]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/net/forcedeth.c
Merge branch 'master' into upstream-fixes
[linux-3.10.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110  *      0.55: 22 Mar 2006: Add flow control (pause frame).
111  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
112  *      0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
113  *
114  * Known bugs:
115  * We suspect that on some hardware no TX done interrupts are generated.
116  * This means recovery from netif_stop_queue only happens if the hw timer
117  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
118  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
119  * If your hardware reliably generates tx done interrupts, then you can remove
120  * DEV_NEED_TIMERIRQ from the driver_data flags.
121  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
122  * superfluous timer interrupts from the nic.
123  */
124 #ifdef CONFIG_FORCEDETH_NAPI
125 #define DRIVERNAPI "-NAPI"
126 #else
127 #define DRIVERNAPI
128 #endif
129 #define FORCEDETH_VERSION               "0.57"
130 #define DRV_NAME                        "forcedeth"
131
132 #include <linux/module.h>
133 #include <linux/types.h>
134 #include <linux/pci.h>
135 #include <linux/interrupt.h>
136 #include <linux/netdevice.h>
137 #include <linux/etherdevice.h>
138 #include <linux/delay.h>
139 #include <linux/spinlock.h>
140 #include <linux/ethtool.h>
141 #include <linux/timer.h>
142 #include <linux/skbuff.h>
143 #include <linux/mii.h>
144 #include <linux/random.h>
145 #include <linux/init.h>
146 #include <linux/if_vlan.h>
147 #include <linux/dma-mapping.h>
148
149 #include <asm/irq.h>
150 #include <asm/io.h>
151 #include <asm/uaccess.h>
152 #include <asm/system.h>
153
154 #if 0
155 #define dprintk                 printk
156 #else
157 #define dprintk(x...)           do { } while (0)
158 #endif
159
160
161 /*
162  * Hardware access:
163  */
164
165 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
166 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
167 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
168 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
169 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
170 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
171 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
172 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
173 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
174 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
175 #define DEV_HAS_STATISTICS      0x0400  /* device supports hw statistics */
176 #define DEV_HAS_TEST_EXTENDED   0x0800  /* device supports extended diagnostic test */
177
178 enum {
179         NvRegIrqStatus = 0x000,
180 #define NVREG_IRQSTAT_MIIEVENT  0x040
181 #define NVREG_IRQSTAT_MASK              0x1ff
182         NvRegIrqMask = 0x004,
183 #define NVREG_IRQ_RX_ERROR              0x0001
184 #define NVREG_IRQ_RX                    0x0002
185 #define NVREG_IRQ_RX_NOBUF              0x0004
186 #define NVREG_IRQ_TX_ERR                0x0008
187 #define NVREG_IRQ_TX_OK                 0x0010
188 #define NVREG_IRQ_TIMER                 0x0020
189 #define NVREG_IRQ_LINK                  0x0040
190 #define NVREG_IRQ_RX_FORCED             0x0080
191 #define NVREG_IRQ_TX_FORCED             0x0100
192 #define NVREG_IRQMASK_THROUGHPUT        0x00df
193 #define NVREG_IRQMASK_CPU               0x0040
194 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
195 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
196 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
197
198 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
199                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
200                                         NVREG_IRQ_TX_FORCED))
201
202         NvRegUnknownSetupReg6 = 0x008,
203 #define NVREG_UNKSETUP6_VAL             3
204
205 /*
206  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
207  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
208  */
209         NvRegPollingInterval = 0x00c,
210 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
211 #define NVREG_POLL_DEFAULT_CPU  13
212         NvRegMSIMap0 = 0x020,
213         NvRegMSIMap1 = 0x024,
214         NvRegMSIIrqMask = 0x030,
215 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
216         NvRegMisc1 = 0x080,
217 #define NVREG_MISC1_PAUSE_TX    0x01
218 #define NVREG_MISC1_HD          0x02
219 #define NVREG_MISC1_FORCE       0x3b0f3c
220
221         NvRegMacReset = 0x3c,
222 #define NVREG_MAC_RESET_ASSERT  0x0F3
223         NvRegTransmitterControl = 0x084,
224 #define NVREG_XMITCTL_START     0x01
225         NvRegTransmitterStatus = 0x088,
226 #define NVREG_XMITSTAT_BUSY     0x01
227
228         NvRegPacketFilterFlags = 0x8c,
229 #define NVREG_PFF_PAUSE_RX      0x08
230 #define NVREG_PFF_ALWAYS        0x7F0000
231 #define NVREG_PFF_PROMISC       0x80
232 #define NVREG_PFF_MYADDR        0x20
233 #define NVREG_PFF_LOOPBACK      0x10
234
235         NvRegOffloadConfig = 0x90,
236 #define NVREG_OFFLOAD_HOMEPHY   0x601
237 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
238         NvRegReceiverControl = 0x094,
239 #define NVREG_RCVCTL_START      0x01
240         NvRegReceiverStatus = 0x98,
241 #define NVREG_RCVSTAT_BUSY      0x01
242
243         NvRegRandomSeed = 0x9c,
244 #define NVREG_RNDSEED_MASK      0x00ff
245 #define NVREG_RNDSEED_FORCE     0x7f00
246 #define NVREG_RNDSEED_FORCE2    0x2d00
247 #define NVREG_RNDSEED_FORCE3    0x7400
248
249         NvRegTxDeferral = 0xA0,
250 #define NVREG_TX_DEFERRAL_DEFAULT       0x15050f
251 #define NVREG_TX_DEFERRAL_RGMII_10_100  0x16070f
252 #define NVREG_TX_DEFERRAL_RGMII_1000    0x14050f
253         NvRegRxDeferral = 0xA4,
254 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
255         NvRegMacAddrA = 0xA8,
256         NvRegMacAddrB = 0xAC,
257         NvRegMulticastAddrA = 0xB0,
258 #define NVREG_MCASTADDRA_FORCE  0x01
259         NvRegMulticastAddrB = 0xB4,
260         NvRegMulticastMaskA = 0xB8,
261         NvRegMulticastMaskB = 0xBC,
262
263         NvRegPhyInterface = 0xC0,
264 #define PHY_RGMII               0x10000000
265
266         NvRegTxRingPhysAddr = 0x100,
267         NvRegRxRingPhysAddr = 0x104,
268         NvRegRingSizes = 0x108,
269 #define NVREG_RINGSZ_TXSHIFT 0
270 #define NVREG_RINGSZ_RXSHIFT 16
271         NvRegTransmitPoll = 0x10c,
272 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
273         NvRegLinkSpeed = 0x110,
274 #define NVREG_LINKSPEED_FORCE 0x10000
275 #define NVREG_LINKSPEED_10      1000
276 #define NVREG_LINKSPEED_100     100
277 #define NVREG_LINKSPEED_1000    50
278 #define NVREG_LINKSPEED_MASK    (0xFFF)
279         NvRegUnknownSetupReg5 = 0x130,
280 #define NVREG_UNKSETUP5_BIT31   (1<<31)
281         NvRegTxWatermark = 0x13c,
282 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
283 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
284 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
285         NvRegTxRxControl = 0x144,
286 #define NVREG_TXRXCTL_KICK      0x0001
287 #define NVREG_TXRXCTL_BIT1      0x0002
288 #define NVREG_TXRXCTL_BIT2      0x0004
289 #define NVREG_TXRXCTL_IDLE      0x0008
290 #define NVREG_TXRXCTL_RESET     0x0010
291 #define NVREG_TXRXCTL_RXCHECK   0x0400
292 #define NVREG_TXRXCTL_DESC_1    0
293 #define NVREG_TXRXCTL_DESC_2    0x02100
294 #define NVREG_TXRXCTL_DESC_3    0x02200
295 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
296 #define NVREG_TXRXCTL_VLANINS   0x00080
297         NvRegTxRingPhysAddrHigh = 0x148,
298         NvRegRxRingPhysAddrHigh = 0x14C,
299         NvRegTxPauseFrame = 0x170,
300 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
301 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
302         NvRegMIIStatus = 0x180,
303 #define NVREG_MIISTAT_ERROR             0x0001
304 #define NVREG_MIISTAT_LINKCHANGE        0x0008
305 #define NVREG_MIISTAT_MASK              0x000f
306 #define NVREG_MIISTAT_MASK2             0x000f
307         NvRegUnknownSetupReg4 = 0x184,
308 #define NVREG_UNKSETUP4_VAL     8
309
310         NvRegAdapterControl = 0x188,
311 #define NVREG_ADAPTCTL_START    0x02
312 #define NVREG_ADAPTCTL_LINKUP   0x04
313 #define NVREG_ADAPTCTL_PHYVALID 0x40000
314 #define NVREG_ADAPTCTL_RUNNING  0x100000
315 #define NVREG_ADAPTCTL_PHYSHIFT 24
316         NvRegMIISpeed = 0x18c,
317 #define NVREG_MIISPEED_BIT8     (1<<8)
318 #define NVREG_MIIDELAY  5
319         NvRegMIIControl = 0x190,
320 #define NVREG_MIICTL_INUSE      0x08000
321 #define NVREG_MIICTL_WRITE      0x00400
322 #define NVREG_MIICTL_ADDRSHIFT  5
323         NvRegMIIData = 0x194,
324         NvRegWakeUpFlags = 0x200,
325 #define NVREG_WAKEUPFLAGS_VAL           0x7770
326 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
327 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
328 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
329 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
330 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
331 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
332 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
333 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
334 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
335 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
336
337         NvRegPatternCRC = 0x204,
338         NvRegPatternMask = 0x208,
339         NvRegPowerCap = 0x268,
340 #define NVREG_POWERCAP_D3SUPP   (1<<30)
341 #define NVREG_POWERCAP_D2SUPP   (1<<26)
342 #define NVREG_POWERCAP_D1SUPP   (1<<25)
343         NvRegPowerState = 0x26c,
344 #define NVREG_POWERSTATE_POWEREDUP      0x8000
345 #define NVREG_POWERSTATE_VALID          0x0100
346 #define NVREG_POWERSTATE_MASK           0x0003
347 #define NVREG_POWERSTATE_D0             0x0000
348 #define NVREG_POWERSTATE_D1             0x0001
349 #define NVREG_POWERSTATE_D2             0x0002
350 #define NVREG_POWERSTATE_D3             0x0003
351         NvRegTxCnt = 0x280,
352         NvRegTxZeroReXmt = 0x284,
353         NvRegTxOneReXmt = 0x288,
354         NvRegTxManyReXmt = 0x28c,
355         NvRegTxLateCol = 0x290,
356         NvRegTxUnderflow = 0x294,
357         NvRegTxLossCarrier = 0x298,
358         NvRegTxExcessDef = 0x29c,
359         NvRegTxRetryErr = 0x2a0,
360         NvRegRxFrameErr = 0x2a4,
361         NvRegRxExtraByte = 0x2a8,
362         NvRegRxLateCol = 0x2ac,
363         NvRegRxRunt = 0x2b0,
364         NvRegRxFrameTooLong = 0x2b4,
365         NvRegRxOverflow = 0x2b8,
366         NvRegRxFCSErr = 0x2bc,
367         NvRegRxFrameAlignErr = 0x2c0,
368         NvRegRxLenErr = 0x2c4,
369         NvRegRxUnicast = 0x2c8,
370         NvRegRxMulticast = 0x2cc,
371         NvRegRxBroadcast = 0x2d0,
372         NvRegTxDef = 0x2d4,
373         NvRegTxFrame = 0x2d8,
374         NvRegRxCnt = 0x2dc,
375         NvRegTxPause = 0x2e0,
376         NvRegRxPause = 0x2e4,
377         NvRegRxDropFrame = 0x2e8,
378         NvRegVlanControl = 0x300,
379 #define NVREG_VLANCONTROL_ENABLE        0x2000
380         NvRegMSIXMap0 = 0x3e0,
381         NvRegMSIXMap1 = 0x3e4,
382         NvRegMSIXIrqStatus = 0x3f0,
383
384         NvRegPowerState2 = 0x600,
385 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
386 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
387 };
388
389 /* Big endian: should work, but is untested */
390 struct ring_desc {
391         __le32 buf;
392         __le32 flaglen;
393 };
394
395 struct ring_desc_ex {
396         __le32 bufhigh;
397         __le32 buflow;
398         __le32 txvlan;
399         __le32 flaglen;
400 };
401
402 union ring_type {
403         struct ring_desc* orig;
404         struct ring_desc_ex* ex;
405 };
406
407 #define FLAG_MASK_V1 0xffff0000
408 #define FLAG_MASK_V2 0xffffc000
409 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
410 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
411
412 #define NV_TX_LASTPACKET        (1<<16)
413 #define NV_TX_RETRYERROR        (1<<19)
