]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/net/gianfar.c
Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[linux-3.10.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/reg.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
97 #include <linux/of.h>
98 #include <linux/of_net.h>
99
100 #include "gianfar.h"
101 #include "fsl_pq_mdio.h"
102
103 #define TX_TIMEOUT      (1*HZ)
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
106
107 const char gfar_driver_name[] = "Gianfar Ethernet";
108 const char gfar_driver_version[] = "1.3";
109
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117                 struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev,
127                 const struct of_device_id *match);
128 static int gfar_remove(struct platform_device *ofdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 static int gfar_poll(struct napi_struct *napi, int budget);
134 #ifdef CONFIG_NET_POLL_CONTROLLER
135 static void gfar_netpoll(struct net_device *dev);
136 #endif
137 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
138 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
139 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
140                               int amount_pull);
141 static void gfar_vlan_rx_register(struct net_device *netdev,
142                                 struct vlan_group *grp);
143 void gfar_halt(struct net_device *dev);
144 static void gfar_halt_nodisable(struct net_device *dev);
145 void gfar_start(struct net_device *dev);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148                                   const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156                             dma_addr_t buf)
157 {
158         u32 lstatus;
159
160         bdp->bufPtr = buf;
161
162         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164                 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166         eieio();
167
168         bdp->lstatus = lstatus;
169 }
170
171 static int gfar_init_bds(struct net_device *ndev)
172 {
173         struct gfar_private *priv = netdev_priv(ndev);
174         struct gfar_priv_tx_q *tx_queue = NULL;
175         struct gfar_priv_rx_q *rx_queue = NULL;
176         struct txbd8 *txbdp;
177         struct rxbd8 *rxbdp;
178         int i, j;
179
180         for (i = 0; i < priv->num_tx_queues; i++) {
181                 tx_queue = priv->tx_queue[i];
182                 /* Initialize some variables in our dev structure */
183                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
184                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
185                 tx_queue->cur_tx = tx_queue->tx_bd_base;
186                 tx_queue->skb_curtx = 0;
187                 tx_queue->skb_dirtytx = 0;
188
189                 /* Initialize Transmit Descriptor Ring */
190                 txbdp = tx_queue->tx_bd_base;
191                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
192                         txbdp->lstatus = 0;
193                         txbdp->bufPtr = 0;
194                         txbdp++;
195                 }
196
197                 /* Set the last descriptor in the ring to indicate wrap */
198                 txbdp--;
199                 txbdp->status |= TXBD_WRAP;
200         }
201
202         for (i = 0; i < priv->num_rx_queues; i++) {
203                 rx_queue = priv->rx_queue[i];
204                 rx_queue->cur_rx = rx_queue->rx_bd_base;
205                 rx_queue->skb_currx = 0;
206                 rxbdp = rx_queue->rx_bd_base;
207
208                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
209                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
210
211                         if (skb) {
212                                 gfar_init_rxbdp(rx_queue, rxbdp,
213                                                 rxbdp->bufPtr);
214                         } else {
215                                 skb = gfar_new_skb(ndev);
216                                 if (!skb) {
217                                         pr_err("%s: Can't allocate RX buffers\n",
218                                                         ndev->name);
219                                         goto err_rxalloc_fail;
220                                 }
221                                 rx_queue->rx_skbuff[j] = skb;
222
223                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
224                         }
225
226                         rxbdp++;
227                 }
228
229         }
230
231         return 0;
232
233 err_rxalloc_fail:
234         free_skb_resources(priv);
235         return -ENOMEM;
236 }
237
238 static int gfar_alloc_skb_resources(struct net_device *ndev)
239 {
240         void *vaddr;
241         dma_addr_t addr;
242         int i, j, k;
243         struct gfar_private *priv = netdev_priv(ndev);
244         struct device *dev = &priv->ofdev->dev;
245         struct gfar_priv_tx_q *tx_queue = NULL;
246         struct gfar_priv_rx_q *rx_queue = NULL;
247
248         priv->total_tx_ring_size = 0;
249         for (i = 0; i < priv->num_tx_queues; i++)
250                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
251
252         priv->total_rx_ring_size = 0;
253         for (i = 0; i < priv->num_rx_queues; i++)
254                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
255
256         /* Allocate memory for the buffer descriptors */
257         vaddr = dma_alloc_coherent(dev,
258                         sizeof(struct txbd8) * priv->total_tx_ring_size +
259                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
260                         &addr, GFP_KERNEL);
261         if (!vaddr) {
262                 if (netif_msg_ifup(priv))
263                         pr_err("%s: Could not allocate buffer descriptors!\n",
264                                ndev->name);
265                 return -ENOMEM;
266         }
267
268         for (i = 0; i < priv->num_tx_queues; i++) {
269                 tx_queue = priv->tx_queue[i];
270                 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
271                 tx_queue->tx_bd_dma_base = addr;
272                 tx_queue->dev = ndev;
273                 /* enet DMA only understands physical addresses */
274                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
275                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
276         }
277
278         /* Start the rx descriptor ring where the tx ring leaves off */
279         for (i = 0; i < priv->num_rx_queues; i++) {
280                 rx_queue = priv->rx_queue[i];
281                 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
282                 rx_queue->rx_bd_dma_base = addr;
283                 rx_queue->dev = ndev;
284                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
285                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
286         }
287
288         /* Setup the skbuff rings */
289         for (i = 0; i < priv->num_tx_queues; i++) {
290                 tx_queue = priv->tx_queue[i];
291                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
292                                   tx_queue->tx_ring_size, GFP_KERNEL);
293                 if (!tx_queue->tx_skbuff) {
294                         if (netif_msg_ifup(priv))
295                                 pr_err("%s: Could not allocate tx_skbuff\n",
296                                                 ndev->name);
297                         goto cleanup;
298                 }
299
300                 for (k = 0; k < tx_queue->tx_ring_size; k++)
301                         tx_queue->tx_skbuff[k] = NULL;
302         }
303
304         for (i = 0; i < priv->num_rx_queues; i++) {
305                 rx_queue = priv->rx_queue[i];
306                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
307                                   rx_queue->rx_ring_size, GFP_KERNEL);
308
309                 if (!rx_queue->rx_skbuff) {
310                         if (netif_msg_ifup(priv))
311                                 pr_err("%s: Could not allocate rx_skbuff\n",
312                                        ndev->name);
313                         goto cleanup;
314                 }
315
316                 for (j = 0; j < rx_queue->rx_ring_size; j++)
317                         rx_queue->rx_skbuff[j] = NULL;
318         }
319
320         if (gfar_init_bds(ndev))
321                 goto cleanup;
322
323         return 0;
324
325 cleanup:
326         free_skb_resources(priv);
327         return -ENOMEM;
328 }
329
330 static void gfar_init_tx_rx_base(struct gfar_private *priv)
331 {
332         struct gfar __iomem *regs = priv->gfargrp[0].regs;
333         u32 __iomem *baddr;
334         int i;
335
336         baddr = &regs->tbase0;
337         for(i = 0; i < priv->num_tx_queues; i++) {
338                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
339                 baddr   += 2;
340         }
341
342         baddr = &regs->rbase0;
343         for(i = 0; i < priv->num_rx_queues; i++) {
344                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
345                 baddr   += 2;
346         }
347 }
348
349 static void gfar_init_mac(struct net_device *ndev)
350 {
351         struct gfar_private *priv = netdev_priv(ndev);
352         struct gfar __iomem *regs = priv->gfargrp[0].regs;
353         u32 rctrl = 0;
354         u32 tctrl = 0;
355         u32 attrs = 0;
356
357         /* write the tx/rx base registers */
358         gfar_init_tx_rx_base(priv);
359
360         /* Configure the coalescing support */
361         gfar_configure_coalescing(priv, 0xFF, 0xFF);
362
363         if (priv->rx_filer_enable) {
364                 rctrl |= RCTRL_FILREN;
365                 /* Program the RIR0 reg with the required distribution */
366                 gfar_write(&regs->rir0, DEFAULT_RIR0);
367         }
368
369         if (priv->rx_csum_enable)
370                 rctrl |= RCTRL_CHECKSUMMING;
371
372         if (priv->extended_hash) {
373                 rctrl |= RCTRL_EXTHASH;
374
375                 gfar_clear_exact_match(ndev);
376                 rctrl |= RCTRL_EMEN;
377         }
378
379         if (priv->padding) {
380                 rctrl &= ~RCTRL_PAL_MASK;
381                 rctrl |= RCTRL_PADDING(priv->padding);
382         }
383
384         /* Insert receive time stamps into padding alignment bytes */
385         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
386                 rctrl &= ~RCTRL_PAL_MASK;
387                 rctrl |= RCTRL_PADDING(8);
388                 priv->padding = 8;
389         }
390
391         /* Enable HW time stamping if requested from user space */
392         if (priv->hwts_rx_en)
393                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
394
395         /* keep vlan related bits if it's enabled */
396         if (priv->vlgrp) {
397                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
398                 tctrl |= TCTRL_VLINS;
399         }
400
401         /* Init rctrl based on our settings */
402         gfar_write(&regs->rctrl, rctrl);
403
404         if (ndev->features & NETIF_F_IP_CSUM)
405                 tctrl |= TCTRL_INIT_CSUM;
406
407         tctrl |= TCTRL_TXSCHED_PRIO;
408
409         gfar_write(&regs->tctrl, tctrl);
410
411         /* Set the extraction length and index */
412         attrs = ATTRELI_EL(priv->rx_stash_size) |
413                 ATTRELI_EI(priv->rx_stash_index);
414
415         gfar_write(&regs->attreli, attrs);
416
417         /* Start with defaults, and add stashing or locking
418          * depending on the approprate variables */
419         attrs = ATTR_INIT_SETTINGS;
420
421         if (priv->bd_stash_en)
422                 attrs |= ATTR_BDSTASH;
423
424         if (priv->rx_stash_size != 0)
425                 attrs |= ATTR_BUFSTASH;
426
427         gfar_write(&regs->attr, attrs);
428
429         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
430         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
431         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
432 }
433
434 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
435 {
436         struct gfar_private *priv = netdev_priv(dev);
437         struct netdev_queue *txq;
438         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
439         unsigned long tx_packets = 0, tx_bytes = 0;
440         int i = 0;
441
442         for (i = 0; i < priv->num_rx_queues; i++) {
443                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
444                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
445                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
446         }
447
448         dev->stats.rx_packets = rx_packets;
449         dev->stats.rx_bytes = rx_bytes;
450         dev->stats.rx_dropped = rx_dropped;
451
452         for (i = 0; i < priv->num_tx_queues; i++) {
453                 txq = netdev_get_tx_queue(dev, i);
454                 tx_bytes += txq->tx_bytes;
455                 tx_packets += txq->tx_packets;
456         }
457
458         dev->stats.tx_bytes = tx_bytes;
459         dev->stats.tx_packets = tx_packets;
460
461         return &dev->stats;
462 }
463
464 static const struct net_device_ops gfar_netdev_ops = {
465         .ndo_open = gfar_enet_open,
466         .ndo_start_xmit = gfar_start_xmit,
467         .ndo_stop = gfar_close,
468         .ndo_change_mtu = gfar_change_mtu,
469         .ndo_set_multicast_list = gfar_set_multi,
470         .ndo_tx_timeout = gfar_timeout,
471         .ndo_do_ioctl = gfar_ioctl,
472         .ndo_get_stats = gfar_get_stats,
473         .ndo_vlan_rx_register = gfar_vlan_rx_register,
474         .ndo_set_mac_address = eth_mac_addr,
475         .ndo_validate_addr = eth_validate_addr,
476 #ifdef CONFIG_NET_POLL_CONTROLLER
477         .ndo_poll_controller = gfar_netpoll,
478 #endif
479 };
480
481 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
482 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
483
484 void lock_rx_qs(struct gfar_private *priv)
485 {
486         int i = 0x0;
487
488         for (i = 0; i < priv->num_rx_queues; i++)
489                 spin_lock(&priv->rx_queue[i]->rxlock);
490 }
491
492 void lock_tx_qs(struct gfar_private *priv)
493 {
494         int i = 0x0;
495
496         for (i = 0; i < priv->num_tx_queues; i++)
497                 spin_lock(&priv->tx_queue[i]->txlock);
498 }
499
500 void unlock_rx_qs(struct gfar_private *priv)
501 {
502         int i = 0x0;
503
504         for (i = 0; i < priv->num_rx_queues; i++)
505                 spin_unlock(&priv->rx_queue[i]->rxlock);
506 }
507
508 void unlock_tx_qs(struct gfar_private *priv)
509 {
510         int i = 0x0;
511
512         for (i = 0; i < priv->num_tx_queues; i++)
513                 spin_unlock(&priv->tx_queue[i]->txlock);
514 }
515
516 /* Returns 1 if incoming frames use an FCB */
517 static inline int gfar_uses_fcb(struct gfar_private *priv)
518 {
519         return priv->vlgrp || priv->rx_csum_enable ||
520                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
521 }
522
523 static void free_tx_pointers(struct gfar_private *priv)
524 {
525         int i = 0;
526
527         for (i = 0; i < priv->num_tx_queues; i++)
528                 kfree(priv->tx_queue[i]);
529 }
530
531 static void free_rx_pointers(struct gfar_private *priv)
532 {
533         int i = 0;
534
535         for (i = 0; i < priv->num_rx_queues; i++)
536                 kfree(priv->rx_queue[i]);
537 }
538
539 static void unmap_group_regs(struct gfar_private *priv)
540 {
541         int i = 0;
542
543         for (i = 0; i < MAXGROUPS; i++)
544                 if (priv->gfargrp[i].regs)
545                         iounmap(priv->gfargrp[i].regs);
