2235 {
2236         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2237         if (!packet->skb)
2238                 return -ENOMEM;
2239
2240         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2241         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2242                                           sizeof(struct ipw2100_rx),
2243                                           PCI_DMA_FROMDEVICE);
2244         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2245          *       dma_addr */
2246
2247         return 0;
2248 }
2249
2250 #define SEARCH_ERROR   0xffffffff
2251 #define SEARCH_FAIL    0xfffffffe
2252 #define SEARCH_SUCCESS 0xfffffff0
2253 #define SEARCH_DISCARD 0
2254 #define SEARCH_SNAPSHOT 1
2255
2256 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2257 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2258 {
2259         int i;
2260         if (!priv->snapshot[0])
2261                 return;
2262         for (i = 0; i < 0x30; i++)
2263                 kfree(priv->snapshot[i]);
2264         priv->snapshot[0] = NULL;
2265 }
2266
2267 #ifdef IPW2100_DEBUG_C3
2268 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2269 {
2270         int i;
2271         if (priv->snapshot[0])
2272                 return 1;
2273         for (i = 0; i < 0x30; i++) {
2274                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2275                 if (!priv->snapshot[i]) {
2276                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2277                                        "buffer %d\n", priv->net_dev->name, i);
2278                         while (i > 0)
2279                                 kfree(priv->snapshot[--i]);
2280                         priv->snapshot[0] = NULL;
2281                         return 0;
2282                 }
2283         }
2284
2285         return 1;
2286 }
2287
2288 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2289                                     size_t len, int mode)
2290 {
2291         u32 i, j;
2292         u32 tmp;
2293         u8 *s, *d;
2294         u32 ret;
2295
2296         s = in_buf;
2297         if (mode == SEARCH_SNAPSHOT) {
2298                 if (!ipw2100_snapshot_alloc(priv))
2299                         mode = SEARCH_DISCARD;
2300         }
2301
2302         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2303                 read_nic_dword(priv->net_dev, i, &tmp);
2304                 if (mode == SEARCH_SNAPSHOT)
2305                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2306                 if (ret == SEARCH_FAIL) {
2307                         d = (u8 *) & tmp;
2308                         for (j = 0; j < 4; j++) {
2309                                 if (*s != *d) {
2310                                         s = in_buf;
2311                                         continue;
2312                                 }
2313
2314                                 s++;
2315                                 d++;
2316
2317                                 if ((s - in_buf) == len)
2318                                         ret = (i + j) - len + 1;
2319                         }
2320                 } else if (mode == SEARCH_DISCARD)
2321                         return ret;
2322         }
2323
2324         return ret;
2325 }
2326 #endif
2327
2328 /*
2329  *
2330  * 0) Disconnect the SKB from the firmware (just unmap)
2331  * 1) Pack the ETH header into the SKB
2332  * 2) Pass the SKB to the network stack
2333  *
2334  * When packet is provided by the firmware, it contains the following:
2335  *
2336  * .  ieee80211_hdr
2337  * .  ieee80211_snap_hdr
2338  *
2339  * The size of the constructed ethernet
2340  *
2341  */
2342 #ifdef IPW2100_RX_DEBUG
2343 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2344 #endif
2345
2346 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2347 {
2348 #ifdef IPW2100_DEBUG_C3
2349         struct ipw2100_status *status = &priv->status_queue.drv[i];
2350         u32 match, reg;
2351         int j;
2352 #endif
2353
2354         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2355                        i * sizeof(struct ipw2100_status));
2356
2357 #ifdef IPW2100_DEBUG_C3
2358         /* Halt the fimrware so we can get a good image */
2359         write_register(priv->net_dev, IPW_REG_RESET_REG,
2360                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2361         j = 5;
2362         do {
2363                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2364                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2365
2366                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2367                         break;
2368         } while (j--);
2369
2370         match = ipw2100_match_buf(priv, (u8 *) status,
2371                                   sizeof(struct ipw2100_status),
2372                                   SEARCH_SNAPSHOT);
2373         if (match < SEARCH_SUCCESS)
2374                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2375                                "offset 0x%06X, length %d:\n",
2376                                priv->net_dev->name, match,
2377                                sizeof(struct ipw2100_status));
2378         else
2379                 IPW_DEBUG_INFO("%s: No DMA status match in "
2380                                "Firmware.\n", priv->net_dev->name);
2381
2382         printk_buf((u8 *) priv->status_queue.drv,
2383                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2384 #endif
2385
2386         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2387         priv->ieee->stats.rx_errors++;
2388         schedule_reset(priv);
2389 }
2390
2391 static void isr_rx(struct ipw2100_priv *priv, int i,
2392                           struct ieee80211_rx_stats *stats)
2393 {
2394         struct ipw2100_status *status = &priv->status_queue.drv[i];
2395         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2396
2397         IPW_DEBUG_RX("Handler...\n");
2398
2399         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2400                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2401                                "  Dropping.\n",
2402                                priv->net_dev->name,
2403                                status->frame_size, skb_tailroom(packet->skb));
2404                 priv->ieee->stats.rx_errors++;
2405                 return;
2406         }
2407
2408         if (unlikely(!netif_running(priv->net_dev))) {
2409                 priv->ieee->stats.rx_errors++;
2410                 priv->wstats.discard.misc++;
2411                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2412                 return;
2413         }
2414
2415         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2416                      !(priv->status & STATUS_ASSOCIATED))) {
2417                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2418                 priv->wstats.discard.misc++;
2419                 return;
2420         }
2421
2422         pci_unmap_single(priv->pci_dev,
2423                          packet->dma_addr,
2424                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2425
2426         skb_put(packet->skb, status->frame_size);
2427