414 #define NV_TX_FORCED_INTERRUPT  (1<<24)
415 #define NV_TX_DEFERRED          (1<<26)
416 #define NV_TX_CARRIERLOST       (1<<27)
417 #define NV_TX_LATECOLLISION     (1<<28)
418 #define NV_TX_UNDERFLOW         (1<<29)
419 #define NV_TX_ERROR             (1<<30)
420 #define NV_TX_VALID             (1<<31)
421
422 #define NV_TX2_LASTPACKET       (1<<29)
423 #define NV_TX2_RETRYERROR       (1<<18)
424 #define NV_TX2_FORCED_INTERRUPT (1<<30)
425 #define NV_TX2_DEFERRED         (1<<25)
426 #define NV_TX2_CARRIERLOST      (1<<26)
427 #define NV_TX2_LATECOLLISION    (1<<27)
428 #define NV_TX2_UNDERFLOW        (1<<28)
429 /* error and valid are the same for both */
430 #define NV_TX2_ERROR            (1<<30)
431 #define NV_TX2_VALID            (1<<31)
432 #define NV_TX2_TSO              (1<<28)
433 #define NV_TX2_TSO_SHIFT        14
434 #define NV_TX2_TSO_MAX_SHIFT    14
435 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
436 #define NV_TX2_CHECKSUM_L3      (1<<27)
437 #define NV_TX2_CHECKSUM_L4      (1<<26)
438
439 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
440
441 #define NV_RX_DESCRIPTORVALID   (1<<16)
442 #define NV_RX_MISSEDFRAME       (1<<17)
443 #define NV_RX_SUBSTRACT1        (1<<18)
444 #define NV_RX_ERROR1            (1<<23)
445 #define NV_RX_ERROR2            (1<<24)
446 #define NV_RX_ERROR3            (1<<25)
447 #define NV_RX_ERROR4            (1<<26)
448 #define NV_RX_CRCERR            (1<<27)
449 #define NV_RX_OVERFLOW          (1<<28)
450 #define NV_RX_FRAMINGERR        (1<<29)
451 #define NV_RX_ERROR             (1<<30)
452 #define NV_RX_AVAIL             (1<<31)
453
454 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
455 #define NV_RX2_CHECKSUMOK1      (0x10000000)
456 #define NV_RX2_CHECKSUMOK2      (0x14000000)
457 #define NV_RX2_CHECKSUMOK3      (0x18000000)
458 #define NV_RX2_DESCRIPTORVALID  (1<<29)
459 #define NV_RX2_SUBSTRACT1       (1<<25)
460 #define NV_RX2_ERROR1           (1<<18)
461 #define NV_RX2_ERROR2           (1<<19)
462 #define NV_RX2_ERROR3           (1<<20)
463 #define NV_RX2_ERROR4           (1<<21)
464 #define NV_RX2_CRCERR           (1<<22)
465 #define NV_RX2_OVERFLOW         (1<<23)
466 #define NV_RX2_FRAMINGERR       (1<<24)
467 /* error and avail are the same for both */
468 #define NV_RX2_ERROR            (1<<30)
469 #define NV_RX2_AVAIL            (1<<31)
470
471 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
472 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
473
474 /* Miscelaneous hardware related defines: */
475 #define NV_PCI_REGSZ_VER1       0x270
476 #define NV_PCI_REGSZ_VER2       0x604
477
478 /* various timeout delays: all in usec */
479 #define NV_TXRX_RESET_DELAY     4
480 #define NV_TXSTOP_DELAY1        10
481 #define NV_TXSTOP_DELAY1MAX     500000
482 #define NV_TXSTOP_DELAY2        100
483 #define NV_RXSTOP_DELAY1        10
484 #define NV_RXSTOP_DELAY1MAX     500000
485 #define NV_RXSTOP_DELAY2        100
486 #define NV_SETUP5_DELAY         5
487 #define NV_SETUP5_DELAYMAX      50000
488 #define NV_POWERUP_DELAY        5
489 #define NV_POWERUP_DELAYMAX     5000
490 #define NV_MIIBUSY_DELAY        50
491 #define NV_MIIPHY_DELAY 10
492 #define NV_MIIPHY_DELAYMAX      10000
493 #define NV_MAC_RESET_DELAY      64
494
495 #define NV_WAKEUPPATTERNS       5
496 #define NV_WAKEUPMASKENTRIES    4
497
498 /* General driver defaults */
499 #define NV_WATCHDOG_TIMEO       (5*HZ)
500
501 #define RX_RING_DEFAULT         128
502 #define TX_RING_DEFAULT         256
503 #define RX_RING_MIN             128
504 #define TX_RING_MIN             64
505 #define RING_MAX_DESC_VER_1     1024
506 #define RING_MAX_DESC_VER_2_3   16384
507 /*
508  * Difference between the get and put pointers for the tx ring.
509  * This is used to throttle the amount of data outstanding in the
510  * tx ring.
511  */
512 #define TX_LIMIT_DIFFERENCE     1
513
514 /* rx/tx mac addr + type + vlan + align + slack*/
515 #define NV_RX_HEADERS           (64)
516 /* even more slack. */
517 #define NV_RX_ALLOC_PAD         (64)
518
519 /* maximum mtu size */
520 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
521 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
522
523 #define OOM_REFILL      (1+HZ/20)
524 #define POLL_WAIT       (1+HZ/100)
525 #define LINK_TIMEOUT    (3*HZ)
526 #define STATS_INTERVAL  (10*HZ)
527
528 /*
529  * desc_ver values:
530  * The nic supports three different descriptor types:
531  * - DESC_VER_1: Original
532  * - DESC_VER_2: support for jumbo frames.
533  * - DESC_VER_3: 64-bit format.
534  */
535 #define DESC_VER_1      1
536 #define DESC_VER_2      2
537 #define DESC_VER_3      3
538
539 /* PHY defines */
540 #define PHY_OUI_MARVELL 0x5043
541 #define PHY_OUI_CICADA  0x03f1
542 #define PHYID1_OUI_MASK 0x03ff
543 #define PHYID1_OUI_SHFT 6
544 #define PHYID2_OUI_MASK 0xfc00
545 #define PHYID2_OUI_SHFT 10
546 #define PHYID2_MODEL_MASK               0x03f0
547 #define PHY_MODEL_MARVELL_E3016         0x220
548 #define PHY_MARVELL_E3016_INITMASK      0x0300
549 #define PHY_INIT1       0x0f000
550 #define PHY_INIT2       0x0e00
551 #define PHY_INIT3       0x01000
552 #define PHY_INIT4       0x0200
553 #define PHY_INIT5       0x0004
554 #define PHY_INIT6       0x02000
555 #define PHY_GIGABIT     0x0100
556
557 #define PHY_TIMEOUT     0x1
558 #define PHY_ERROR       0x2
559
560 #define PHY_100 0x1
561 #define PHY_1000        0x2
562 #define PHY_HALF        0x100
563
564 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
565 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
566 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
567 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
568 #define NV_PAUSEFRAME_RX_REQ     0x0010
569 #define NV_PAUSEFRAME_TX_REQ     0x0020
570 #define NV_PAUSEFRAME_AUTONEG    0x0040
571
572 /* MSI/MSI-X defines */
573 #define NV_MSI_X_MAX_VECTORS  8
574 #define NV_MSI_X_VECTORS_MASK 0x000f
575 #define NV_MSI_CAPABLE        0x0010
576 #define NV_MSI_X_CAPABLE      0x0020
577 #define NV_MSI_ENABLED        0x0040
578 #define NV_MSI_X_ENABLED      0x0080
579
580 #define NV_MSI_X_VECTOR_ALL   0x0
581 #define NV_MSI_X_VECTOR_RX    0x0
582 #define NV_MSI_X_VECTOR_TX    0x1
583 #define NV_MSI_X_VECTOR_OTHER 0x2
584
585 /* statistics */
586 struct nv_ethtool_str {
587         char name[ETH_GSTRING_LEN];
588 };
589
590 static const struct nv_ethtool_str nv_estats_str[] = {
591         { "tx_bytes" },
592         { "tx_zero_rexmt" },
593         { "tx_one_rexmt" },
594         { "tx_many_rexmt" },
595         { "tx_late_collision" },
596         { "tx_fifo_errors" },
597         { "tx_carrier_errors" },
598         { "tx_excess_deferral" },
599         { "tx_retry_error" },
600         { "tx_deferral" },
601         { "tx_packets" },
602         { "tx_pause" },
603         { "rx_frame_error" },
604         { "rx_extra_byte" },
605         { "rx_late_collision" },
606         { "rx_runt" },
607         { "rx_frame_too_long" },
608         { "rx_over_errors" },
609         { "rx_crc_errors" },
610         { "rx_frame_align_error" },
611         { "rx_length_error" },
612         { "rx_unicast" },
613         { "rx_multicast" },
614         { "rx_broadcast" },
615         { "rx_bytes" },
616         { "rx_pause" },
617         { "rx_drop_frame" },
618         { "rx_packets" },
619         { "rx_errors_total" }
620 };
621
622 struct nv_ethtool_stats {
623         u64 tx_bytes;
624         u64 tx_zero_rexmt;
625         u64 tx_one_rexmt;
626         u64 tx_many_rexmt;
627         u64 tx_late_collision;
628         u64 tx_fifo_errors;
629         u64 tx_carrier_errors;
630         u64 tx_excess_deferral;
631         u64 tx_retry_error;
632         u64 tx_deferral;
633         u64 tx_packets;
634         u64 tx_pause;
635         u64 rx_frame_error;
636         u64 rx_extra_byte;
637         u64 rx_late_collision;
638         u64 rx_runt;
639         u64 rx_frame_too_long;
640         u64 rx_over_errors;
641         u64 rx_crc_errors;
642         u64 rx_frame_align_error;
643         u64 rx_length_error;
644         u64 rx_unicast;
645         u64 rx_multicast;
646         u64 rx_broadcast;
647         u64 rx_bytes;
648         u64 rx_pause;
649         u64 rx_drop_frame;
650         u64 rx_packets;
651         u64 rx_errors_total;
652 };
653
654 /* diagnostics */
655 #define NV_TEST_COUNT_BASE 3
656 #define NV_TEST_COUNT_EXTENDED 4
657
658 static const struct nv_ethtool_str nv_etests_str[] = {
659         { "link      (online/offline)" },
660         { "register  (offline)       " },
661         { "interrupt (offline)       " },
662         { "loopback  (offline)       " }
663 };
664
665 struct register_test {
666         __le32 reg;
667         __le32 mask;
668 };
669
670 static const struct register_test nv_registers_test[] = {
671         { NvRegUnknownSetupReg6, 0x01 },
672         { NvRegMisc1, 0x03c },
673         { NvRegOffloadConfig, 0x03ff },
674         { NvRegMulticastAddrA, 0xffffffff },
675         { NvRegTxWatermark, 0x0ff },
676         { NvRegWakeUpFlags, 0x07777 },
677         { 0,0 }
678 };
679
680 /*
681  * SMP locking:
682  * All hardware access under dev->priv->lock, except the performance
683  * critical parts:
684  * - rx is (pseudo-) lockless: it relies on the single-threading provided
685  *      by the arch code for interrupts.
686  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
687  *      needs dev->priv->lock :-(
688  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
689  */
690
691 /* in dev: base, irq */
692 struct fe_priv {
693         spinlock_t lock;
694
695         /* General data:
696          * Locking: spin_lock(&np->lock); */
697         struct net_device_stats stats;
698         struct nv_ethtool_stats estats;
699         int in_shutdown;
700         u32 linkspeed;
701         int duplex;
702         int autoneg;
703         int fixed_mode;
704         int phyaddr;
705         int wolenabled;
706         unsigned int phy_oui;
707         unsigned int phy_model;
708         u16 gigabit;
709         int intr_test;
710
711         /* General data: RO fields */
712         dma_addr_t ring_addr;
713         struct pci_dev *pci_dev;
714         u32 orig_mac[2];
715         u32 irqmask;
716         u32 desc_ver;
717         u32 txrxctl_bits;
718         u32 vlanctl_bits;
719         u32 driver_data;
720         u32 register_size;
721         int rx_csum;
722
723         void __iomem *base;
724
725         /* rx specific fields.
726          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
727          */
728         union ring_type rx_ring;
729         unsigned int cur_rx, refill_rx;
730         struct sk_buff **rx_skbuff;
731         dma_addr_t *rx_dma;
732         unsigned int rx_buf_sz;
733         unsigned int pkt_limit;
734         struct timer_list oom_kick;
735         struct timer_list nic_poll;
736         struct timer_list stats_poll;
737         u32 nic_poll_irq;
738         int rx_ring_size;
739
740         /* media detection workaround.
741          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
742          */
743         int need_linktimer;
744         unsigned long link_timeout;
745         /*
746          * tx specific fields.
747          */
748         union ring_type tx_ring;
749         unsigned int next_tx, nic_tx;
750         struct sk_buff **tx_skbuff;
751         dma_addr_t *tx_dma;
752         unsigned int *tx_dma_len;
753         u32 tx_flags;
754         int tx_ring_size;
755         int tx_limit_start;
756         int tx_limit_stop;
757
758         /* vlan fields */
759         struct vlan_group *vlangrp;
760
761         /* msi/msi-x fields */
762         u32 msi_flags;
763         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
764
765         /* flow control */
766         u32 pause_flags;
767 };
768
769 /*
770  * Maximum number of loops until we assume that a bit in the irq mask
771  * is stuck. Overridable with module param.