546 }
547
548 static void disable_napi(struct gfar_private *priv)
549 {
550         int i = 0;
551
552         for (i = 0; i < priv->num_grps; i++)
553                 napi_disable(&priv->gfargrp[i].napi);
554 }
555
556 static void enable_napi(struct gfar_private *priv)
557 {
558         int i = 0;
559
560         for (i = 0; i < priv->num_grps; i++)
561                 napi_enable(&priv->gfargrp[i].napi);
562 }
563
564 static int gfar_parse_group(struct device_node *np,
565                 struct gfar_private *priv, const char *model)
566 {
567         u32 *queue_mask;
568
569         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
570         if (!priv->gfargrp[priv->num_grps].regs)
571                 return -ENOMEM;
572
573         priv->gfargrp[priv->num_grps].interruptTransmit =
574                         irq_of_parse_and_map(np, 0);
575
576         /* If we aren't the FEC we have multiple interrupts */
577         if (model && strcasecmp(model, "FEC")) {
578                 priv->gfargrp[priv->num_grps].interruptReceive =
579                         irq_of_parse_and_map(np, 1);
580                 priv->gfargrp[priv->num_grps].interruptError =
581                         irq_of_parse_and_map(np,2);
582                 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
583                     priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
584                     priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
585                         return -EINVAL;
586         }
587
588         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
589         priv->gfargrp[priv->num_grps].priv = priv;
590         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
591         if(priv->mode == MQ_MG_MODE) {
592                 queue_mask = (u32 *)of_get_property(np,
593                                         "fsl,rx-bit-map", NULL);
594                 priv->gfargrp[priv->num_grps].rx_bit_map =
595                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
596                 queue_mask = (u32 *)of_get_property(np,
597                                         "fsl,tx-bit-map", NULL);
598                 priv->gfargrp[priv->num_grps].tx_bit_map =
599                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
600         } else {
601                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
602                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
603         }
604         priv->num_grps++;
605
606         return 0;
607 }
608
609 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
610 {
611         const char *model;
612         const char *ctype;
613         const void *mac_addr;
614         int err = 0, i;
615         struct net_device *dev = NULL;
616         struct gfar_private *priv = NULL;
617         struct device_node *np = ofdev->dev.of_node;
618         struct device_node *child = NULL;
619         const u32 *stash;
620         const u32 *stash_len;
621         const u32 *stash_idx;
622         unsigned int num_tx_qs, num_rx_qs;
623         u32 *tx_queues, *rx_queues;
624
625         if (!np || !of_device_is_available(np))
626                 return -ENODEV;
627
628         /* parse the num of tx and rx queues */
629         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
630         num_tx_qs = tx_queues ? *tx_queues : 1;
631
632         if (num_tx_qs > MAX_TX_QS) {
633                 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
634                                 num_tx_qs, MAX_TX_QS);
635                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
636                 return -EINVAL;
637         }
638
639         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
640         num_rx_qs = rx_queues ? *rx_queues : 1;
641
642         if (num_rx_qs > MAX_RX_QS) {
643                 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
644                                 num_tx_qs, MAX_TX_QS);
645                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
646                 return -EINVAL;
647         }
648
649         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
650         dev = *pdev;
651         if (NULL == dev)
652                 return -ENOMEM;
653
654         priv = netdev_priv(dev);
655         priv->node = ofdev->dev.of_node;
656         priv->ndev = dev;
657
658         priv->num_tx_queues = num_tx_qs;
659         netif_set_real_num_rx_queues(dev, num_rx_qs);
660         priv->num_rx_queues = num_rx_qs;
661         priv->num_grps = 0x0;
662
663         model = of_get_property(np, "model", NULL);
664
665         for (i = 0; i < MAXGROUPS; i++)
666                 priv->gfargrp[i].regs = NULL;
667
668         /* Parse and initialize group specific information */
669         if (of_device_is_compatible(np, "fsl,etsec2")) {
670                 priv->mode = MQ_MG_MODE;
671                 for_each_child_of_node(np, child) {
672                         err = gfar_parse_group(child, priv, model);
673                         if (err)
674                                 goto err_grp_init;
675                 }
676         } else {
677                 priv->mode = SQ_SG_MODE;
678                 err = gfar_parse_group(np, priv, model);
679                 if(err)
680                         goto err_grp_init;
681         }
682
683         for (i = 0; i < priv->num_tx_queues; i++)
684                priv->tx_queue[i] = NULL;
685         for (i = 0; i < priv->num_rx_queues; i++)
686                 priv->rx_queue[i] = NULL;
687
688         for (i = 0; i < priv->num_tx_queues; i++) {
689                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
690                                             GFP_KERNEL);
691                 if (!priv->tx_queue[i]) {
692                         err = -ENOMEM;
693                         goto tx_alloc_failed;
694                 }
695                 priv->tx_queue[i]->tx_skbuff = NULL;
696                 priv->tx_queue[i]->qindex = i;
697                 priv->tx_queue[i]->dev = dev;
698                 spin_lock_init(&(priv->tx_queue[i]->txlock));
699         }
700
701         for (i = 0; i < priv->num_rx_queues; i++) {
702                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
703                                             GFP_KERNEL);
704                 if (!priv->rx_queue[i]) {
705                         err = -ENOMEM;
706                         goto rx_alloc_failed;
707                 }
708                 priv->rx_queue[i]->rx_skbuff = NULL;
709                 priv->rx_queue[i]->qindex = i;
710                 priv->rx_queue[i]->dev = dev;
711                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
712         }
713
714
715         stash = of_get_property(np, "bd-stash", NULL);
716
717         if (stash) {
718                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
719                 priv->bd_stash_en = 1;
720         }
721
722         stash_len = of_get_property(np, "rx-stash-len", NULL);
723
724         if (stash_len)
725                 priv->rx_stash_size = *stash_len;
726
727         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
728
729         if (stash_idx)
730                 priv->rx_stash_index = *stash_idx;
731
732         if (stash_len || stash_idx)
733                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
734
735         mac_addr = of_get_mac_address(np);
736         if (mac_addr)
737                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
738
739         if (model && !strcasecmp(model, "TSEC"))
740                 priv->device_flags =
741                         FSL_GIANFAR_DEV_HAS_GIGABIT |
742                         FSL_GIANFAR_DEV_HAS_COALESCE |
743                         FSL_GIANFAR_DEV_HAS_RMON |
744                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
745         if (model && !strcasecmp(model, "eTSEC"))
746                 priv->device_flags =
747                         FSL_GIANFAR_DEV_HAS_GIGABIT |
748                         FSL_GIANFAR_DEV_HAS_COALESCE |
749                         FSL_GIANFAR_DEV_HAS_RMON |
750                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
751                         FSL_GIANFAR_DEV_HAS_PADDING |
752                         FSL_GIANFAR_DEV_HAS_CSUM |
753                         FSL_GIANFAR_DEV_HAS_VLAN |
754                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
755                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
756                         FSL_GIANFAR_DEV_HAS_TIMER;
757
758         ctype = of_get_property(np, "phy-connection-type", NULL);
759
760         /* We only care about rgmii-id.  The rest are autodetected */
761         if (ctype && !strcmp(ctype, "rgmii-id"))
762                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
763         else
764                 priv->interface = PHY_INTERFACE_MODE_MII;
765
766         if (of_get_property(np, "fsl,magic-packet", NULL))
767                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
768
769         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
770
771         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
772         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
773
774         return 0;
775
776 rx_alloc_failed:
777         free_rx_pointers(priv);
778 tx_alloc_failed:
779         free_tx_pointers(priv);
780 err_grp_init:
781         unmap_group_regs(priv);
782         free_netdev(dev);
783         return err;
784 }
785
786 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
787                         struct ifreq *ifr, int cmd)
788 {
789         struct hwtstamp_config config;
790         struct gfar_private *priv = netdev_priv(netdev);
791
792         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
793                 return -EFAULT;
794
795         /* reserved for future extensions */
796         if (config.flags)
797                 return -EINVAL;
798
799         switch (config.tx_type) {
800         case HWTSTAMP_TX_OFF:
801                 priv->hwts_tx_en = 0;
802                 break;
803         case HWTSTAMP_TX_ON:
804                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
805                         return -ERANGE;
806                 priv->hwts_tx_en = 1;
807                 break;
808         default:
809                 return -ERANGE;
810         }
811
812         switch (config.rx_filter) {
813         case HWTSTAMP_FILTER_NONE:
814                 if (priv->hwts_rx_en) {
815                         stop_gfar(netdev);
816                         priv->hwts_rx_en = 0;
817                         startup_gfar(netdev);
818                 }
819                 break;
820         default:
821                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
822                         return -ERANGE;
823                 if (!priv->hwts_rx_en) {
824                         stop_gfar(netdev);
825                         priv->hwts_rx_en = 1;
826                         startup_gfar(netdev);
827                 }
828                 config.rx_filter = HWTSTAMP_FILTER_ALL;
829                 break;
830         }
831
832         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
833                 -EFAULT : 0;
834 }
835
836 /* Ioctl MII Interface */
837 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
838 {
839         struct gfar_private *priv = netdev_priv(dev);
840
841         if (!netif_running(dev))
842                 return -EINVAL;
843
844         if (cmd == SIOCSHWTSTAMP)
845                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
846
847         if (!priv->phydev)
848                 return -ENODEV;
849
850         return phy_mii_ioctl(priv->phydev, rq, cmd);
851 }
852
853 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
854 {
855         unsigned int new_bit_map = 0x0;
856         int mask = 0x1 << (max_qs - 1), i;
857         for (i = 0; i < max_qs; i++) {
858                 if (bit_map & mask)
859                         new_bit_map = new_bit_map + (1 << i);
860                 mask = mask >> 0x1;
861         }
862         return new_bit_map;
863 }
864
865 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
866                                    u32 class)
867 {
868         u32 rqfpr = FPR_FILER_MASK;
869         u32 rqfcr = 0x0;
870
871         rqfar--;
872         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
873         ftp_rqfpr[rqfar] = rqfpr;
874         ftp_rqfcr[rqfar] = rqfcr;
875         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
876
877         rqfar--;
878         rqfcr = RQFCR_CMP_NOMATCH;
879         ftp_rqfpr[rqfar] = rqfpr;
880         ftp_rqfcr[rqfar] = rqfcr;
881         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
882
883         rqfar--;
884         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
885         rqfpr = class;
886         ftp_rqfcr[rqfar] = rqfcr;
887         ftp_rqfpr[rqfar] = rqfpr;
888         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
889
890         rqfar--;
891         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
892         rqfpr = class;
893         ftp_rqfcr[rqfar] = rqfcr;
894         ftp_rqfpr[rqfar] = rqfpr;
895         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
896
897         return rqfar;
898 }
899
900 static void gfar_init_filer_table(struct gfar_private *priv)
901 {
902         int i = 0x0;
903         u32 rqfar = MAX_FILER_IDX;
904         u32 rqfcr = 0x0;
905         u32 rqfpr = FPR_FILER_MASK;
906
907         /* Default rule */
908         rqfcr = RQFCR_CMP_MATCH;
909         ftp_rqfcr[rqfar] = rqfcr;
910         ftp_rqfpr[rqfar] = rqfpr;
911         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
912
913         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
914         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
915         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
916         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
917         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
918         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
919
920         /* cur_filer_idx indicated the first non-masked rule */
921         priv->cur_filer_idx = rqfar;
922
923         /* Rest are masked rules */
924         rqfcr = RQFCR_CMP_NOMATCH;
925         for (i = 0; i < rqfar; i++) {
926                 ftp_rqfcr[i] = rqfcr;
927                 ftp_rqfpr[i] = rqfpr;
928                 gfar_write_filer(priv, i, rqfcr, rqfpr);
929         }
930 }
931
932 static void gfar_detect_errata(struct gfar_private *priv)
933 {
934         struct device *dev = &priv->ofdev->dev;
935         unsigned int pvr = mfspr(SPRN_PVR);
936         unsigned int svr = mfspr(SPRN_SVR);
937         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
938         unsigned int rev = svr & 0xffff;
939
940         /* MPC8313 Rev 2.0 and higher; All MPC837x */
941         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
942                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
943                 priv->errata |= GFAR_ERRATA_74;
944
945         /* MPC8313 and MPC837x all rev */
946         if ((pvr == 0x80850010 && mod == 0x80b0) ||
947                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
948                 priv->errata |= GFAR_ERRATA_76;
949
950         /* MPC8313 and MPC837x all rev */
951         if ((pvr == 0x80850010 && mod == 0x80b0) ||
952                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953                 priv->errata |= GFAR_ERRATA_A002;
954
955         if (priv->errata)
956                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
957                          priv->errata);
958 }
959