2428 #ifdef IPW2100_RX_DEBUG
2429         /* Make a copy of the frame so we can dump it to the logs if
2430          * ieee80211_rx fails */
2431         skb_copy_from_linear_data(packet->skb, packet_data,
2432                                   min_t(u32, status->frame_size,
2433                                              IPW_RX_NIC_BUFFER_LENGTH));
2434 #endif
2435
2436         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2437 #ifdef IPW2100_RX_DEBUG
2438                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2439                                priv->net_dev->name);
2440                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2441 #endif
2442                 priv->ieee->stats.rx_errors++;
2443
2444                 /* ieee80211_rx failed, so it didn't free the SKB */
2445                 dev_kfree_skb_any(packet->skb);
2446                 packet->skb = NULL;
2447         }
2448
2449         /* We need to allocate a new SKB and attach it to the RDB. */
2450         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2451                 printk(KERN_WARNING DRV_NAME ": "
2452                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2453                        "adapter.\n", priv->net_dev->name);
2454                 /* TODO: schedule adapter shutdown */
2455                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2456         }
2457
2458         /* Update the RDB entry */
2459         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2460 }
2461
2462 #ifdef CONFIG_IPW2100_MONITOR
2463
2464 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2465                    struct ieee80211_rx_stats *stats)
2466 {
2467         struct ipw2100_status *status = &priv->status_queue.drv[i];
2468         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470         /* Magic struct that slots into the radiotap header -- no reason
2471          * to build this manually element by element, we can write it much
2472          * more efficiently than we can parse it. ORDER MATTERS HERE */
2473         struct ipw_rt_hdr {
2474                 struct ieee80211_radiotap_header rt_hdr;
2475                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2476         } *ipw_rt;
2477
2478         IPW_DEBUG_RX("Handler...\n");
2479
2480         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2481                                 sizeof(struct ipw_rt_hdr))) {
2482                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2483                                "  Dropping.\n",
2484                                priv->net_dev->name,
2485                                status->frame_size,
2486                                skb_tailroom(packet->skb));
2487                 priv->ieee->stats.rx_errors++;
2488                 return;
2489         }
2490
2491         if (unlikely(!netif_running(priv->net_dev))) {
2492                 priv->ieee->stats.rx_errors++;
2493                 priv->wstats.discard.misc++;
2494                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2495                 return;
2496         }
2497
2498         if (unlikely(priv->config & CFG_CRC_CHECK &&
2499                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2500                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2501                 priv->ieee->stats.rx_errors++;
2502                 return;
2503         }
2504
2505         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2506                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2507         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2508                 packet->skb->data, status->frame_size);
2509
2510         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2511
2512         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2513         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2514         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2515
2516         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2517
2518         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2519
2520         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2521
2522         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2523                 priv->ieee->stats.rx_errors++;
2524
2525                 /* ieee80211_rx failed, so it didn't free the SKB */
2526                 dev_kfree_skb_any(packet->skb);
2527                 packet->skb = NULL;
2528         }
2529
2530         /* We need to allocate a new SKB and attach it to the RDB. */
2531         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2532                 IPW_DEBUG_WARNING(
2533                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2534                         "adapter.\n", priv->net_dev->name);
2535                 /* TODO: schedule adapter shutdown */
2536                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2537         }
2538
2539         /* Update the RDB entry */
2540         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2541 }
2542
2543 #endif
2544
2545 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2546 {
2547         struct ipw2100_status *status = &priv->status_queue.drv[i];
2548         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2549         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2550
2551         switch (frame_type) {
2552         case COMMAND_STATUS_VAL:
2553                 return (status->frame_size != sizeof(u->rx_data.command));
2554         case STATUS_CHANGE_VAL:
2555                 return (status->frame_size != sizeof(u->rx_data.status));
2556         case HOST_NOTIFICATION_VAL:
2557                 return (status->frame_size < sizeof(u->rx_data.notification));
2558         case P80211_DATA_VAL:
2559         case P8023_DATA_VAL:
2560 #ifdef CONFIG_IPW2100_MONITOR
2561                 return 0;
2562 #else
2563                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2564                 case IEEE80211_FTYPE_MGMT:
2565                 case IEEE80211_FTYPE_CTL:
2566                         return 0;
2567                 case IEEE80211_FTYPE_DATA:
2568                         return (status->frame_size >
2569                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2570                 }
2571 #endif
2572         }
2573
2574         return 1;
2575 }
2576
2577 /*
2578  * ipw2100 interrupts are disabled at this point, and the ISR
2579  * is the only code that calls this method.  So, we do not need
2580  * to play with any locks.
2581  *
2582  * RX Queue works as follows:
2583  *
2584  * Read index - firmware places packet in entry identified by the
2585  *              Read index and advances Read index.  In this manner,
2586  *              Read index will always point to the next packet to
2587  *              be filled--but not yet valid.
2588  *
2589  * Write index - driver fills this entry with an unused RBD entry.
2590  *               This entry has not filled by the firmware yet.
2591  *
2592  * In between the W and R indexes are the RBDs that have been received
2593  * but not yet processed.
2594  *
2595  * The process of handling packets will start at WRITE + 1 and advance
2596  * until it reaches the READ index.