772  */
773 static int max_interrupt_work = 5;
774
775 /*
776  * Optimization can be either throuput mode or cpu mode
777  *
778  * Throughput Mode: Every tx and rx packet will generate an interrupt.
779  * CPU Mode: Interrupts are controlled by a timer.
780  */
781 enum {
782         NV_OPTIMIZATION_MODE_THROUGHPUT,
783         NV_OPTIMIZATION_MODE_CPU
784 };
785 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
786
787 /*
788  * Poll interval for timer irq
789  *
790  * This interval determines how frequent an interrupt is generated.
791  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
792  * Min = 0, and Max = 65535
793  */
794 static int poll_interval = -1;
795
796 /*
797  * MSI interrupts
798  */
799 enum {
800         NV_MSI_INT_DISABLED,
801         NV_MSI_INT_ENABLED
802 };
803 static int msi = NV_MSI_INT_ENABLED;
804
805 /*
806  * MSIX interrupts
807  */
808 enum {
809         NV_MSIX_INT_DISABLED,
810         NV_MSIX_INT_ENABLED
811 };
812 static int msix = NV_MSIX_INT_ENABLED;
813
814 /*
815  * DMA 64bit
816  */
817 enum {
818         NV_DMA_64BIT_DISABLED,
819         NV_DMA_64BIT_ENABLED
820 };
821 static int dma_64bit = NV_DMA_64BIT_ENABLED;
822
823 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
824 {
825         return netdev_priv(dev);
826 }
827
828 static inline u8 __iomem *get_hwbase(struct net_device *dev)
829 {
830         return ((struct fe_priv *)netdev_priv(dev))->base;
831 }
832
833 static inline void pci_push(u8 __iomem *base)
834 {
835         /* force out pending posted writes */
836         readl(base);
837 }
838
839 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
840 {
841         return le32_to_cpu(prd->flaglen)
842                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
843 }
844
845 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
846 {
847         return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
848 }
849
850 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
851                                 int delay, int delaymax, const char *msg)
852 {
853         u8 __iomem *base = get_hwbase(dev);
854
855         pci_push(base);
856         do {
857                 udelay(delay);
858                 delaymax -= delay;
859                 if (delaymax < 0) {
860                         if (msg)
861                                 printk(msg);
862                         return 1;
863                 }
864         } while ((readl(base + offset) & mask) != target);
865         return 0;
866 }
867
868 #define NV_SETUP_RX_RING 0x01
869 #define NV_SETUP_TX_RING 0x02
870
871 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
872 {
873         struct fe_priv *np = get_nvpriv(dev);
874         u8 __iomem *base = get_hwbase(dev);
875
876         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
877                 if (rxtx_flags & NV_SETUP_RX_RING) {
878                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
879                 }
880                 if (rxtx_flags & NV_SETUP_TX_RING) {
881                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
882                 }
883         } else {
884                 if (rxtx_flags & NV_SETUP_RX_RING) {
885                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
886                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
887                 }
888                 if (rxtx_flags & NV_SETUP_TX_RING) {
889                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
890                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
891                 }
892         }
893 }
894
895 static void free_rings(struct net_device *dev)
896 {
897         struct fe_priv *np = get_nvpriv(dev);
898
899         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
900                 if (np->rx_ring.orig)
901                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
902                                             np->rx_ring.orig, np->ring_addr);
903         } else {
904                 if (np->rx_ring.ex)
905                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
906                                             np->rx_ring.ex, np->ring_addr);
907         }
908         if (np->rx_skbuff)
909                 kfree(np->rx_skbuff);
910         if (np->rx_dma)
911                 kfree(np->rx_dma);
912         if (np->tx_skbuff)
913                 kfree(np->tx_skbuff);
914         if (np->tx_dma)
915                 kfree(np->tx_dma);
916         if (np->tx_dma_len)
917                 kfree(np->tx_dma_len);
918 }
919
920 static int using_multi_irqs(struct net_device *dev)
921 {
922         struct fe_priv *np = get_nvpriv(dev);
923
924         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
925             ((np->msi_flags & NV_MSI_X_ENABLED) &&
926              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
927                 return 0;
928         else
929                 return 1;
930 }
931
932 static void nv_enable_irq(struct net_device *dev)
933 {
934         struct fe_priv *np = get_nvpriv(dev);
935
936         if (!using_multi_irqs(dev)) {
937                 if (np->msi_flags & NV_MSI_X_ENABLED)
938                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
939                 else
940                         enable_irq(dev->irq);
941         } else {
942                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
943                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
944                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
945         }
946 }
947
948 static void nv_disable_irq(struct net_device *dev)
949 {
950         struct fe_priv *np = get_nvpriv(dev);
951
952         if (!using_multi_irqs(dev)) {
953                 if (np->msi_flags & NV_MSI_X_ENABLED)
954                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
955                 else
956                         disable_irq(dev->irq);
957         } else {
958                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
959                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
960                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
961         }
962 }
963
964 /* In MSIX mode, a write to irqmask behaves as XOR */
965 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
966 {
967         u8 __iomem *base = get_hwbase(dev);
968
969         writel(mask, base + NvRegIrqMask);
970 }
971
972 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
973 {
974         struct fe_priv *np = get_nvpriv(dev);
975         u8 __iomem *base = get_hwbase(dev);
976
977         if (np->msi_flags & NV_MSI_X_ENABLED) {
978                 writel(mask, base + NvRegIrqMask);
979         } else {
980                 if (np->msi_flags & NV_MSI_ENABLED)
981                         writel(0, base + NvRegMSIIrqMask);
982                 writel(0, base + NvRegIrqMask);
983         }
984 }
985
986 #define MII_READ        (-1)
987 /* mii_rw: read/write a register on the PHY.
988  *
989  * Caller must guarantee serialization
990  */
991 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
992 {
993         u8 __iomem *base = get_hwbase(dev);
994         u32 reg;
995         int retval;
996
997         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
998
999         reg = readl(base + NvRegMIIControl);
1000         if (reg & NVREG_MIICTL_INUSE) {
1001                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1002                 udelay(NV_MIIBUSY_DELAY);
1003         }
1004
1005         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1006         if (value != MII_READ) {
1007                 writel(value, base + NvRegMIIData);
1008                 reg |= NVREG_MIICTL_WRITE;
1009         }
1010         writel(reg, base + NvRegMIIControl);
1011
1012         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1013                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1014                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1015                                 dev->name, miireg, addr);
1016                 retval = -1;
1017         } else if (value != MII_READ) {
1018                 /* it was a write operation - fewer failures are detectable */
1019                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1020                                 dev->name, value, miireg, addr);
1021                 retval = 0;
1022         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1023                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1024                                 dev->name, miireg, addr);
1025                 retval = -1;
1026         } else {
1027                 retval = readl(base + NvRegMIIData);
1028                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1029                                 dev->name, miireg, addr, retval);
1030         }
1031
1032         return retval;
1033 }
1034
1035 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1036 {
1037         struct fe_priv *np = netdev_priv(dev);
1038         u32 miicontrol;
1039         unsigned int tries = 0;
1040
1041         miicontrol = BMCR_RESET | bmcr_setup;
1042         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1043                 return -1;
1044         }
1045
1046         /* wait for 500ms */
1047         msleep(500);
1048
1049         /* must wait till reset is deasserted */
1050         while (miicontrol & BMCR_RESET) {
1051                 msleep(10);
1052                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1053                 /* FIXME: 100 tries seem excessive */
1054                 if (tries++ > 100)
1055                         return -1;
1056         }
1057         return 0;
1058 }
1059
1060 static int phy_init(struct net_device *dev)
1061 {
1062         struct fe_priv *np = get_nvpriv(dev);
1063         u8 __iomem *base = get_hwbase(dev);
1064         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1065
1066         /* phy errata for E3016 phy */
1067         if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1068                 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1069                 reg &= ~PHY_MARVELL_E3016_INITMASK;
1070                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1071                         printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1072                         return PHY_ERROR;
1073                 }
1074         }
1075
1076         /* set advertise register */
1077         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1078         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1079         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1080                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1081                 return PHY_ERROR;
1082         }
1083
1084         /* get phy interface type */
1085         phyinterface = readl(base + NvRegPhyInterface);
1086
1087         /* see if gigabit phy */
1088         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1089         if (mii_status & PHY_GIGABIT) {
1090                 np->gigabit = PHY_GIGABIT;
1091                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1092                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1093                 if (phyinterface & PHY_RGMII)
1094                         mii_control_1000 |= ADVERTISE_1000FULL;
1095                 else
1096                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1097
1098                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1099                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1100                         return PHY_ERROR;
1101                 }
1102         }
1103         else
1104                 np->gigabit = 0;
1105
1106         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1107         mii_control |= BMCR_ANENABLE;
1108
1109         /* reset the phy
1110          * (certain phys need bmcr to be setup with reset)
1111          */
1112         if (phy_reset(dev, mii_control)) {
1113                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1114                 return PHY_ERROR;
1115         }
1116
1117         /* phy vendor specific configuration */
1118         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1119                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1120                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1121                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1122                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1123                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1124                         return PHY_ERROR;
1125                 }
1126                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1127                 phy_reserved |= PHY_INIT5;
1128                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1129                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1130                         return PHY_ERROR;
1131                 }
1132         }
1133         if (np->phy_oui == PHY_OUI_CICADA) {
1134                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1135                 phy_reserved |= PHY_INIT6;
1136                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1137                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1138                         return PHY_ERROR;
1139                 }
1140         }
1141         /* some phys clear out pause advertisment on reset, set it back */
1142         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1143
1144         /* restart auto negotiation */
1145         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1146         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1147         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1148                 return PHY_ERROR;
1149         }
1150
1151         return 0;
1152 }
1153
1154 static void nv_start_rx(struct net_device *dev)
1155 {
1156         struct fe_priv *np = netdev_priv(dev);
1157         u8 __iomem *base = get_hwbase(dev);
1158
1159         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1160         /* Already running? Stop it. */
1161         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1162                 writel(0, base + NvRegReceiverControl);
1163                 pci_push(base);
1164         }
1165         writel(np->linkspeed, base + NvRegLinkSpeed);
1166         pci_push(base);
1167         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1168         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1169                                 dev->name, np->duplex, np->linkspeed);
1170         pci_push(base);
1171 }
1172
1173 static void nv_stop_rx(struct net_device *dev)
1174 {
1175         u8 __iomem *base = get_hwbase(dev);
1176
1177         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1178         writel(0, base + NvRegReceiverControl);
1179         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1180                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1181                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1182
1183         udelay(NV_RXSTOP_DELAY2);
1184         writel(0, base + NvRegLinkSpeed);
1185 }
1186
1187 static void nv_start_tx(struct net_device *dev)
1188 {
1189         u8 __iomem *base = get_hwbase(dev);
1190
1191         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1192         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1193         pci_push(base);
1194 }
1195
1196 static void nv_stop_tx(struct net_device *dev)
1197 {
1198         u8 __iomem *base = get_hwbase(dev);
1199
1200         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1201         writel(0, base + NvRegTransmitterControl);
1202         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1203                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1204                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1205
1206         udelay(NV_TXSTOP_DELAY2);
1207         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
1208 }
1209
1210 static void nv_txrx_reset(struct net_device *dev)
1211 {
1212         struct fe_priv *np = netdev_priv(dev);
1213         u8 __iomem *base = get_hwbase(dev);
1214
1215         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1216         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1217         pci_push(base);
1218         udelay(NV_TXRX_RESET_DELAY);
1219         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1220         pci_push(base);
1221 }
1222
1223 static void nv_mac_reset(struct net_device *dev)
1224 {
1225         struct fe_priv *np = netdev_priv(dev);
1226         u8 __iomem *base = get_hwbase(dev);
1227
1228         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1229         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1230         pci_push(base);
1231         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1232         pci_push(base);
1233         udelay(NV_MAC_RESET_DELAY);
1234         writel(0, base + NvRegMacReset);
1235         pci_push(base);
1236         udelay(NV_MAC_RESET_DELAY);
1237         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1238         pci_push(base);
1239 }
1240
1241 /*
1242  * nv_get_stats: dev->get_stats function
1243  * Get latest stats value from the nic.
1244  * Called with read_lock(&dev_base_lock) held for read -
1245  * only synchronized against unregister_netdevice.
1246  */
1247 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1248 {
1249         struct fe_priv *np = netdev_priv(dev);
1250
1251         /* It seems that the nic always generates interrupts and doesn't
1252          * accumulate errors internally. Thus the current values in np->stats
1253          * are already up to date.
1254          */
1255         return &np->stats;
1256 }
1257
1258 /*
1259  * nv_alloc_rx: fill rx ring entries.
