]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/net/s2io.c
s2io: Making LRO and UFO as module loadable parameter.
[linux-3.10.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
69
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74 #include <asm/irq.h>
75
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
79
80 #define DRV_VERSION "2.0.15.2"
81
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
85
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
88
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
90 {
91         int ret;
92
93         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96         return ret;
97 }
98
99 /*
100  * Cards with following subsystem_id have a link state indication
101  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102  * macro below identifies these cards given the subsystem_id.
103  */
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105         (dev_type == XFRAME_I_DEVICE) ?                 \
106                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC   1
113 #define LOW     2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 {
116         mac_info_t *mac_control;
117
118         mac_control = &sp->mac_control;
119         if (rxb_size <= rxd_count[sp->rxd_mode])
120                 return PANIC;
121         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122                 return  LOW;
123         return 0;
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"},
230         {"rmac_ttl_1519_4095_frms"},
231         {"rmac_ttl_4096_8191_frms"},
232         {"rmac_ttl_8192_max_frms"},
233         {"rmac_ttl_gt_max_frms"},
234         {"rmac_osized_alt_frms"},
235         {"rmac_jabber_alt_frms"},
236         {"rmac_gt_max_alt_frms"},
237         {"rmac_vlan_frms"},
238         {"rmac_len_discard"},
239         {"rmac_fcs_discard"},
240         {"rmac_pf_discard"},
241         {"rmac_da_discard"},
242         {"rmac_red_discard"},
243         {"rmac_rts_discard"},
244         {"rmac_ingm_full_discard"},
245         {"link_fault_cnt"},
246         {"\n DRIVER STATISTICS"},
247         {"single_bit_ecc_errs"},
248         {"double_bit_ecc_errs"},
249         {"parity_err_cnt"},
250         {"serious_err_cnt"},
251         {"soft_reset_cnt"},
252         {"fifo_full_cnt"},
253         {"ring_full_cnt"},
254         ("alarm_transceiver_temp_high"),
255         ("alarm_transceiver_temp_low"),
256         ("alarm_laser_bias_current_high"),
257         ("alarm_laser_bias_current_low"),
258         ("alarm_laser_output_power_high"),
259         ("alarm_laser_output_power_low"),
260         ("warn_transceiver_temp_high"),
261         ("warn_transceiver_temp_low"),
262         ("warn_laser_bias_current_high"),
263         ("warn_laser_bias_current_low"),
264         ("warn_laser_output_power_high"),
265         ("warn_laser_output_power_low"),
266         ("lro_aggregated_pkts"),
267         ("lro_flush_both_count"),
268         ("lro_out_of_sequence_pkts"),
269         ("lro_flush_due_to_max_pkts"),
270         ("lro_avg_aggr_pkts"),
271 };
272
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
278
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
280                         init_timer(&timer);                     \
281                         timer.function = handle;                \
282                         timer.data = (unsigned long) arg;       \
283                         mod_timer(&timer, (jiffies + exp))      \
284
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287                                         struct vlan_group *grp)
288 {
289         nic_t *nic = dev->priv;
290         unsigned long flags;
291
292         spin_lock_irqsave(&nic->tx_lock, flags);
293         nic->vlgrp = grp;
294         spin_unlock_irqrestore(&nic->tx_lock, flags);
295 }
296
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 {
300         nic_t *nic = dev->priv;
301         unsigned long flags;
302
303         spin_lock_irqsave(&nic->tx_lock, flags);
304         if (nic->vlgrp)
305                 nic->vlgrp->vlan_devices[vid] = NULL;
306         spin_unlock_irqrestore(&nic->tx_lock, flags);
307 }
308
309 /*
310  * Constants to be programmed into the Xena's registers, to configure
311  * the XAUI.
312  */
313
314 #define END_SIGN        0x0
315 static const u64 herc_act_dtx_cfg[] = {
316         /* Set address */
317         0x8000051536750000ULL, 0x80000515367500E0ULL,
318         /* Write data */
319         0x8000051536750004ULL, 0x80000515367500E4ULL,
320         /* Set address */
321         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322         /* Write data */
323         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324         /* Set address */
325         0x801205150D440000ULL, 0x801205150D4400E0ULL,
326         /* Write data */
327         0x801205150D440004ULL, 0x801205150D4400E4ULL,
328         /* Set address */
329         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330         /* Write data */
331         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332         /* Done */
333         END_SIGN
334 };
335
336 static const u64 xena_dtx_cfg[] = {
337         /* Set address */
338         0x8000051500000000ULL, 0x80000515000000E0ULL,
339         /* Write data */
340         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341         /* Set address */
342         0x8001051500000000ULL, 0x80010515000000E0ULL,
343         /* Write data */
344         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345         /* Set address */
346         0x8002051500000000ULL, 0x80020515000000E0ULL,
347         /* Write data */
348         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349         END_SIGN
350 };
351
352 /*
353  * Constants for Fixing the MacAddress problem seen mostly on
354  * Alpha machines.
355  */
356 static const u64 fix_mac[] = {
357         0x0060000000000000ULL, 0x0060600000000000ULL,
358         0x0040600000000000ULL, 0x0000600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0060600000000000ULL,
369         0x0020600000000000ULL, 0x0000600000000000ULL,
370         0x0040600000000000ULL, 0x0060600000000000ULL,
371         END_SIGN
372 };
373
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
377
378
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
382
383
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401  * aggregation happens until we hit max IP pkt size(64K)
402  */
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 S2IO_PARM_INT(indicate_max_pkts, 0);
405
406 S2IO_PARM_INT(napi, 1);
407 S2IO_PARM_INT(ufo, 0);
408
409 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
410     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
411 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
412     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
413 static unsigned int rts_frm_len[MAX_RX_RINGS] =
414     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415
416 module_param_array(tx_fifo_len, uint, NULL, 0);
417 module_param_array(rx_ring_sz, uint, NULL, 0);
418 module_param_array(rts_frm_len, uint, NULL, 0);
419
420 /*
421  * S2IO device table.
422  * This table lists all the devices that this driver supports.
423  */
424 static struct pci_device_id s2io_tbl[] __devinitdata = {
425         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
426          PCI_ANY_ID, PCI_ANY_ID},
427         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
428          PCI_ANY_ID, PCI_ANY_ID},
429         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
430          PCI_ANY_ID, PCI_ANY_ID},
431         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
432          PCI_ANY_ID, PCI_ANY_ID},
433         {0,}
434 };
435
436 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437
438 static struct pci_driver s2io_driver = {
439       .name = "S2IO",
440       .id_table = s2io_tbl,
441       .probe = s2io_init_nic,
442       .remove = __devexit_p(s2io_rem_nic),
443 };
444
445 /* A simplifier macro used both by init and free shared_mem Fns(). */
446 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
447
448 /**
449  * init_shared_mem - Allocation and Initialization of Memory
450  * @nic: Device private variable.
451  * Description: The function allocates all the memory areas shared
452  * between the NIC and the driver. This includes Tx descriptors,
453  * Rx descriptors and the statistics block.
454  */
455
456 static int init_shared_mem(struct s2io_nic *nic)
457 {
458         u32 size;
459         void *tmp_v_addr, *tmp_v_addr_next;
460         dma_addr_t tmp_p_addr, tmp_p_addr_next;
461         RxD_block_t *pre_rxd_blk = NULL;
462         int i, j, blk_cnt, rx_sz, tx_sz;
463         int lst_size, lst_per_page;
464         struct net_device *dev = nic->dev;
465         unsigned long tmp;
466         buffAdd_t *ba;
467
468         mac_info_t *mac_control;
469         struct config_param *config;
470
471         mac_control = &nic->mac_control;
472         config = &nic->config;
473
474
475         /* Allocation and initialization of TXDLs in FIOFs */
476         size = 0;
477         for (i = 0; i < config->tx_fifo_num; i++) {
478                 size += config->tx_cfg[i].fifo_len;
479         }
480         if (size > MAX_AVAILABLE_TXDS) {
481                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
482                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
483                 return -EINVAL;
484         }
485
486         lst_size = (sizeof(TxD_t) * config->max_txds);
487         tx_sz = lst_size * size;
488         lst_per_page = PAGE_SIZE / lst_size;
489
490         for (i = 0; i < config->tx_fifo_num; i++) {
491                 int fifo_len = config->tx_cfg[i].fifo_len;
492                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
493                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
494                                                           GFP_KERNEL);
495                 if (!mac_control->fifos[i].list_info) {
496                         DBG_PRINT(ERR_DBG,
497                                   "Malloc failed for list_info\n");
498                         return -ENOMEM;
499                 }
500                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
501         }
502         for (i = 0; i < config->tx_fifo_num; i++) {
503                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
504                                                 lst_per_page);
505                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
506                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
507                     config->tx_cfg[i].fifo_len - 1;
508                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
509                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
510                     config->tx_cfg[i].fifo_len - 1;
511                 mac_control->fifos[i].fifo_no = i;
512                 mac_control->fifos[i].nic = nic;
513                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
514
515                 for (j = 0; j < page_num; j++) {
516                         int k = 0;
517                         dma_addr_t tmp_p;
518                         void *tmp_v;
519                         tmp_v = pci_alloc_consistent(nic->pdev,
520                                                      PAGE_SIZE, &tmp_p);
521                         if (!tmp_v) {
522                                 DBG_PRINT(ERR_DBG,
523                                           "pci_alloc_consistent ");
524                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
525                                 return -ENOMEM;
526                         }
527                         /* If we got a zero DMA address(can happen on
528                          * certain platforms like PPC), reallocate.
529                          * Store virtual address of page we don't want,
530                          * to be freed later.
531                          */
532                         if (!tmp_p) {
533                                 mac_control->zerodma_virt_addr = tmp_v;
534                                 DBG_PRINT(INIT_DBG,
535                                 "%s: Zero DMA address for TxDL. ", dev->name);
536                                 DBG_PRINT(INIT_DBG,
537                                 "Virtual address %p\n", tmp_v);
538                                 tmp_v = pci_alloc_consistent(nic->pdev,
539                                                      PAGE_SIZE, &tmp_p);
540                                 if (!tmp_v) {
541                                         DBG_PRINT(ERR_DBG,
542                                           "pci_alloc_consistent ");
543                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
544                                         return -ENOMEM;
545                                 }
546                         }
547                         while (k < lst_per_page) {
548                                 int l = (j * lst_per_page) + k;
549                                 if (l == config->tx_cfg[i].fifo_len)
550                                         break;
551                                 mac_control->fifos[i].list_info[l].list_virt_addr =
552                                     tmp_v + (k * lst_size);
553                                 mac_control->fifos[i].list_info[l].list_phy_addr =
554                                     tmp_p + (k * lst_size);
555                                 k++;
556                         }
557                 }
558         }
559
560         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
561         if (!nic->ufo_in_band_v)
562                 return -ENOMEM;
563
564         /* Allocation and initialization of RXDs in Rings */
565         size = 0;
566         for (i = 0; i < config->rx_ring_num; i++) {
567                 if (config->rx_cfg[i].num_rxd %
568                     (rxd_count[nic->rxd_mode] + 1)) {
569                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
570                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
571                                   i);
572                         DBG_PRINT(ERR_DBG, "RxDs per Block");
573                         return FAILURE;
574                 }
575                 size += config->rx_cfg[i].num_rxd;
576                 mac_control->rings[i].block_count =
577                         config->rx_cfg[i].num_rxd /
578                         (rxd_count[nic->rxd_mode] + 1 );
579                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
580                         mac_control->rings[i].block_count;
581         }
582         if (nic->rxd_mode == RXD_MODE_1)
583                 size = (size * (sizeof(RxD1_t)));
584         else
585                 size = (size * (sizeof(RxD3_t)));
586         rx_sz = size;
587
588         for (i = 0; i < config->rx_ring_num; i++) {
589                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
590                 mac_control->rings[i].rx_curr_get_info.offset = 0;
591                 mac_control->rings[i].rx_curr_get_info.ring_len =
592                     config->rx_cfg[i].num_rxd - 1;
593                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
594                 mac_control->rings[i].rx_curr_put_info.offset = 0;
595                 mac_control->rings[i].rx_curr_put_info.ring_len =
596                     config->rx_cfg[i].num_rxd - 1;
597                 mac_control->rings[i].nic = nic;
598                 mac_control->rings[i].ring_no = i;
599
600                 blk_cnt = config->rx_cfg[i].num_rxd /
601                                 (rxd_count[nic->rxd_mode] + 1);
602                 /*  Allocating all the Rx blocks */
603                 for (j = 0; j < blk_cnt; j++) {
604                         rx_block_info_t *rx_blocks;
605                         int l;
606
607                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
608                         size = SIZE_OF_BLOCK; //size is always page size
609                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
610                                                           &tmp_p_addr);
611                         if (tmp_v_addr == NULL) {
612                                 /*
613                                  * In case of failure, free_shared_mem()
614                                  * is called, which should free any
615                                  * memory that was alloced till the
616                                  * failure happened.