960 /* Set up the ethernet device structure, private data,
961  * and anything else we need before we start */
962 static int gfar_probe(struct platform_device *ofdev,
963                 const struct of_device_id *match)
964 {
965         u32 tempval;
966         struct net_device *dev = NULL;
967         struct gfar_private *priv = NULL;
968         struct gfar __iomem *regs = NULL;
969         int err = 0, i, grp_idx = 0;
970         int len_devname;
971         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
972         u32 isrg = 0;
973         u32 __iomem *baddr;
974
975         err = gfar_of_init(ofdev, &dev);
976
977         if (err)
978                 return err;
979
980         priv = netdev_priv(dev);
981         priv->ndev = dev;
982         priv->ofdev = ofdev;
983         priv->node = ofdev->dev.of_node;
984         SET_NETDEV_DEV(dev, &ofdev->dev);
985
986         spin_lock_init(&priv->bflock);
987         INIT_WORK(&priv->reset_task, gfar_reset_task);
988
989         dev_set_drvdata(&ofdev->dev, priv);
990         regs = priv->gfargrp[0].regs;
991
992         gfar_detect_errata(priv);
993
994         /* Stop the DMA engine now, in case it was running before */
995         /* (The firmware could have used it, and left it running). */
996         gfar_halt(dev);
997
998         /* Reset MAC layer */
999         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1000
1001         /* We need to delay at least 3 TX clocks */
1002         udelay(2);
1003
1004         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1005         gfar_write(&regs->maccfg1, tempval);
1006
1007         /* Initialize MACCFG2. */
1008         tempval = MACCFG2_INIT_SETTINGS;
1009         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1010                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1011         gfar_write(&regs->maccfg2, tempval);
1012
1013         /* Initialize ECNTRL */
1014         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1015
1016         /* Set the dev->base_addr to the gfar reg region */
1017         dev->base_addr = (unsigned long) regs;
1018
1019         SET_NETDEV_DEV(dev, &ofdev->dev);
1020
1021         /* Fill in the dev structure */
1022         dev->watchdog_timeo = TX_TIMEOUT;
1023         dev->mtu = 1500;
1024         dev->netdev_ops = &gfar_netdev_ops;
1025         dev->ethtool_ops = &gfar_ethtool_ops;
1026
1027         /* Register for napi ...We are registering NAPI for each grp */
1028         for (i = 0; i < priv->num_grps; i++)
1029                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1030
1031         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1032                 priv->rx_csum_enable = 1;
1033                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
1034         } else
1035                 priv->rx_csum_enable = 0;
1036
1037         priv->vlgrp = NULL;
1038
1039         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1040                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1041
1042         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1043                 priv->extended_hash = 1;
1044                 priv->hash_width = 9;
1045
1046                 priv->hash_regs[0] = &regs->igaddr0;
1047                 priv->hash_regs[1] = &regs->igaddr1;
1048                 priv->hash_regs[2] = &regs->igaddr2;
1049                 priv->hash_regs[3] = &regs->igaddr3;
1050                 priv->hash_regs[4] = &regs->igaddr4;
1051                 priv->hash_regs[5] = &regs->igaddr5;
1052                 priv->hash_regs[6] = &regs->igaddr6;
1053                 priv->hash_regs[7] = &regs->igaddr7;
1054                 priv->hash_regs[8] = &regs->gaddr0;
1055                 priv->hash_regs[9] = &regs->gaddr1;
1056                 priv->hash_regs[10] = &regs->gaddr2;
1057                 priv->hash_regs[11] = &regs->gaddr3;
1058                 priv->hash_regs[12] = &regs->gaddr4;
1059                 priv->hash_regs[13] = &regs->gaddr5;
1060                 priv->hash_regs[14] = &regs->gaddr6;
1061                 priv->hash_regs[15] = &regs->gaddr7;
1062
1063         } else {
1064                 priv->extended_hash = 0;
1065                 priv->hash_width = 8;
1066
1067                 priv->hash_regs[0] = &regs->gaddr0;
1068                 priv->hash_regs[1] = &regs->gaddr1;
1069                 priv->hash_regs[2] = &regs->gaddr2;
1070                 priv->hash_regs[3] = &regs->gaddr3;
1071                 priv->hash_regs[4] = &regs->gaddr4;
1072                 priv->hash_regs[5] = &regs->gaddr5;
1073                 priv->hash_regs[6] = &regs->gaddr6;
1074                 priv->hash_regs[7] = &regs->gaddr7;
1075         }
1076
1077         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1078                 priv->padding = DEFAULT_PADDING;
1079         else
1080                 priv->padding = 0;
1081
1082         if (dev->features & NETIF_F_IP_CSUM ||
1083                         priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1084                 dev->hard_header_len += GMAC_FCB_LEN;
1085
1086         /* Program the isrg regs only if number of grps > 1 */
1087         if (priv->num_grps > 1) {
1088                 baddr = &regs->isrg0;
1089                 for (i = 0; i < priv->num_grps; i++) {
1090                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1091                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1092                         gfar_write(baddr, isrg);
1093                         baddr++;
1094                         isrg = 0x0;
1095                 }
1096         }
1097
1098         /* Need to reverse the bit maps as  bit_map's MSB is q0
1099          * but, for_each_set_bit parses from right to left, which
1100          * basically reverses the queue numbers */
1101         for (i = 0; i< priv->num_grps; i++) {
1102                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1103                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1104                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1105                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1106         }
1107
1108         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1109          * also assign queues to groups */
1110         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1111                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1112                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1113                                 priv->num_rx_queues) {
1114                         priv->gfargrp[grp_idx].num_rx_queues++;
1115                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1116                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1117                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1118                 }
1119                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1120                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1121                                 priv->num_tx_queues) {
1122                         priv->gfargrp[grp_idx].num_tx_queues++;
1123                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1124                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1125                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1126                 }
1127                 priv->gfargrp[grp_idx].rstat = rstat;
1128                 priv->gfargrp[grp_idx].tstat = tstat;
1129                 rstat = tstat =0;
1130         }
1131
1132         gfar_write(&regs->rqueue, rqueue);
1133         gfar_write(&regs->tqueue, tqueue);
1134
1135         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1136
1137         /* Initializing some of the rx/tx queue level parameters */
1138         for (i = 0; i < priv->num_tx_queues; i++) {
1139                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1140                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1141                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1142                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1143         }
1144
1145         for (i = 0; i < priv->num_rx_queues; i++) {
1146                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1147                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1148                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1149         }
1150
1151         /* enable filer if using multiple RX queues*/
1152         if(priv->num_rx_queues > 1)
1153                 priv->rx_filer_enable = 1;
1154         /* Enable most messages by default */
1155         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156
1157         /* Carrier starts down, phylib will bring it up */
1158         netif_carrier_off(dev);
1159
1160         err = register_netdev(dev);
1161
1162         if (err) {
1163                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1164                                 dev->name);
1165                 goto register_fail;
1166         }
1167
1168         device_init_wakeup(&dev->dev,
1169                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1170
1171         /* fill out IRQ number and name fields */
1172         len_devname = strlen(dev->name);
1173         for (i = 0; i < priv->num_grps; i++) {
1174                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1175                                 len_devname);
1176                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1177                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1178                                 "_g", sizeof("_g"));
1179                         priv->gfargrp[i].int_name_tx[
1180                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1181                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1182                                 priv->gfargrp[i].int_name_tx)],
1183                                 "_tx", sizeof("_tx") + 1);
1184
1185                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1186                                         len_devname);
1187                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1188                                         "_g", sizeof("_g"));
1189                         priv->gfargrp[i].int_name_rx[
1190                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1191                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1192                                 priv->gfargrp[i].int_name_rx)],
1193                                 "_rx", sizeof("_rx") + 1);
1194
1195                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1196                                         len_devname);
1197                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1198                                 "_g", sizeof("_g"));
1199                         priv->gfargrp[i].int_name_er[strlen(
1200                                         priv->gfargrp[i].int_name_er)] = i+48;
1201                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1202                                 priv->gfargrp[i].int_name_er)],
1203                                 "_er", sizeof("_er") + 1);
1204                 } else
1205                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1206         }
1207
1208         /* Initialize the filer table */
1209         gfar_init_filer_table(priv);
1210
1211         /* Create all the sysfs files */
1212         gfar_init_sysfs(dev);
1213
1214         /* Print out the device info */
1215         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1216
1217         /* Even more device info helps when determining which kernel */
1218         /* provided which set of benchmarks. */
1219         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1220         for (i = 0; i < priv->num_rx_queues; i++)
1221                 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1222                         dev->name, i, priv->rx_queue[i]->rx_ring_size);
1223         for(i = 0; i < priv->num_tx_queues; i++)
1224                  printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1225                         dev->name, i, priv->tx_queue[i]->tx_ring_size);
1226
1227         return 0;
1228
1229 register_fail:
1230         unmap_group_regs(priv);
1231         free_tx_pointers(priv);
1232         free_rx_pointers(priv);
1233         if (priv->phy_node)
1234                 of_node_put(priv->phy_node);
1235         if (priv->tbi_node)
1236                 of_node_put(priv->tbi_node);
1237         free_netdev(dev);
1238         return err;
1239 }
1240
1241 static int gfar_remove(struct platform_device *ofdev)
1242 {
1243         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1244
1245         if (priv->phy_node)
1246                 of_node_put(priv->phy_node);
1247         if (priv->tbi_node)
1248                 of_node_put(priv->tbi_node);
1249
1250         dev_set_drvdata(&ofdev->dev, NULL);
1251
1252         unregister_netdev(priv->ndev);
1253         unmap_group_regs(priv);
1254         free_netdev(priv->ndev);
1255
1256         return 0;
1257 }
1258
1259 #ifdef CONFIG_PM
1260
1261 static int gfar_suspend(struct device *dev)
1262 {
1263         struct gfar_private *priv = dev_get_drvdata(dev);
1264         struct net_device *ndev = priv->ndev;
1265         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1266         unsigned long flags;
1267         u32 tempval;
1268
1269         int magic_packet = priv->wol_en &&
1270                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1271
1272         netif_device_detach(ndev);
1273
1274         if (netif_running(ndev)) {
1275
1276                 local_irq_save(flags);
1277                 lock_tx_qs(priv);
1278                 lock_rx_qs(priv);
1279
1280                 gfar_halt_nodisable(ndev);
1281
1282                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1283                 tempval = gfar_read(&regs->maccfg1);
1284
1285                 tempval &= ~MACCFG1_TX_EN;
1286
1287                 if (!magic_packet)
1288                         tempval &= ~MACCFG1_RX_EN;
1289
1290                 gfar_write(&regs->maccfg1, tempval);
1291
1292                 unlock_rx_qs(priv);
1293                 unlock_tx_qs(priv);
1294                 local_irq_restore(flags);
1295
1296                 disable_napi(priv);
1297
1298                 if (magic_packet) {
1299                         /* Enable interrupt on Magic Packet */
1300                         gfar_write(&regs->imask, IMASK_MAG);
1301
1302                         /* Enable Magic Packet mode */
1303                         tempval = gfar_read(&regs->maccfg2);
1304                         tempval |= MACCFG2_MPEN;
1305                         gfar_write(&regs->maccfg2, tempval);
1306                 } else {
1307                         phy_stop(priv->phydev);
1308                 }
1309         }
1310
1311         return 0;
1312 }
1313
1314 static int gfar_resume(struct device *dev)
1315 {
1316         struct gfar_private *priv = dev_get_drvdata(dev);
1317         struct net_device *ndev = priv->ndev;
1318         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319         unsigned long flags;
1320         u32 tempval;
1321         int magic_packet = priv->wol_en &&
1322                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1323
1324         if (!netif_running(ndev)) {
1325                 netif_device_attach(ndev);
1326                 return 0;
1327         }
1328
1329         if (!magic_packet && priv->phydev)
1330                 phy_start(priv->phydev);
1331
1332         /* Disable Magic Packet mode, in case something
1333          * else woke us up.