1260  * Return 1 if the allocations for the skbs failed and the
1261  * rx engine is without Available descriptors
1262  */
1263 static int nv_alloc_rx(struct net_device *dev)
1264 {
1265         struct fe_priv *np = netdev_priv(dev);
1266         unsigned int refill_rx = np->refill_rx;
1267         int nr;
1268
1269         while (np->cur_rx != refill_rx) {
1270                 struct sk_buff *skb;
1271
1272                 nr = refill_rx % np->rx_ring_size;
1273                 if (np->rx_skbuff[nr] == NULL) {
1274
1275                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1276                         if (!skb)
1277                                 break;
1278
1279                         skb->dev = dev;
1280                         np->rx_skbuff[nr] = skb;
1281                 } else {
1282                         skb = np->rx_skbuff[nr];
1283                 }
1284                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1285                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1286                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1287                         np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
1288                         wmb();
1289                         np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1290                 } else {
1291                         np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1292                         np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1293                         wmb();
1294                         np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1295                 }
1296                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1297                                         dev->name, refill_rx);
1298                 refill_rx++;
1299         }
1300         np->refill_rx = refill_rx;
1301         if (np->cur_rx - refill_rx == np->rx_ring_size)
1302                 return 1;
1303         return 0;
1304 }
1305
1306 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1307 #ifdef CONFIG_FORCEDETH_NAPI
1308 static void nv_do_rx_refill(unsigned long data)
1309 {
1310         struct net_device *dev = (struct net_device *) data;
1311
1312         /* Just reschedule NAPI rx processing */
1313         netif_rx_schedule(dev);
1314 }
1315 #else
1316 static void nv_do_rx_refill(unsigned long data)
1317 {
1318         struct net_device *dev = (struct net_device *) data;
1319         struct fe_priv *np = netdev_priv(dev);
1320
1321         if (!using_multi_irqs(dev)) {
1322                 if (np->msi_flags & NV_MSI_X_ENABLED)
1323                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1324                 else
1325                         disable_irq(dev->irq);
1326         } else {
1327                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1328         }
1329         if (nv_alloc_rx(dev)) {
1330                 spin_lock_irq(&np->lock);
1331                 if (!np->in_shutdown)
1332                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1333                 spin_unlock_irq(&np->lock);
1334         }
1335         if (!using_multi_irqs(dev)) {
1336                 if (np->msi_flags & NV_MSI_X_ENABLED)
1337                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1338                 else
1339                         enable_irq(dev->irq);
1340         } else {
1341                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1342         }
1343 }
1344 #endif
1345
1346 static void nv_init_rx(struct net_device *dev)
1347 {
1348         struct fe_priv *np = netdev_priv(dev);
1349         int i;
1350
1351         np->cur_rx = np->rx_ring_size;
1352         np->refill_rx = 0;
1353         for (i = 0; i < np->rx_ring_size; i++)
1354                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1355                         np->rx_ring.orig[i].flaglen = 0;
1356                 else
1357                         np->rx_ring.ex[i].flaglen = 0;
1358 }
1359
1360 static void nv_init_tx(struct net_device *dev)
1361 {
1362         struct fe_priv *np = netdev_priv(dev);
1363         int i;
1364
1365         np->next_tx = np->nic_tx = 0;
1366         for (i = 0; i < np->tx_ring_size; i++) {
1367                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1368                         np->tx_ring.orig[i].flaglen = 0;
1369                 else
1370                         np->tx_ring.ex[i].flaglen = 0;
1371                 np->tx_skbuff[i] = NULL;
1372                 np->tx_dma[i] = 0;
1373         }
1374 }
1375
1376 static int nv_init_ring(struct net_device *dev)
1377 {
1378         nv_init_tx(dev);
1379         nv_init_rx(dev);
1380         return nv_alloc_rx(dev);
1381 }
1382
1383 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1384 {
1385         struct fe_priv *np = netdev_priv(dev);
1386
1387         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1388                 dev->name, skbnr);
1389
1390         if (np->tx_dma[skbnr]) {
1391                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1392                                np->tx_dma_len[skbnr],
1393                                PCI_DMA_TODEVICE);
1394                 np->tx_dma[skbnr] = 0;
1395         }
1396
1397         if (np->tx_skbuff[skbnr]) {
1398                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1399                 np->tx_skbuff[skbnr] = NULL;
1400                 return 1;
1401         } else {
1402                 return 0;
1403         }
1404 }
1405
1406 static void nv_drain_tx(struct net_device *dev)
1407 {
1408         struct fe_priv *np = netdev_priv(dev);
1409         unsigned int i;
1410
1411         for (i = 0; i < np->tx_ring_size; i++) {
1412                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1413                         np->tx_ring.orig[i].flaglen = 0;
1414                 else
1415                         np->tx_ring.ex[i].flaglen = 0;
1416                 if (nv_release_txskb(dev, i))
1417                         np->stats.tx_dropped++;
1418         }
1419 }
1420
1421 static void nv_drain_rx(struct net_device *dev)
1422 {
1423         struct fe_priv *np = netdev_priv(dev);
1424         int i;
1425         for (i = 0; i < np->rx_ring_size; i++) {
1426                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1427                         np->rx_ring.orig[i].flaglen = 0;
1428                 else
1429                         np->rx_ring.ex[i].flaglen = 0;
1430                 wmb();
1431                 if (np->rx_skbuff[i]) {
1432                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1433                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1434                                                 PCI_DMA_FROMDEVICE);
1435                         dev_kfree_skb(np->rx_skbuff[i]);
1436                         np->rx_skbuff[i] = NULL;
1437                 }
1438         }
1439 }
1440
1441 static void drain_ring(struct net_device *dev)
1442 {
1443         nv_drain_tx(dev);
1444         nv_drain_rx(dev);
1445 }
1446
1447 /*
1448  * nv_start_xmit: dev->hard_start_xmit function
1449  * Called with netif_tx_lock held.
1450  */
1451 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1452 {
1453         struct fe_priv *np = netdev_priv(dev);
1454         u32 tx_flags = 0;
1455         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1456         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1457         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1458         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1459         unsigned int i;
1460         u32 offset = 0;
1461         u32 bcnt;
1462         u32 size = skb->len-skb->data_len;
1463         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1464         u32 tx_flags_vlan = 0;
1465
1466         /* add fragments to entries count */
1467         for (i = 0; i < fragments; i++) {
1468                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1469                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1470         }
1471
1472         spin_lock_irq(&np->lock);
1473
1474         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1475                 spin_unlock_irq(&np->lock);
1476                 netif_stop_queue(dev);
1477                 return NETDEV_TX_BUSY;
1478         }
1479
1480         /* setup the header buffer */
1481         do {
1482                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1483                 nr = (nr + 1) % np->tx_ring_size;
1484
1485                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1486                                                 PCI_DMA_TODEVICE);
1487                 np->tx_dma_len[nr] = bcnt;
1488
1489                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1490                         np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1491                         np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1492                 } else {
1493                         np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1494                         np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1495                         np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1496                 }
1497                 tx_flags = np->tx_flags;
1498                 offset += bcnt;
1499                 size -= bcnt;
1500         } while (size);
1501
1502         /* setup the fragments */
1503         for (i = 0; i < fragments; i++) {
1504                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1505                 u32 size = frag->size;
1506                 offset = 0;
1507
1508                 do {
1509                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1510                         nr = (nr + 1) % np->tx_ring_size;
1511
1512                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1513                                                       PCI_DMA_TODEVICE);
1514                         np->tx_dma_len[nr] = bcnt;
1515
1516                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1517                                 np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1518                                 np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1519                         } else {
1520                                 np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1521                                 np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1522                                 np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1523                         }
1524                         offset += bcnt;
1525                         size -= bcnt;
1526                 } while (size);
1527         }
1528
1529         /* set last fragment flag  */
1530         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1531                 np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1532         } else {
1533                 np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1534         }
1535
1536         np->tx_skbuff[nr] = skb;
1537
1538 #ifdef NETIF_F_TSO
1539         if (skb_is_gso(skb))
1540                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1541         else
1542 #endif
1543         tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1544                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1545
1546         /* vlan tag */
1547         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1548                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1549         }
1550
1551         /* set tx flags */
1552         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1553                 np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1554         } else {
1555                 np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
1556                 np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1557         }
1558
1559         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1560                 dev->name, np->next_tx, entries, tx_flags_extra);
1561         {
1562                 int j;
1563                 for (j=0; j<64; j++) {
1564                         if ((j%16) == 0)
1565                                 dprintk("\n%03x:", j);
1566                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1567                 }
1568                 dprintk("\n");
1569         }
1570
1571         np->next_tx += entries;
1572
1573         dev->trans_start = jiffies;
1574         spin_unlock_irq(&np->lock);
1575         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1576         pci_push(get_hwbase(dev));
1577         return NETDEV_TX_OK;
1578 }
1579
1580 /*
1581  * nv_tx_done: check for completed packets, release the skbs.
1582  *
1583  * Caller must own np->lock.
1584  */
1585 static void nv_tx_done(struct net_device *dev)
1586 {
1587         struct fe_priv *np = netdev_priv(dev);
1588         u32 flags;
1589         unsigned int i;
1590         struct sk_buff *skb;
1591
1592         while (np->nic_tx != np->next_tx) {
1593                 i = np->nic_tx % np->tx_ring_size;
1594
1595                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1596                         flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
1597                 else
1598                         flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
1599
1600                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
1601                                         dev->name, np->nic_tx, flags);
1602                 if (flags & NV_TX_VALID)
1603                         break;
1604                 if (np->desc_ver == DESC_VER_1) {
1605                         if (flags & NV_TX_LASTPACKET) {
1606                                 skb = np->tx_skbuff[i];
1607                                 if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1608                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1609                                         if (flags & NV_TX_UNDERFLOW)
1610                                                 np->stats.tx_fifo_errors++;
1611                                         if (flags & NV_TX_CARRIERLOST)
1612                                                 np->stats.tx_carrier_errors++;
1613                                         np->stats.tx_errors++;
1614                                 } else {
1615                                         np->stats.tx_packets++;
1616                                         np->stats.tx_bytes += skb->len;
1617                                 }
1618                         }
1619                 } else {
1620                         if (flags & NV_TX2_LASTPACKET) {
1621                                 skb = np->tx_skbuff[i];
1622                                 if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1623                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1624                                         if (flags & NV_TX2_UNDERFLOW)
1625                                                 np->stats.tx_fifo_errors++;
1626                                         if (flags & NV_TX2_CARRIERLOST)
1627                                                 np->stats.tx_carrier_errors++;
1628                                         np->stats.tx_errors++;
1629                                 } else {
1630                                         np->stats.tx_packets++;
1631                                         np->stats.tx_bytes += skb->len;
1632                                 }
1633                         }
1634                 }
1635                 nv_release_txskb(dev, i);
1636                 np->nic_tx++;
1637         }
1638         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1639                 netif_wake_queue(dev);
1640 }
1641
1642 /*
1643  * nv_tx_timeout: dev->tx_timeout function
1644  * Called with netif_tx_lock held.
1645  */
1646 static void nv_tx_timeout(struct net_device *dev)
1647 {
1648         struct fe_priv *np = netdev_priv(dev);
1649         u8 __iomem *base = get_hwbase(dev);
1650         u32 status;
1651
1652         if (np->msi_flags & NV_MSI_X_ENABLED)
1653                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1654         else
1655                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1656
1657         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1658
1659         {
1660                 int i;
1661
1662                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1663                                 dev->name, (unsigned long)np->ring_addr,
1664                                 np->next_tx, np->nic_tx);
1665                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1666                 for (i=0;i<=np->register_size;i+= 32) {
1667                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1668                                         i,
1669                                         readl(base + i + 0), readl(base + i + 4),
1670                                         readl(base + i + 8), readl(base + i + 12),
1671                                         readl(base + i + 16), readl(base + i + 20),
1672                                         readl(base + i + 24), readl(base + i + 28));
1673                 }
1674                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1675                 for (i=0;i<np->tx_ring_size;i+= 4) {
1676                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1677                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1678                                        i,
1679                                        le32_to_cpu(np->tx_ring.orig[i].buf),
1680                                        le32_to_cpu(np->tx_ring.orig[i].flaglen),
1681                                        le32_to_cpu(np->tx_ring.orig[i+1].buf),
1682                                        le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
1683                                        le32_to_cpu(np->tx_ring.orig[i+2].buf),
1684                                        le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
1685                                        le32_to_cpu(np->tx_ring.orig[i+3].buf),
1686                                        le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
1687                         } else {
1688                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1689                                        i,
1690                                        le32_to_cpu(np->tx_ring.ex[i].bufhigh),
1691                                        le32_to_cpu(np->tx_ring.ex[i].buflow),
1692                                        le32_to_cpu(np->tx_ring.ex[i].flaglen),
1693                                        le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
1694                                        le32_to_cpu(np->tx_ring.ex[i+1].buflow),
1695                                        le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
1696                                        le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
1697                                        le32_to_cpu(np->tx_ring.ex[i+2].buflow),
1698                                        le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
1699                                        le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
1700                                        le32_to_cpu(np->tx_ring.ex[i+3].buflow),
1701                                        le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
1702                         }
1703                 }
1704         }
1705
1706         spin_lock_irq(&np->lock);
1707
1708         /* 1) stop tx engine */
1709         nv_stop_tx(dev);
1710
1711         /* 2) check that the packets were not sent already: */
1712         nv_tx_done(dev);
1713
1714         /* 3) if there are dead entries: clear everything */
1715         if (np->next_tx != np->nic_tx) {
1716                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1717                 nv_drain_tx(dev);
1718                 np->next_tx = np->nic_tx = 0;
1719                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1720                 netif_wake_queue(dev);
1721         }
1722
1723         /* 4) restart tx engine */
1724         nv_start_tx(dev);
1725         spin_unlock_irq(&np->lock);
1726 }
1727
1728 /*
1729  * Called when the nic notices a mismatch between the actual data len on the
1730  * wire and the len indicated in the 802 header
1731  */
1732 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1733 {
1734         int hdrlen;     /* length of the 802 header */
1735         int protolen;   /* length as stored in the proto field */
1736
1737         /* 1) calculate len according to header */
1738         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
1739                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1740                 hdrlen = VLAN_HLEN;
1741         } else {
1742                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1743                 hdrlen = ETH_HLEN;
1744         }
1745         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1746                                 dev->name, datalen, protolen, hdrlen);
1747         if (protolen > ETH_DATA_LEN)
1748                 return datalen; /* Value in proto field not a len, no checks possible */
1749
1750         protolen += hdrlen;
1751         /* consistency checks: */
1752         if (datalen > ETH_ZLEN) {
1753                 if (datalen >= protolen) {
1754                         /* more data on wire than in 802 header, trim of
1755                          * additional data.