617                                  */
618                                 rx_blocks->block_virt_addr = tmp_v_addr;
619                                 return -ENOMEM;
620                         }
621                         memset(tmp_v_addr, 0, size);
622                         rx_blocks->block_virt_addr = tmp_v_addr;
623                         rx_blocks->block_dma_addr = tmp_p_addr;
624                         rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
625                                                   rxd_count[nic->rxd_mode],
626                                                   GFP_KERNEL);
627                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628                                 rx_blocks->rxds[l].virt_addr =
629                                         rx_blocks->block_virt_addr +
630                                         (rxd_size[nic->rxd_mode] * l);
631                                 rx_blocks->rxds[l].dma_addr =
632                                         rx_blocks->block_dma_addr +
633                                         (rxd_size[nic->rxd_mode] * l);
634                         }
635                 }
636                 /* Interlinking all Rx Blocks */
637                 for (j = 0; j < blk_cnt; j++) {
638                         tmp_v_addr =
639                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
640                         tmp_v_addr_next =
641                                 mac_control->rings[i].rx_blocks[(j + 1) %
642                                               blk_cnt].block_virt_addr;
643                         tmp_p_addr =
644                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
645                         tmp_p_addr_next =
646                                 mac_control->rings[i].rx_blocks[(j + 1) %
647                                               blk_cnt].block_dma_addr;
648
649                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
650                         pre_rxd_blk->reserved_2_pNext_RxD_block =
651                             (unsigned long) tmp_v_addr_next;
652                         pre_rxd_blk->pNext_RxD_Blk_physical =
653                             (u64) tmp_p_addr_next;
654                 }
655         }
656         if (nic->rxd_mode >= RXD_MODE_3A) {
657                 /*
658                  * Allocation of Storages for buffer addresses in 2BUFF mode
659                  * and the buffers as well.
660                  */
661                 for (i = 0; i < config->rx_ring_num; i++) {
662                         blk_cnt = config->rx_cfg[i].num_rxd /
663                            (rxd_count[nic->rxd_mode]+ 1);
664                         mac_control->rings[i].ba =
665                                 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
666                                      GFP_KERNEL);
667                         if (!mac_control->rings[i].ba)
668                                 return -ENOMEM;
669                         for (j = 0; j < blk_cnt; j++) {
670                                 int k = 0;
671                                 mac_control->rings[i].ba[j] =
672                                         kmalloc((sizeof(buffAdd_t) *
673                                                 (rxd_count[nic->rxd_mode] + 1)),
674                                                 GFP_KERNEL);
675                                 if (!mac_control->rings[i].ba[j])
676                                         return -ENOMEM;
677                                 while (k != rxd_count[nic->rxd_mode]) {
678                                         ba = &mac_control->rings[i].ba[j][k];
679
680                                         ba->ba_0_org = (void *) kmalloc
681                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
682                                         if (!ba->ba_0_org)
683                                                 return -ENOMEM;
684                                         tmp = (unsigned long)ba->ba_0_org;
685                                         tmp += ALIGN_SIZE;
686                                         tmp &= ~((unsigned long) ALIGN_SIZE);
687                                         ba->ba_0 = (void *) tmp;
688
689                                         ba->ba_1_org = (void *) kmalloc
690                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
691                                         if (!ba->ba_1_org)
692                                                 return -ENOMEM;
693                                         tmp = (unsigned long) ba->ba_1_org;
694                                         tmp += ALIGN_SIZE;
695                                         tmp &= ~((unsigned long) ALIGN_SIZE);
696                                         ba->ba_1 = (void *) tmp;
697                                         k++;
698                                 }
699                         }
700                 }
701         }
702
703         /* Allocation and initialization of Statistics block */
704         size = sizeof(StatInfo_t);
705         mac_control->stats_mem = pci_alloc_consistent
706             (nic->pdev, size, &mac_control->stats_mem_phy);
707
708         if (!mac_control->stats_mem) {
709                 /*
710                  * In case of failure, free_shared_mem() is called, which
711                  * should free any memory that was alloced till the
712                  * failure happened.
713                  */
714                 return -ENOMEM;
715         }
716         mac_control->stats_mem_sz = size;
717
718         tmp_v_addr = mac_control->stats_mem;
719         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
720         memset(tmp_v_addr, 0, size);
721         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722                   (unsigned long long) tmp_p_addr);
723
724         return SUCCESS;
725 }
726
727 /**
728  * free_shared_mem - Free the allocated Memory
729  * @nic:  Device private variable.
730  * Description: This function is to free all memory locations allocated by
731  * the init_shared_mem() function and return it to the kernel.
732  */
733
734 static void free_shared_mem(struct s2io_nic *nic)
735 {
736         int i, j, blk_cnt, size;
737         void *tmp_v_addr;
738         dma_addr_t tmp_p_addr;
739         mac_info_t *mac_control;
740         struct config_param *config;
741         int lst_size, lst_per_page;
742         struct net_device *dev = nic->dev;
743
744         if (!nic)
745                 return;
746
747         mac_control = &nic->mac_control;
748         config = &nic->config;
749
750         lst_size = (sizeof(TxD_t) * config->max_txds);
751         lst_per_page = PAGE_SIZE / lst_size;
752
753         for (i = 0; i < config->tx_fifo_num; i++) {
754                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
755                                                 lst_per_page);
756                 for (j = 0; j < page_num; j++) {
757                         int mem_blks = (j * lst_per_page);
758                         if (!mac_control->fifos[i].list_info)
759                                 return;
760                         if (!mac_control->fifos[i].list_info[mem_blks].
761                                  list_virt_addr)
762                                 break;
763                         pci_free_consistent(nic->pdev, PAGE_SIZE,
764                                             mac_control->fifos[i].
765                                             list_info[mem_blks].
766                                             list_virt_addr,
767                                             mac_control->fifos[i].
768                                             list_info[mem_blks].
769                                             list_phy_addr);
770                 }
771                 /* If we got a zero DMA address during allocation,
772                  * free the page now
773                  */
774                 if (mac_control->zerodma_virt_addr) {
775                         pci_free_consistent(nic->pdev, PAGE_SIZE,
776                                             mac_control->zerodma_virt_addr,
777                                             (dma_addr_t)0);
778                         DBG_PRINT(INIT_DBG,
779                                 "%s: Freeing TxDL with zero DMA addr. ",
780                                 dev->name);
781                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782                                 mac_control->zerodma_virt_addr);
783                 }
784                 kfree(mac_control->fifos[i].list_info);
785         }
786
787         size = SIZE_OF_BLOCK;
788         for (i = 0; i < config->rx_ring_num; i++) {
789                 blk_cnt = mac_control->rings[i].block_count;
790                 for (j = 0; j < blk_cnt; j++) {
791                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
792                                 block_virt_addr;
793                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
794                                 block_dma_addr;
795                         if (tmp_v_addr == NULL)
796                                 break;
797                         pci_free_consistent(nic->pdev, size,
798                                             tmp_v_addr, tmp_p_addr);
799                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
800                 }
801         }
802
803         if (nic->rxd_mode >= RXD_MODE_3A) {
804                 /* Freeing buffer storage addresses in 2BUFF mode. */
805                 for (i = 0; i < config->rx_ring_num; i++) {
806                         blk_cnt = config->rx_cfg[i].num_rxd /
807                             (rxd_count[nic->rxd_mode] + 1);
808                         for (j = 0; j < blk_cnt; j++) {
809                                 int k = 0;
810                                 if (!mac_control->rings[i].ba[j])
811                                         continue;
812                                 while (k != rxd_count[nic->rxd_mode]) {
813                                         buffAdd_t *ba =
814                                                 &mac_control->rings[i].ba[j][k];
815                                         kfree(ba->ba_0_org);
816                                         kfree(ba->ba_1_org);
817                                         k++;
818                                 }
819                                 kfree(mac_control->rings[i].ba[j]);
820                         }
821                         kfree(mac_control->rings[i].ba);
822                 }
823         }
824
825         if (mac_control->stats_mem) {
826                 pci_free_consistent(nic->pdev,
827                                     mac_control->stats_mem_sz,
828                                     mac_control->stats_mem,
829                                     mac_control->stats_mem_phy);
830         }
831         if (nic->ufo_in_band_v)
832                 kfree(nic->ufo_in_band_v);
833 }
834
835 /**
836  * s2io_verify_pci_mode -
837  */
838
839 static int s2io_verify_pci_mode(nic_t *nic)
840 {
841         XENA_dev_config_t __iomem *bar0 = nic->bar0;
842         register u64 val64 = 0;
843         int     mode;
844
845         val64 = readq(&bar0->pci_mode);
846         mode = (u8)GET_PCI_MODE(val64);
847
848         if ( val64 & PCI_MODE_UNKNOWN_MODE)
849                 return -1;      /* Unknown PCI mode */
850         return mode;
851 }
852
853 #define NEC_VENID   0x1033
854 #define NEC_DEVID   0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
856 {
857         struct pci_dev *tdev = NULL;
858         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
860                         if (tdev->bus == s2io_pdev->bus->parent)
861                                 pci_dev_put(tdev);
862                                 return 1;
863                 }
864         }
865         return 0;
866 }
867
868 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
869 /**
870  * s2io_print_pci_mode -
871  */
872 static int s2io_print_pci_mode(nic_t *nic)
873 {
874         XENA_dev_config_t __iomem *bar0 = nic->bar0;
875         register u64 val64 = 0;
876         int     mode;
877         struct config_param *config = &nic->config;
878
879         val64 = readq(&bar0->pci_mode);
880         mode = (u8)GET_PCI_MODE(val64);
881
882         if ( val64 & PCI_MODE_UNKNOWN_MODE)
883                 return -1;      /* Unknown PCI mode */
884
885         config->bus_speed = bus_speed[mode];
886
887         if (s2io_on_nec_bridge(nic->pdev)) {
888                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
889                                                         nic->dev->name);
890                 return mode;
891         }
892
893         if (val64 & PCI_MODE_32_BITS) {
894                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
895         } else {
896                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
897         }
898
899         switch(mode) {
900                 case PCI_MODE_PCI_33:
901                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
902                         break;
903                 case PCI_MODE_PCI_66:
904                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
905                         break;
906                 case PCI_MODE_PCIX_M1_66:
907                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
908                         break;
909                 case PCI_MODE_PCIX_M1_100:
910                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
911                         break;
912                 case PCI_MODE_PCIX_M1_133:
913                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
914                         break;
915                 case PCI_MODE_PCIX_M2_66:
916                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
917                         break;
918                 case PCI_MODE_PCIX_M2_100:
919                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
920                         break;
921                 case PCI_MODE_PCIX_M2_133:
922                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
923                         break;
924                 default:
925                         return -1;      /* Unsupported bus speed */
926         }
927
928         return mode;
929 }
930
931 /**
932  *  init_nic - Initialization of hardware
933  *  @nic: device peivate variable
934  *  Description: The function sequentially configures every block
935  *  of the H/W from their reset values.
936  *  Return Value:  SUCCESS on success and
937  *  '-1' on failure (endian settings incorrect).
938  */
939
940 static int init_nic(struct s2io_nic *nic)
941 {
942         XENA_dev_config_t __iomem *bar0 = nic->bar0;
943         struct net_device *dev = nic->dev;
944         register u64 val64 = 0;
945         void __iomem *add;
946         u32 time;
947         int i, j;
948         mac_info_t *mac_control;
949         struct config_param *config;
950         int dtx_cnt = 0;
951         unsigned long long mem_share;
952         int mem_size;
953
954         mac_control = &nic->mac_control;
955         config = &nic->config;
956
957         /* to set the swapper controle on the card */
958         if(s2io_set_swapper(nic)) {
959                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
960                 return -1;
961         }
962
963         /*
964          * Herc requires EOI to be removed from reset before XGXS, so..