1334          */
1335         local_irq_save(flags);
1336         lock_tx_qs(priv);
1337         lock_rx_qs(priv);
1338
1339         tempval = gfar_read(&regs->maccfg2);
1340         tempval &= ~MACCFG2_MPEN;
1341         gfar_write(&regs->maccfg2, tempval);
1342
1343         gfar_start(ndev);
1344
1345         unlock_rx_qs(priv);
1346         unlock_tx_qs(priv);
1347         local_irq_restore(flags);
1348
1349         netif_device_attach(ndev);
1350
1351         enable_napi(priv);
1352
1353         return 0;
1354 }
1355
1356 static int gfar_restore(struct device *dev)
1357 {
1358         struct gfar_private *priv = dev_get_drvdata(dev);
1359         struct net_device *ndev = priv->ndev;
1360
1361         if (!netif_running(ndev))
1362                 return 0;
1363
1364         gfar_init_bds(ndev);
1365         init_registers(ndev);
1366         gfar_set_mac_address(ndev);
1367         gfar_init_mac(ndev);
1368         gfar_start(ndev);
1369
1370         priv->oldlink = 0;
1371         priv->oldspeed = 0;
1372         priv->oldduplex = -1;
1373
1374         if (priv->phydev)
1375                 phy_start(priv->phydev);
1376
1377         netif_device_attach(ndev);
1378         enable_napi(priv);
1379
1380         return 0;
1381 }
1382
1383 static struct dev_pm_ops gfar_pm_ops = {
1384         .suspend = gfar_suspend,
1385         .resume = gfar_resume,
1386         .freeze = gfar_suspend,
1387         .thaw = gfar_resume,
1388         .restore = gfar_restore,
1389 };
1390
1391 #define GFAR_PM_OPS (&gfar_pm_ops)
1392
1393 #else
1394
1395 #define GFAR_PM_OPS NULL
1396
1397 #endif
1398
1399 /* Reads the controller's registers to determine what interface
1400  * connects it to the PHY.
1401  */
1402 static phy_interface_t gfar_get_interface(struct net_device *dev)
1403 {
1404         struct gfar_private *priv = netdev_priv(dev);
1405         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1406         u32 ecntrl;
1407
1408         ecntrl = gfar_read(&regs->ecntrl);
1409
1410         if (ecntrl & ECNTRL_SGMII_MODE)
1411                 return PHY_INTERFACE_MODE_SGMII;
1412
1413         if (ecntrl & ECNTRL_TBI_MODE) {
1414                 if (ecntrl & ECNTRL_REDUCED_MODE)
1415                         return PHY_INTERFACE_MODE_RTBI;
1416                 else
1417                         return PHY_INTERFACE_MODE_TBI;
1418         }
1419
1420         if (ecntrl & ECNTRL_REDUCED_MODE) {
1421                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1422                         return PHY_INTERFACE_MODE_RMII;
1423                 else {
1424                         phy_interface_t interface = priv->interface;
1425
1426                         /*
1427                          * This isn't autodetected right now, so it must
1428                          * be set by the device tree or platform code.
1429                          */
1430                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1431                                 return PHY_INTERFACE_MODE_RGMII_ID;
1432
1433                         return PHY_INTERFACE_MODE_RGMII;
1434                 }
1435         }
1436
1437         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1438                 return PHY_INTERFACE_MODE_GMII;
1439
1440         return PHY_INTERFACE_MODE_MII;
1441 }
1442
1443
1444 /* Initializes driver's PHY state, and attaches to the PHY.
1445  * Returns 0 on success.
1446  */
1447 static int init_phy(struct net_device *dev)
1448 {
1449         struct gfar_private *priv = netdev_priv(dev);
1450         uint gigabit_support =
1451                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1452                 SUPPORTED_1000baseT_Full : 0;
1453         phy_interface_t interface;
1454
1455         priv->oldlink = 0;
1456         priv->oldspeed = 0;
1457         priv->oldduplex = -1;
1458
1459         interface = gfar_get_interface(dev);
1460
1461         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1462                                       interface);
1463         if (!priv->phydev)
1464                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1465                                                          interface);
1466         if (!priv->phydev) {
1467                 dev_err(&dev->dev, "could not attach to PHY\n");
1468                 return -ENODEV;
1469         }
1470
1471         if (interface == PHY_INTERFACE_MODE_SGMII)
1472                 gfar_configure_serdes(dev);
1473
1474         /* Remove any features not supported by the controller */
1475         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1476         priv->phydev->advertising = priv->phydev->supported;
1477
1478         return 0;
1479 }
1480
1481 /*
1482  * Initialize TBI PHY interface for communicating with the
1483  * SERDES lynx PHY on the chip.  We communicate with this PHY
1484  * through the MDIO bus on each controller, treating it as a
1485  * "normal" PHY at the address found in the TBIPA register.  We assume
1486  * that the TBIPA register is valid.  Either the MDIO bus code will set
1487  * it to a value that doesn't conflict with other PHYs on the bus, or the
1488  * value doesn't matter, as there are no other PHYs on the bus.
1489  */
1490 static void gfar_configure_serdes(struct net_device *dev)
1491 {
1492         struct gfar_private *priv = netdev_priv(dev);
1493         struct phy_device *tbiphy;
1494
1495         if (!priv->tbi_node) {
1496                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1497                                     "device tree specify a tbi-handle\n");
1498                 return;
1499         }
1500
1501         tbiphy = of_phy_find_device(priv->tbi_node);
1502         if (!tbiphy) {
1503                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1504                 return;
1505         }
1506
1507         /*
1508          * If the link is already up, we must already be ok, and don't need to
1509          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1510          * everything for us?  Resetting it takes the link down and requires
1511          * several seconds for it to come back.
1512          */
1513         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1514                 return;
1515
1516         /* Single clk mode, mii mode off(for serdes communication) */
1517         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1518
1519         phy_write(tbiphy, MII_ADVERTISE,
1520                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1521                         ADVERTISE_1000XPSE_ASYM);
1522
1523         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1524                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1525 }
1526
1527 static void init_registers(struct net_device *dev)
1528 {
1529         struct gfar_private *priv = netdev_priv(dev);
1530         struct gfar __iomem *regs = NULL;
1531         int i = 0;
1532
1533         for (i = 0; i < priv->num_grps; i++) {
1534                 regs = priv->gfargrp[i].regs;
1535                 /* Clear IEVENT */
1536                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1537
1538                 /* Initialize IMASK */
1539                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1540         }
1541
1542         regs = priv->gfargrp[0].regs;
1543         /* Init hash registers to zero */
1544         gfar_write(&regs->igaddr0, 0);
1545         gfar_write(&regs->igaddr1, 0);
1546         gfar_write(&regs->igaddr2, 0);
1547         gfar_write(&regs->igaddr3, 0);
1548         gfar_write(&regs->igaddr4, 0);
1549         gfar_write(&regs->igaddr5, 0);
1550         gfar_write(&regs->igaddr6, 0);
1551         gfar_write(&regs->igaddr7, 0);
1552
1553         gfar_write(&regs->gaddr0, 0);
1554         gfar_write(&regs->gaddr1, 0);
1555         gfar_write(&regs->gaddr2, 0);
1556         gfar_write(&regs->gaddr3, 0);
1557         gfar_write(&regs->gaddr4, 0);
1558         gfar_write(&regs->gaddr5, 0);
1559         gfar_write(&regs->gaddr6, 0);
1560         gfar_write(&regs->gaddr7, 0);
1561
1562         /* Zero out the rmon mib registers if it has them */
1563         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1564                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1565
1566                 /* Mask off the CAM interrupts */
1567                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1568                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1569         }
1570
1571         /* Initialize the max receive buffer length */
1572         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1573
1574         /* Initialize the Minimum Frame Length Register */
1575         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1576 }
1577
1578 static int __gfar_is_rx_idle(struct gfar_private *priv)
1579 {
1580         u32 res;
1581
1582         /*
1583          * Normaly TSEC should not hang on GRS commands, so we should
1584          * actually wait for IEVENT_GRSC flag.
1585          */
1586         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1587                 return 0;
1588
1589         /*
1590          * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1591          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1592          * and the Rx can be safely reset.
1593          */
1594         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1595         res &= 0x7f807f80;
1596         if ((res & 0xffff) == (res >> 16))
1597                 return 1;
1598
1599         return 0;
1600 }
1601
1602 /* Halt the receive and transmit queues */
1603 static void gfar_halt_nodisable(struct net_device *dev)
1604 {
1605         struct gfar_private *priv = netdev_priv(dev);
1606         struct gfar __iomem *regs = NULL;
1607         u32 tempval;
1608         int i = 0;
1609
1610         for (i = 0; i < priv->num_grps; i++) {
1611                 regs = priv->gfargrp[i].regs;
1612                 /* Mask all interrupts */
1613                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1614
1615                 /* Clear all interrupts */
1616                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1617         }
1618
1619         regs = priv->gfargrp[0].regs;
1620         /* Stop the DMA, and wait for it to stop */
1621         tempval = gfar_read(&regs->dmactrl);
1622         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1623             != (DMACTRL_GRS | DMACTRL_GTS)) {
1624                 int ret;
1625
1626                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1627                 gfar_write(&regs->dmactrl, tempval);
1628
1629                 do {
1630                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1631                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1632                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1633                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1634                                 ret = __gfar_is_rx_idle(priv);
1635                 } while (!ret);
1636         }
1637 }
1638
1639 /* Halt the receive and transmit queues */
1640 void gfar_halt(struct net_device *dev)
1641 {
1642         struct gfar_private *priv = netdev_priv(dev);
1643         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1644         u32 tempval;
1645
1646         gfar_halt_nodisable(dev);
1647
1648         /* Disable Rx and Tx */
1649         tempval = gfar_read(&regs->maccfg1);
1650         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1651         gfar_write(&regs->maccfg1, tempval);
1652 }
1653
1654 static void free_grp_irqs(struct gfar_priv_grp *grp)
1655 {
1656         free_irq(grp->interruptError, grp);
1657         free_irq(grp->interruptTransmit, grp);
1658         free_irq(grp->interruptReceive, grp);
1659 }
1660
1661 void stop_gfar(struct net_device *dev)
1662 {
1663         struct gfar_private *priv = netdev_priv(dev);
1664         unsigned long flags;
1665         int i;
1666
1667         phy_stop(priv->phydev);
1668
1669
1670         /* Lock it down */
1671         local_irq_save(flags);
1672         lock_tx_qs(priv);
1673         lock_rx_qs(priv);
1674
1675         gfar_halt(dev);
1676
1677         unlock_rx_qs(priv);
1678         unlock_tx_qs(priv);
1679         local_irq_restore(flags);
1680
1681         /* Free the IRQs */
1682         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1683                 for (i = 0; i < priv->num_grps; i++)
1684                         free_grp_irqs(&priv->gfargrp[i]);
1685         } else {
1686                 for (i = 0; i < priv->num_grps; i++)
1687                         free_irq(priv->gfargrp[i].interruptTransmit,
1688                                         &priv->gfargrp[i]);
1689         }
1690
1691         free_skb_resources(priv);
1692 }
1693
1694 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1695 {
1696         struct txbd8 *txbdp;
1697         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1698         int i, j;
1699
1700         txbdp = tx_queue->tx_bd_base;
1701
1702         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1703                 if (!tx_queue->tx_skbuff[i])
1704                         continue;
1705
1706                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1707                                 txbdp->length, DMA_TO_DEVICE);
1708                 txbdp->lstatus = 0;
1709                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1710                                 j++) {
1711                         txbdp++;
1712                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1713                                         txbdp->length, DMA_TO_DEVICE);
1714                 }
1715                 txbdp++;
1716                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1717                 tx_queue->tx_skbuff[i] = NULL;
1718         }
1719         kfree(tx_queue->tx_skbuff);
1720 }
1721
1722 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1723 {
1724         struct rxbd8 *rxbdp;
1725         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1726         int i;
1727
1728         rxbdp = rx_queue->rx_bd_base;
1729
1730         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1731                 if (rx_queue->rx_skbuff[i]) {
1732                         dma_unmap_single(&priv->ofdev->dev,
1733                                         rxbdp->bufPtr, priv->rx_buffer_size,
1734                                         DMA_FROM_DEVICE);
1735                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1736                         rx_queue->rx_skbuff[i] = NULL;
1737                 }
1738                 rxbdp->lstatus = 0;
1739                 rxbdp->bufPtr = 0;
1740                 rxbdp++;
1741         }
1742         kfree(rx_queue->rx_skbuff);
1743 }
1744
1745 /* If there are any tx skbs or rx skbs still around, free them.