2597  *
2598  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2599  *
2600  */
2601 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2602 {
2603         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2604         struct ipw2100_status_queue *sq = &priv->status_queue;
2605         struct ipw2100_rx_packet *packet;
2606         u16 frame_type;
2607         u32 r, w, i, s;
2608         struct ipw2100_rx *u;
2609         struct ieee80211_rx_stats stats = {
2610                 .mac_time = jiffies,
2611         };
2612
2613         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2614         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2615
2616         if (r >= rxq->entries) {
2617                 IPW_DEBUG_RX("exit - bad read index\n");
2618                 return;
2619         }
2620
2621         i = (rxq->next + 1) % rxq->entries;
2622         s = i;
2623         while (i != r) {
2624                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2625                    r, rxq->next, i); */
2626
2627                 packet = &priv->rx_buffers[i];
2628
2629                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2630                  * the correct values */
2631                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2632                                             sq->nic +
2633                                             sizeof(struct ipw2100_status) * i,
2634                                             sizeof(struct ipw2100_status),
2635                                             PCI_DMA_FROMDEVICE);
2636
2637                 /* Sync the DMA for the RX buffer so CPU is sure to get
2638                  * the correct values */
2639                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2640                                             sizeof(struct ipw2100_rx),
2641                                             PCI_DMA_FROMDEVICE);
2642
2643                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2644                         ipw2100_corruption_detected(priv, i);
2645                         goto increment;
2646                 }
2647
2648                 u = packet->rxp;
2649                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2650                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2651                 stats.len = sq->drv[i].frame_size;
2652
2653                 stats.mask = 0;
2654                 if (stats.rssi != 0)
2655                         stats.mask |= IEEE80211_STATMASK_RSSI;
2656                 stats.freq = IEEE80211_24GHZ_BAND;
2657
2658                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2659                              priv->net_dev->name, frame_types[frame_type],
2660                              stats.len);
2661
2662                 switch (frame_type) {
2663                 case COMMAND_STATUS_VAL:
2664                         /* Reset Rx watchdog */
2665                         isr_rx_complete_command(priv, &u->rx_data.command);
2666                         break;
2667
2668                 case STATUS_CHANGE_VAL:
2669                         isr_status_change(priv, u->rx_data.status);
2670                         break;
2671
2672                 case P80211_DATA_VAL:
2673                 case P8023_DATA_VAL:
2674 #ifdef CONFIG_IPW2100_MONITOR
2675                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2676                                 isr_rx_monitor(priv, i, &stats);
2677                                 break;
2678                         }
2679 #endif
2680                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2681                                 break;
2682                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2683                         case IEEE80211_FTYPE_MGMT:
2684                                 ieee80211_rx_mgt(priv->ieee,
2685                                                  &u->rx_data.header, &stats);
2686                                 break;
2687
2688                         case IEEE80211_FTYPE_CTL:
2689                                 break;
2690
2691                         case IEEE80211_FTYPE_DATA:
2692                                 isr_rx(priv, i, &stats);
2693                                 break;
2694
2695                         }
2696                         break;
2697                 }
2698
2699               increment:
2700                 /* clear status field associated with this RBD */
2701                 rxq->drv[i].status.info.field = 0;
2702
2703                 i = (i + 1) % rxq->entries;
2704         }
2705
2706         if (i != s) {
2707                 /* backtrack one entry, wrapping to end if at 0 */
2708                 rxq->next = (i ? i : rxq->entries) - 1;
2709
2710                 write_register(priv->net_dev,
2711                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2712         }
2713 }
2714
2715 /*
2716  * __ipw2100_tx_process
2717  *
2718  * This routine will determine whether the next packet on
2719  * the fw_pend_list has been processed by the firmware yet.
2720  *
2721  * If not, then it does nothing and returns.
2722  *
2723  * If so, then it removes the item from the fw_pend_list, frees
2724  * any associated storage, and places the item back on the
2725  * free list of its source (either msg_free_list or tx_free_list)
2726  *
2727  * TX Queue works as follows:
2728  *
2729  * Read index - points to the next TBD that the firmware will
2730  *              process.  The firmware will read the data, and once
2731  *              done processing, it will advance the Read index.
2732  *
2733  * Write index - driver fills this entry with an constructed TBD
2734  *               entry.  The Write index is not advanced until the
2735  *               packet has been configured.
2736  *
2737  * In between the W and R indexes are the TBDs that have NOT been
2738  * processed.  Lagging behind the R index are packets that have
2739  * been processed but have not been freed by the driver.
2740  *
2741  * In order to free old storage, an internal index will be maintained
2742  * that points to the next packet to be freed.  When all used
2743  * packets have been freed, the oldest index will be the same as the
2744  * firmware's read index.
2745  *
2746  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2747  *
2748  * Because the TBD structure can not contain arbitrary data, the
2749  * driver must keep an internal queue of cached allocations such that
2750  * it can put that data back into the tx_free_list and msg_free_list
2751  * for use by future command and data packets.
2752  *
2753  */
2754 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2755 {
2756         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2757         struct ipw2100_bd *tbd;
2758         struct list_head *element;
2759         struct ipw2100_tx_packet *packet;
2760         int descriptors_used;
2761         int e, i;
2762         u32 r, w, frag_num = 0;
2763
2764         if (list_empty(&priv->fw_pend_list))
2765                 return 0;
2766
2767         element = priv->fw_pend_list.next;
2768
2769         packet = list_entry(element, struct ipw2100_tx_packet, list);
2770         tbd = &txq->drv[packet->index];
2771
2772         /* Determine how many TBD entries must be finished... */
2773         switch (packet->type) {
2774         case COMMAND:
2775                 /* COMMAND uses only one slot; don't advance */
2776                 descriptors_used = 1;
2777                 e = txq->oldest;
2778                 break;
2779
2780         case DATA:
2781                 /* DATA uses two slots; advance and loop position. */
2782                 descriptors_used = tbd->num_fragments;
2783                 frag_num = tbd->num_fragments - 1;
2784                 e = txq->oldest + frag_num;
2785                 e %= txq->entries;
2786                 break;
2787
2788         default:
2789                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2790                        priv->net_dev->name);
2791                 return 0;
2792         }
2793
2794         /* if the last TBD is not done by NIC yet, then packet is
2795          * not ready to be released.