965          */
966         if (nic->device_type & XFRAME_II_DEVICE) {
967                 val64 = 0xA500000000ULL;
968                 writeq(val64, &bar0->sw_reset);
969                 msleep(500);
970                 val64 = readq(&bar0->sw_reset);
971         }
972
973         /* Remove XGXS from reset state */
974         val64 = 0;
975         writeq(val64, &bar0->sw_reset);
976         msleep(500);
977         val64 = readq(&bar0->sw_reset);
978
979         /*  Enable Receiving broadcasts */
980         add = &bar0->mac_cfg;
981         val64 = readq(&bar0->mac_cfg);
982         val64 |= MAC_RMAC_BCAST_ENABLE;
983         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984         writel((u32) val64, add);
985         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986         writel((u32) (val64 >> 32), (add + 4));
987
988         /* Read registers in all blocks */
989         val64 = readq(&bar0->mac_int_mask);
990         val64 = readq(&bar0->mc_int_mask);
991         val64 = readq(&bar0->xgxs_int_mask);
992
993         /*  Set MTU */
994         val64 = dev->mtu;
995         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
996
997         if (nic->device_type & XFRAME_II_DEVICE) {
998                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
999                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1000                                           &bar0->dtx_control, UF);
1001                         if (dtx_cnt & 0x1)
1002                                 msleep(1); /* Necessary!! */
1003                         dtx_cnt++;
1004                 }
1005         } else {
1006                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008                                           &bar0->dtx_control, UF);
1009                         val64 = readq(&bar0->dtx_control);
1010                         dtx_cnt++;
1011                 }
1012         }
1013
1014         /*  Tx DMA Initialization */
1015         val64 = 0;
1016         writeq(val64, &bar0->tx_fifo_partition_0);
1017         writeq(val64, &bar0->tx_fifo_partition_1);
1018         writeq(val64, &bar0->tx_fifo_partition_2);
1019         writeq(val64, &bar0->tx_fifo_partition_3);
1020
1021
1022         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1023                 val64 |=
1024                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1026                                     ((i * 32) + 5), 3);
1027
1028                 if (i == (config->tx_fifo_num - 1)) {
1029                         if (i % 2 == 0)
1030                                 i++;
1031                 }
1032
1033                 switch (i) {
1034                 case 1:
1035                         writeq(val64, &bar0->tx_fifo_partition_0);
1036                         val64 = 0;
1037                         break;
1038                 case 3:
1039                         writeq(val64, &bar0->tx_fifo_partition_1);
1040                         val64 = 0;
1041                         break;
1042                 case 5:
1043                         writeq(val64, &bar0->tx_fifo_partition_2);
1044                         val64 = 0;
1045                         break;
1046                 case 7:
1047                         writeq(val64, &bar0->tx_fifo_partition_3);
1048                         break;
1049                 }
1050         }
1051
1052         /*
1053          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055          */
1056         if ((nic->device_type == XFRAME_I_DEVICE) &&
1057                 (get_xena_rev_id(nic->pdev) < 4))
1058                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1059
1060         val64 = readq(&bar0->tx_fifo_partition_0);
1061         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1063
1064         /*
1065          * Initialization of Tx_PA_CONFIG register to ignore packet
1066          * integrity checking.
1067          */
1068         val64 = readq(&bar0->tx_pa_cfg);
1069         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071         writeq(val64, &bar0->tx_pa_cfg);
1072
1073         /* Rx DMA intialization. */
1074         val64 = 0;
1075         for (i = 0; i < config->rx_ring_num; i++) {
1076                 val64 |=
1077                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1078                          3);
1079         }
1080         writeq(val64, &bar0->rx_queue_priority);
1081
1082         /*
1083          * Allocating equal share of memory to all the
1084          * configured Rings.
1085          */
1086         val64 = 0;
1087         if (nic->device_type & XFRAME_II_DEVICE)
1088                 mem_size = 32;
1089         else
1090                 mem_size = 64;
1091
1092         for (i = 0; i < config->rx_ring_num; i++) {
1093                 switch (i) {
1094                 case 0:
1095                         mem_share = (mem_size / config->rx_ring_num +
1096                                      mem_size % config->rx_ring_num);
1097                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1098                         continue;
1099                 case 1:
1100                         mem_share = (mem_size / config->rx_ring_num);
1101                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1102                         continue;
1103                 case 2:
1104                         mem_share = (mem_size / config->rx_ring_num);
1105                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1106                         continue;
1107                 case 3:
1108                         mem_share = (mem_size / config->rx_ring_num);
1109                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1110                         continue;
1111                 case 4:
1112                         mem_share = (mem_size / config->rx_ring_num);
1113                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1114                         continue;
1115                 case 5:
1116                         mem_share = (mem_size / config->rx_ring_num);
1117                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1118                         continue;
1119                 case 6:
1120                         mem_share = (mem_size / config->rx_ring_num);
1121                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1122                         continue;
1123                 case 7:
1124                         mem_share = (mem_size / config->rx_ring_num);
1125                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1126                         continue;
1127                 }
1128         }
1129         writeq(val64, &bar0->rx_queue_cfg);
1130
1131         /*
1132          * Filling Tx round robin registers
1133          * as per the number of FIFOs
1134          */
1135         switch (config->tx_fifo_num) {
1136         case 1:
1137                 val64 = 0x0000000000000000ULL;
1138                 writeq(val64, &bar0->tx_w_round_robin_0);
1139                 writeq(val64, &bar0->tx_w_round_robin_1);
1140                 writeq(val64, &bar0->tx_w_round_robin_2);
1141                 writeq(val64, &bar0->tx_w_round_robin_3);
1142                 writeq(val64, &bar0->tx_w_round_robin_4);
1143                 break;
1144         case 2:
1145                 val64 = 0x0000010000010000ULL;
1146                 writeq(val64, &bar0->tx_w_round_robin_0);
1147                 val64 = 0x0100000100000100ULL;
1148                 writeq(val64, &bar0->tx_w_round_robin_1);
1149                 val64 = 0x0001000001000001ULL;
1150                 writeq(val64, &bar0->tx_w_round_robin_2);
1151                 val64 = 0x0000010000010000ULL;
1152                 writeq(val64, &bar0->tx_w_round_robin_3);
1153                 val64 = 0x0100000000000000ULL;
1154                 writeq(val64, &bar0->tx_w_round_robin_4);
1155                 break;
1156         case 3:
1157                 val64 = 0x0001000102000001ULL;
1158                 writeq(val64, &bar0->tx_w_round_robin_0);
1159                 val64 = 0x0001020000010001ULL;
1160                 writeq(val64, &bar0->tx_w_round_robin_1);
1161                 val64 = 0x0200000100010200ULL;
1162                 writeq(val64, &bar0->tx_w_round_robin_2);
1163                 val64 = 0x0001000102000001ULL;
1164                 writeq(val64, &bar0->tx_w_round_robin_3);
1165                 val64 = 0x0001020000000000ULL;
1166                 writeq(val64, &bar0->tx_w_round_robin_4);
1167                 break;
1168         case 4:
1169                 val64 = 0x0001020300010200ULL;
1170                 writeq(val64, &bar0->tx_w_round_robin_0);
1171                 val64 = 0x0100000102030001ULL;
1172                 writeq(val64, &bar0->tx_w_round_robin_1);
1173                 val64 = 0x0200010000010203ULL;
1174                 writeq(val64, &bar0->tx_w_round_robin_2);
1175                 val64 = 0x0001020001000001ULL;
1176                 writeq(val64, &bar0->tx_w_round_robin_3);
1177                 val64 = 0x0203000100000000ULL;
1178                 writeq(val64, &bar0->tx_w_round_robin_4);
1179                 break;
1180         case 5:
1181                 val64 = 0x0001000203000102ULL;
1182                 writeq(val64, &bar0->tx_w_round_robin_0);
1183                 val64 = 0x0001020001030004ULL;
1184                 writeq(val64, &bar0->tx_w_round_robin_1);
1185                 val64 = 0x0001000203000102ULL;
1186                 writeq(val64, &bar0->tx_w_round_robin_2);
1187                 val64 = 0x0001020001030004ULL;
1188                 writeq(val64, &bar0->tx_w_round_robin_3);
1189                 val64 = 0x0001000000000000ULL;
1190                 writeq(val64, &bar0->tx_w_round_robin_4);
1191                 break;
1192         case 6:
1193                 val64 = 0x0001020304000102ULL;
1194                 writeq(val64, &bar0->tx_w_round_robin_0);
1195                 val64 = 0x0304050001020001ULL;
1196                 writeq(val64, &bar0->tx_w_round_robin_1);
1197                 val64 = 0x0203000100000102ULL;
1198                 writeq(val64, &bar0->tx_w_round_robin_2);
1199                 val64 = 0x0304000102030405ULL;
1200                 writeq(val64, &bar0->tx_w_round_robin_3);
1201                 val64 = 0x0001000200000000ULL;
1202                 writeq(val64, &bar0->tx_w_round_robin_4);
1203                 break;
1204         case 7:
1205                 val64 = 0x0001020001020300ULL;
1206                 writeq(val64, &bar0->tx_w_round_robin_0);
1207                 val64 = 0x0102030400010203ULL;
1208                 writeq(val64, &bar0->tx_w_round_robin_1);
1209                 val64 = 0x0405060001020001ULL;
1210                 writeq(val64, &bar0->tx_w_round_robin_2);
1211                 val64 = 0x0304050000010200ULL;
1212                 writeq(val64, &bar0->tx_w_round_robin_3);
1213                 val64 = 0x0102030000000000ULL;
1214                 writeq(val64, &bar0->tx_w_round_robin_4);
1215                 break;
1216         case 8:
1217                 val64 = 0x0001020300040105ULL;
1218                 writeq(val64, &bar0->tx_w_round_robin_0);
1219                 val64 = 0x0200030106000204ULL;
1220                 writeq(val64, &bar0->tx_w_round_robin_1);
1221                 val64 = 0x0103000502010007ULL;
1222                 writeq(val64, &bar0->tx_w_round_robin_2);
1223                 val64 = 0x0304010002060500ULL;
1224                 writeq(val64, &bar0->tx_w_round_robin_3);
1225                 val64 = 0x0103020400000000ULL;
1226                 writeq(val64, &bar0->tx_w_round_robin_4);
1227                 break;
1228         }
1229
1230         /* Enable all configured Tx FIFO partitions */
1231         val64 = readq(&bar0->tx_fifo_partition_0);
1232         val64 |= (TX_FIFO_PARTITION_EN);
1233         writeq(val64, &bar0->tx_fifo_partition_0);
1234
1235         /* Filling the Rx round robin registers as per the
1236          * number of Rings and steering based on QoS.