1756                          */
1757                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1758                                         dev->name, protolen);
1759                         return protolen;
1760                 } else {
1761                         /* less data on wire than mentioned in header.
1762                          * Discard the packet.
1763                          */
1764                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1765                                         dev->name);
1766                         return -1;
1767                 }
1768         } else {
1769                 /* short packet. Accept only if 802 values are also short */
1770                 if (protolen > ETH_ZLEN) {
1771                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1772                                         dev->name);
1773                         return -1;
1774                 }
1775                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1776                                 dev->name, datalen);
1777                 return datalen;
1778         }
1779 }
1780
1781 static int nv_rx_process(struct net_device *dev, int limit)
1782 {
1783         struct fe_priv *np = netdev_priv(dev);
1784         u32 flags;
1785         u32 vlanflags = 0;
1786         int count;
1787
1788         for (count = 0; count < limit; ++count) {
1789                 struct sk_buff *skb;
1790                 int len;
1791                 int i;
1792                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1793                         break;  /* we scanned the whole ring - do not continue */
1794
1795                 i = np->cur_rx % np->rx_ring_size;
1796                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1797                         flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
1798                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1799                 } else {
1800                         flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
1801                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1802                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
1803                 }
1804
1805                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
1806                                         dev->name, np->cur_rx, flags);
1807
1808                 if (flags & NV_RX_AVAIL)
1809                         break;  /* still owned by hardware, */
1810
1811                 /*
1812                  * the packet is for us - immediately tear down the pci mapping.
1813                  * TODO: check if a prefetch of the first cacheline improves
1814                  * the performance.
1815                  */
1816                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1817                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1818                                 PCI_DMA_FROMDEVICE);
1819
1820                 {
1821                         int j;
1822                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
1823                         for (j=0; j<64; j++) {
1824                                 if ((j%16) == 0)
1825                                         dprintk("\n%03x:", j);
1826                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1827                         }
1828                         dprintk("\n");
1829                 }
1830                 /* look at what we actually got: */
1831                 if (np->desc_ver == DESC_VER_1) {
1832                         if (!(flags & NV_RX_DESCRIPTORVALID))
1833                                 goto next_pkt;
1834
1835                         if (flags & NV_RX_ERROR) {
1836                                 if (flags & NV_RX_MISSEDFRAME) {
1837                                         np->stats.rx_missed_errors++;
1838                                         np->stats.rx_errors++;
1839                                         goto next_pkt;
1840                                 }
1841                                 if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1842                                         np->stats.rx_errors++;
1843                                         goto next_pkt;
1844                                 }
1845                                 if (flags & NV_RX_CRCERR) {
1846                                         np->stats.rx_crc_errors++;
1847                                         np->stats.rx_errors++;
1848                                         goto next_pkt;
1849                                 }
1850                                 if (flags & NV_RX_OVERFLOW) {
1851                                         np->stats.rx_over_errors++;
1852                                         np->stats.rx_errors++;
1853                                         goto next_pkt;
1854                                 }
1855                                 if (flags & NV_RX_ERROR4) {
1856                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1857                                         if (len < 0) {
1858                                                 np->stats.rx_errors++;
1859                                                 goto next_pkt;
1860                                         }
1861                                 }
1862                                 /* framing errors are soft errors. */
1863                                 if (flags & NV_RX_FRAMINGERR) {
1864                                         if (flags & NV_RX_SUBSTRACT1) {
1865                                                 len--;
1866                                         }
1867                                 }
1868                         }
1869                 } else {
1870                         if (!(flags & NV_RX2_DESCRIPTORVALID))
1871                                 goto next_pkt;
1872
1873                         if (flags & NV_RX2_ERROR) {
1874                                 if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1875                                         np->stats.rx_errors++;
1876                                         goto next_pkt;
1877                                 }
1878                                 if (flags & NV_RX2_CRCERR) {
1879                                         np->stats.rx_crc_errors++;
1880                                         np->stats.rx_errors++;
1881                                         goto next_pkt;
1882                                 }
1883                                 if (flags & NV_RX2_OVERFLOW) {
1884                                         np->stats.rx_over_errors++;
1885                                         np->stats.rx_errors++;
1886                                         goto next_pkt;
1887                                 }
1888                                 if (flags & NV_RX2_ERROR4) {
1889                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1890                                         if (len < 0) {
1891                                                 np->stats.rx_errors++;
1892                                                 goto next_pkt;
1893                                         }
1894                                 }
1895                                 /* framing errors are soft errors */
1896                                 if (flags & NV_RX2_FRAMINGERR) {
1897                                         if (flags & NV_RX2_SUBSTRACT1) {
1898                                                 len--;
1899                                         }
1900                                 }
1901                         }
1902                         if (np->rx_csum) {
1903                                 flags &= NV_RX2_CHECKSUMMASK;
1904                                 if (flags == NV_RX2_CHECKSUMOK1 ||
1905                                     flags == NV_RX2_CHECKSUMOK2 ||
1906                                     flags == NV_RX2_CHECKSUMOK3) {
1907                                         dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1908                                         np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1909                                 } else {
1910                                         dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1911                                 }
1912                         }
1913                 }
1914                 /* got a valid packet - forward it to the network core */
1915                 skb = np->rx_skbuff[i];
1916                 np->rx_skbuff[i] = NULL;
1917
1918                 skb_put(skb, len);
1919                 skb->protocol = eth_type_trans(skb, dev);
1920                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1921                                         dev->name, np->cur_rx, len, skb->protocol);
1922 #ifdef CONFIG_FORCEDETH_NAPI
1923                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
1924                         vlan_hwaccel_receive_skb(skb, np->vlangrp,
1925                                                  vlanflags & NV_RX3_VLAN_TAG_MASK);
1926                 else
1927                         netif_receive_skb(skb);
1928 #else
1929                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
1930                         vlan_hwaccel_rx(skb, np->vlangrp,
1931                                         vlanflags & NV_RX3_VLAN_TAG_MASK);
1932                 else
1933                         netif_rx(skb);
1934 #endif
1935                 dev->last_rx = jiffies;
1936                 np->stats.rx_packets++;
1937                 np->stats.rx_bytes += len;
1938 next_pkt:
1939                 np->cur_rx++;
1940         }
1941
1942         return count;
1943 }
1944
1945 static void set_bufsize(struct net_device *dev)
1946 {
1947         struct fe_priv *np = netdev_priv(dev);
1948
1949         if (dev->mtu <= ETH_DATA_LEN)
1950                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1951         else
1952                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1953 }
1954
1955 /*
1956  * nv_change_mtu: dev->change_mtu function
1957  * Called with dev_base_lock held for read.
1958  */
1959 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1960 {
1961         struct fe_priv *np = netdev_priv(dev);
1962         int old_mtu;
1963
1964         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1965                 return -EINVAL;
1966
1967         old_mtu = dev->mtu;
1968         dev->mtu = new_mtu;
1969
1970         /* return early if the buffer sizes will not change */
1971         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1972                 return 0;
1973         if (old_mtu == new_mtu)
1974                 return 0;
1975
1976         /* synchronized against open : rtnl_lock() held by caller */
1977         if (netif_running(dev)) {
1978                 u8 __iomem *base = get_hwbase(dev);
1979                 /*
1980                  * It seems that the nic preloads valid ring entries into an
1981                  * internal buffer. The procedure for flushing everything is
1982                  * guessed, there is probably a simpler approach.
1983                  * Changing the MTU is a rare event, it shouldn't matter.
1984                  */
1985                 nv_disable_irq(dev);
1986                 netif_tx_lock_bh(dev);
1987                 spin_lock(&np->lock);
1988                 /* stop engines */
1989                 nv_stop_rx(dev);
1990                 nv_stop_tx(dev);
1991                 nv_txrx_reset(dev);
1992                 /* drain rx queue */
1993                 nv_drain_rx(dev);
1994                 nv_drain_tx(dev);
1995                 /* reinit driver view of the rx queue */
1996                 set_bufsize(dev);
1997                 if (nv_init_ring(dev)) {
1998                         if (!np->in_shutdown)
1999                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2000                 }
2001                 /* reinit nic view of the rx queue */
2002                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2003                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2004                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2005                         base + NvRegRingSizes);
2006                 pci_push(base);
2007                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2008                 pci_push(base);
2009
2010                 /* restart rx engine */
2011                 nv_start_rx(dev);
2012                 nv_start_tx(dev);
2013                 spin_unlock(&np->lock);
2014                 netif_tx_unlock_bh(dev);
2015                 nv_enable_irq(dev);
2016         }
2017         return 0;
2018 }
2019
2020 static void nv_copy_mac_to_hw(struct net_device *dev)
2021 {
2022         u8 __iomem *base = get_hwbase(dev);
2023         u32 mac[2];
2024
2025         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2026                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2027         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2028
2029         writel(mac[0], base + NvRegMacAddrA);
2030         writel(mac[1], base + NvRegMacAddrB);
2031 }
2032
2033 /*
2034  * nv_set_mac_address: dev->set_mac_address function
2035  * Called with rtnl_lock() held.
2036  */
2037 static int nv_set_mac_address(struct net_device *dev, void *addr)
2038 {
2039         struct fe_priv *np = netdev_priv(dev);
2040         struct sockaddr *macaddr = (struct sockaddr*)addr;
2041
2042         if (!is_valid_ether_addr(macaddr->sa_data))
2043                 return -EADDRNOTAVAIL;
2044
2045         /* synchronized against open : rtnl_lock() held by caller */
2046         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2047
2048         if (netif_running(dev)) {
2049                 netif_tx_lock_bh(dev);
2050                 spin_lock_irq(&np->lock);
2051
2052                 /* stop rx engine */
2053                 nv_stop_rx(dev);
2054
2055                 /* set mac address */
2056                 nv_copy_mac_to_hw(dev);
2057
2058                 /* restart rx engine */
2059                 nv_start_rx(dev);
2060                 spin_unlock_irq(&np->lock);
2061                 netif_tx_unlock_bh(dev);
2062         } else {
2063                 nv_copy_mac_to_hw(dev);
2064         }
2065         return 0;
2066 }
2067
2068 /*
2069  * nv_set_multicast: dev->set_multicast function
2070  * Called with netif_tx_lock held.