2796          *
2797          */
2798         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2799                       &r);
2800         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2801                       &w);
2802         if (w != txq->next)
2803                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2804                        priv->net_dev->name);
2805
2806         /*
2807          * txq->next is the index of the last packet written txq->oldest is
2808          * the index of the r is the index of the next packet to be read by
2809          * firmware
2810          */
2811
2812         /*
2813          * Quick graphic to help you visualize the following
2814          * if / else statement
2815          *
2816          * ===>|                     s---->|===============
2817          *                               e>|
2818          * | a | b | c | d | e | f | g | h | i | j | k | l
2819          *       r---->|
2820          *               w
2821          *
2822          * w - updated by driver
2823          * r - updated by firmware
2824          * s - start of oldest BD entry (txq->oldest)
2825          * e - end of oldest BD entry
2826          *
2827          */
2828         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2829                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2830                 return 0;
2831         }
2832
2833         list_del(element);
2834         DEC_STAT(&priv->fw_pend_stat);
2835
2836 #ifdef CONFIG_IPW2100_DEBUG
2837         {
2838                 int i = txq->oldest;
2839                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2840                              &txq->drv[i],
2841                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2842                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2843
2844                 if (packet->type == DATA) {
2845                         i = (i + 1) % txq->entries;
2846
2847                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2848                                      &txq->drv[i],
2849                                      (u32) (txq->nic + i *
2850                                             sizeof(struct ipw2100_bd)),
2851                                      (u32) txq->drv[i].host_addr,
2852                                      txq->drv[i].buf_length);
2853                 }
2854         }
2855 #endif
2856
2857         switch (packet->type) {
2858         case DATA:
2859                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2860                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2861                                "Expecting DATA TBD but pulled "
2862                                "something else: ids %d=%d.\n",
2863                                priv->net_dev->name, txq->oldest, packet->index);
2864
2865                 /* DATA packet; we have to unmap and free the SKB */
2866                 for (i = 0; i < frag_num; i++) {
2867                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2868
2869                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2870                                      (packet->index + 1 + i) % txq->entries,
2871                                      tbd->host_addr, tbd->buf_length);
2872
2873                         pci_unmap_single(priv->pci_dev,
2874                                          tbd->host_addr,
2875                                          tbd->buf_length, PCI_DMA_TODEVICE);
2876                 }
2877
2878                 ieee80211_txb_free(packet->info.d_struct.txb);
2879                 packet->info.d_struct.txb = NULL;
2880
2881                 list_add_tail(element, &priv->tx_free_list);
2882                 INC_STAT(&priv->tx_free_stat);
2883
2884                 /* We have a free slot in the Tx queue, so wake up the
2885                  * transmit layer if it is stopped. */
2886                 if (priv->status & STATUS_ASSOCIATED)
2887                         netif_wake_queue(priv->net_dev);
2888
2889                 /* A packet was processed by the hardware, so update the
2890                  * watchdog */
2891                 priv->net_dev->trans_start = jiffies;
2892
2893                 break;
2894
2895         case COMMAND:
2896                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2897                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2898                                "Expecting COMMAND TBD but pulled "
2899                                "something else: ids %d=%d.\n",
2900                                priv->net_dev->name, txq->oldest, packet->index);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903                 if (packet->info.c_struct.cmd->host_command_reg <
2904                     ARRAY_SIZE(command_types))
2905                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2906                                      command_types[packet->info.c_struct.cmd->
2907                                                    host_command_reg],
2908                                      packet->info.c_struct.cmd->
2909                                      host_command_reg,
2910                                      packet->info.c_struct.cmd->cmd_status_reg);
2911 #endif
2912
2913                 list_add_tail(element, &priv->msg_free_list);
2914                 INC_STAT(&priv->msg_free_stat);
2915                 break;
2916         }
2917
2918         /* advance oldest used TBD pointer to start of next entry */
2919         txq->oldest = (e + 1) % txq->entries;
2920         /* increase available TBDs number */
2921         txq->available += descriptors_used;
2922         SET_STAT(&priv->txq_stat, txq->available);
2923
2924         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2925                      jiffies - packet->jiffy_start);
2926
2927         return (!list_empty(&priv->fw_pend_list));
2928 }
2929
2930 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2931 {
2932         int i = 0;
2933
2934         while (__ipw2100_tx_process(priv) && i < 200)
2935                 i++;
2936
2937         if (i == 200) {
2938                 printk(KERN_WARNING DRV_NAME ": "
2939                        "%s: Driver is running slow (%d iters).\n",
2940                        priv->net_dev->name, i);
2941         }
2942 }
2943
2944 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2945 {
2946         struct list_head *element;
2947         struct ipw2100_tx_packet *packet;
2948         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2949         struct ipw2100_bd *tbd;
2950         int next = txq->next;
2951
2952         while (!list_empty(&priv->msg_pend_list)) {
2953                 /* if there isn't enough space in TBD queue, then
2954                  * don't stuff a new one in.