1746  * Then free tx_skbuff and rx_skbuff */
1747 static void free_skb_resources(struct gfar_private *priv)
1748 {
1749         struct gfar_priv_tx_q *tx_queue = NULL;
1750         struct gfar_priv_rx_q *rx_queue = NULL;
1751         int i;
1752
1753         /* Go through all the buffer descriptors and free their data buffers */
1754         for (i = 0; i < priv->num_tx_queues; i++) {
1755                 tx_queue = priv->tx_queue[i];
1756                 if(tx_queue->tx_skbuff)
1757                         free_skb_tx_queue(tx_queue);
1758         }
1759
1760         for (i = 0; i < priv->num_rx_queues; i++) {
1761                 rx_queue = priv->rx_queue[i];
1762                 if(rx_queue->rx_skbuff)
1763                         free_skb_rx_queue(rx_queue);
1764         }
1765
1766         dma_free_coherent(&priv->ofdev->dev,
1767                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1768                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1769                         priv->tx_queue[0]->tx_bd_base,
1770                         priv->tx_queue[0]->tx_bd_dma_base);
1771         skb_queue_purge(&priv->rx_recycle);
1772 }
1773
1774 void gfar_start(struct net_device *dev)
1775 {
1776         struct gfar_private *priv = netdev_priv(dev);
1777         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1778         u32 tempval;
1779         int i = 0;
1780
1781         /* Enable Rx and Tx in MACCFG1 */
1782         tempval = gfar_read(&regs->maccfg1);
1783         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1784         gfar_write(&regs->maccfg1, tempval);
1785
1786         /* Initialize DMACTRL to have WWR and WOP */
1787         tempval = gfar_read(&regs->dmactrl);
1788         tempval |= DMACTRL_INIT_SETTINGS;
1789         gfar_write(&regs->dmactrl, tempval);
1790
1791         /* Make sure we aren't stopped */
1792         tempval = gfar_read(&regs->dmactrl);
1793         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1794         gfar_write(&regs->dmactrl, tempval);
1795
1796         for (i = 0; i < priv->num_grps; i++) {
1797                 regs = priv->gfargrp[i].regs;
1798                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1799                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1800                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1801                 /* Unmask the interrupts we look for */
1802                 gfar_write(&regs->imask, IMASK_DEFAULT);
1803         }
1804
1805         dev->trans_start = jiffies; /* prevent tx timeout */
1806 }
1807
1808 void gfar_configure_coalescing(struct gfar_private *priv,
1809         unsigned long tx_mask, unsigned long rx_mask)
1810 {
1811         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1812         u32 __iomem *baddr;
1813         int i = 0;
1814
1815         /* Backward compatible case ---- even if we enable
1816          * multiple queues, there's only single reg to program
1817          */
1818         gfar_write(&regs->txic, 0);
1819         if(likely(priv->tx_queue[0]->txcoalescing))
1820                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1821
1822         gfar_write(&regs->rxic, 0);
1823         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1824                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1825
1826         if (priv->mode == MQ_MG_MODE) {
1827                 baddr = &regs->txic0;
1828                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1829                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1830                                 gfar_write(baddr + i, 0);
1831                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1832                         }
1833                 }
1834
1835                 baddr = &regs->rxic0;
1836                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1837                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1838                                 gfar_write(baddr + i, 0);
1839                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1840                         }
1841                 }
1842         }
1843 }
1844
1845 static int register_grp_irqs(struct gfar_priv_grp *grp)
1846 {
1847         struct gfar_private *priv = grp->priv;
1848         struct net_device *dev = priv->ndev;
1849         int err;
1850
1851         /* If the device has multiple interrupts, register for
1852          * them.  Otherwise, only register for the one */
1853         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1854                 /* Install our interrupt handlers for Error,
1855                  * Transmit, and Receive */
1856                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1857                                 grp->int_name_er,grp)) < 0) {
1858                         if (netif_msg_intr(priv))
1859                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1860                                         dev->name, grp->interruptError);
1861
1862                         goto err_irq_fail;
1863                 }
1864
1865                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1866                                 0, grp->int_name_tx, grp)) < 0) {
1867                         if (netif_msg_intr(priv))
1868                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1869                                         dev->name, grp->interruptTransmit);
1870                         goto tx_irq_fail;
1871                 }
1872
1873                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1874                                 grp->int_name_rx, grp)) < 0) {
1875                         if (netif_msg_intr(priv))
1876                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1877                                         dev->name, grp->interruptReceive);
1878                         goto rx_irq_fail;
1879                 }
1880         } else {
1881                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882                                 grp->int_name_tx, grp)) < 0) {
1883                         if (netif_msg_intr(priv))
1884                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1885                                         dev->name, grp->interruptTransmit);
1886                         goto err_irq_fail;
1887                 }
1888         }
1889
1890         return 0;
1891
1892 rx_irq_fail:
1893         free_irq(grp->interruptTransmit, grp);
1894 tx_irq_fail:
1895         free_irq(grp->interruptError, grp);
1896 err_irq_fail:
1897         return err;
1898
1899 }
1900
1901 /* Bring the controller up and running */
1902 int startup_gfar(struct net_device *ndev)
1903 {
1904         struct gfar_private *priv = netdev_priv(ndev);
1905         struct gfar __iomem *regs = NULL;
1906         int err, i, j;
1907
1908         for (i = 0; i < priv->num_grps; i++) {
1909                 regs= priv->gfargrp[i].regs;
1910                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1911         }
1912
1913         regs= priv->gfargrp[0].regs;
1914         err = gfar_alloc_skb_resources(ndev);
1915         if (err)
1916                 return err;
1917
1918         gfar_init_mac(ndev);
1919
1920         for (i = 0; i < priv->num_grps; i++) {
1921                 err = register_grp_irqs(&priv->gfargrp[i]);
1922                 if (err) {
1923                         for (j = 0; j < i; j++)
1924                                 free_grp_irqs(&priv->gfargrp[j]);
1925                                 goto irq_fail;
1926                 }
1927         }
1928
1929         /* Start the controller */
1930         gfar_start(ndev);
1931
1932         phy_start(priv->phydev);
1933
1934         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1935
1936         return 0;
1937
1938 irq_fail:
1939         free_skb_resources(priv);
1940         return err;
1941 }
1942
1943 /* Called when something needs to use the ethernet device */
1944 /* Returns 0 for success. */
1945 static int gfar_enet_open(struct net_device *dev)
1946 {
1947         struct gfar_private *priv = netdev_priv(dev);
1948         int err;
1949
1950         enable_napi(priv);
1951
1952         skb_queue_head_init(&priv->rx_recycle);
1953
1954         /* Initialize a bunch of registers */
1955         init_registers(dev);
1956
1957         gfar_set_mac_address(dev);
1958
1959         err = init_phy(dev);
1960
1961         if (err) {
1962                 disable_napi(priv);
1963                 return err;
1964         }
1965
1966         err = startup_gfar(dev);
1967         if (err) {
1968                 disable_napi(priv);
1969                 return err;
1970         }
1971
1972         netif_tx_start_all_queues(dev);
1973
1974         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1975
1976         return err;
1977 }
1978
1979 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1980 {
1981         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1982
1983         memset(fcb, 0, GMAC_FCB_LEN);
1984
1985         return fcb;
1986 }
1987
1988 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1989 {
1990         u8 flags = 0;
1991
1992         /* If we're here, it's a IP packet with a TCP or UDP
1993          * payload.  We set it to checksum, using a pseudo-header
1994          * we provide
1995          */
1996         flags = TXFCB_DEFAULT;
1997
1998         /* Tell the controller what the protocol is */
1999         /* And provide the already calculated phcs */
2000         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2001                 flags |= TXFCB_UDP;
2002                 fcb->phcs = udp_hdr(skb)->check;
2003         } else
2004                 fcb->phcs = tcp_hdr(skb)->check;
2005
2006         /* l3os is the distance between the start of the
2007          * frame (skb->data) and the start of the IP hdr.
2008          * l4os is the distance between the start of the
2009          * l3 hdr and the l4 hdr */
2010         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2011         fcb->l4os = skb_network_header_len(skb);
2012
2013         fcb->flags = flags;
2014 }
2015
2016 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2017 {
2018         fcb->flags |= TXFCB_VLN;
2019         fcb->vlctl = vlan_tx_tag_get(skb);
2020 }
2021
2022 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2023                                struct txbd8 *base, int ring_size)
2024 {
2025         struct txbd8 *new_bd = bdp + stride;
2026
2027         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2028 }
2029
2030 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2031                 int ring_size)
2032 {
2033         return skip_txbd(bdp, 1, base, ring_size);
2034 }
2035
2036 /* This is called by the kernel when a frame is ready for transmission. */
2037 /* It is pointed to by the dev->hard_start_xmit function pointer */
2038 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2039 {
2040         struct gfar_private *priv = netdev_priv(dev);
2041         struct gfar_priv_tx_q *tx_queue = NULL;
2042         struct netdev_queue *txq;
2043         struct gfar __iomem *regs = NULL;
2044         struct txfcb *fcb = NULL;
2045         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2046         u32 lstatus;
2047         int i, rq = 0, do_tstamp = 0;
2048         u32 bufaddr;
2049         unsigned long flags;
2050         unsigned int nr_frags, nr_txbds, length;
2051
2052         /*
2053          * TOE=1 frames larger than 2500 bytes may see excess delays
2054          * before start of transmission.
2055          */
2056         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2057                         skb->ip_summed == CHECKSUM_PARTIAL &&
2058                         skb->len > 2500)) {
2059                 int ret;
2060
2061                 ret = skb_checksum_help(skb);
2062                 if (ret)
2063                         return ret;
2064         }
2065
2066         rq = skb->queue_mapping;
2067         tx_queue = priv->tx_queue[rq];
2068         txq = netdev_get_tx_queue(dev, rq);
2069         base = tx_queue->tx_bd_base;
2070         regs = tx_queue->grp->regs;
2071
2072         /* check if time stamp should be generated */
2073         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2074                      priv->hwts_tx_en))
2075                 do_tstamp = 1;
2076
2077         /* make space for additional header when fcb is needed */
2078         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2079                         vlan_tx_tag_present(skb) ||
2080                         unlikely(do_tstamp)) &&
2081                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
2082                 struct sk_buff *skb_new;
2083
2084                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2085                 if (!skb_new) {
2086                         dev->stats.tx_errors++;
2087                         kfree_skb(skb);
2088                         return NETDEV_TX_OK;
2089                 }
2090                 kfree_skb(skb);
2091                 skb = skb_new;
2092         }
2093
2094         /* total number of fragments in the SKB */
2095         nr_frags = skb_shinfo(skb)->nr_frags;
2096
2097         /* calculate the required number of TxBDs for this skb */
2098         if (unlikely(do_tstamp))
2099                 nr_txbds = nr_frags + 2;
2100         else
2101                 nr_txbds = nr_frags + 1;
2102
2103         /* check if there is space to queue this packet */
2104         if (nr_txbds > tx_queue->num_txbdfree) {
2105                 /* no space, stop the queue */
2106                 netif_tx_stop_queue(txq);
2107                 dev->stats.tx_fifo_errors++;
2108                 return NETDEV_TX_BUSY;
2109         }
2110
2111         /* Update transmit stats */
2112         txq->tx_bytes += skb->len;
2113         txq->tx_packets ++;
2114
2115         txbdp = txbdp_start = tx_queue->cur_tx;
2116         lstatus = txbdp->lstatus;
2117
2118         /* Time stamp insertion requires one additional TxBD */
2119         if (unlikely(do_tstamp))
2120                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2121                                 tx_queue->tx_ring_size);
2122
2123         if (nr_frags == 0) {
2124                 if (unlikely(do_tstamp))
2125                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2126                                         TXBD_INTERRUPT);
2127                 else
2128                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2129         } else {
2130                 /* Place the fragment addresses and lengths into the TxBDs */
2131                 for (i = 0; i < nr_frags; i++) {
2132                         /* Point at the next BD, wrapping as needed */
2133                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2134
2135                         length = skb_shinfo(skb)->frags[i].size;
2136
2137                         lstatus = txbdp->lstatus | length |
2138                                 BD_LFLAG(TXBD_READY);
2139
2140                         /* Handle the last BD specially */
2141                         if (i == nr_frags - 1)
2142                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2143
2144                         bufaddr = dma_map_page(&priv->ofdev->dev,
2145                                         skb_shinfo(skb)->frags[i].page,
2146                                         skb_shinfo(skb)->frags[i].page_offset,
2147                                         length,
2148                                         DMA_TO_DEVICE);
2149
2150                         /* set the TxBD length and buffer pointer */
2151                         txbdp->bufPtr = bufaddr;
2152                         txbdp->lstatus = lstatus;
2153                 }
2154
2155                 lstatus = txbdp_start->lstatus;
2156         }
2157
2158         /* Set up checksumming */
2159         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2160                 fcb = gfar_add_fcb(skb);
2161                 lstatus |= BD_LFLAG(TXBD_TOE);
2162                 gfar_tx_checksum(skb, fcb);
2163         }
2164
2165         if (vlan_tx_tag_present(skb)) {
2166                 if (unlikely(NULL == fcb)) {
2167                         fcb = gfar_add_fcb(skb);
2168                         lstatus |= BD_LFLAG(TXBD_TOE);
2169                 }
2170
2171                 gfar_tx_vlan(skb, fcb);
2172         }
2173
2174         /* Setup tx hardware time stamping if requested */
2175         if (unlikely(do_tstamp)) {
2176                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2177                 if (fcb == NULL)
2178                         fcb = gfar_add_fcb(skb);
2179                 fcb->ptp = 1;
2180                 lstatus |= BD_LFLAG(TXBD_TOE);
2181         }
2182
2183         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2184                         skb_headlen(skb), DMA_TO_DEVICE);
2185
2186         /*
2187          * If time stamping is requested one additional TxBD must be set up. The
2188          * first TxBD points to the FCB and must have a data length of
2189          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2190          * the full frame length.