1237          */
1238         switch (config->rx_ring_num) {
1239         case 1:
1240                 val64 = 0x8080808080808080ULL;
1241                 writeq(val64, &bar0->rts_qos_steering);
1242                 break;
1243         case 2:
1244                 val64 = 0x0000010000010000ULL;
1245                 writeq(val64, &bar0->rx_w_round_robin_0);
1246                 val64 = 0x0100000100000100ULL;
1247                 writeq(val64, &bar0->rx_w_round_robin_1);
1248                 val64 = 0x0001000001000001ULL;
1249                 writeq(val64, &bar0->rx_w_round_robin_2);
1250                 val64 = 0x0000010000010000ULL;
1251                 writeq(val64, &bar0->rx_w_round_robin_3);
1252                 val64 = 0x0100000000000000ULL;
1253                 writeq(val64, &bar0->rx_w_round_robin_4);
1254
1255                 val64 = 0x8080808040404040ULL;
1256                 writeq(val64, &bar0->rts_qos_steering);
1257                 break;
1258         case 3:
1259                 val64 = 0x0001000102000001ULL;
1260                 writeq(val64, &bar0->rx_w_round_robin_0);
1261                 val64 = 0x0001020000010001ULL;
1262                 writeq(val64, &bar0->rx_w_round_robin_1);
1263                 val64 = 0x0200000100010200ULL;
1264                 writeq(val64, &bar0->rx_w_round_robin_2);
1265                 val64 = 0x0001000102000001ULL;
1266                 writeq(val64, &bar0->rx_w_round_robin_3);
1267                 val64 = 0x0001020000000000ULL;
1268                 writeq(val64, &bar0->rx_w_round_robin_4);
1269
1270                 val64 = 0x8080804040402020ULL;
1271                 writeq(val64, &bar0->rts_qos_steering);
1272                 break;
1273         case 4:
1274                 val64 = 0x0001020300010200ULL;
1275                 writeq(val64, &bar0->rx_w_round_robin_0);
1276                 val64 = 0x0100000102030001ULL;
1277                 writeq(val64, &bar0->rx_w_round_robin_1);
1278                 val64 = 0x0200010000010203ULL;
1279                 writeq(val64, &bar0->rx_w_round_robin_2);
1280                 val64 = 0x0001020001000001ULL;
1281                 writeq(val64, &bar0->rx_w_round_robin_3);
1282                 val64 = 0x0203000100000000ULL;
1283                 writeq(val64, &bar0->rx_w_round_robin_4);
1284
1285                 val64 = 0x8080404020201010ULL;
1286                 writeq(val64, &bar0->rts_qos_steering);
1287                 break;
1288         case 5:
1289                 val64 = 0x0001000203000102ULL;
1290                 writeq(val64, &bar0->rx_w_round_robin_0);
1291                 val64 = 0x0001020001030004ULL;
1292                 writeq(val64, &bar0->rx_w_round_robin_1);
1293                 val64 = 0x0001000203000102ULL;
1294                 writeq(val64, &bar0->rx_w_round_robin_2);
1295                 val64 = 0x0001020001030004ULL;
1296                 writeq(val64, &bar0->rx_w_round_robin_3);
1297                 val64 = 0x0001000000000000ULL;
1298                 writeq(val64, &bar0->rx_w_round_robin_4);
1299
1300                 val64 = 0x8080404020201008ULL;
1301                 writeq(val64, &bar0->rts_qos_steering);
1302                 break;
1303         case 6:
1304                 val64 = 0x0001020304000102ULL;
1305                 writeq(val64, &bar0->rx_w_round_robin_0);
1306                 val64 = 0x0304050001020001ULL;
1307                 writeq(val64, &bar0->rx_w_round_robin_1);
1308                 val64 = 0x0203000100000102ULL;
1309                 writeq(val64, &bar0->rx_w_round_robin_2);
1310                 val64 = 0x0304000102030405ULL;
1311                 writeq(val64, &bar0->rx_w_round_robin_3);
1312                 val64 = 0x0001000200000000ULL;
1313                 writeq(val64, &bar0->rx_w_round_robin_4);
1314
1315                 val64 = 0x8080404020100804ULL;
1316                 writeq(val64, &bar0->rts_qos_steering);
1317                 break;
1318         case 7:
1319                 val64 = 0x0001020001020300ULL;
1320                 writeq(val64, &bar0->rx_w_round_robin_0);
1321                 val64 = 0x0102030400010203ULL;
1322                 writeq(val64, &bar0->rx_w_round_robin_1);
1323                 val64 = 0x0405060001020001ULL;
1324                 writeq(val64, &bar0->rx_w_round_robin_2);
1325                 val64 = 0x0304050000010200ULL;
1326                 writeq(val64, &bar0->rx_w_round_robin_3);
1327                 val64 = 0x0102030000000000ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_4);
1329
1330                 val64 = 0x8080402010080402ULL;
1331                 writeq(val64, &bar0->rts_qos_steering);
1332                 break;
1333         case 8:
1334                 val64 = 0x0001020300040105ULL;
1335                 writeq(val64, &bar0->rx_w_round_robin_0);
1336                 val64 = 0x0200030106000204ULL;
1337                 writeq(val64, &bar0->rx_w_round_robin_1);
1338                 val64 = 0x0103000502010007ULL;
1339                 writeq(val64, &bar0->rx_w_round_robin_2);
1340                 val64 = 0x0304010002060500ULL;
1341                 writeq(val64, &bar0->rx_w_round_robin_3);
1342                 val64 = 0x0103020400000000ULL;
1343                 writeq(val64, &bar0->rx_w_round_robin_4);
1344
1345                 val64 = 0x8040201008040201ULL;
1346                 writeq(val64, &bar0->rts_qos_steering);
1347                 break;
1348         }
1349
1350         /* UDP Fix */
1351         val64 = 0;
1352         for (i = 0; i < 8; i++)
1353                 writeq(val64, &bar0->rts_frm_len_n[i]);
1354
1355         /* Set the default rts frame length for the rings configured */
1356         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357         for (i = 0 ; i < config->rx_ring_num ; i++)
1358                 writeq(val64, &bar0->rts_frm_len_n[i]);
1359
1360         /* Set the frame length for the configured rings
1361          * desired by the user
1362          */
1363         for (i = 0; i < config->rx_ring_num; i++) {
1364                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365                  * specified frame length steering.
1366                  * If the user provides the frame length then program
1367                  * the rts_frm_len register for those values or else
1368                  * leave it as it is.
1369                  */
1370                 if (rts_frm_len[i] != 0) {
1371                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372                                 &bar0->rts_frm_len_n[i]);
1373                 }
1374         }
1375
1376         /* Program statistics memory */
1377         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1378
1379         if (nic->device_type == XFRAME_II_DEVICE) {
1380                 val64 = STAT_BC(0x320);
1381                 writeq(val64, &bar0->stat_byte_cnt);
1382         }
1383
1384         /*
1385          * Initializing the sampling rate for the device to calculate the
1386          * bandwidth utilization.
1387          */
1388         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390         writeq(val64, &bar0->mac_link_util);
1391
1392
1393         /*
1394          * Initializing the Transmit and Receive Traffic Interrupt
1395          * Scheme.
1396          */
1397         /*
1398          * TTI Initialization. Default Tx timer gets us about
1399          * 250 interrupts per sec. Continuous interrupts are enabled
1400          * by default.
1401          */
1402         if (nic->device_type == XFRAME_II_DEVICE) {
1403                 int count = (nic->config.bus_speed * 125)/2;
1404                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1405         } else {
1406
1407                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408         }
1409         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1410             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1411             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1412                 if (use_continuous_tx_intrs)
1413                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1414         writeq(val64, &bar0->tti_data1_mem);
1415
1416         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1418             TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1419         writeq(val64, &bar0->tti_data2_mem);
1420
1421         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422         writeq(val64, &bar0->tti_command_mem);
1423
1424         /*
1425          * Once the operation completes, the Strobe bit of the command
1426          * register will be reset. We poll for this particular condition
1427          * We wait for a maximum of 500ms for the operation to complete,
1428          * if it's not complete by then we return error.
1429          */
1430         time = 0;
1431         while (TRUE) {
1432                 val64 = readq(&bar0->tti_command_mem);
1433                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1434                         break;
1435                 }
1436                 if (time > 10) {
1437                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1438                                   dev->name);
1439                         return -1;
1440                 }
1441                 msleep(50);
1442                 time++;
1443         }
1444
1445         if (nic->config.bimodal) {
1446                 int k = 0;
1447                 for (k = 0; k < config->rx_ring_num; k++) {
1448                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450                         writeq(val64, &bar0->tti_command_mem);
1451
1452                 /*
1453                  * Once the operation completes, the Strobe bit of the command
1454                  * register will be reset. We poll for this particular condition
1455                  * We wait for a maximum of 500ms for the operation to complete,
1456                  * if it's not complete by then we return error.
1457                 */
1458                         time = 0;
1459                         while (TRUE) {
1460                                 val64 = readq(&bar0->tti_command_mem);
1461                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1462                                         break;
1463                                 }
1464                                 if (time > 10) {
1465                                         DBG_PRINT(ERR_DBG,
1466                                                 "%s: TTI init Failed\n",
1467                                         dev->name);
1468                                         return -1;
1469                                 }
1470                                 time++;
1471                                 msleep(50);
1472                         }
1473                 }
1474         } else {
1475
1476                 /* RTI Initialization */
1477                 if (nic->device_type == XFRAME_II_DEVICE) {
1478                         /*
1479                          * Programmed to generate Apprx 500 Intrs per
1480                          * second
1481                          */
1482                         int count = (nic->config.bus_speed * 125)/4;
1483                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1484                 } else {
1485                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486                 }
1487                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1490
1491                 writeq(val64, &bar0->rti_data1_mem);
1492
1493                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1494                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495                 if (nic->intr_type == MSI_X)
1496                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1498                 else
1499                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1501                 writeq(val64, &bar0->rti_data2_mem);
1502
1503                 for (i = 0; i < config->rx_ring_num; i++) {
1504                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505                                         | RTI_CMD_MEM_OFFSET(i);
1506                         writeq(val64, &bar0->rti_command_mem);
1507
1508                         /*
1509                          * Once the operation completes, the Strobe bit of the
1510                          * command register will be reset. We poll for this
1511                          * particular condition. We wait for a maximum of 500ms
1512                          * for the operation to complete, if it's not complete
1513                          * by then we return error.
1514                          */
1515                         time = 0;
1516                         while (TRUE) {
1517                                 val64 = readq(&bar0->rti_command_mem);
1518                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1519                                         break;
1520                                 }
1521                                 if (time > 10) {
1522                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1523                                                   dev->name);
1524                                         return -1;
1525                                 }
1526                                 time++;
1527                                 msleep(50);
1528                         }
1529                 }
1530         }
1531
1532         /*
1533          * Initializing proper values as Pause threshold into all
1534          * the 8 Queues on Rx side.
1535          */
1536         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1538
1539         /* Disable RMAC PAD STRIPPING */
1540         add = &bar0->mac_cfg;
1541         val64 = readq(&bar0->mac_cfg);
1542         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544         writel((u32) (val64), add);
1545         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546         writel((u32) (val64 >> 32), (add + 4));
1547         val64 = readq(&bar0->mac_cfg);
1548
1549         /* Enable FCS stripping by adapter */
1550         add = &bar0->mac_cfg;
1551         val64 = readq(&bar0->mac_cfg);
1552         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553         if (nic->device_type == XFRAME_II_DEVICE)
1554                 writeq(val64, &bar0->mac_cfg);
1555         else {
1556                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557                 writel((u32) (val64), add);
1558                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559                 writel((u32) (val64 >> 32), (add + 4));
1560         }
1561
1562         /*
1563          * Set the time value to be inserted in the pause frame
1564          * generated by xena.
1565          */
1566         val64 = readq(&bar0->rmac_pause_cfg);
1567         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569         writeq(val64, &bar0->rmac_pause_cfg);
1570
1571         /*
1572          * Set the Threshold Limit for Generating the pause frame
1573          * If the amount of data in any Queue exceeds ratio of
1574          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575          * pause frame is generated
1576          */
1577         val64 = 0;
1578         for (i = 0; i < 4; i++) {
1579                 val64 |=
1580                     (((u64) 0xFF00 | nic->mac_control.
1581                       mc_pause_threshold_q0q3)
1582                      << (i * 2 * 8));
1583         }
1584         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1585
1586         val64 = 0;
1587         for (i = 0; i < 4; i++) {
1588                 val64 |=
1589                     (((u64) 0xFF00 | nic->mac_control.
1590                       mc_pause_threshold_q4q7)
1591                      << (i * 2 * 8));
1592         }
1593         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1594
1595         /*
1596          * TxDMA will stop Read request if the number of read split has
1597          * exceeded the limit pointed by shared_splits
1598          */
1599         val64 = readq(&bar0->pic_control);
1600         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601         writeq(val64, &bar0->pic_control);
1602
1603         if (nic->config.bus_speed == 266) {
1604                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605                 writeq(0x0, &bar0->read_retry_delay);
1606                 writeq(0x0, &bar0->write_retry_delay);
1607         }
1608
1609         /*
1610          * Programming the Herc to split every write transaction
1611          * that does not start on an ADB to reduce disconnects.
1612          */
1613         if (nic->device_type == XFRAME_II_DEVICE) {
1614                 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1615                 writeq(val64, &bar0->misc_control);
1616                 val64 = readq(&bar0->pic_control2);
1617                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1618                 writeq(val64, &bar0->pic_control2);
1619         }
1620         if (strstr(nic->product_name, "CX4")) {
1621                 val64 = TMAC_AVG_IPG(0x17);
1622                 writeq(val64, &bar0->tmac_avg_ipg);
1623         }
1624
1625         return SUCCESS;
1626 }
1627 #define LINK_UP_DOWN_INTERRUPT          1
1628 #define MAC_RMAC_ERR_TIMER              2
1629
1630 static int s2io_link_fault_indication(nic_t *nic)
1631 {
1632         if (nic->intr_type != INTA)
1633                 return MAC_RMAC_ERR_TIMER;
1634         if (nic->device_type == XFRAME_II_DEVICE)
1635                 return LINK_UP_DOWN_INTERRUPT;
1636         else
1637                 return MAC_RMAC_ERR_TIMER;
1638 }
1639
1640 /**
1641  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1642  *  @nic: device private variable,
1643  *  @mask: A mask indicating which Intr block must be modified and,
1644  *  @flag: A flag indicating whether to enable or disable the Intrs.