2955                  * NOTE: 3 are needed as a command will take one,
2956                  *       and there is a minimum of 2 that must be
2957                  *       maintained between the r and w indexes
2958                  */
2959                 if (txq->available <= 3) {
2960                         IPW_DEBUG_TX("no room in tx_queue\n");
2961                         break;
2962                 }
2963
2964                 element = priv->msg_pend_list.next;
2965                 list_del(element);
2966                 DEC_STAT(&priv->msg_pend_stat);
2967
2968                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2969
2970                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2971                              &txq->drv[txq->next],
2972                              (void *)(txq->nic + txq->next *
2973                                       sizeof(struct ipw2100_bd)));
2974
2975                 packet->index = txq->next;
2976
2977                 tbd = &txq->drv[txq->next];
2978
2979                 /* initialize TBD */
2980                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2981                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2982                 /* not marking number of fragments causes problems
2983                  * with f/w debug version */
2984                 tbd->num_fragments = 1;
2985                 tbd->status.info.field =
2986                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2987                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2988
2989                 /* update TBD queue counters */
2990                 txq->next++;
2991                 txq->next %= txq->entries;
2992                 txq->available--;
2993                 DEC_STAT(&priv->txq_stat);
2994
2995                 list_add_tail(element, &priv->fw_pend_list);
2996                 INC_STAT(&priv->fw_pend_stat);
2997         }
2998
2999         if (txq->next != next) {
3000                 /* kick off the DMA by notifying firmware the
3001                  * write index has moved; make sure TBD stores are sync'd */
3002                 wmb();
3003                 write_register(priv->net_dev,
3004                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3005                                txq->next);
3006         }
3007 }
3008
3009 /*
3010  * ipw2100_tx_send_data
3011  *
3012  */
3013 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3014 {
3015         struct list_head *element;
3016         struct ipw2100_tx_packet *packet;
3017         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018         struct ipw2100_bd *tbd;
3019         int next = txq->next;
3020         int i = 0;
3021         struct ipw2100_data_header *ipw_hdr;
3022         struct ieee80211_hdr_3addr *hdr;
3023
3024         while (!list_empty(&priv->tx_pend_list)) {
3025                 /* if there isn't enough space in TBD queue, then
3026                  * don't stuff a new one in.
3027                  * NOTE: 4 are needed as a data will take two,
3028                  *       and there is a minimum of 2 that must be
3029                  *       maintained between the r and w indexes
3030                  */
3031                 element = priv->tx_pend_list.next;
3032                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3033
3034                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3035                              IPW_MAX_BDS)) {
3036                         /* TODO: Support merging buffers if more than
3037                          * IPW_MAX_BDS are used */
3038                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3039                                        "Increase fragmentation level.\n",
3040                                        priv->net_dev->name);
3041                 }
3042
3043                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3044                         IPW_DEBUG_TX("no room in tx_queue\n");
3045                         break;
3046                 }
3047
3048                 list_del(element);
3049                 DEC_STAT(&priv->tx_pend_stat);
3050
3051                 tbd = &txq->drv[txq->next];
3052
3053                 packet->index = txq->next;
3054
3055                 ipw_hdr = packet->info.d_struct.data;
3056                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3057                     fragments[0]->data;
3058
3059                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3060                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3061                            Addr3 = DA */
3062                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3063                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3064                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3065                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3066                            Addr3 = BSSID */
3067                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3068                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3069                 }
3070
3071                 ipw_hdr->host_command_reg = SEND;
3072                 ipw_hdr->host_command_reg1 = 0;
3073
3074                 /* For now we only support host based encryption */
3075                 ipw_hdr->needs_encryption = 0;
3076                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3077                 if (packet->info.d_struct.txb->nr_frags > 1)
3078                         ipw_hdr->fragment_size =
3079                             packet->info.d_struct.txb->frag_size -
3080                             IEEE80211_3ADDR_LEN;
3081                 else
3082                         ipw_hdr->fragment_size = 0;
3083
3084                 tbd->host_addr = packet->info.d_struct.data_phys;
3085                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3086                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3087                 tbd->status.info.field =
3088                     IPW_BD_STATUS_TX_FRAME_802_3 |
3089                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3090                 txq->next++;
3091                 txq->next %= txq->entries;
3092
3093                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3094                              packet->index, tbd->host_addr, tbd->buf_length);
3095 #ifdef CONFIG_IPW2100_DEBUG
3096                 if (packet->info.d_struct.txb->nr_frags > 1)
3097                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3098                                        packet->info.d_struct.txb->nr_frags);
3099 #endif
3100
3101                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3102                         tbd = &txq->drv[txq->next];
3103                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3104                                 tbd->status.info.field =
3105                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3106                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3107                         else
3108                                 tbd->status.info.field =
3109                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3110                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3111
3112                         tbd->buf_length = packet->info.d_struct.txb->
3113                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3114
3115                         tbd->host_addr = pci_map_single(priv->pci_dev,
3116                                                         packet->info.d_struct.