2191          */
2192         if (unlikely(do_tstamp)) {
2193                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2194                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2195                                 (skb_headlen(skb) - GMAC_FCB_LEN);
2196                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2197         } else {
2198                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2199         }
2200
2201         /*
2202          * We can work in parallel with gfar_clean_tx_ring(), except
2203          * when modifying num_txbdfree. Note that we didn't grab the lock
2204          * when we were reading the num_txbdfree and checking for available
2205          * space, that's because outside of this function it can only grow,
2206          * and once we've got needed space, it cannot suddenly disappear.
2207          *
2208          * The lock also protects us from gfar_error(), which can modify
2209          * regs->tstat and thus retrigger the transfers, which is why we
2210          * also must grab the lock before setting ready bit for the first
2211          * to be transmitted BD.
2212          */
2213         spin_lock_irqsave(&tx_queue->txlock, flags);
2214
2215         /*
2216          * The powerpc-specific eieio() is used, as wmb() has too strong
2217          * semantics (it requires synchronization between cacheable and
2218          * uncacheable mappings, which eieio doesn't provide and which we
2219          * don't need), thus requiring a more expensive sync instruction.  At
2220          * some point, the set of architecture-independent barrier functions
2221          * should be expanded to include weaker barriers.
2222          */
2223         eieio();
2224
2225         txbdp_start->lstatus = lstatus;
2226
2227         eieio(); /* force lstatus write before tx_skbuff */
2228
2229         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2230
2231         /* Update the current skb pointer to the next entry we will use
2232          * (wrapping if necessary) */
2233         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2234                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2235
2236         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2237
2238         /* reduce TxBD free count */
2239         tx_queue->num_txbdfree -= (nr_txbds);
2240
2241         /* If the next BD still needs to be cleaned up, then the bds
2242            are full.  We need to tell the kernel to stop sending us stuff. */
2243         if (!tx_queue->num_txbdfree) {
2244                 netif_tx_stop_queue(txq);
2245
2246                 dev->stats.tx_fifo_errors++;
2247         }
2248
2249         /* Tell the DMA to go go go */
2250         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2251
2252         /* Unlock priv */
2253         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2254
2255         return NETDEV_TX_OK;
2256 }
2257
2258 /* Stops the kernel queue, and halts the controller */
2259 static int gfar_close(struct net_device *dev)
2260 {
2261         struct gfar_private *priv = netdev_priv(dev);
2262
2263         disable_napi(priv);
2264
2265         cancel_work_sync(&priv->reset_task);
2266         stop_gfar(dev);
2267
2268         /* Disconnect from the PHY */
2269         phy_disconnect(priv->phydev);
2270         priv->phydev = NULL;
2271
2272         netif_tx_stop_all_queues(dev);
2273
2274         return 0;
2275 }
2276
2277 /* Changes the mac address if the controller is not running. */
2278 static int gfar_set_mac_address(struct net_device *dev)
2279 {
2280         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2281
2282         return 0;
2283 }
2284
2285
2286 /* Enables and disables VLAN insertion/extraction */
2287 static void gfar_vlan_rx_register(struct net_device *dev,
2288                 struct vlan_group *grp)
2289 {
2290         struct gfar_private *priv = netdev_priv(dev);
2291         struct gfar __iomem *regs = NULL;
2292         unsigned long flags;
2293         u32 tempval;
2294
2295         regs = priv->gfargrp[0].regs;
2296         local_irq_save(flags);
2297         lock_rx_qs(priv);
2298
2299         priv->vlgrp = grp;
2300
2301         if (grp) {
2302                 /* Enable VLAN tag insertion */
2303                 tempval = gfar_read(&regs->tctrl);
2304                 tempval |= TCTRL_VLINS;
2305
2306                 gfar_write(&regs->tctrl, tempval);
2307
2308                 /* Enable VLAN tag extraction */
2309                 tempval = gfar_read(&regs->rctrl);
2310                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2311                 gfar_write(&regs->rctrl, tempval);
2312         } else {
2313                 /* Disable VLAN tag insertion */
2314                 tempval = gfar_read(&regs->tctrl);
2315                 tempval &= ~TCTRL_VLINS;
2316                 gfar_write(&regs->tctrl, tempval);
2317
2318                 /* Disable VLAN tag extraction */
2319                 tempval = gfar_read(&regs->rctrl);
2320                 tempval &= ~RCTRL_VLEX;
2321                 /* If parse is no longer required, then disable parser */
2322                 if (tempval & RCTRL_REQ_PARSER)
2323                         tempval |= RCTRL_PRSDEP_INIT;
2324                 else
2325                         tempval &= ~RCTRL_PRSDEP_INIT;
2326                 gfar_write(&regs->rctrl, tempval);
2327         }
2328
2329         gfar_change_mtu(dev, dev->mtu);
2330
2331         unlock_rx_qs(priv);
2332         local_irq_restore(flags);
2333 }
2334
2335 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2336 {
2337         int tempsize, tempval;
2338         struct gfar_private *priv = netdev_priv(dev);
2339         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2340         int oldsize = priv->rx_buffer_size;
2341         int frame_size = new_mtu + ETH_HLEN;
2342
2343         if (priv->vlgrp)
2344                 frame_size += VLAN_HLEN;
2345
2346         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2347                 if (netif_msg_drv(priv))
2348                         printk(KERN_ERR "%s: Invalid MTU setting\n",
2349                                         dev->name);
2350                 return -EINVAL;
2351         }
2352
2353         if (gfar_uses_fcb(priv))
2354                 frame_size += GMAC_FCB_LEN;
2355
2356         frame_size += priv->padding;
2357
2358         tempsize =
2359             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2360             INCREMENTAL_BUFFER_SIZE;
2361
2362         /* Only stop and start the controller if it isn't already
2363          * stopped, and we changed something */
2364         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2365                 stop_gfar(dev);
2366
2367         priv->rx_buffer_size = tempsize;
2368
2369         dev->mtu = new_mtu;
2370
2371         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2372         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2373
2374         /* If the mtu is larger than the max size for standard
2375          * ethernet frames (ie, a jumbo frame), then set maccfg2
2376          * to allow huge frames, and to check the length */
2377         tempval = gfar_read(&regs->maccfg2);
2378
2379         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2380                         gfar_has_errata(priv, GFAR_ERRATA_74))
2381                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2382         else
2383                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2384
2385         gfar_write(&regs->maccfg2, tempval);
2386
2387         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2388                 startup_gfar(dev);
2389
2390         return 0;
2391 }
2392
2393 /* gfar_reset_task gets scheduled when a packet has not been
2394  * transmitted after a set amount of time.
2395  * For now, assume that clearing out all the structures, and
2396  * starting over will fix the problem.
2397  */
2398 static void gfar_reset_task(struct work_struct *work)
2399 {
2400         struct gfar_private *priv = container_of(work, struct gfar_private,
2401                         reset_task);
2402         struct net_device *dev = priv->ndev;
2403
2404         if (dev->flags & IFF_UP) {
2405                 netif_tx_stop_all_queues(dev);
2406                 stop_gfar(dev);
2407                 startup_gfar(dev);
2408                 netif_tx_start_all_queues(dev);
2409         }
2410
2411         netif_tx_schedule_all(dev);
2412 }
2413
2414 static void gfar_timeout(struct net_device *dev)
2415 {
2416         struct gfar_private *priv = netdev_priv(dev);
2417
2418         dev->stats.tx_errors++;
2419         schedule_work(&priv->reset_task);
2420 }
2421
2422 static void gfar_align_skb(struct sk_buff *skb)
2423 {
2424         /* We need the data buffer to be aligned properly.  We will reserve
2425          * as many bytes as needed to align the data properly
2426          */
2427         skb_reserve(skb, RXBUF_ALIGNMENT -
2428                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2429 }
2430
2431 /* Interrupt Handler for Transmit complete */
2432 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2433 {
2434         struct net_device *dev = tx_queue->dev;
2435         struct gfar_private *priv = netdev_priv(dev);
2436         struct gfar_priv_rx_q *rx_queue = NULL;
2437         struct txbd8 *bdp, *next = NULL;
2438         struct txbd8 *lbdp = NULL;
2439         struct txbd8 *base = tx_queue->tx_bd_base;
2440         struct sk_buff *skb;
2441         int skb_dirtytx;
2442         int tx_ring_size = tx_queue->tx_ring_size;
2443         int frags = 0, nr_txbds = 0;
2444         int i;
2445         int howmany = 0;
2446         u32 lstatus;
2447         size_t buflen;
2448
2449         rx_queue = priv->rx_queue[tx_queue->qindex];
2450         bdp = tx_queue->dirty_tx;
2451         skb_dirtytx = tx_queue->skb_dirtytx;
2452
2453         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2454                 unsigned long flags;
2455
2456                 frags = skb_shinfo(skb)->nr_frags;
2457
2458                 /*
2459                  * When time stamping, one additional TxBD must be freed.
2460                  * Also, we need to dma_unmap_single() the TxPAL.
2461                  */
2462                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2463                         nr_txbds = frags + 2;
2464                 else
2465                         nr_txbds = frags + 1;
2466
2467                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2468
2469                 lstatus = lbdp->lstatus;
2470
2471                 /* Only clean completed frames */
2472                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2473                                 (lstatus & BD_LENGTH_MASK))
2474                         break;
2475
2476                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2477                         next = next_txbd(bdp, base, tx_ring_size);
2478                         buflen = next->length + GMAC_FCB_LEN;
2479                 } else
2480                         buflen = bdp->length;
2481
2482                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2483                                 buflen, DMA_TO_DEVICE);
2484
2485                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2486                         struct skb_shared_hwtstamps shhwtstamps;
2487                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2488                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2489                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2490                         skb_tstamp_tx(skb, &shhwtstamps);
2491                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2492                         bdp = next;
2493                 }
2494
2495                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2496                 bdp = next_txbd(bdp, base, tx_ring_size);
2497
2498                 for (i = 0; i < frags; i++) {
2499                         dma_unmap_page(&priv->ofdev->dev,
2500                                         bdp->bufPtr,
2501                                         bdp->length,
2502                                         DMA_TO_DEVICE);
2503                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2504                         bdp = next_txbd(bdp, base, tx_ring_size);
2505                 }
2506
2507                 /*
2508                  * If there's room in the queue (limit it to rx_buffer_size)
2509                  * we add this skb back into the pool, if it's the right size
2510                  */
2511                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2512                                 skb_recycle_check(skb, priv->rx_buffer_size +
2513                                         RXBUF_ALIGNMENT)) {
2514                         gfar_align_skb(skb);
2515                         skb_queue_head(&priv->rx_recycle, skb);
2516                 } else
2517                         dev_kfree_skb_any(skb);
2518
2519                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2520
2521                 skb_dirtytx = (skb_dirtytx + 1) &
2522                         TX_RING_MOD_MASK(tx_ring_size);
2523
2524                 howmany++;
2525                 spin_lock_irqsave(&tx_queue->txlock, flags);
2526                 tx_queue->num_txbdfree += nr_txbds;
2527                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2528         }
2529
2530         /* If we freed a buffer, we can restart transmission, if necessary */
2531         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2532                 netif_wake_subqueue(dev, tx_queue->qindex);
2533
2534         /* Update dirty indicators */
2535         tx_queue->skb_dirtytx = skb_dirtytx;
2536         tx_queue->dirty_tx = bdp;
2537
2538         return howmany;
2539 }
2540
2541 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2542 {
2543         unsigned long flags;
2544
2545         spin_lock_irqsave(&gfargrp->grplock, flags);
2546         if (napi_schedule_prep(&gfargrp->napi)) {
2547                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2548                 __napi_schedule(&gfargrp->napi);
2549         } else {
2550                 /*
2551                  * Clear IEVENT, so interrupts aren't called again
2552                  * because of the packets that have already arrived.