2071  */
2072 static void nv_set_multicast(struct net_device *dev)
2073 {
2074         struct fe_priv *np = netdev_priv(dev);
2075         u8 __iomem *base = get_hwbase(dev);
2076         u32 addr[2];
2077         u32 mask[2];
2078         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2079
2080         memset(addr, 0, sizeof(addr));
2081         memset(mask, 0, sizeof(mask));
2082
2083         if (dev->flags & IFF_PROMISC) {
2084                 pff |= NVREG_PFF_PROMISC;
2085         } else {
2086                 pff |= NVREG_PFF_MYADDR;
2087
2088                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2089                         u32 alwaysOff[2];
2090                         u32 alwaysOn[2];
2091
2092                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2093                         if (dev->flags & IFF_ALLMULTI) {
2094                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2095                         } else {
2096                                 struct dev_mc_list *walk;
2097
2098                                 walk = dev->mc_list;
2099                                 while (walk != NULL) {
2100                                         u32 a, b;
2101                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2102                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2103                                         alwaysOn[0] &= a;
2104                                         alwaysOff[0] &= ~a;
2105                                         alwaysOn[1] &= b;
2106                                         alwaysOff[1] &= ~b;
2107                                         walk = walk->next;
2108                                 }
2109                         }
2110                         addr[0] = alwaysOn[0];
2111                         addr[1] = alwaysOn[1];
2112                         mask[0] = alwaysOn[0] | alwaysOff[0];
2113                         mask[1] = alwaysOn[1] | alwaysOff[1];
2114                 }
2115         }
2116         addr[0] |= NVREG_MCASTADDRA_FORCE;
2117         pff |= NVREG_PFF_ALWAYS;
2118         spin_lock_irq(&np->lock);
2119         nv_stop_rx(dev);
2120         writel(addr[0], base + NvRegMulticastAddrA);
2121         writel(addr[1], base + NvRegMulticastAddrB);
2122         writel(mask[0], base + NvRegMulticastMaskA);
2123         writel(mask[1], base + NvRegMulticastMaskB);
2124         writel(pff, base + NvRegPacketFilterFlags);
2125         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2126                 dev->name);
2127         nv_start_rx(dev);
2128         spin_unlock_irq(&np->lock);
2129 }
2130
2131 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2132 {
2133         struct fe_priv *np = netdev_priv(dev);
2134         u8 __iomem *base = get_hwbase(dev);
2135
2136         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2137
2138         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2139                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2140                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2141                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2142                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2143                 } else {
2144                         writel(pff, base + NvRegPacketFilterFlags);
2145                 }
2146         }
2147         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2148                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2149                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2150                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2151                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2152                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2153                 } else {
2154                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2155                         writel(regmisc, base + NvRegMisc1);
2156                 }
2157         }
2158 }
2159
2160 /**
2161  * nv_update_linkspeed: Setup the MAC according to the link partner
2162  * @dev: Network device to be configured
2163  *
2164  * The function queries the PHY and checks if there is a link partner.
2165  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2166  * set to 10 MBit HD.
2167  *
2168  * The function returns 0 if there is no link partner and 1 if there is
2169  * a good link partner.
2170  */
2171 static int nv_update_linkspeed(struct net_device *dev)
2172 {
2173         struct fe_priv *np = netdev_priv(dev);
2174         u8 __iomem *base = get_hwbase(dev);
2175         int adv = 0;
2176         int lpa = 0;
2177         int adv_lpa, adv_pause, lpa_pause;
2178         int newls = np->linkspeed;
2179         int newdup = np->duplex;
2180         int mii_status;
2181         int retval = 0;
2182         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2183
2184         /* BMSR_LSTATUS is latched, read it twice:
2185          * we want the current value.
2186          */
2187         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2188         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2189
2190         if (!(mii_status & BMSR_LSTATUS)) {
2191                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2192                                 dev->name);
2193                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2194                 newdup = 0;
2195                 retval = 0;
2196                 goto set_speed;
2197         }
2198
2199         if (np->autoneg == 0) {
2200                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2201                                 dev->name, np->fixed_mode);
2202                 if (np->fixed_mode & LPA_100FULL) {
2203                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2204                         newdup = 1;
2205                 } else if (np->fixed_mode & LPA_100HALF) {
2206                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2207                         newdup = 0;
2208                 } else if (np->fixed_mode & LPA_10FULL) {
2209                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2210                         newdup = 1;
2211                 } else {
2212                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2213                         newdup = 0;
2214                 }
2215                 retval = 1;
2216                 goto set_speed;
2217         }
2218         /* check auto negotiation is complete */
2219         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2220                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2221                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2222                 newdup = 0;
2223                 retval = 0;
2224                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2225                 goto set_speed;
2226         }
2227
2228         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2229         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2230         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2231                                 dev->name, adv, lpa);
2232
2233         retval = 1;
2234         if (np->gigabit == PHY_GIGABIT) {
2235                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2236                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2237
2238                 if ((control_1000 & ADVERTISE_1000FULL) &&
2239                         (status_1000 & LPA_1000FULL)) {
2240                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2241                                 dev->name);
2242                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2243                         newdup = 1;
2244                         goto set_speed;
2245                 }
2246         }
2247
2248         /* FIXME: handle parallel detection properly */
2249         adv_lpa = lpa & adv;
2250         if (adv_lpa & LPA_100FULL) {
2251                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2252                 newdup = 1;
2253         } else if (adv_lpa & LPA_100HALF) {
2254                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2255                 newdup = 0;
2256         } else if (adv_lpa & LPA_10FULL) {
2257                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2258                 newdup = 1;
2259         } else if (adv_lpa & LPA_10HALF) {
2260                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2261                 newdup = 0;
2262         } else {
2263                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2264                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2265                 newdup = 0;
2266         }
2267
2268 set_speed:
2269         if (np->duplex == newdup && np->linkspeed == newls)
2270                 return retval;
2271
2272         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2273                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2274
2275         np->duplex = newdup;
2276         np->linkspeed = newls;
2277
2278         if (np->gigabit == PHY_GIGABIT) {
2279                 phyreg = readl(base + NvRegRandomSeed);
2280                 phyreg &= ~(0x3FF00);
2281                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2282                         phyreg |= NVREG_RNDSEED_FORCE3;
2283                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2284                         phyreg |= NVREG_RNDSEED_FORCE2;
2285                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2286                         phyreg |= NVREG_RNDSEED_FORCE;
2287                 writel(phyreg, base + NvRegRandomSeed);
2288         }
2289
2290         phyreg = readl(base + NvRegPhyInterface);
2291         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2292         if (np->duplex == 0)
2293                 phyreg |= PHY_HALF;
2294         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2295                 phyreg |= PHY_100;
2296         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2297                 phyreg |= PHY_1000;
2298         writel(phyreg, base + NvRegPhyInterface);
2299
2300         if (phyreg & PHY_RGMII) {
2301                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2302                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2303                 else
2304                         txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2305         } else {
2306                 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2307         }
2308         writel(txreg, base + NvRegTxDeferral);
2309
2310         if (np->desc_ver == DESC_VER_1) {
2311                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2312         } else {
2313                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2314                         txreg = NVREG_TX_WM_DESC2_3_1000;
2315                 else
2316                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2317         }
2318         writel(txreg, base + NvRegTxWatermark);
2319
2320         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2321                 base + NvRegMisc1);
2322         pci_push(base);
2323         writel(np->linkspeed, base + NvRegLinkSpeed);
2324         pci_push(base);
2325
2326         pause_flags = 0;
2327         /* setup pause frame */
2328         if (np->duplex != 0) {
2329                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2330                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2331                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2332
2333                         switch (adv_pause) {
2334                         case ADVERTISE_PAUSE_CAP:
2335                                 if (lpa_pause & LPA_PAUSE_CAP) {
2336                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2337                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2338                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2339                                 }
2340                                 break;
2341                         case ADVERTISE_PAUSE_ASYM:
2342                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2343                                 {
2344                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2345                                 }
2346                                 break;
2347                         case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2348                                 if (lpa_pause & LPA_PAUSE_CAP)
2349                                 {
2350                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2351                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2352                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2353                                 }
2354                                 if (lpa_pause == LPA_PAUSE_ASYM)
2355                                 {
2356                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2357                                 }
2358                                 break;
2359                         }
2360                 } else {
2361                         pause_flags = np->pause_flags;
2362                 }
2363         }
2364         nv_update_pause(dev, pause_flags);
2365
2366         return retval;
2367 }
2368
2369 static void nv_linkchange(struct net_device *dev)
2370 {
2371         if (nv_update_linkspeed(dev)) {
2372                 if (!netif_carrier_ok(dev)) {
2373                         netif_carrier_on(dev);
2374                         printk(KERN_INFO "%s: link up.\n", dev->name);
2375                         nv_start_rx(dev);
2376                 }
2377         } else {
2378                 if (netif_carrier_ok(dev)) {
2379                         netif_carrier_off(dev);
2380                         printk(KERN_INFO "%s: link down.\n", dev->name);
2381                         nv_stop_rx(dev);
2382                 }
2383         }
2384 }
2385
2386 static void nv_link_irq(struct net_device *dev)
2387 {
2388         u8 __iomem *base = get_hwbase(dev);
2389         u32 miistat;
2390
2391         miistat = readl(base + NvRegMIIStatus);
2392         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2393         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2394
2395         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2396                 nv_linkchange(dev);
2397         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2398 }
2399
2400 static irqreturn_t nv_nic_irq(int foo, void *data)
2401 {
2402         struct net_device *dev = (struct net_device *) data;
2403         struct fe_priv *np = netdev_priv(dev);
2404         u8 __iomem *base = get_hwbase(dev);
2405         u32 events;
2406         int i;
2407
2408         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2409
2410         for (i=0; ; i++) {
2411                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2412                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2413                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2414                 } else {
2415                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2416                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2417                 }
2418                 pci_push(base);
2419                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2420                 if (!(events & np->irqmask))
2421                         break;
2422
2423                 spin_lock(&np->lock);
2424                 nv_tx_done(dev);
2425                 spin_unlock(&np->lock);
2426
2427                 if (events & NVREG_IRQ_LINK) {
2428                         spin_lock(&np->lock);
2429                         nv_link_irq(dev);
2430                         spin_unlock(&np->lock);
2431                 }
2432                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2433                         spin_lock(&np->lock);
2434                         nv_linkchange(dev);
2435                         spin_unlock(&np->lock);
2436                         np->link_timeout = jiffies + LINK_TIMEOUT;
2437                 }
2438                 if (events & (NVREG_IRQ_TX_ERR)) {
2439                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2440                                                 dev->name, events);
2441                 }
2442                 if (events & (NVREG_IRQ_UNKNOWN)) {
2443                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2444                                                 dev->name, events);
2445                 }
2446 #ifdef CONFIG_FORCEDETH_NAPI
2447                 if (events & NVREG_IRQ_RX_ALL) {
2448                         netif_rx_schedule(dev);
2449
2450                         /* Disable furthur receive irq's */
2451                         spin_lock(&np->lock);
2452                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
2453
2454                         if (np->msi_flags & NV_MSI_X_ENABLED)
2455                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2456                         else
2457                                 writel(np->irqmask, base + NvRegIrqMask);
2458                         spin_unlock(&np->lock);
2459                 }
2460 #else
2461                 nv_rx_process(dev, dev->weight);
2462                 if (nv_alloc_rx(dev)) {
2463                         spin_lock(&np->lock);
2464                         if (!np->in_shutdown)
2465                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2466                         spin_unlock(&np->lock);
2467                 }
2468 #endif
2469                 if (i > max_interrupt_work) {
2470                         spin_lock(&np->lock);
2471                         /* disable interrupts on the nic */
2472                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2473                                 writel(0, base + NvRegIrqMask);
2474                         else
2475                                 writel(np->irqmask, base + NvRegIrqMask);
2476                         pci_push(base);
2477
2478                         if (!np->in_shutdown) {
2479                                 np->nic_poll_irq = np->irqmask;
2480                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2481                         }
2482                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2483                         spin_unlock(&np->lock);
2484                         break;
2485                 }
2486
2487         }
2488         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2489
2490         return IRQ_RETVAL(i);
2491 }
2492
2493 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
2494 {
2495         struct net_device *dev = (struct net_device *) data;
2496         struct fe_priv *np = netdev_priv(dev);
2497         u8 __iomem *base = get_hwbase(dev);
2498         u32 events;
2499         int i;
2500         unsigned long flags;
2501
2502         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2503
2504         for (i=0; ; i++) {
2505                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2506                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2507                 pci_push(base);
2508                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2509                 if (!(events & np->irqmask))
2510                         break;
2511
2512                 spin_lock_irqsave(&np->lock, flags);
2513                 nv_tx_done(dev);
2514                 spin_unlock_irqrestore(&np->lock, flags);
2515
2516                 if (events & (NVREG_IRQ_TX_ERR)) {
2517                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2518                                                 dev->name, events);