1645  *  Description: This function will either disable or enable the interrupts
1646  *  depending on the flag argument. The mask argument can be used to
1647  *  enable/disable any Intr block.
1648  *  Return Value: NONE.
1649  */
1650
1651 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1652 {
1653         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1654         register u64 val64 = 0, temp64 = 0;
1655
1656         /*  Top level interrupt classification */
1657         /*  PIC Interrupts */
1658         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1659                 /*  Enable PIC Intrs in the general intr mask register */
1660                 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1661                 if (flag == ENABLE_INTRS) {
1662                         temp64 = readq(&bar0->general_int_mask);
1663                         temp64 &= ~((u64) val64);
1664                         writeq(temp64, &bar0->general_int_mask);
1665                         /*
1666                          * If Hercules adapter enable GPIO otherwise
1667                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1668                          * interrupts for now.
1669                          * TODO
1670                          */
1671                         if (s2io_link_fault_indication(nic) ==
1672                                         LINK_UP_DOWN_INTERRUPT ) {
1673                                 temp64 = readq(&bar0->pic_int_mask);
1674                                 temp64 &= ~((u64) PIC_INT_GPIO);
1675                                 writeq(temp64, &bar0->pic_int_mask);
1676                                 temp64 = readq(&bar0->gpio_int_mask);
1677                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1678                                 writeq(temp64, &bar0->gpio_int_mask);
1679                         } else {
1680                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1681                         }
1682                         /*
1683                          * No MSI Support is available presently, so TTI and
1684                          * RTI interrupts are also disabled.
1685                          */
1686                 } else if (flag == DISABLE_INTRS) {
1687                         /*
1688                          * Disable PIC Intrs in the general
1689                          * intr mask register
1690                          */
1691                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1692                         temp64 = readq(&bar0->general_int_mask);
1693                         val64 |= temp64;
1694                         writeq(val64, &bar0->general_int_mask);
1695                 }
1696         }
1697
1698         /*  DMA Interrupts */
1699         /*  Enabling/Disabling Tx DMA interrupts */
1700         if (mask & TX_DMA_INTR) {
1701                 /* Enable TxDMA Intrs in the general intr mask register */
1702                 val64 = TXDMA_INT_M;
1703                 if (flag == ENABLE_INTRS) {
1704                         temp64 = readq(&bar0->general_int_mask);
1705                         temp64 &= ~((u64) val64);
1706                         writeq(temp64, &bar0->general_int_mask);
1707                         /*
1708                          * Keep all interrupts other than PFC interrupt
1709                          * and PCC interrupt disabled in DMA level.
1710                          */
1711                         val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1712                                                       TXDMA_PCC_INT_M);
1713                         writeq(val64, &bar0->txdma_int_mask);
1714                         /*
1715                          * Enable only the MISC error 1 interrupt in PFC block
1716                          */
1717                         val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1718                         writeq(val64, &bar0->pfc_err_mask);
1719                         /*
1720                          * Enable only the FB_ECC error interrupt in PCC block
1721                          */
1722                         val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1723                         writeq(val64, &bar0->pcc_err_mask);
1724                 } else if (flag == DISABLE_INTRS) {
1725                         /*
1726                          * Disable TxDMA Intrs in the general intr mask
1727                          * register
1728                          */
1729                         writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1730                         writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1731                         temp64 = readq(&bar0->general_int_mask);
1732                         val64 |= temp64;
1733                         writeq(val64, &bar0->general_int_mask);
1734                 }
1735         }
1736
1737         /*  Enabling/Disabling Rx DMA interrupts */
1738         if (mask & RX_DMA_INTR) {
1739                 /*  Enable RxDMA Intrs in the general intr mask register */
1740                 val64 = RXDMA_INT_M;
1741                 if (flag == ENABLE_INTRS) {
1742                         temp64 = readq(&bar0->general_int_mask);
1743                         temp64 &= ~((u64) val64);
1744                         writeq(temp64, &bar0->general_int_mask);
1745                         /*
1746                          * All RxDMA block interrupts are disabled for now
1747                          * TODO
1748                          */
1749                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1750                 } else if (flag == DISABLE_INTRS) {
1751                         /*
1752                          * Disable RxDMA Intrs in the general intr mask
1753                          * register
1754                          */
1755                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1756                         temp64 = readq(&bar0->general_int_mask);
1757                         val64 |= temp64;
1758                         writeq(val64, &bar0->general_int_mask);
1759                 }
1760         }
1761
1762         /*  MAC Interrupts */
1763         /*  Enabling/Disabling MAC interrupts */
1764         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1765                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1766                 if (flag == ENABLE_INTRS) {
1767                         temp64 = readq(&bar0->general_int_mask);
1768                         temp64 &= ~((u64) val64);
1769                         writeq(temp64, &bar0->general_int_mask);
1770                         /*
1771                          * All MAC block error interrupts are disabled for now
1772                          * TODO
1773                          */
1774                 } else if (flag == DISABLE_INTRS) {
1775                         /*
1776                          * Disable MAC Intrs in the general intr mask register
1777                          */
1778                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1779                         writeq(DISABLE_ALL_INTRS,
1780                                &bar0->mac_rmac_err_mask);
1781
1782                         temp64 = readq(&bar0->general_int_mask);
1783                         val64 |= temp64;
1784                         writeq(val64, &bar0->general_int_mask);
1785                 }
1786         }
1787
1788         /*  XGXS Interrupts */
1789         if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1790                 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1791                 if (flag == ENABLE_INTRS) {
1792                         temp64 = readq(&bar0->general_int_mask);
1793                         temp64 &= ~((u64) val64);
1794                         writeq(temp64, &bar0->general_int_mask);
1795                         /*
1796                          * All XGXS block error interrupts are disabled for now
1797                          * TODO
1798                          */
1799                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1800                 } else if (flag == DISABLE_INTRS) {
1801                         /*
1802                          * Disable MC Intrs in the general intr mask register
1803                          */
1804                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1805                         temp64 = readq(&bar0->general_int_mask);
1806                         val64 |= temp64;
1807                         writeq(val64, &bar0->general_int_mask);
1808                 }
1809         }
1810
1811         /*  Memory Controller(MC) interrupts */
1812         if (mask & MC_INTR) {
1813                 val64 = MC_INT_M;
1814                 if (flag == ENABLE_INTRS) {
1815                         temp64 = readq(&bar0->general_int_mask);
1816                         temp64 &= ~((u64) val64);
1817                         writeq(temp64, &bar0->general_int_mask);
1818                         /*
1819                          * Enable all MC Intrs.
1820                          */
1821                         writeq(0x0, &bar0->mc_int_mask);
1822                         writeq(0x0, &bar0->mc_err_mask);
1823                 } else if (flag == DISABLE_INTRS) {
1824                         /*
1825                          * Disable MC Intrs in the general intr mask register
1826                          */
1827                         writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1828                         temp64 = readq(&bar0->general_int_mask);
1829                         val64 |= temp64;
1830                         writeq(val64, &bar0->general_int_mask);
1831                 }
1832         }
1833
1834
1835         /*  Tx traffic interrupts */
1836         if (mask & TX_TRAFFIC_INTR) {
1837                 val64 = TXTRAFFIC_INT_M;
1838                 if (flag == ENABLE_INTRS) {
1839                         temp64 = readq(&bar0->general_int_mask);
1840                         temp64 &= ~((u64) val64);
1841                         writeq(temp64, &bar0->general_int_mask);
1842                         /*
1843                          * Enable all the Tx side interrupts
1844                          * writing 0 Enables all 64 TX interrupt levels
1845                          */
1846                         writeq(0x0, &bar0->tx_traffic_mask);
1847                 } else if (flag == DISABLE_INTRS) {
1848                         /*
1849                          * Disable Tx Traffic Intrs in the general intr mask
1850                          * register.
1851                          */
1852                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1853                         temp64 = readq(&bar0->general_int_mask);
1854                         val64 |= temp64;
1855                         writeq(val64, &bar0->general_int_mask);
1856                 }
1857         }
1858
1859         /*  Rx traffic interrupts */
1860         if (mask & RX_TRAFFIC_INTR) {
1861                 val64 = RXTRAFFIC_INT_M;
1862                 if (flag == ENABLE_INTRS) {
1863                         temp64 = readq(&bar0->general_int_mask);
1864                         temp64 &= ~((u64) val64);
1865                         writeq(temp64, &bar0->general_int_mask);
1866                         /* writing 0 Enables all 8 RX interrupt levels */
1867                         writeq(0x0, &bar0->rx_traffic_mask);
1868                 } else if (flag == DISABLE_INTRS) {
1869                         /*
1870                          * Disable Rx Traffic Intrs in the general intr mask
1871                          * register.
1872                          */
1873                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1874                         temp64 = readq(&bar0->general_int_mask);
1875                         val64 |= temp64;
1876                         writeq(val64, &bar0->general_int_mask);
1877                 }
1878         }
1879 }
1880
1881 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1882 {
1883         int ret = 0;
1884
1885         if (flag == FALSE) {
1886                 if ((!herc && (rev_id >= 4)) || herc) {
1887                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1888                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1889                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1890                                 ret = 1;
1891                         }
1892                 }else {
1893                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1894                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1895                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1896                                 ret = 1;
1897                         }
1898                 }
1899         } else {
1900                 if ((!herc && (rev_id >= 4)) || herc) {
1901                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1902                              ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1903                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1904                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1905                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1906                                 ret = 1;
1907                         }
1908                 } else {
1909                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1910                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1911                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1912                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1913                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1914                                 ret = 1;
1915                         }
1916                 }
1917         }
1918
1919         return ret;
1920 }
1921 /**
1922  *  verify_xena_quiescence - Checks whether the H/W is ready
1923  *  @val64 :  Value read from adapter status register.
1924  *  @flag : indicates if the adapter enable bit was ever written once
1925  *  before.
1926  *  Description: Returns whether the H/W is ready to go or not. Depending
1927  *  on whether adapter enable bit was written or not the comparison
1928  *  differs and the calling function passes the input argument flag to
1929  *  indicate this.
1930  *  Return: 1 If xena is quiescence
1931  *          0 If Xena is not quiescence
1932  */
1933
1934 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1935 {
1936         int ret = 0, herc;
1937         u64 tmp64 = ~((u64) val64);
1938         int rev_id = get_xena_rev_id(sp->pdev);
1939
1940         herc = (sp->device_type == XFRAME_II_DEVICE);
1941         if (!
1942             (tmp64 &
1943              (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1944               ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1945               ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1946               ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1947               ADAPTER_STATUS_P_PLL_LOCK))) {
1948                 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1949         }
1950
1951         return ret;
1952 }
1953
1954 /**
1955  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1956  * @sp: Pointer to device specifc structure
1957  * Description :
1958  * New procedure to clear mac address reading  problems on Alpha platforms
1959  *
1960  */
1961
1962 static void fix_mac_address(nic_t * sp)
1963 {
1964         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1965         u64 val64;
1966         int i = 0;
1967
1968         while (fix_mac[i] != END_SIGN) {
1969                 writeq(fix_mac[i++], &bar0->gpio_control);
1970                 udelay(10);
1971                 val64 = readq(&bar0->gpio_control);
1972         }
1973 }
1974
1975 /**
1976  *  start_nic - Turns the device on
1977  *  @nic : device private variable.
1978  *  Description:
1979  *  This function actually turns the device on. Before this  function is
1980  *  called,all Registers are configured from their reset states
1981  *  and shared memory is allocated but the NIC is still quiescent. On
1982  *  calling this function, the device interrupts are cleared and the NIC is
1983  *  literally switched on by writing into the adapter control register.
1984  *  Return Value:
1985  *  SUCCESS on success and -1 on failure.