3117                                                         txb->fragments[i]->
3118                                                         data +
3119                                                         IEEE80211_3ADDR_LEN,
3120                                                         tbd->buf_length,
3121                                                         PCI_DMA_TODEVICE);
3122
3123                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3124                                      txq->next, tbd->host_addr,
3125                                      tbd->buf_length);
3126
3127                         pci_dma_sync_single_for_device(priv->pci_dev,
3128                                                        tbd->host_addr,
3129                                                        tbd->buf_length,
3130                                                        PCI_DMA_TODEVICE);
3131
3132                         txq->next++;
3133                         txq->next %= txq->entries;
3134                 }
3135
3136                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3137                 SET_STAT(&priv->txq_stat, txq->available);
3138
3139                 list_add_tail(element, &priv->fw_pend_list);
3140                 INC_STAT(&priv->fw_pend_stat);
3141         }
3142
3143         if (txq->next != next) {
3144                 /* kick off the DMA by notifying firmware the
3145                  * write index has moved; make sure TBD stores are sync'd */
3146                 write_register(priv->net_dev,
3147                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3148                                txq->next);
3149         }
3150         return;
3151 }
3152
3153 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3154 {
3155         struct net_device *dev = priv->net_dev;
3156         unsigned long flags;
3157         u32 inta, tmp;
3158
3159         spin_lock_irqsave(&priv->low_lock, flags);
3160         ipw2100_disable_interrupts(priv);
3161
3162         read_register(dev, IPW_REG_INTA, &inta);
3163
3164         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3165                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3166
3167         priv->in_isr++;
3168         priv->interrupts++;
3169
3170         /* We do not loop and keep polling for more interrupts as this
3171          * is frowned upon and doesn't play nicely with other potentially
3172          * chained IRQs */
3173         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3174                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3175
3176         if (inta & IPW2100_INTA_FATAL_ERROR) {
3177                 printk(KERN_WARNING DRV_NAME
3178                        ": Fatal interrupt. Scheduling firmware restart.\n");
3179                 priv->inta_other++;
3180                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3181
3182                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3183                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3184                                priv->net_dev->name, priv->fatal_error);
3185
3186                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3187                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3188                                priv->net_dev->name, tmp);
3189
3190                 /* Wake up any sleeping jobs */
3191                 schedule_reset(priv);
3192         }
3193
3194         if (inta & IPW2100_INTA_PARITY_ERROR) {
3195                 printk(KERN_ERR DRV_NAME
3196                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3197                 priv->inta_other++;
3198                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3199         }
3200
3201         if (inta & IPW2100_INTA_RX_TRANSFER) {
3202                 IPW_DEBUG_ISR("RX interrupt\n");
3203
3204                 priv->rx_interrupts++;
3205
3206                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3207
3208                 __ipw2100_rx_process(priv);
3209                 __ipw2100_tx_complete(priv);
3210         }
3211
3212         if (inta & IPW2100_INTA_TX_TRANSFER) {
3213                 IPW_DEBUG_ISR("TX interrupt\n");
3214
3215                 priv->tx_interrupts++;
3216
3217                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3218
3219                 __ipw2100_tx_complete(priv);
3220                 ipw2100_tx_send_commands(priv);
3221                 ipw2100_tx_send_data(priv);
3222         }
3223
3224         if (inta & IPW2100_INTA_TX_COMPLETE) {
3225                 IPW_DEBUG_ISR("TX complete\n");
3226                 priv->inta_other++;
3227                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3228
3229                 __ipw2100_tx_complete(priv);
3230         }
3231
3232         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3233                 /* ipw2100_handle_event(dev); */
3234                 priv->inta_other++;
3235                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3236         }
3237
3238         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3239                 IPW_DEBUG_ISR("FW init done interrupt\n");
3240                 priv->inta_other++;
3241
3242                 read_register(dev, IPW_REG_INTA, &tmp);
3243                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3244                            IPW2100_INTA_PARITY_ERROR)) {
3245                         write_register(dev, IPW_REG_INTA,
3246                                        IPW2100_INTA_FATAL_ERROR |
3247                                        IPW2100_INTA_PARITY_ERROR);
3248                 }
3249
3250                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3251         }
3252
3253         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3254                 IPW_DEBUG_ISR("Status change interrupt\n");
3255                 priv->inta_other++;
3256                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3257         }
3258
3259         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3260                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3261                 priv->inta_other++;
3262                 write_register(dev, IPW_REG_INTA,
3263                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3264         }
3265
3266         priv->in_isr--;
3267         ipw2100_enable_interrupts(priv);
3268
3269         spin_unlock_irqrestore(&priv->low_lock, flags);
3270