2519                 }
2520                 if (i > max_interrupt_work) {
2521                         spin_lock_irqsave(&np->lock, flags);
2522                         /* disable interrupts on the nic */
2523                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2524                         pci_push(base);
2525
2526                         if (!np->in_shutdown) {
2527                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2528                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2529                         }
2530                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2531                         spin_unlock_irqrestore(&np->lock, flags);
2532                         break;
2533                 }
2534
2535         }
2536         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2537
2538         return IRQ_RETVAL(i);
2539 }
2540
2541 #ifdef CONFIG_FORCEDETH_NAPI
2542 static int nv_napi_poll(struct net_device *dev, int *budget)
2543 {
2544         int pkts, limit = min(*budget, dev->quota);
2545         struct fe_priv *np = netdev_priv(dev);
2546         u8 __iomem *base = get_hwbase(dev);
2547
2548         pkts = nv_rx_process(dev, limit);
2549
2550         if (nv_alloc_rx(dev)) {
2551                 spin_lock_irq(&np->lock);
2552                 if (!np->in_shutdown)
2553                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2554                 spin_unlock_irq(&np->lock);
2555         }
2556
2557         if (pkts < limit) {
2558                 /* all done, no more packets present */
2559                 netif_rx_complete(dev);
2560
2561                 /* re-enable receive interrupts */
2562                 spin_lock_irq(&np->lock);
2563                 np->irqmask |= NVREG_IRQ_RX_ALL;
2564                 if (np->msi_flags & NV_MSI_X_ENABLED)
2565                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2566                 else
2567                         writel(np->irqmask, base + NvRegIrqMask);
2568                 spin_unlock_irq(&np->lock);
2569                 return 0;
2570         } else {
2571                 /* used up our quantum, so reschedule */
2572                 dev->quota -= pkts;
2573                 *budget -= pkts;
2574                 return 1;
2575         }
2576 }
2577 #endif
2578
2579 #ifdef CONFIG_FORCEDETH_NAPI
2580 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
2581 {
2582         struct net_device *dev = (struct net_device *) data;
2583         u8 __iomem *base = get_hwbase(dev);
2584         u32 events;
2585
2586         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2587         writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2588
2589         if (events) {
2590                 netif_rx_schedule(dev);
2591                 /* disable receive interrupts on the nic */
2592                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2593                 pci_push(base);
2594         }
2595         return IRQ_HANDLED;
2596 }
2597 #else
2598 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
2599 {
2600         struct net_device *dev = (struct net_device *) data;
2601         struct fe_priv *np = netdev_priv(dev);
2602         u8 __iomem *base = get_hwbase(dev);
2603         u32 events;
2604         int i;
2605         unsigned long flags;
2606
2607         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2608
2609         for (i=0; ; i++) {
2610                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2611                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2612                 pci_push(base);
2613                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2614                 if (!(events & np->irqmask))
2615                         break;
2616
2617                 nv_rx_process(dev, dev->weight);
2618                 if (nv_alloc_rx(dev)) {
2619                         spin_lock_irqsave(&np->lock, flags);
2620                         if (!np->in_shutdown)
2621                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2622                         spin_unlock_irqrestore(&np->lock, flags);
2623                 }
2624
2625                 if (i > max_interrupt_work) {
2626                         spin_lock_irqsave(&np->lock, flags);
2627                         /* disable interrupts on the nic */
2628                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2629                         pci_push(base);
2630
2631                         if (!np->in_shutdown) {
2632                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2633                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2634                         }
2635                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2636                         spin_unlock_irqrestore(&np->lock, flags);
2637                         break;
2638                 }
2639         }
2640         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2641
2642         return IRQ_RETVAL(i);
2643 }
2644 #endif
2645
2646 static irqreturn_t nv_nic_irq_other(int foo, void *data)
2647 {
2648         struct net_device *dev = (struct net_device *) data;
2649         struct fe_priv *np = netdev_priv(dev);
2650         u8 __iomem *base = get_hwbase(dev);
2651         u32 events;
2652         int i;
2653         unsigned long flags;
2654
2655         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2656
2657         for (i=0; ; i++) {
2658                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2659                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2660                 pci_push(base);
2661                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2662                 if (!(events & np->irqmask))
2663                         break;
2664
2665                 if (events & NVREG_IRQ_LINK) {
2666                         spin_lock_irqsave(&np->lock, flags);
2667                         nv_link_irq(dev);
2668                         spin_unlock_irqrestore(&np->lock, flags);
2669                 }
2670                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2671                         spin_lock_irqsave(&np->lock, flags);
2672                         nv_linkchange(dev);
2673                         spin_unlock_irqrestore(&np->lock, flags);
2674                         np->link_timeout = jiffies + LINK_TIMEOUT;
2675                 }
2676                 if (events & (NVREG_IRQ_UNKNOWN)) {
2677                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2678                                                 dev->name, events);
2679                 }
2680                 if (i > max_interrupt_work) {
2681                         spin_lock_irqsave(&np->lock, flags);
2682                         /* disable interrupts on the nic */
2683                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2684                         pci_push(base);
2685
2686                         if (!np->in_shutdown) {
2687                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2688                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2689                         }
2690                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2691                         spin_unlock_irqrestore(&np->lock, flags);
2692                         break;
2693                 }
2694
2695         }
2696         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2697
2698         return IRQ_RETVAL(i);
2699 }
2700
2701 static irqreturn_t nv_nic_irq_test(int foo, void *data)
2702 {
2703         struct net_device *dev = (struct net_device *) data;
2704         struct fe_priv *np = netdev_priv(dev);
2705         u8 __iomem *base = get_hwbase(dev);
2706         u32 events;
2707
2708         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2709
2710         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2711                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2712                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2713         } else {
2714                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2715                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2716         }
2717         pci_push(base);
2718         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2719         if (!(events & NVREG_IRQ_TIMER))
2720                 return IRQ_RETVAL(0);
2721
2722         spin_lock(&np->lock);
2723         np->intr_test = 1;
2724         spin_unlock(&np->lock);
2725
2726         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2727
2728         return IRQ_RETVAL(1);
2729 }
2730
2731 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2732 {
2733         u8 __iomem *base = get_hwbase(dev);
2734         int i;
2735         u32 msixmap = 0;
2736
2737         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2738          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2739          * the remaining 8 interrupts.
2740          */
2741         for (i = 0; i < 8; i++) {
2742                 if ((irqmask >> i) & 0x1) {
2743                         msixmap |= vector << (i << 2);
2744                 }
2745         }
2746         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2747
2748         msixmap = 0;
2749         for (i = 0; i < 8; i++) {
2750                 if ((irqmask >> (i + 8)) & 0x1) {
2751                         msixmap |= vector << (i << 2);
2752                 }
2753         }
2754         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2755 }
2756
2757 static int nv_request_irq(struct net_device *dev, int intr_test)
2758 {
2759         struct fe_priv *np = get_nvpriv(dev);
2760         u8 __iomem *base = get_hwbase(dev);
2761         int ret = 1;
2762         int i;
2763
2764         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2765                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2766                         np->msi_x_entry[i].entry = i;
2767                 }
2768                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2769                         np->msi_flags |= NV_MSI_X_ENABLED;
2770                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2771                                 /* Request irq for rx handling */
2772                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
2773                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2774                                         pci_disable_msix(np->pci_dev);
2775                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2776                                         goto out_err;
2777                                 }
2778                                 /* Request irq for tx handling */
2779                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
2780                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2781                                         pci_disable_msix(np->pci_dev);
2782                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2783                                         goto out_free_rx;
2784                                 }
2785                                 /* Request irq for link and timer handling */
2786                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
2787                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2788                                         pci_disable_msix(np->pci_dev);
2789                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2790                                         goto out_free_tx;
2791                                 }
2792                                 /* map interrupts to their respective vector */
2793                                 writel(0, base + NvRegMSIXMap0);
2794                                 writel(0, base + NvRegMSIXMap1);
2795                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2796                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2797                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2798                         } else {
2799                                 /* Request irq for all interrupts */
2800                                 if ((!intr_test &&
2801                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2802                                     (intr_test &&
2803                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2804                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2805                                         pci_disable_msix(np->pci_dev);
2806                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2807                                         goto out_err;
2808                                 }
2809
2810                                 /* map interrupts to vector 0 */
2811                                 writel(0, base + NvRegMSIXMap0);
2812                                 writel(0, base + NvRegMSIXMap1);
2813                         }
2814                 }
2815         }
2816         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2817                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2818                         np->msi_flags |= NV_MSI_ENABLED;
2819                         if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2820                             (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2821                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2822                                 pci_disable_msi(np->pci_dev);
2823                                 np->msi_flags &= ~NV_MSI_ENABLED;
2824                                 goto out_err;
2825                         }
2826
2827                         /* map interrupts to vector 0 */
2828                         writel(0, base + NvRegMSIMap0);
2829                         writel(0, base + NvRegMSIMap1);
2830                         /* enable msi vector 0 */
2831                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2832                 }
2833         }
2834         if (ret != 0) {
2835                 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2836                     (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
2837                         goto out_err;
2838
2839         }
2840
2841         return 0;
2842 out_free_tx:
2843         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2844 out_free_rx:
2845         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2846 out_err:
2847         return 1;
2848 }
2849
2850 static void nv_free_irq(struct net_device *dev)
2851 {
2852         struct fe_priv *np = get_nvpriv(dev);
2853         int i;
2854
2855         if (np->msi_flags & NV_MSI_X_ENABLED) {
2856                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2857                         free_irq(np->msi_x_entry[i].vector, dev);
2858                 }
2859                 pci_disable_msix(np->pci_dev);
2860                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2861         } else {
2862                 free_irq(np->pci_dev->irq, dev);
2863                 if (np->msi_flags & NV_MSI_ENABLED) {
2864                         pci_disable_msi(np->pci_dev);
2865                         np->msi_flags &= ~NV_MSI_ENABLED;
2866                 }
2867         }
2868 }
2869
2870 static void nv_do_nic_poll(unsigned long data)
2871 {
2872         struct net_device *dev = (struct net_device *) data;
2873         struct fe_priv *np = netdev_priv(dev);
2874         u8 __iomem *base = get_hwbase(dev);
2875         u32 mask = 0;
2876
2877         /*
2878          * First disable irq(s) and then
2879          * reenable interrupts on the nic, we have to do this before calling
2880          * nv_nic_irq because that may decide to do otherwise
2881          */
2882
2883         if (!using_multi_irqs(dev)) {
2884                 if (np->msi_flags & NV_MSI_X_ENABLED)
2885                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2886                 else
2887                         disable_irq_lockdep(dev->irq);
2888                 mask = np->irqmask;
2889         } else {
2890                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2891                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2892                         mask |= NVREG_IRQ_RX_ALL;
2893                 }
2894                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2895                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2896                         mask |= NVREG_IRQ_TX_ALL;
2897                 }
2898                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2899                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2900                         mask |= NVREG_IRQ_OTHER;
2901                 }
2902         }
2903         np->nic_poll_irq = 0;
2904
2905         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2906
2907         writel(mask, base + NvRegIrqMask);
2908         pci_push(base);
2909
2910         if (!using_multi_irqs(dev)) {
2911                 nv_nic_irq(0, dev);
2912                 if (np->msi_flags & NV_MSI_X_ENABLED)
2913                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2914                 else
2915                         enable_irq_lockdep(dev->irq);
2916         } else {
2917                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2918                         nv_nic_irq_rx(0, dev);
2919                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2920                 }
2921                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2922                         nv_nic_irq_tx(0, dev);
2923                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2924                 }
2925                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2926                         nv_nic_irq_other(0, dev);
2927                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2928                 }
2929         }
2930 }
2931
2932 #ifdef CONFIG_NET_POLL_CONTROLLER
2933 static void nv_poll_controller(struct net_device *dev)
2934 {
2935         nv_do_nic_poll((unsigned long) dev);
2936 }
2937 #endif
2938
2939 static void nv_do_stats_poll(unsigned long data)
2940 {
2941         struct net_device *dev = (struct net_device *) data;
2942         struct fe_priv *np = netdev_priv(dev);
2943         u8 __iomem *base = get_hwbase(dev);
2944
2945         np->estats.tx_bytes += readl(base + NvRegTxCnt);
2946         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2947         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2948         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2949         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2950         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2951         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2952         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2953         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2954         np->estats.tx_deferral += readl(base + NvRegTxDef);
2955         np->estats.tx_packets += readl(base + NvRegTxFrame);
2956         np->estats.tx_pause += readl(base + NvRegTxPause);
2957         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2958         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2959         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2960         np->estats.rx_runt += readl(base + NvRegRxRunt);
2961         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2962         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2963         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2964         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2965         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2966         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2967         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2968         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2969         np->estats.rx_bytes += readl(base + NvRegRxCnt);