1986  */
1987
1988 static int start_nic(struct s2io_nic *nic)
1989 {
1990         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1991         struct net_device *dev = nic->dev;
1992         register u64 val64 = 0;
1993         u16 subid, i;
1994         mac_info_t *mac_control;
1995         struct config_param *config;
1996
1997         mac_control = &nic->mac_control;
1998         config = &nic->config;
1999
2000         /*  PRC Initialization and configuration */
2001         for (i = 0; i < config->rx_ring_num; i++) {
2002                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2003                        &bar0->prc_rxd0_n[i]);
2004
2005                 val64 = readq(&bar0->prc_ctrl_n[i]);
2006                 if (nic->config.bimodal)
2007                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2008                 if (nic->rxd_mode == RXD_MODE_1)
2009                         val64 |= PRC_CTRL_RC_ENABLED;
2010                 else
2011                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2012                 if (nic->device_type == XFRAME_II_DEVICE)
2013                         val64 |= PRC_CTRL_GROUP_READS;
2014                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2015                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2016                 writeq(val64, &bar0->prc_ctrl_n[i]);
2017         }
2018
2019         if (nic->rxd_mode == RXD_MODE_3B) {
2020                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2021                 val64 = readq(&bar0->rx_pa_cfg);
2022                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2023                 writeq(val64, &bar0->rx_pa_cfg);
2024         }
2025
2026         /*
2027          * Enabling MC-RLDRAM. After enabling the device, we timeout
2028          * for around 100ms, which is approximately the time required
2029          * for the device to be ready for operation.
2030          */
2031         val64 = readq(&bar0->mc_rldram_mrs);
2032         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2033         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2034         val64 = readq(&bar0->mc_rldram_mrs);
2035
2036         msleep(100);    /* Delay by around 100 ms. */
2037
2038         /* Enabling ECC Protection. */
2039         val64 = readq(&bar0->adapter_control);
2040         val64 &= ~ADAPTER_ECC_EN;
2041         writeq(val64, &bar0->adapter_control);
2042
2043         /*
2044          * Clearing any possible Link state change interrupts that
2045          * could have popped up just before Enabling the card.
2046          */
2047         val64 = readq(&bar0->mac_rmac_err_reg);
2048         if (val64)
2049                 writeq(val64, &bar0->mac_rmac_err_reg);
2050
2051         /*
2052          * Verify if the device is ready to be enabled, if so enable
2053          * it.
2054          */
2055         val64 = readq(&bar0->adapter_status);
2056         if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2057                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2058                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2059                           (unsigned long long) val64);
2060                 return FAILURE;
2061         }
2062
2063         /*
2064          * With some switches, link might be already up at this point.
2065          * Because of this weird behavior, when we enable laser,
2066          * we may not get link. We need to handle this. We cannot
2067          * figure out which switch is misbehaving. So we are forced to
2068          * make a global change.
2069          */
2070
2071         /* Enabling Laser. */
2072         val64 = readq(&bar0->adapter_control);
2073         val64 |= ADAPTER_EOI_TX_ON;
2074         writeq(val64, &bar0->adapter_control);
2075
2076         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2077                 /*
2078                  * Dont see link state interrupts initally on some switches,
2079                  * so directly scheduling the link state task here.
2080                  */
2081                 schedule_work(&nic->set_link_task);
2082         }
2083         /* SXE-002: Initialize link and activity LED */
2084         subid = nic->pdev->subsystem_device;
2085         if (((subid & 0xFF) >= 0x07) &&
2086             (nic->device_type == XFRAME_I_DEVICE)) {
2087                 val64 = readq(&bar0->gpio_control);
2088                 val64 |= 0x0000800000000000ULL;
2089                 writeq(val64, &bar0->gpio_control);
2090                 val64 = 0x0411040400000000ULL;
2091                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2092         }
2093
2094         return SUCCESS;
2095 }
2096 /**
2097  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2098  */
2099 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2100 {
2101         nic_t *nic = fifo_data->nic;
2102         struct sk_buff *skb;
2103         TxD_t *txds;
2104         u16 j, frg_cnt;
2105
2106         txds = txdlp;
2107         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2108                 pci_unmap_single(nic->pdev, (dma_addr_t)
2109                         txds->Buffer_Pointer, sizeof(u64),
2110                         PCI_DMA_TODEVICE);
2111                 txds++;
2112         }
2113
2114         skb = (struct sk_buff *) ((unsigned long)
2115                         txds->Host_Control);
2116         if (!skb) {
2117                 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2118                 return NULL;
2119         }
2120         pci_unmap_single(nic->pdev, (dma_addr_t)
2121                          txds->Buffer_Pointer,
2122                          skb->len - skb->data_len,
2123                          PCI_DMA_TODEVICE);
2124         frg_cnt = skb_shinfo(skb)->nr_frags;
2125         if (frg_cnt) {
2126                 txds++;
2127                 for (j = 0; j < frg_cnt; j++, txds++) {
2128                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2129                         if (!txds->Buffer_Pointer)
2130                                 break;
2131                         pci_unmap_page(nic->pdev, (dma_addr_t)
2132                                         txds->Buffer_Pointer,
2133                                        frag->size, PCI_DMA_TODEVICE);
2134                 }
2135         }
2136         memset(txdlp,0, (sizeof(TxD_t) * fifo_data->max_txds));
2137         return(skb);
2138 }
2139
2140 /**
2141  *  free_tx_buffers - Free all queued Tx buffers
2142  *  @nic : device private variable.
2143  *  Description:
2144  *  Free all queued Tx buffers.
2145  *  Return Value: void
2146 */
2147
2148 static void free_tx_buffers(struct s2io_nic *nic)
2149 {
2150         struct net_device *dev = nic->dev;
2151         struct sk_buff *skb;
2152         TxD_t *txdp;
2153         int i, j;
2154         mac_info_t *mac_control;
2155         struct config_param *config;
2156         int cnt = 0;
2157
2158         mac_control = &nic->mac_control;
2159         config = &nic->config;
2160
2161         for (i = 0; i < config->tx_fifo_num; i++) {
2162                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2163                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2164                             list_virt_addr;
2165                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2166                         if (skb) {
2167                                 dev_kfree_skb(skb);
2168                                 cnt++;
2169                         }
2170                 }
2171                 DBG_PRINT(INTR_DBG,
2172                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2173                           dev->name, cnt, i);
2174                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2175                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2176         }
2177 }
2178
2179 /**
2180  *   stop_nic -  To stop the nic
2181  *   @nic ; device private variable.
2182  *   Description:
2183  *   This function does exactly the opposite of what the start_nic()
2184  *   function does. This function is called to stop the device.
2185  *   Return Value:
2186  *   void.
2187  */
2188
2189 static void stop_nic(struct s2io_nic *nic)
2190 {
2191         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2192         register u64 val64 = 0;
2193         u16 interruptible;
2194         mac_info_t *mac_control;
2195         struct config_param *config;
2196
2197         mac_control = &nic->mac_control;
2198         config = &nic->config;
2199
2200         /*  Disable all interrupts */
2201         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2202         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2203         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2204         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2205
2206         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2207         val64 = readq(&bar0->adapter_control);
2208         val64 &= ~(ADAPTER_CNTL_EN);
2209         writeq(val64, &bar0->adapter_control);
2210 }
2211
2212 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2213 {
2214         struct net_device *dev = nic->dev;
2215         struct sk_buff *frag_list;
2216         void *tmp;
2217
2218         /* Buffer-1 receives L3/L4 headers */
2219         ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2220                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2221                         PCI_DMA_FROMDEVICE);
2222
2223         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2224         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2225         if (skb_shinfo(skb)->frag_list == NULL) {
2226                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2227                 return -ENOMEM ;
2228         }
2229         frag_list = skb_shinfo(skb)->frag_list;
2230         frag_list->next = NULL;
2231         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2232         frag_list->data = tmp;
2233         frag_list->tail = tmp;
2234
2235         /* Buffer-2 receives L4 data payload */
2236         ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2237                                 frag_list->data, dev->mtu,
2238                                 PCI_DMA_FROMDEVICE);
2239         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2240         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2241
2242         return SUCCESS;
2243 }
2244
2245 /**
2246  *  fill_rx_buffers - Allocates the Rx side skbs
2247  *  @nic:  device private variable
2248  *  @ring_no: ring number
2249  *  Description:
2250  *  The function allocates Rx side skbs and puts the physical
2251  *  address of these buffers into the RxD buffer pointers, so that the NIC
2252  *  can DMA the received frame into these locations.
2253  *  The NIC supports 3 receive modes, viz
2254  *  1. single buffer,
2255  *  2. three buffer and
2256  *  3. Five buffer modes.
2257  *  Each mode defines how many fragments the received frame will be split
2258  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2259  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2260  *  is split into 3 fragments. As of now only single buffer mode is
2261  *  supported.
2262  *   Return Value:
2263  *  SUCCESS on success or an appropriate -ve value on failure.
2264  */
2265
2266 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2267 {
2268         struct net_device *dev = nic->dev;
2269         struct sk_buff *skb;
2270         RxD_t *rxdp;
2271         int off, off1, size, block_no, block_no1;
2272         u32 alloc_tab = 0;
2273         u32 alloc_cnt;
2274         mac_info_t *mac_control;
2275         struct config_param *config;
2276         u64 tmp;
2277         buffAdd_t *ba;
2278         unsigned long flags;
2279         RxD_t *first_rxdp = NULL;
2280
2281         mac_control = &nic->mac_control;
2282         config = &nic->config;
2283         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2284             atomic_read(&nic->rx_bufs_left[ring_no]);
2285
2286         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2287         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2288         while (alloc_tab < alloc_cnt) {
2289                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2290                     block_index;
2291                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2292
2293                 rxdp = mac_control->rings[ring_no].
2294                                 rx_blocks[block_no].rxds[off].virt_addr;
2295
2296                 if ((block_no == block_no1) && (off == off1) &&
2297                                         (rxdp->Host_Control)) {
2298                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2299                                   dev->name);
2300                         DBG_PRINT(INTR_DBG, " info equated\n");
2301                         goto end;
2302                 }
2303                 if (off && (off == rxd_count[nic->rxd_mode])) {
2304                         mac_control->rings[ring_no].rx_curr_put_info.
2305                             block_index++;
2306                         if (mac_control->rings[ring_no].rx_curr_put_info.
2307                             block_index == mac_control->rings[ring_no].
2308                                         block_count)
2309                                 mac_control->rings[ring_no].rx_curr_put_info.
2310                                         block_index = 0;
2311                         block_no = mac_control->rings[ring_no].
2312                                         rx_curr_put_info.block_index;
2313                         if (off == rxd_count[nic->rxd_mode])
2314                                 off = 0;
2315                         mac_control->rings[ring_no].rx_curr_put_info.
2316                                 offset = off;
2317                         rxdp = mac_control->rings[ring_no].
2318                                 rx_blocks[block_no].block_virt_addr;
2319                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2320                                   dev->name, rxdp);
2321                 }
2322                 if(!napi) {
2323                         spin_lock_irqsave(&nic->put_lock, flags);
2324                         mac_control->rings[ring_no].put_pos =
2325                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2326                         spin_unlock_irqrestore(&nic->put_lock, flags);
2327                 } else {
2328                         mac_control->rings[ring_no].put_pos =
2329                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2330                 }
2331                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2332                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2333                                 (rxdp->Control_2 & BIT(0)))) {
2334                         mac_control->rings[ring_no].rx_curr_put_info.
2335                                         offset = off;
2336                         goto end;
2337                 }
2338                 /* calculate size of skb based on ring mode */
2339                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2340                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2341                 if (nic->rxd_mode == RXD_MODE_1)
2342                         size += NET_IP_ALIGN;
2343                 else if (nic->rxd_mode == RXD_MODE_3B)
2344                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2345                 else
2346                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2347
2348                 /* allocate skb */
2349                 skb = dev_alloc_skb(size);
2350                 if(!skb) {
2351                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2352                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2353                         if (first_rxdp) {
2354                                 wmb();
2355                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2356                         }
2357                         return -ENOMEM ;
2358                 }
2359                 if (nic->rxd_mode == RXD_MODE_1) {
2360                         /* 1 buffer mode - normal operation mode */
2361                         memset(rxdp, 0, sizeof(RxD1_t));
2362                         skb_reserve(skb, NET_IP_ALIGN);
2363                         ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2364                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2365                                 PCI_DMA_FROMDEVICE);
2366                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2367
2368                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2369                         /*
2370                          * 2 or 3 buffer mode -
2371                          * Both 2 buffer mode and 3 buffer mode provides 128
2372                          * byte aligned receive buffers.