3271         IPW_DEBUG_ISR("exit\n");
3272 }
3273
3274 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3275 {
3276         struct ipw2100_priv *priv = data;
3277         u32 inta, inta_mask;
3278
3279         if (!data)
3280                 return IRQ_NONE;
3281
3282         spin_lock(&priv->low_lock);
3283
3284         /* We check to see if we should be ignoring interrupts before
3285          * we touch the hardware.  During ucode load if we try and handle
3286          * an interrupt we can cause keyboard problems as well as cause
3287          * the ucode to fail to initialize */
3288         if (!(priv->status & STATUS_INT_ENABLED)) {
3289                 /* Shared IRQ */
3290                 goto none;
3291         }
3292
3293         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3294         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3295
3296         if (inta == 0xFFFFFFFF) {
3297                 /* Hardware disappeared */
3298                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3299                 goto none;
3300         }
3301
3302         inta &= IPW_INTERRUPT_MASK;
3303
3304         if (!(inta & inta_mask)) {
3305                 /* Shared interrupt */
3306                 goto none;
3307         }
3308
3309         /* We disable the hardware interrupt here just to prevent unneeded
3310          * calls to be made.  We disable this again within the actual
3311          * work tasklet, so if another part of the code re-enables the
3312          * interrupt, that is fine */
3313         ipw2100_disable_interrupts(priv);
3314
3315         tasklet_schedule(&priv->irq_tasklet);
3316         spin_unlock(&priv->low_lock);
3317
3318         return IRQ_HANDLED;
3319       none:
3320         spin_unlock(&priv->low_lock);
3321         return IRQ_NONE;
3322 }
3323
3324 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3325                       int pri)
3326 {
3327         struct ipw2100_priv *priv = ieee80211_priv(dev);
3328         struct list_head *element;
3329         struct ipw2100_tx_packet *packet;
3330         unsigned long flags;
3331
3332         spin_lock_irqsave(&priv->low_lock, flags);
3333
3334         if (!(priv->status & STATUS_ASSOCIATED)) {
3335                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3336                 priv->ieee->stats.tx_carrier_errors++;
3337                 netif_stop_queue(dev);
3338                 goto fail_unlock;
3339         }
3340
3341         if (list_empty(&priv->tx_free_list))
3342                 goto fail_unlock;
3343
3344         element = priv->tx_free_list.next;
3345         packet = list_entry(element, struct ipw2100_tx_packet, list);
3346
3347         packet->info.d_struct.txb = txb;
3348
3349         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3350         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3351
3352         packet->jiffy_start = jiffies;
3353
3354         list_del(element);
3355         DEC_STAT(&priv->tx_free_stat);
3356
3357         list_add_tail(element, &priv->tx_pend_list);
3358         INC_STAT(&priv->tx_pend_stat);
3359
3360         ipw2100_tx_send_data(priv);
3361
3362         spin_unlock_irqrestore(&priv->low_lock, flags);
3363         return 0;
3364
3365       fail_unlock:
3366         netif_stop_queue(dev);
3367         spin_unlock_irqrestore(&priv->low_lock, flags);
3368         return 1;
3369 }
3370
3371 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3372 {
3373         int i, j, err = -EINVAL;
3374         void *v;
3375         dma_addr_t p;
3376
3377         priv->msg_buffers =
3378             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3379                                                 sizeof(struct
3380                                                        ipw2100_tx_packet),
3381                                                 GFP_KERNEL);
3382         if (!priv->msg_buffers) {
3383                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3384                        "buffers.\n", priv->net_dev->name);
3385                 return -ENOMEM;
3386         }
3387
3388         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3389                 v = pci_alloc_consistent(priv->pci_dev,
3390                                          sizeof(struct ipw2100_cmd_header), &p);
3391                 if (!v) {
3392                         printk(KERN_ERR DRV_NAME ": "
3393                                "%s: PCI alloc failed for msg "
3394                                "buffers.\n", priv->net_dev->name);
3395                         err = -ENOMEM;
3396                         break;
3397                 }
3398
3399                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3400
3401                 priv->msg_buffers[i].type = COMMAND;
3402                 priv->msg_buffers[i].info.c_struct.cmd =
3403                     (struct ipw2100_cmd_header *)v;
3404                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3405         }
3406
3407         if (i == IPW_COMMAND_POOL_SIZE)
3408                 return 0;
3409
3410         for (j = 0; j < i; j++) {
3411                 pci_free_consistent(priv->pci_dev,
3412                                     sizeof(struct ipw2100_cmd_header),
3413                                     priv->msg_buffers[j].info.c_struct.cmd,
3414                                     priv->msg_buffers[j].info.c_struct.
3415                                     cmd_phys);
3416         }
3417
3418         kfree(priv->msg_buffers);
3419         priv->msg_buffers = NULL;
3420
3421         return err;
3422 }
3423
3424 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3425 {
3426         int i;
3427
3428         INIT_LIST_HEAD(&priv->msg_free_list);
3429         INIT_LIST_HEAD(&priv->msg_pend_list);
3430
3431         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3432                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3433         SET_STAT(&priv->msg_free_stat, i);
3434
3435         return 0;
3436 }
3437
3438 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3439 {
3440         int i;
3441
3442         if (!priv->msg_buffers)
3443                 return;
3444
3445         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3446                 pci_free_consistent(priv->pci_dev,
3447                                     sizeof(struct ipw2100_cmd_header),
3448                                     priv->msg_buffers[i].info.c_struct.cmd,
3449                                     priv->msg_buffers[i].info.c_struct.