2553                  */
2554                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2555         }
2556         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2557
2558 }
2559
2560 /* Interrupt Handler for Transmit complete */
2561 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2562 {
2563         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2564         return IRQ_HANDLED;
2565 }
2566
2567 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2568                 struct sk_buff *skb)
2569 {
2570         struct net_device *dev = rx_queue->dev;
2571         struct gfar_private *priv = netdev_priv(dev);
2572         dma_addr_t buf;
2573
2574         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2575                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2576         gfar_init_rxbdp(rx_queue, bdp, buf);
2577 }
2578
2579 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2580 {
2581         struct gfar_private *priv = netdev_priv(dev);
2582         struct sk_buff *skb = NULL;
2583
2584         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2585         if (!skb)
2586                 return NULL;
2587
2588         gfar_align_skb(skb);
2589
2590         return skb;
2591 }
2592
2593 struct sk_buff * gfar_new_skb(struct net_device *dev)
2594 {
2595         struct gfar_private *priv = netdev_priv(dev);
2596         struct sk_buff *skb = NULL;
2597
2598         skb = skb_dequeue(&priv->rx_recycle);
2599         if (!skb)
2600                 skb = gfar_alloc_skb(dev);
2601
2602         return skb;
2603 }
2604
2605 static inline void count_errors(unsigned short status, struct net_device *dev)
2606 {
2607         struct gfar_private *priv = netdev_priv(dev);
2608         struct net_device_stats *stats = &dev->stats;
2609         struct gfar_extra_stats *estats = &priv->extra_stats;
2610
2611         /* If the packet was truncated, none of the other errors
2612          * matter */
2613         if (status & RXBD_TRUNCATED) {
2614                 stats->rx_length_errors++;
2615
2616                 estats->rx_trunc++;
2617
2618                 return;
2619         }
2620         /* Count the errors, if there were any */
2621         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2622                 stats->rx_length_errors++;
2623
2624                 if (status & RXBD_LARGE)
2625                         estats->rx_large++;
2626                 else
2627                         estats->rx_short++;
2628         }
2629         if (status & RXBD_NONOCTET) {
2630                 stats->rx_frame_errors++;
2631                 estats->rx_nonoctet++;
2632         }
2633         if (status & RXBD_CRCERR) {
2634                 estats->rx_crcerr++;
2635                 stats->rx_crc_errors++;
2636         }
2637         if (status & RXBD_OVERRUN) {
2638                 estats->rx_overrun++;
2639                 stats->rx_crc_errors++;
2640         }
2641 }
2642
2643 irqreturn_t gfar_receive(int irq, void *grp_id)
2644 {
2645         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2646         return IRQ_HANDLED;
2647 }
2648
2649 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2650 {
2651         /* If valid headers were found, and valid sums
2652          * were verified, then we tell the kernel that no
2653          * checksumming is necessary.  Otherwise, it is */
2654         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2655                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2656         else
2657                 skb_checksum_none_assert(skb);
2658 }
2659
2660
2661 /* gfar_process_frame() -- handle one incoming packet if skb
2662  * isn't NULL.  */
2663 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2664                               int amount_pull)
2665 {
2666         struct gfar_private *priv = netdev_priv(dev);
2667         struct rxfcb *fcb = NULL;
2668
2669         int ret;
2670
2671         /* fcb is at the beginning if exists */
2672         fcb = (struct rxfcb *)skb->data;
2673
2674         /* Remove the FCB from the skb */
2675         /* Remove the padded bytes, if there are any */
2676         if (amount_pull) {
2677                 skb_record_rx_queue(skb, fcb->rq);
2678                 skb_pull(skb, amount_pull);
2679         }
2680
2681         /* Get receive timestamp from the skb */
2682         if (priv->hwts_rx_en) {
2683                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2684                 u64 *ns = (u64 *) skb->data;
2685                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2686                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2687         }
2688
2689         if (priv->padding)
2690                 skb_pull(skb, priv->padding);
2691
2692         if (priv->rx_csum_enable)
2693                 gfar_rx_checksum(skb, fcb);
2694
2695         /* Tell the skb what kind of packet this is */
2696         skb->protocol = eth_type_trans(skb, dev);
2697
2698         /* Send the packet up the stack */
2699         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2700                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2701         else
2702                 ret = netif_receive_skb(skb);
2703
2704         if (NET_RX_DROP == ret)
2705                 priv->extra_stats.kernel_dropped++;
2706
2707         return 0;
2708 }
2709
2710 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2711  *   until the budget/quota has been reached. Returns the number
2712  *   of frames handled
2713  */
2714 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2715 {
2716         struct net_device *dev = rx_queue->dev;
2717         struct rxbd8 *bdp, *base;
2718         struct sk_buff *skb;
2719         int pkt_len;
2720         int amount_pull;
2721         int howmany = 0;
2722         struct gfar_private *priv = netdev_priv(dev);
2723
2724         /* Get the first full descriptor */
2725         bdp = rx_queue->cur_rx;
2726         base = rx_queue->rx_bd_base;
2727
2728         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2729
2730         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2731                 struct sk_buff *newskb;
2732                 rmb();
2733
2734                 /* Add another skb for the future */
2735                 newskb = gfar_new_skb(dev);
2736
2737                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2738
2739                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2740                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2741
2742                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2743                                 bdp->length > priv->rx_buffer_size))
2744                         bdp->status = RXBD_LARGE;
2745
2746                 /* We drop the frame if we failed to allocate a new buffer */
2747                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2748                                  bdp->status & RXBD_ERR)) {
2749                         count_errors(bdp->status, dev);
2750
2751                         if (unlikely(!newskb))
2752                                 newskb = skb;
2753                         else if (skb)
2754                                 skb_queue_head(&priv->rx_recycle, skb);
2755                 } else {
2756                         /* Increment the number of packets */
2757                         rx_queue->stats.rx_packets++;
2758                         howmany++;
2759
2760                         if (likely(skb)) {
2761                                 pkt_len = bdp->length - ETH_FCS_LEN;
2762                                 /* Remove the FCS from the packet length */
2763                                 skb_put(skb, pkt_len);
2764                                 rx_queue->stats.rx_bytes += pkt_len;
2765                                 skb_record_rx_queue(skb, rx_queue->qindex);
2766                                 gfar_process_frame(dev, skb, amount_pull);
2767
2768                         } else {
2769                                 if (netif_msg_rx_err(priv))
2770                                         printk(KERN_WARNING
2771                                                "%s: Missing skb!\n", dev->name);
2772                                 rx_queue->stats.rx_dropped++;
2773                                 priv->extra_stats.rx_skbmissing++;
2774                         }
2775
2776                 }
2777
2778                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2779
2780                 /* Setup the new bdp */
2781                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2782
2783                 /* Update to the next pointer */
2784                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2785
2786                 /* update to point at the next skb */
2787                 rx_queue->skb_currx =
2788                     (rx_queue->skb_currx + 1) &
2789                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2790         }
2791
2792         /* Update the current rxbd pointer to be the next one */
2793         rx_queue->cur_rx = bdp;
2794
2795         return howmany;
2796 }
2797
2798 static int gfar_poll(struct napi_struct *napi, int budget)
2799 {
2800         struct gfar_priv_grp *gfargrp = container_of(napi,
2801                         struct gfar_priv_grp, napi);
2802         struct gfar_private *priv = gfargrp->priv;
2803         struct gfar __iomem *regs = gfargrp->regs;
2804         struct gfar_priv_tx_q *tx_queue = NULL;
2805         struct gfar_priv_rx_q *rx_queue = NULL;
2806         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2807         int tx_cleaned = 0, i, left_over_budget = budget;
2808         unsigned long serviced_queues = 0;
2809         int num_queues = 0;
2810
2811         num_queues = gfargrp->num_rx_queues;
2812         budget_per_queue = budget/num_queues;
2813
2814         /* Clear IEVENT, so interrupts aren't called again
2815          * because of the packets that have already arrived */
2816         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2817
2818         while (num_queues && left_over_budget) {
2819
2820                 budget_per_queue = left_over_budget/num_queues;
2821                 left_over_budget = 0;
2822
2823                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2824                         if (test_bit(i, &serviced_queues))
2825                                 continue;
2826                         rx_queue = priv->rx_queue[i];
2827                         tx_queue = priv->tx_queue[rx_queue->qindex];
2828
2829                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2830                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2831                                                         budget_per_queue);
2832                         rx_cleaned += rx_cleaned_per_queue;
2833                         if(rx_cleaned_per_queue < budget_per_queue) {
2834                                 left_over_budget = left_over_budget +
2835                                         (budget_per_queue - rx_cleaned_per_queue);
2836                                 set_bit(i, &serviced_queues);
2837                                 num_queues--;
2838                         }
2839                 }
2840         }
2841
2842         if (tx_cleaned)
2843                 return budget;
2844
2845         if (rx_cleaned < budget) {
2846                 napi_complete(napi);
2847
2848                 /* Clear the halt bit in RSTAT */
2849                 gfar_write(&regs->rstat, gfargrp->rstat);
2850
2851                 gfar_write(&regs->imask, IMASK_DEFAULT);
2852
2853                 /* If we are coalescing interrupts, update the timer */
2854                 /* Otherwise, clear it */
2855                 gfar_configure_coalescing(priv,
2856                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2857         }
2858
2859         return rx_cleaned;
2860 }
2861
2862 #ifdef CONFIG_NET_POLL_CONTROLLER
2863 /*
2864  * Polling 'interrupt' - used by things like netconsole to send skbs
2865  * without having to re-enable interrupts. It's not called while
2866  * the interrupt routine is executing.
2867  */
2868 static void gfar_netpoll(struct net_device *dev)
2869 {
2870         struct gfar_private *priv = netdev_priv(dev);
2871         int i = 0;
2872
2873         /* If the device has multiple interrupts, run tx/rx */
2874         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2875                 for (i = 0; i < priv->num_grps; i++) {
2876                         disable_irq(priv->gfargrp[i].interruptTransmit);
2877                         disable_irq(priv->gfargrp[i].interruptReceive);
2878                         disable_irq(priv->gfargrp[i].interruptError);
2879                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2880                                                 &priv->gfargrp[i]);
2881                         enable_irq(priv->gfargrp[i].interruptError);
2882                         enable_irq(priv->gfargrp[i].interruptReceive);
2883                         enable_irq(priv->gfargrp[i].interruptTransmit);
2884                 }
2885         } else {
2886                 for (i = 0; i < priv->num_grps; i++) {
2887                         disable_irq(priv->gfargrp[i].interruptTransmit);
2888                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2889                                                 &priv->gfargrp[i]);
2890                         enable_irq(priv->gfargrp[i].interruptTransmit);
2891                 }
2892         }
2893 }
2894 #endif
2895
2896 /* The interrupt handler for devices with one interrupt */
2897 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2898 {
2899         struct gfar_priv_grp *gfargrp = grp_id;
2900
2901         /* Save ievent for future reference */
2902         u32 events = gfar_read(&gfargrp->regs->ievent);
2903
2904         /* Check for reception */
2905         if (events & IEVENT_RX_MASK)
2906                 gfar_receive(irq, grp_id);
2907
2908         /* Check for transmit completion */
2909         if (events & IEVENT_TX_MASK)
2910                 gfar_transmit(irq, grp_id);
2911
2912         /* Check for errors */
2913         if (events & IEVENT_ERR_MASK)
2914                 gfar_error(irq, grp_id);
2915
2916         return IRQ_HANDLED;
2917 }
2918
2919 /* Called every time the controller might need to be made
2920  * aware of new link state.  The PHY code conveys this
2921  * information through variables in the phydev structure, and this
2922  * function converts those variables into the appropriate
2923  * register values, and can bring down the device if needed.