2373                          *
2374                          * 3 buffer mode provides header separation where in
2375                          * skb->data will have L3/L4 headers where as
2376                          * skb_shinfo(skb)->frag_list will have the L4 data
2377                          * payload
2378                          */
2379
2380                         memset(rxdp, 0, sizeof(RxD3_t));
2381                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2382                         skb_reserve(skb, BUF0_LEN);
2383                         tmp = (u64)(unsigned long) skb->data;
2384                         tmp += ALIGN_SIZE;
2385                         tmp &= ~ALIGN_SIZE;
2386                         skb->data = (void *) (unsigned long)tmp;
2387                         skb->tail = (void *) (unsigned long)tmp;
2388
2389                         if (!(((RxD3_t*)rxdp)->Buffer0_ptr))
2390                                 ((RxD3_t*)rxdp)->Buffer0_ptr =
2391                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2392                                            PCI_DMA_FROMDEVICE);
2393                         else
2394                                 pci_dma_sync_single_for_device(nic->pdev,
2395                                     (dma_addr_t) ((RxD3_t*)rxdp)->Buffer0_ptr,
2396                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2397                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2398                         if (nic->rxd_mode == RXD_MODE_3B) {
2399                                 /* Two buffer mode */
2400
2401                                 /*
2402                                  * Buffer2 will have L3/L4 header plus
2403                                  * L4 payload
2404                                  */
2405                                 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2406                                 (nic->pdev, skb->data, dev->mtu + 4,
2407                                                 PCI_DMA_FROMDEVICE);
2408
2409                                 /* Buffer-1 will be dummy buffer. Not used */
2410                                 if (!(((RxD3_t*)rxdp)->Buffer1_ptr)) {
2411                                         ((RxD3_t*)rxdp)->Buffer1_ptr =
2412                                                 pci_map_single(nic->pdev,
2413                                                 ba->ba_1, BUF1_LEN,
2414                                                 PCI_DMA_FROMDEVICE);
2415                                 }
2416                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2417                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2418                                                                 (dev->mtu + 4);
2419                         } else {
2420                                 /* 3 buffer mode */
2421                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2422                                         dev_kfree_skb_irq(skb);
2423                                         if (first_rxdp) {
2424                                                 wmb();
2425                                                 first_rxdp->Control_1 |=
2426                                                         RXD_OWN_XENA;
2427                                         }
2428                                         return -ENOMEM ;
2429                                 }
2430                         }
2431                         rxdp->Control_2 |= BIT(0);
2432                 }
2433                 rxdp->Host_Control = (unsigned long) (skb);
2434                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2435                         rxdp->Control_1 |= RXD_OWN_XENA;
2436                 off++;
2437                 if (off == (rxd_count[nic->rxd_mode] + 1))
2438                         off = 0;
2439                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2440
2441                 rxdp->Control_2 |= SET_RXD_MARKER;
2442                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2443                         if (first_rxdp) {
2444                                 wmb();
2445                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2446                         }
2447                         first_rxdp = rxdp;
2448                 }
2449                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2450                 alloc_tab++;
2451         }
2452
2453       end:
2454         /* Transfer ownership of first descriptor to adapter just before
2455          * exiting. Before that, use memory barrier so that ownership
2456          * and other fields are seen by adapter correctly.
2457          */
2458         if (first_rxdp) {
2459                 wmb();
2460                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2461         }
2462
2463         return SUCCESS;
2464 }
2465
2466 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2467 {
2468         struct net_device *dev = sp->dev;
2469         int j;
2470         struct sk_buff *skb;
2471         RxD_t *rxdp;
2472         mac_info_t *mac_control;
2473         buffAdd_t *ba;
2474
2475         mac_control = &sp->mac_control;
2476         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2477                 rxdp = mac_control->rings[ring_no].
2478                                 rx_blocks[blk].rxds[j].virt_addr;
2479                 skb = (struct sk_buff *)
2480                         ((unsigned long) rxdp->Host_Control);
2481                 if (!skb) {
2482                         continue;
2483                 }
2484                 if (sp->rxd_mode == RXD_MODE_1) {
2485                         pci_unmap_single(sp->pdev, (dma_addr_t)
2486                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2487                                  dev->mtu +
2488                                  HEADER_ETHERNET_II_802_3_SIZE
2489                                  + HEADER_802_2_SIZE +
2490                                  HEADER_SNAP_SIZE,
2491                                  PCI_DMA_FROMDEVICE);
2492                         memset(rxdp, 0, sizeof(RxD1_t));
2493                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2494                         ba = &mac_control->rings[ring_no].
2495                                 ba[blk][j];
2496                         pci_unmap_single(sp->pdev, (dma_addr_t)
2497                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2498                                  BUF0_LEN,
2499                                  PCI_DMA_FROMDEVICE);
2500                         pci_unmap_single(sp->pdev, (dma_addr_t)
2501                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2502                                  BUF1_LEN,
2503                                  PCI_DMA_FROMDEVICE);
2504                         pci_unmap_single(sp->pdev, (dma_addr_t)
2505                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2506                                  dev->mtu + 4,
2507                                  PCI_DMA_FROMDEVICE);
2508                         memset(rxdp, 0, sizeof(RxD3_t));
2509                 } else {
2510                         pci_unmap_single(sp->pdev, (dma_addr_t)
2511                                 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2512                                 PCI_DMA_FROMDEVICE);
2513                         pci_unmap_single(sp->pdev, (dma_addr_t)
2514                                 ((RxD3_t*)rxdp)->Buffer1_ptr,
2515                                 l3l4hdr_size + 4,
2516                                 PCI_DMA_FROMDEVICE);
2517                         pci_unmap_single(sp->pdev, (dma_addr_t)
2518                                 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2519                                 PCI_DMA_FROMDEVICE);
2520                         memset(rxdp, 0, sizeof(RxD3_t));
2521                 }
2522                 dev_kfree_skb(skb);
2523                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2524         }
2525 }
2526
2527 /**
2528  *  free_rx_buffers - Frees all Rx buffers
2529  *  @sp: device private variable.
2530  *  Description:
2531  *  This function will free all Rx buffers allocated by host.
2532  *  Return Value:
2533  *  NONE.
2534  */
2535
2536 static void free_rx_buffers(struct s2io_nic *sp)
2537 {
2538         struct net_device *dev = sp->dev;
2539         int i, blk = 0, buf_cnt = 0;
2540         mac_info_t *mac_control;
2541         struct config_param *config;
2542
2543         mac_control = &sp->mac_control;
2544         config = &sp->config;
2545
2546         for (i = 0; i < config->rx_ring_num; i++) {
2547                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2548                         free_rxd_blk(sp,i,blk);
2549
2550                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2551                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2552                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2553                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2554                 atomic_set(&sp->rx_bufs_left[i], 0);
2555                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2556                           dev->name, buf_cnt, i);
2557         }
2558 }
2559
2560 /**
2561  * s2io_poll - Rx interrupt handler for NAPI support
2562  * @dev : pointer to the device structure.
2563  * @budget : The number of packets that were budgeted to be processed
2564  * during  one pass through the 'Poll" function.
2565  * Description:
2566  * Comes into picture only if NAPI support has been incorporated. It does
2567  * the same thing that rx_intr_handler does, but not in a interrupt context
2568  * also It will process only a given number of packets.
2569  * Return value:
2570  * 0 on success and 1 if there are No Rx packets to be processed.
2571  */
2572
2573 static int s2io_poll(struct net_device *dev, int *budget)
2574 {
2575         nic_t *nic = dev->priv;
2576         int pkt_cnt = 0, org_pkts_to_process;
2577         mac_info_t *mac_control;
2578         struct config_param *config;
2579         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2580         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2581         int i;
2582
2583         atomic_inc(&nic->isr_cnt);
2584         mac_control = &nic->mac_control;
2585         config = &nic->config;
2586
2587         nic->pkts_to_process = *budget;
2588         if (nic->pkts_to_process > dev->quota)
2589                 nic->pkts_to_process = dev->quota;
2590         org_pkts_to_process = nic->pkts_to_process;
2591
2592         writeq(val64, &bar0->rx_traffic_int);
2593         val64 = readl(&bar0->rx_traffic_int);
2594
2595         for (i = 0; i < config->rx_ring_num; i++) {
2596                 rx_intr_handler(&mac_control->rings[i]);
2597                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2598                 if (!nic->pkts_to_process) {
2599                         /* Quota for the current iteration has been met */
2600                         goto no_rx;
2601                 }
2602         }
2603         if (!pkt_cnt)
2604                 pkt_cnt = 1;
2605
2606         dev->quota -= pkt_cnt;
2607         *budget -= pkt_cnt;
2608         netif_rx_complete(dev);
2609
2610         for (i = 0; i < config->rx_ring_num; i++) {
2611                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2612                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2613                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2614                         break;
2615                 }
2616         }
2617         /* Re enable the Rx interrupts. */
2618         writeq(0x0, &bar0->rx_traffic_mask);
2619         val64 = readl(&bar0->rx_traffic_mask);
2620         atomic_dec(&nic->isr_cnt);
2621         return 0;
2622
2623 no_rx:
2624         dev->quota -= pkt_cnt;
2625         *budget -= pkt_cnt;
2626
2627         for (i = 0; i < config->rx_ring_num; i++) {
2628                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2629                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2630                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2631                         break;
2632                 }
2633         }
2634         atomic_dec(&nic->isr_cnt);
2635         return 1;
2636 }
2637
2638 #ifdef CONFIG_NET_POLL_CONTROLLER
2639 /**
2640  * s2io_netpoll - netpoll event handler entry point
2641  * @dev : pointer to the device structure.
2642  * Description:
2643  *      This function will be called by upper layer to check for events on the
2644  * interface in situations where interrupts are disabled. It is used for
2645  * specific in-kernel networking tasks, such as remote consoles and kernel
2646  * debugging over the network (example netdump in RedHat).
2647  */
2648 static void s2io_netpoll(struct net_device *dev)
2649 {
2650         nic_t *nic = dev->priv;
2651         mac_info_t *mac_control;
2652         struct config_param *config;
2653         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2654         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2655         int i;
2656
2657         disable_irq(dev->irq);
2658
2659         atomic_inc(&nic->isr_cnt);
2660         mac_control = &nic->mac_control;
2661         config = &nic->config;
2662
2663         writeq(val64, &bar0->rx_traffic_int);
2664         writeq(val64, &bar0->tx_traffic_int);
2665
2666         /* we need to free up the transmitted skbufs or else netpoll will
2667          * run out of skbs and will fail and eventually netpoll application such
2668          * as netdump will fail.
2669          */
2670         for (i = 0; i < config->tx_fifo_num; i++)
2671                 tx_intr_handler(&mac_control->fifos[i]);
2672
2673         /* check for received packet and indicate up to network */
2674         for (i = 0; i < config->rx_ring_num; i++)
2675                 rx_intr_handler(&mac_control->rings[i]);
2676
2677         for (i = 0; i < config->rx_ring_num; i++) {
2678                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2679                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2680                         DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2681                         break;
2682                 }
2683         }
2684         atomic_dec(&nic->isr_cnt);
2685         enable_irq(dev->irq);
2686         return;
2687 }
2688 #endif
2689
2690 /**
2691  *  rx_intr_handler - Rx interrupt handler
2692  *  @nic: device private variable.
2693  *  Description:
2694  *  If the interrupt is because of a received frame or if the
2695  *  receive ring contains fresh as yet un-processed frames,this function is
2696  *  called. It picks out the RxD at which place the last Rx processing had
2697  *  stopped and sends the skb to the OSM's Rx handler and then increments
2698  *  the offset.
2699  *  Return Value:
2700  *  NONE.