3450                                     cmd_phys);
3451         }
3452
3453         kfree(priv->msg_buffers);
3454         priv->msg_buffers = NULL;
3455 }
3456
3457 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3458                         char *buf)
3459 {
3460         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3461         char *out = buf;
3462         int i, j;
3463         u32 val;
3464
3465         for (i = 0; i < 16; i++) {
3466                 out += sprintf(out, "[%08X] ", i * 16);
3467                 for (j = 0; j < 16; j += 4) {
3468                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3469                         out += sprintf(out, "%08X ", val);
3470                 }
3471                 out += sprintf(out, "\n");
3472         }
3473
3474         return out - buf;
3475 }
3476
3477 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3478
3479 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3480                         char *buf)
3481 {
3482         struct ipw2100_priv *p = d->driver_data;
3483         return sprintf(buf, "0x%08x\n", (int)p->config);
3484 }
3485
3486 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3487
3488 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3489                            char *buf)
3490 {
3491         struct ipw2100_priv *p = d->driver_data;
3492         return sprintf(buf, "0x%08x\n", (int)p->status);
3493 }
3494
3495 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3496
3497 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3498                                char *buf)
3499 {
3500         struct ipw2100_priv *p = d->driver_data;
3501         return sprintf(buf, "0x%08x\n", (int)p->capability);
3502 }
3503
3504 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3505
3506 #define IPW2100_REG(x) { IPW_ ##x, #x }
3507 static const struct {
3508         u32 addr;
3509         const char *name;
3510 } hw_data[] = {
3511 IPW2100_REG(REG_GP_CNTRL),
3512             IPW2100_REG(REG_GPIO),
3513             IPW2100_REG(REG_INTA),
3514             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3515 #define IPW2100_NIC(x, s) { x, #x, s }
3516 static const struct {
3517         u32 addr;
3518         const char *name;
3519         size_t size;
3520 } nic_data[] = {
3521 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3522             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3523 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3524 static const struct {
3525         u8 index;
3526         const char *name;
3527         const char *desc;
3528 } ord_data[] = {
3529 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3530             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3531                                 "successful Host Tx's (MSDU)"),
3532             IPW2100_ORD(STAT_TX_DIR_DATA,
3533                                 "successful Directed Tx's (MSDU)"),
3534             IPW2100_ORD(STAT_TX_DIR_DATA1,
3535                                 "successful Directed Tx's (MSDU) @ 1MB"),
3536             IPW2100_ORD(STAT_TX_DIR_DATA2,
3537                                 "successful Directed Tx's (MSDU) @ 2MB"),
3538             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3539                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3540             IPW2100_ORD(STAT_TX_DIR_DATA11,
3541                                 "successful Directed Tx's (MSDU) @ 11MB"),
3542             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3543                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3544             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3545                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3546             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3547                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3548             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3549                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3550             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3551             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3552             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3553             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3554             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3555             IPW2100_ORD(STAT_TX_ASSN_RESP,
3556                                 "successful Association response Tx's"),
3557             IPW2100_ORD(STAT_TX_REASSN,
3558                                 "successful Reassociation Tx's"),
3559             IPW2100_ORD(STAT_TX_REASSN_RESP,
3560                                 "successful Reassociation response Tx's"),
3561             IPW2100_ORD(STAT_TX_PROBE,
3562                                 "probes successfully transmitted"),
3563             IPW2100_ORD(STAT_TX_PROBE_RESP,
3564                                 "probe responses successfully transmitted"),
3565             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3566             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3567             IPW2100_ORD(STAT_TX_DISASSN,
3568                                 "successful Disassociation TX"),
3569             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3570             IPW2100_ORD(STAT_TX_DEAUTH,
3571                                 "successful Deauthentication TX"),
3572             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3573                                 "Total successful Tx data bytes"),
3574             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3575             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3576             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3577             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3578             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3579             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3580             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3581                                 "times max tries in a hop failed"),
3582             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3583                                 "times disassociation failed"),
3584             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3585             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3586             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3587             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3588             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3589             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3590             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3591                                 "directed packets at 5.5MB"),
3592             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3593             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3594             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3595                                 "nondirected packets at 1MB"),
3596             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3597                                 "nondirected packets at 2MB"),
3598             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3599                                 "nondirected packets at 5.5MB"),
3600             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3601                                 "nondirected packets at 11MB"),
3602             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3603             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3604                                                                     "Rx CTS"),
3605             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3606             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3607             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3608             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3609             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3610             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3611             IPW2100_ORD(STAT_RX_REASSN_RESP,
3612                                 "Reassociation response Rx's"),
3613             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3614             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3615             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3616             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3617             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3618             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3619             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3620             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3621                                 "Total rx data bytes received"),
3622             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3623             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3624             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3625             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3626             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3627             IPW2100_ORD(STAT_RX_DUPLICATE1,
3628                                 "duplicate rx packets at 1MB"),
3629             IPW2100_ORD(STAT_RX_DUPLICATE2,
3630                                 "duplicate rx packets at 2MB"),
3631             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3632                                 "duplicate rx packets at 5.5MB"),
3633             IPW2100_ORD(STAT_RX_DUPLICATE11,
3634                                 "duplicate rx packets at 11MB"),
3635             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3636             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3637             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3638             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3639             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3640                                 "rx frames with invalid protocol"),
3641             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3642             IPW2100_ORD(STAT_RX_NO_BUFFER,
3643                                 "rx frames rejected due to no buffer"),
3644             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3645                                 "rx frames dropped due to missing fragment"),
3646             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3647                                 "rx frames dropped due to non-sequential fragment"),
3648             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3649                                 "rx frames dropped due to unmatched 1st frame"),
3650             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3651                                 "rx frames dropped due to uncompleted frame"),
3652             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3653                                 "ICV errors during decryption"),
3654             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3655             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3656             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3657                                 "poll response timeouts"),
3658             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3659                                 "timeouts waiting for last {broad,multi}cast pkt"),
3660             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3661             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3662             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3663             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3664             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3665                                 "current calculation of % missed beacons"),
3666             IPW2100_ORD(STAT_PERCENT_RETRIES,
3667                                 "current calculation of % missed tx retries"),
3668             IPW2100_ORD(ASSOCIATED_AP_PTR,
3669                                 "0 if not associated, else pointer to AP table entry"),
3670             IPW2100_ORD(AVAILABLE_AP_CNT,
3671                                 "AP's decsribed in the AP table"),
3672             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3673             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3674             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3675             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3676                                 "failures due to response fail"),
3677             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3678             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3679             IPW2100_ORD(STAT_ROAM_INHIBIT,
3680                                 "times roaming was inhibited due to activity"),
3681             IPW2100_ORD(RSSI_AT_ASSN,
3682                                 "RSSI of associated AP at time of association"),
3683             IPW2100_ORD(STAT_ASSN_CAUSE1,
3684                                 "reassociation: no probe response or TX on hop"),
3685             IPW2100_ORD(STAT_ASSN_CAUSE2,
3686                                 "reassociation: poor tx/rx quality"),