2924  */
2925 static void adjust_link(struct net_device *dev)
2926 {
2927         struct gfar_private *priv = netdev_priv(dev);
2928         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2929         unsigned long flags;
2930         struct phy_device *phydev = priv->phydev;
2931         int new_state = 0;
2932
2933         local_irq_save(flags);
2934         lock_tx_qs(priv);
2935
2936         if (phydev->link) {
2937                 u32 tempval = gfar_read(&regs->maccfg2);
2938                 u32 ecntrl = gfar_read(&regs->ecntrl);
2939
2940                 /* Now we make sure that we can be in full duplex mode.
2941                  * If not, we operate in half-duplex mode. */
2942                 if (phydev->duplex != priv->oldduplex) {
2943                         new_state = 1;
2944                         if (!(phydev->duplex))
2945                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2946                         else
2947                                 tempval |= MACCFG2_FULL_DUPLEX;
2948
2949                         priv->oldduplex = phydev->duplex;
2950                 }
2951
2952                 if (phydev->speed != priv->oldspeed) {
2953                         new_state = 1;
2954                         switch (phydev->speed) {
2955                         case 1000:
2956                                 tempval =
2957                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2958
2959                                 ecntrl &= ~(ECNTRL_R100);
2960                                 break;
2961                         case 100:
2962                         case 10:
2963                                 tempval =
2964                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2965
2966                                 /* Reduced mode distinguishes
2967                                  * between 10 and 100 */
2968                                 if (phydev->speed == SPEED_100)
2969                                         ecntrl |= ECNTRL_R100;
2970                                 else
2971                                         ecntrl &= ~(ECNTRL_R100);
2972                                 break;
2973                         default:
2974                                 if (netif_msg_link(priv))
2975                                         printk(KERN_WARNING
2976                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2977                                                 dev->name, phydev->speed);
2978                                 break;
2979                         }
2980
2981                         priv->oldspeed = phydev->speed;
2982                 }
2983
2984                 gfar_write(&regs->maccfg2, tempval);
2985                 gfar_write(&regs->ecntrl, ecntrl);
2986
2987                 if (!priv->oldlink) {
2988                         new_state = 1;
2989                         priv->oldlink = 1;
2990                 }
2991         } else if (priv->oldlink) {
2992                 new_state = 1;
2993                 priv->oldlink = 0;
2994                 priv->oldspeed = 0;
2995                 priv->oldduplex = -1;
2996         }
2997
2998         if (new_state && netif_msg_link(priv))
2999                 phy_print_status(phydev);
3000         unlock_tx_qs(priv);
3001         local_irq_restore(flags);
3002 }
3003
3004 /* Update the hash table based on the current list of multicast
3005  * addresses we subscribe to.  Also, change the promiscuity of
3006  * the device based on the flags (this function is called
3007  * whenever dev->flags is changed */
3008 static void gfar_set_multi(struct net_device *dev)
3009 {
3010         struct netdev_hw_addr *ha;
3011         struct gfar_private *priv = netdev_priv(dev);
3012         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3013         u32 tempval;
3014
3015         if (dev->flags & IFF_PROMISC) {
3016                 /* Set RCTRL to PROM */
3017                 tempval = gfar_read(&regs->rctrl);
3018                 tempval |= RCTRL_PROM;
3019                 gfar_write(&regs->rctrl, tempval);
3020         } else {
3021                 /* Set RCTRL to not PROM */
3022                 tempval = gfar_read(&regs->rctrl);
3023                 tempval &= ~(RCTRL_PROM);
3024                 gfar_write(&regs->rctrl, tempval);
3025         }
3026
3027         if (dev->flags & IFF_ALLMULTI) {
3028                 /* Set the hash to rx all multicast frames */
3029                 gfar_write(&regs->igaddr0, 0xffffffff);
3030                 gfar_write(&regs->igaddr1, 0xffffffff);
3031                 gfar_write(&regs->igaddr2, 0xffffffff);
3032                 gfar_write(&regs->igaddr3, 0xffffffff);
3033                 gfar_write(&regs->igaddr4, 0xffffffff);
3034                 gfar_write(&regs->igaddr5, 0xffffffff);
3035                 gfar_write(&regs->igaddr6, 0xffffffff);
3036                 gfar_write(&regs->igaddr7, 0xffffffff);
3037                 gfar_write(&regs->gaddr0, 0xffffffff);
3038                 gfar_write(&regs->gaddr1, 0xffffffff);
3039                 gfar_write(&regs->gaddr2, 0xffffffff);
3040                 gfar_write(&regs->gaddr3, 0xffffffff);
3041                 gfar_write(&regs->gaddr4, 0xffffffff);
3042                 gfar_write(&regs->gaddr5, 0xffffffff);
3043                 gfar_write(&regs->gaddr6, 0xffffffff);
3044                 gfar_write(&regs->gaddr7, 0xffffffff);
3045         } else {
3046                 int em_num;
3047                 int idx;
3048
3049                 /* zero out the hash */
3050                 gfar_write(&regs->igaddr0, 0x0);
3051                 gfar_write(&regs->igaddr1, 0x0);
3052                 gfar_write(&regs->igaddr2, 0x0);
3053                 gfar_write(&regs->igaddr3, 0x0);
3054                 gfar_write(&regs->igaddr4, 0x0);
3055                 gfar_write(&regs->igaddr5, 0x0);
3056                 gfar_write(&regs->igaddr6, 0x0);
3057                 gfar_write(&regs->igaddr7, 0x0);
3058                 gfar_write(&regs->gaddr0, 0x0);
3059                 gfar_write(&regs->gaddr1, 0x0);
3060                 gfar_write(&regs->gaddr2, 0x0);
3061                 gfar_write(&regs->gaddr3, 0x0);
3062                 gfar_write(&regs->gaddr4, 0x0);
3063                 gfar_write(&regs->gaddr5, 0x0);
3064                 gfar_write(&regs->gaddr6, 0x0);
3065                 gfar_write(&regs->gaddr7, 0x0);
3066
3067                 /* If we have extended hash tables, we need to
3068                  * clear the exact match registers to prepare for
3069                  * setting them */
3070                 if (priv->extended_hash) {
3071                         em_num = GFAR_EM_NUM + 1;
3072                         gfar_clear_exact_match(dev);
3073                         idx = 1;
3074                 } else {
3075                         idx = 0;
3076                         em_num = 0;
3077                 }
3078
3079                 if (netdev_mc_empty(dev))
3080                         return;
3081
3082                 /* Parse the list, and set the appropriate bits */
3083                 netdev_for_each_mc_addr(ha, dev) {
3084                         if (idx < em_num) {
3085                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3086                                 idx++;
3087                         } else
3088                                 gfar_set_hash_for_addr(dev, ha->addr);
3089                 }
3090         }
3091 }
3092
3093
3094 /* Clears each of the exact match registers to zero, so they
3095  * don't interfere with normal reception */
3096 static void gfar_clear_exact_match(struct net_device *dev)
3097 {
3098         int idx;
3099         static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3100
3101         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3102                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3103 }
3104
3105 /* Set the appropriate hash bit for the given addr */
3106 /* The algorithm works like so:
3107  * 1) Take the Destination Address (ie the multicast address), and
3108  * do a CRC on it (little endian), and reverse the bits of the
3109  * result.
3110  * 2) Use the 8 most significant bits as a hash into a 256-entry
3111  * table.  The table is controlled through 8 32-bit registers:
3112  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3113  * gaddr7.  This means that the 3 most significant bits in the
3114  * hash index which gaddr register to use, and the 5 other bits
3115  * indicate which bit (assuming an IBM numbering scheme, which
3116  * for PowerPC (tm) is usually the case) in the register holds
3117  * the entry. */
3118 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3119 {
3120         u32 tempval;
3121         struct gfar_private *priv = netdev_priv(dev);
3122         u32 result = ether_crc(MAC_ADDR_LEN, addr);
3123         int width = priv->hash_width;
3124         u8 whichbit = (result >> (32 - width)) & 0x1f;
3125         u8 whichreg = result >> (32 - width + 5);
3126         u32 value = (1 << (31-whichbit));
3127
3128         tempval = gfar_read(priv->hash_regs[whichreg]);
3129         tempval |= value;
3130         gfar_write(priv->hash_regs[whichreg], tempval);
3131 }
3132
3133
3134 /* There are multiple MAC Address register pairs on some controllers
3135  * This function sets the numth pair to a given address
3136  */
3137 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3138                                   const u8 *addr)
3139 {
3140         struct gfar_private *priv = netdev_priv(dev);
3141         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3142         int idx;
3143         char tmpbuf[MAC_ADDR_LEN];
3144         u32 tempval;
3145         u32 __iomem *macptr = &regs->macstnaddr1;
3146
3147         macptr += num*2;
3148
3149         /* Now copy it into the mac registers backwards, cuz */
3150         /* little endian is silly */
3151         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3152                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3153
3154         gfar_write(macptr, *((u32 *) (tmpbuf)));
3155
3156         tempval = *((u32 *) (tmpbuf + 4));
3157
3158         gfar_write(macptr+1, tempval);
3159 }
3160
3161 /* GFAR error interrupt handler */
3162 static irqreturn_t gfar_error(int irq, void *grp_id)
3163 {
3164         struct gfar_priv_grp *gfargrp = grp_id;
3165         struct gfar __iomem *regs = gfargrp->regs;
3166         struct gfar_private *priv= gfargrp->priv;
3167         struct net_device *dev = priv->ndev;
3168
3169         /* Save ievent for future reference */
3170         u32 events = gfar_read(&regs->ievent);
3171
3172         /* Clear IEVENT */
3173         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3174
3175         /* Magic Packet is not an error. */
3176         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3177             (events & IEVENT_MAG))
3178                 events &= ~IEVENT_MAG;
3179
3180         /* Hmm... */
3181         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3182                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3183                        dev->name, events, gfar_read(&regs->imask));
3184
3185         /* Update the error counters */
3186         if (events & IEVENT_TXE) {
3187                 dev->stats.tx_errors++;
3188
3189                 if (events & IEVENT_LC)
3190                         dev->stats.tx_window_errors++;
3191                 if (events & IEVENT_CRL)
3192                         dev->stats.tx_aborted_errors++;
3193                 if (events & IEVENT_XFUN) {
3194                         unsigned long flags;
3195
3196                         if (netif_msg_tx_err(priv))
3197                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3198                                        "packet dropped.\n", dev->name);
3199                         dev->stats.tx_dropped++;
3200                         priv->extra_stats.tx_underrun++;
3201
3202                         local_irq_save(flags);
3203                         lock_tx_qs(priv);
3204
3205                         /* Reactivate the Tx Queues */
3206                         gfar_write(&regs->tstat, gfargrp->tstat);
3207
3208                         unlock_tx_qs(priv);
3209                         local_irq_restore(flags);
3210                 }
3211                 if (netif_msg_tx_err(priv))
3212                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3213         }
3214         if (events & IEVENT_BSY) {
3215                 dev->stats.rx_errors++;
3216                 priv->extra_stats.rx_bsy++;
3217
3218                 gfar_receive(irq, grp_id);
3219
3220                 if (netif_msg_rx_err(priv))
3221                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3222                                dev->name, gfar_read(&regs->rstat));
3223         }
3224         if (events & IEVENT_BABR) {
3225                 dev->stats.rx_errors++;
3226                 priv->extra_stats.rx_babr++;
3227
3228                 if (netif_msg_rx_err(priv))
3229                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3230         }
3231         if (events & IEVENT_EBERR) {
3232                 priv->extra_stats.eberr++;
3233                 if (netif_msg_rx_err(priv))
3234                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
3235         }
3236         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3237                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3238
3239         if (events & IEVENT_BABT) {
3240                 priv->extra_stats.tx_babt++;
3241                 if (netif_msg_tx_err(priv))
3242                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3243         }
3244         return IRQ_HANDLED;
3245 }
3246
3247 static struct of_device_id gfar_match[] =
3248 {
3249         {
3250                 .type = "network",
3251                 .compatible = "gianfar",
3252         },
3253         {
3254                 .compatible = "fsl,etsec2",
3255         },
3256         {},
3257 };
3258 MODULE_DEVICE_TABLE(of, gfar_match);
3259
3260 /* Structure for a device driver */
3261 static struct of_platform_driver gfar_driver = {
3262         .driver = {
3263                 .name = "fsl-gianfar",
3264                 .owner = THIS_MODULE,
3265                 .pm = GFAR_PM_OPS,
3266                 .of_match_table = gfar_match,
3267         },
3268         .probe = gfar_probe,
3269         .remove = gfar_remove,
3270 };
3271
3272 static int __init gfar_init(void)
3273 {
3274         return of_register_platform_driver(&gfar_driver);
3275 }
3276
3277 static void __exit gfar_exit(void)
3278 {
3279         of_unregister_platform_driver(&gfar_driver);
3280 }
3281
3282 module_init(gfar_init);
3283 module_exit(gfar_exit);
3284