2701  */
2702 static void rx_intr_handler(ring_info_t *ring_data)
2703 {
2704         nic_t *nic = ring_data->nic;
2705         struct net_device *dev = (struct net_device *) nic->dev;
2706         int get_block, put_block, put_offset;
2707         rx_curr_get_info_t get_info, put_info;
2708         RxD_t *rxdp;
2709         struct sk_buff *skb;
2710         int pkt_cnt = 0;
2711         int i;
2712
2713         spin_lock(&nic->rx_lock);
2714         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2715                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2716                           __FUNCTION__, dev->name);
2717                 spin_unlock(&nic->rx_lock);
2718                 return;
2719         }
2720
2721         get_info = ring_data->rx_curr_get_info;
2722         get_block = get_info.block_index;
2723         put_info = ring_data->rx_curr_put_info;
2724         put_block = put_info.block_index;
2725         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2726         if (!napi) {
2727                 spin_lock(&nic->put_lock);
2728                 put_offset = ring_data->put_pos;
2729                 spin_unlock(&nic->put_lock);
2730         } else
2731                 put_offset = ring_data->put_pos;
2732
2733         while (RXD_IS_UP2DT(rxdp)) {
2734                 /*
2735                  * If your are next to put index then it's
2736                  * FIFO full condition
2737                  */
2738                 if ((get_block == put_block) &&
2739                     (get_info.offset + 1) == put_info.offset) {
2740                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2741                         break;
2742                 }
2743                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2744                 if (skb == NULL) {
2745                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2746                                   dev->name);
2747                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2748                         spin_unlock(&nic->rx_lock);
2749                         return;
2750                 }
2751                 if (nic->rxd_mode == RXD_MODE_1) {
2752                         pci_unmap_single(nic->pdev, (dma_addr_t)
2753                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2754                                  dev->mtu +
2755                                  HEADER_ETHERNET_II_802_3_SIZE +
2756                                  HEADER_802_2_SIZE +
2757                                  HEADER_SNAP_SIZE,
2758                                  PCI_DMA_FROMDEVICE);
2759                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2760                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2761                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2762                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2763                         pci_unmap_single(nic->pdev, (dma_addr_t)
2764                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2765                                  dev->mtu + 4,
2766                                  PCI_DMA_FROMDEVICE);
2767                 } else {
2768                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2769                                          ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2770                                          PCI_DMA_FROMDEVICE);
2771                         pci_unmap_single(nic->pdev, (dma_addr_t)
2772                                          ((RxD3_t*)rxdp)->Buffer1_ptr,
2773                                          l3l4hdr_size + 4,
2774                                          PCI_DMA_FROMDEVICE);
2775                         pci_unmap_single(nic->pdev, (dma_addr_t)
2776                                          ((RxD3_t*)rxdp)->Buffer2_ptr,
2777                                          dev->mtu, PCI_DMA_FROMDEVICE);
2778                 }
2779                 prefetch(skb->data);
2780                 rx_osm_handler(ring_data, rxdp);
2781                 get_info.offset++;
2782                 ring_data->rx_curr_get_info.offset = get_info.offset;
2783                 rxdp = ring_data->rx_blocks[get_block].
2784                                 rxds[get_info.offset].virt_addr;
2785                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2786                         get_info.offset = 0;
2787                         ring_data->rx_curr_get_info.offset = get_info.offset;
2788                         get_block++;
2789                         if (get_block == ring_data->block_count)
2790                                 get_block = 0;
2791                         ring_data->rx_curr_get_info.block_index = get_block;
2792                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2793                 }
2794
2795                 nic->pkts_to_process -= 1;
2796                 if ((napi) && (!nic->pkts_to_process))
2797                         break;
2798                 pkt_cnt++;
2799                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2800                         break;
2801         }
2802         if (nic->lro) {
2803                 /* Clear all LRO sessions before exiting */
2804                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2805                         lro_t *lro = &nic->lro0_n[i];
2806                         if (lro->in_use) {
2807                                 update_L3L4_header(nic, lro);
2808                                 queue_rx_frame(lro->parent);
2809                                 clear_lro_session(lro);
2810                         }
2811                 }
2812         }
2813
2814         spin_unlock(&nic->rx_lock);
2815 }
2816
2817 /**
2818  *  tx_intr_handler - Transmit interrupt handler
2819  *  @nic : device private variable
2820  *  Description:
2821  *  If an interrupt was raised to indicate DMA complete of the
2822  *  Tx packet, this function is called. It identifies the last TxD
2823  *  whose buffer was freed and frees all skbs whose data have already
2824  *  DMA'ed into the NICs internal memory.
2825  *  Return Value:
2826  *  NONE
2827  */
2828
2829 static void tx_intr_handler(fifo_info_t *fifo_data)
2830 {
2831         nic_t *nic = fifo_data->nic;
2832         struct net_device *dev = (struct net_device *) nic->dev;
2833         tx_curr_get_info_t get_info, put_info;
2834         struct sk_buff *skb;
2835         TxD_t *txdlp;
2836
2837         get_info = fifo_data->tx_curr_get_info;
2838         put_info = fifo_data->tx_curr_put_info;
2839         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2840             list_virt_addr;
2841         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2842                (get_info.offset != put_info.offset) &&
2843                (txdlp->Host_Control)) {
2844                 /* Check for TxD errors */
2845                 if (txdlp->Control_1 & TXD_T_CODE) {
2846                         unsigned long long err;
2847                         err = txdlp->Control_1 & TXD_T_CODE;
2848                         if (err & 0x1) {
2849                                 nic->mac_control.stats_info->sw_stat.
2850                                                 parity_err_cnt++;
2851                         }
2852                         if ((err >> 48) == 0xA) {
2853                                 DBG_PRINT(TX_DBG, "TxD returned due \
2854 to loss of link\n");
2855                         }
2856                         else {
2857                                 DBG_PRINT(ERR_DBG, "***TxD error \
2858 %llx\n", err);
2859                         }
2860                 }
2861
2862                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2863                 if (skb == NULL) {
2864                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2865                         __FUNCTION__);
2866                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2867                         return;
2868                 }
2869
2870                 /* Updating the statistics block */
2871                 nic->stats.tx_bytes += skb->len;
2872                 dev_kfree_skb_irq(skb);
2873
2874                 get_info.offset++;
2875                 if (get_info.offset == get_info.fifo_len + 1)
2876                         get_info.offset = 0;
2877                 txdlp = (TxD_t *) fifo_data->list_info
2878                     [get_info.offset].list_virt_addr;
2879                 fifo_data->tx_curr_get_info.offset =
2880                     get_info.offset;
2881         }
2882
2883         spin_lock(&nic->tx_lock);
2884         if (netif_queue_stopped(dev))
2885                 netif_wake_queue(dev);
2886         spin_unlock(&nic->tx_lock);
2887 }
2888
2889 /**
2890  *  s2io_mdio_write - Function to write in to MDIO registers
2891  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2892  *  @addr     : address value
2893  *  @value    : data value
2894  *  @dev      : pointer to net_device structure
2895  *  Description:
2896  *  This function is used to write values to the MDIO registers
2897  *  NONE
2898  */
2899 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2900 {
2901         u64 val64 = 0x0;
2902         nic_t *sp = dev->priv;
2903         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2904
2905         //address transaction
2906         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2907                         | MDIO_MMD_DEV_ADDR(mmd_type)
2908                         | MDIO_MMS_PRT_ADDR(0x0);
2909         writeq(val64, &bar0->mdio_control);
2910         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2911         writeq(val64, &bar0->mdio_control);
2912         udelay(100);
2913
2914         //Data transaction
2915         val64 = 0x0;
2916         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2917                         | MDIO_MMD_DEV_ADDR(mmd_type)
2918                         | MDIO_MMS_PRT_ADDR(0x0)
2919                         | MDIO_MDIO_DATA(value)
2920                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2921         writeq(val64, &bar0->mdio_control);
2922         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2923         writeq(val64, &bar0->mdio_control);
2924         udelay(100);
2925
2926         val64 = 0x0;
2927         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2928         | MDIO_MMD_DEV_ADDR(mmd_type)
2929         | MDIO_MMS_PRT_ADDR(0x0)
2930         | MDIO_OP(MDIO_OP_READ_TRANS);
2931         writeq(val64, &bar0->mdio_control);
2932         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2933         writeq(val64, &bar0->mdio_control);
2934         udelay(100);
2935
2936 }
2937
2938 /**
2939  *  s2io_mdio_read - Function to write in to MDIO registers
2940  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2941  *  @addr     : address value
2942  *  @dev      : pointer to net_device structure
2943  *  Description:
2944  *  This function is used to read values to the MDIO registers
2945  *  NONE
2946  */
2947 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2948 {
2949         u64 val64 = 0x0;
2950         u64 rval64 = 0x0;
2951         nic_t *sp = dev->priv;
2952         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2953
2954         /* address transaction */
2955         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2956                         | MDIO_MMD_DEV_ADDR(mmd_type)
2957                         | MDIO_MMS_PRT_ADDR(0x0);
2958         writeq(val64, &bar0->mdio_control);
2959         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2960         writeq(val64, &bar0->mdio_control);
2961         udelay(100);
2962
2963         /* Data transaction */
2964         val64 = 0x0;
2965         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2966                         | MDIO_MMD_DEV_ADDR(mmd_type)
2967                         | MDIO_MMS_PRT_ADDR(0x0)
2968                         | MDIO_OP(MDIO_OP_READ_TRANS);
2969         writeq(val64, &bar0->mdio_control);
2970         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2971         writeq(val64, &bar0->mdio_control);
2972         udelay(100);
2973
2974         /* Read the value from regs */
2975         rval64 = readq(&bar0->mdio_control);
2976         rval64 = rval64 & 0xFFFF0000;
2977         rval64 = rval64 >> 16;
2978         return rval64;
2979 }
2980 /**
2981  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2982  *  @counter      : couter value to be updated
2983  *  @flag         : flag to indicate the status
2984  *  @type         : counter type
2985  *  Description:
2986  *  This function is to check the status of the xpak counters value
2987  *  NONE
2988  */
2989
2990 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2991 {
2992         u64 mask = 0x3;
2993         u64 val64;
2994         int i;
2995         for(i = 0; i <index; i++)
2996                 mask = mask << 0x2;
2997
2998         if(flag > 0)
2999         {
3000                 *counter = *counter + 1;
3001                 val64 = *regs_stat & mask;
3002                 val64 = val64 >> (index * 0x2);
3003                 val64 = val64 + 1;
3004                 if(val64 == 3)
3005                 {
3006                         switch(type)
3007                         {
3008                         case 1:
3009                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3010                                           "service. Excessive temperatures may "
3011                                           "result in premature transceiver "
3012                                           "failure \n");
3013                         break;
3014                         case 2:
3015                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3016                                           "service Excessive bias currents may "
3017                                           "indicate imminent laser diode "
3018                                           "failure \n");
3019                         break;
3020                         case 3:
3021                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3022                                           "service Excessive laser output "
3023                                           "power may saturate far-end "
3024                                           "receiver\n");
3025                         break;
3026                         default:
3027                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3028                                           "type \n");
3029                         }
3030                         val64 = 0x0;
3031                 }
3032                 val64 = val64 << (index * 0x2);
3033                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3034
3035         } else {
3036                 *regs_stat = *regs_stat & (~mask);
3037         }
3038 }
3039
3040 /**
3041  *  s2io_updt_xpak_counter - Function to update the xpak counters
3042  *  @dev         : pointer to net_device struct
3043  *  Description:
3044  *  This function is to upate the status of the xpak counters value
3045  *  NONE
3046  */
3047 static void s2io_updt_xpak_counter(struct net_device *dev)
3048 {
3049         u16 flag  = 0x0;
3050         u16 type  = 0x0;
3051         u16 val16 = 0x0;
3052         u64 val64 = 0x0;
3053         u64 addr  = 0x0;
3054
3055         nic_t *sp = dev->priv;
3056         StatInfo_t *stat_info = sp->mac_control.stats_info;
3057
3058         /* Check the communication with the MDIO slave */
3059         addr = 0x0000;
3060         val64 = 0x0;
3061         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3062         if((val64 == 0xFFFF) || (val64 == 0x0000))
3063         {
3064                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3065                           "Returned %llx\n", (unsigned long long)val64);
3066                 return;
3067         }
3068
3069         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3070         if(val64 != 0x2040)
3071         {
3072                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3073                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3074                           (unsigned long long)val64);
3075                 return;
3076         }
3077
3078         /* Loading the DOM register to MDIO register */
3079         addr = 0xA100;
3080         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3081         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3082
3083         /* Reading the Alarm flags */
3084         addr = 0xA070;
3085         val64 = 0x0;
3086         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3087
3088         flag = CHECKBIT(val64, 0x7);
3089         type = 1;
3090         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3091                                 &stat_info->xpak_stat.xpak_regs_stat,
3092                                 0x0, flag, type);
3093
3094         if(CHECKBIT(val64, 0x6))
3095                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3096
3097         flag = CHECKBIT(val64, 0x3);
3098         type = 2;
3099         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3100                                 &stat_info->xpak_stat.xpak_regs_stat,
3101                                 0x2, flag, type);
3102
3103         if(CHECKBIT(val64, 0x2))
3104                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3105
3106         flag = CHECKBIT(val64, 0x1);
3107         type = 3;
3108         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,