2970         np->estats.rx_pause += readl(base + NvRegRxPause);
2971         np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2972         np->estats.rx_packets =
2973                 np->estats.rx_unicast +
2974                 np->estats.rx_multicast +
2975                 np->estats.rx_broadcast;
2976         np->estats.rx_errors_total =
2977                 np->estats.rx_crc_errors +
2978                 np->estats.rx_over_errors +
2979                 np->estats.rx_frame_error +
2980                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2981                 np->estats.rx_late_collision +
2982                 np->estats.rx_runt +
2983                 np->estats.rx_frame_too_long;
2984
2985         if (!np->in_shutdown)
2986                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2987 }
2988
2989 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2990 {
2991         struct fe_priv *np = netdev_priv(dev);
2992         strcpy(info->driver, "forcedeth");
2993         strcpy(info->version, FORCEDETH_VERSION);
2994         strcpy(info->bus_info, pci_name(np->pci_dev));
2995 }
2996
2997 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2998 {
2999         struct fe_priv *np = netdev_priv(dev);
3000         wolinfo->supported = WAKE_MAGIC;
3001
3002         spin_lock_irq(&np->lock);
3003         if (np->wolenabled)
3004                 wolinfo->wolopts = WAKE_MAGIC;
3005         spin_unlock_irq(&np->lock);
3006 }
3007
3008 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3009 {
3010         struct fe_priv *np = netdev_priv(dev);
3011         u8 __iomem *base = get_hwbase(dev);
3012         u32 flags = 0;
3013
3014         if (wolinfo->wolopts == 0) {
3015                 np->wolenabled = 0;
3016         } else if (wolinfo->wolopts & WAKE_MAGIC) {
3017                 np->wolenabled = 1;
3018                 flags = NVREG_WAKEUPFLAGS_ENABLE;
3019         }
3020         if (netif_running(dev)) {
3021                 spin_lock_irq(&np->lock);
3022                 writel(flags, base + NvRegWakeUpFlags);
3023                 spin_unlock_irq(&np->lock);
3024         }
3025         return 0;
3026 }
3027
3028 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3029 {
3030         struct fe_priv *np = netdev_priv(dev);
3031         int adv;
3032
3033         spin_lock_irq(&np->lock);
3034         ecmd->port = PORT_MII;
3035         if (!netif_running(dev)) {
3036                 /* We do not track link speed / duplex setting if the
3037                  * interface is disabled. Force a link check */
3038                 if (nv_update_linkspeed(dev)) {
3039                         if (!netif_carrier_ok(dev))
3040                                 netif_carrier_on(dev);
3041                 } else {
3042                         if (netif_carrier_ok(dev))
3043                                 netif_carrier_off(dev);
3044                 }
3045         }
3046
3047         if (netif_carrier_ok(dev)) {
3048                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3049                 case NVREG_LINKSPEED_10:
3050                         ecmd->speed = SPEED_10;
3051                         break;
3052                 case NVREG_LINKSPEED_100:
3053                         ecmd->speed = SPEED_100;
3054                         break;
3055                 case NVREG_LINKSPEED_1000:
3056                         ecmd->speed = SPEED_1000;
3057                         break;
3058                 }
3059                 ecmd->duplex = DUPLEX_HALF;
3060                 if (np->duplex)
3061                         ecmd->duplex = DUPLEX_FULL;
3062         } else {
3063                 ecmd->speed = -1;
3064                 ecmd->duplex = -1;
3065         }
3066
3067         ecmd->autoneg = np->autoneg;
3068
3069         ecmd->advertising = ADVERTISED_MII;
3070         if (np->autoneg) {
3071                 ecmd->advertising |= ADVERTISED_Autoneg;
3072                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3073                 if (adv & ADVERTISE_10HALF)
3074                         ecmd->advertising |= ADVERTISED_10baseT_Half;
3075                 if (adv & ADVERTISE_10FULL)
3076                         ecmd->advertising |= ADVERTISED_10baseT_Full;
3077                 if (adv & ADVERTISE_100HALF)
3078                         ecmd->advertising |= ADVERTISED_100baseT_Half;
3079                 if (adv & ADVERTISE_100FULL)
3080                         ecmd->advertising |= ADVERTISED_100baseT_Full;
3081                 if (np->gigabit == PHY_GIGABIT) {
3082                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3083                         if (adv & ADVERTISE_1000FULL)
3084                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3085                 }
3086         }
3087         ecmd->supported = (SUPPORTED_Autoneg |
3088                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3089                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3090                 SUPPORTED_MII);
3091         if (np->gigabit == PHY_GIGABIT)
3092                 ecmd->supported |= SUPPORTED_1000baseT_Full;
3093
3094         ecmd->phy_address = np->phyaddr;
3095         ecmd->transceiver = XCVR_EXTERNAL;
3096
3097         /* ignore maxtxpkt, maxrxpkt for now */
3098         spin_unlock_irq(&np->lock);
3099         return 0;
3100 }
3101
3102 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3103 {
3104         struct fe_priv *np = netdev_priv(dev);
3105
3106         if (ecmd->port != PORT_MII)
3107                 return -EINVAL;
3108         if (ecmd->transceiver != XCVR_EXTERNAL)
3109                 return -EINVAL;
3110         if (ecmd->phy_address != np->phyaddr) {
3111                 /* TODO: support switching between multiple phys. Should be
3112                  * trivial, but not enabled due to lack of test hardware. */
3113                 return -EINVAL;
3114         }
3115         if (ecmd->autoneg == AUTONEG_ENABLE) {
3116                 u32 mask;
3117
3118                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3119                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3120                 if (np->gigabit == PHY_GIGABIT)
3121                         mask |= ADVERTISED_1000baseT_Full;
3122
3123                 if ((ecmd->advertising & mask) == 0)
3124                         return -EINVAL;
3125
3126         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3127                 /* Note: autonegotiation disable, speed 1000 intentionally
3128                  * forbidden - noone should need that. */
3129
3130                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3131                         return -EINVAL;
3132                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3133                         return -EINVAL;
3134         } else {
3135                 return -EINVAL;
3136         }
3137
3138         netif_carrier_off(dev);
3139         if (netif_running(dev)) {
3140                 nv_disable_irq(dev);
3141                 netif_tx_lock_bh(dev);
3142                 spin_lock(&np->lock);
3143                 /* stop engines */
3144                 nv_stop_rx(dev);
3145                 nv_stop_tx(dev);
3146                 spin_unlock(&np->lock);
3147                 netif_tx_unlock_bh(dev);
3148         }
3149
3150         if (ecmd->autoneg == AUTONEG_ENABLE) {
3151                 int adv, bmcr;
3152
3153                 np->autoneg = 1;
3154
3155                 /* advertise only what has been requested */
3156                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3157                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3158                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3159                         adv |= ADVERTISE_10HALF;
3160                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3161                         adv |= ADVERTISE_10FULL;
3162                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3163                         adv |= ADVERTISE_100HALF;
3164                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3165                         adv |= ADVERTISE_100FULL;
3166                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
3167                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3168                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3169                         adv |=  ADVERTISE_PAUSE_ASYM;
3170                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3171
3172                 if (np->gigabit == PHY_GIGABIT) {
3173                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3174                         adv &= ~ADVERTISE_1000FULL;
3175                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3176                                 adv |= ADVERTISE_1000FULL;
3177                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3178                 }
3179
3180                 if (netif_running(dev))
3181                         printk(KERN_INFO "%s: link down.\n", dev->name);
3182                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3183                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3184                         bmcr |= BMCR_ANENABLE;
3185                         /* reset the phy in order for settings to stick,
3186                          * and cause autoneg to start */
3187                         if (phy_reset(dev, bmcr)) {
3188                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3189                                 return -EINVAL;
3190                         }
3191                 } else {
3192                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3193                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3194                 }
3195         } else {
3196                 int adv, bmcr;
3197
3198                 np->autoneg = 0;
3199
3200                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3201                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3202                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3203                         adv |= ADVERTISE_10HALF;
3204                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3205                         adv |= ADVERTISE_10FULL;
3206                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3207                         adv |= ADVERTISE_100HALF;
3208                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3209                         adv |= ADVERTISE_100FULL;
3210                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3211                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3212                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3213                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3214                 }
3215                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3216                         adv |=  ADVERTISE_PAUSE_ASYM;
3217                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3218                 }
3219                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3220                 np->fixed_mode = adv;
3221
3222                 if (np->gigabit == PHY_GIGABIT) {
3223                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3224                         adv &= ~ADVERTISE_1000FULL;
3225                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3226                 }
3227
3228                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3229                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3230                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3231                         bmcr |= BMCR_FULLDPLX;
3232                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3233                         bmcr |= BMCR_SPEED100;
3234                 if (np->phy_oui == PHY_OUI_MARVELL) {
3235                         /* reset the phy in order for forced mode settings to stick */
3236                         if (phy_reset(dev, bmcr)) {
3237                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3238                                 return -EINVAL;
3239                         }
3240                 } else {
3241                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3242                         if (netif_running(dev)) {
3243                                 /* Wait a bit and then reconfigure the nic. */
3244                                 udelay(10);
3245                                 nv_linkchange(dev);
3246                         }
3247                 }
3248         }
3249
3250         if (netif_running(dev)) {
3251                 nv_start_rx(dev);
3252                 nv_start_tx(dev);
3253                 nv_enable_irq(dev);
3254         }
3255
3256         return 0;
3257 }
3258
3259 #define FORCEDETH_REGS_VER      1
3260
3261 static int nv_get_regs_len(struct net_device *dev)
3262 {
3263         struct fe_priv *np = netdev_priv(dev);
3264         return np->register_size;
3265 }
3266
3267 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3268 {
3269         struct fe_priv *np = netdev_priv(dev);
3270         u8 __iomem *base = get_hwbase(dev);
3271         u32 *rbuf = buf;
3272         int i;
3273
3274         regs->version = FORCEDETH_REGS_VER;
3275         spin_lock_irq(&np->lock);
3276         for (i = 0;i <= np->register_size/sizeof(u32); i++)
3277                 rbuf[i] = readl(base + i*sizeof(u32));
3278         spin_unlock_irq(&np->lock);
3279 }
3280
3281 static int nv_nway_reset(struct net_device *dev)
3282 {
3283         struct fe_priv *np = netdev_priv(dev);
3284         int ret;
3285
3286         if (np->autoneg) {
3287                 int bmcr;
3288
3289                 netif_carrier_off(dev);
3290                 if (netif_running(dev)) {
3291                         nv_disable_irq(dev);
3292                         netif_tx_lock_bh(dev);
3293                         spin_lock(&np->lock);
3294                         /* stop engines */
3295                         nv_stop_rx(dev);
3296                         nv_stop_tx(dev);
3297                         spin_unlock(&np->lock);
3298                         netif_tx_unlock_bh(dev);
3299                         printk(KERN_INFO "%s: link down.\n", dev->name);
3300                 }
3301
3302                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3303                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3304                         bmcr |= BMCR_ANENABLE;
3305                         /* reset the phy in order for settings to stick*/
3306                         if (phy_reset(dev, bmcr)) {
3307                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3308                                 return -EINVAL;
3309                         }
3310                 } else {
3311                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3312                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3313                 }
3314
3315                 if (netif_running(dev)) {
3316                         nv_start_rx(dev);
3317                         nv_start_tx(dev);
3318                         nv_enable_irq(dev);
3319                 }
3320                 ret = 0;
3321         } else {
3322                 ret = -EINVAL;
3323         }
3324
3325         return ret;
3326 }
3327
3328 static int nv_set_tso(struct net_device *dev, u32 value)
3329 {
3330         struct fe_priv *np = netdev_priv(dev);
3331
3332         if ((np->driver_data & DEV_HAS_CHECKSUM))
3333                 return ethtool_op_set_tso(dev, value);
3334         else
3335                 return -EOPNOTSUPP;
3336 }
3337
3338 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3339 {
3340         struct fe_priv *np = netdev_priv(dev);
3341
3342         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3343         ring->rx_mini_max_pending = 0;
3344         ring->rx_jumbo_max_pending = 0;
3345         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3346
3347         ring->rx_pending = np->rx_ring_size;
3348         ring->rx_mini_pending = 0;
3349         ring->rx_jumbo_pending = 0;
3350         ring->tx_pending = np->tx_ring_size;
3351 }
3352
3353 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3354 {
3355         struct fe_priv *np = netdev_priv(dev);
3356         u8 __iomem *base = get_hwbase(dev);
3357         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3358         dma_addr_t ring_addr;
3359
3360         if (ring->rx_pending < RX_RING_MIN ||
3361             ring->tx_pending < TX_RING_MIN ||
3362             ring->rx_mini_pending != 0 ||
3363             ring->rx_jumbo_pending != 0 ||
3364             (np->desc_ver == DESC_VER_1 &&
3365              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3366               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3367             (np->desc_ver != DESC_VER_1 &&
3368              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3369               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3370                 return -EINVAL;
3371         }
3372
3373         /* allocate new rings */
3374         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3375                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3376                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3377                                             &ring_addr);
3378         } else {
3379                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3380                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3381                                             &ring_addr);
3382         }
3383         rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3384         rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3385         tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3386         tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3387         tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3388         if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3389                 /* fall back to old rings */
3390                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3391                         if (rxtx_ring)
3392                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3393                                                     rxtx_ring, ring_addr);
3394                 } else {
3395                         if (rxtx_ring)
3396                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3397                                                     rxtx_ring, ring_addr);
3398                 }
3399                 if (rx_skbuff)
3400                         kfree(rx_skbuff);
3401                 if (rx_dma)
3402                         kfree(rx_dma);
3403                 if (tx_skbuff)
3404                         kfree(tx_skbuff);
3405                 if (tx_dma)
3406                         kfree(tx_dma);
3407                 if (tx_dma_len)
3408                         kfree(tx_dma_len);
3409                 goto exit;
3410         }
3411
3412         if (netif_running(dev)) {
3413                 nv_disable_irq(dev);
3414                 netif_tx_lock_bh(dev);
3415                 spin_lock(&np->lock);
3416                 /* stop engines */
3417                 nv_stop_rx(dev);
3418                 nv_stop_tx(dev);
3419                 nv_txrx_reset(dev);
3420                 /* drain queues */
3421                 nv_drain_rx(dev);
3422                 nv_drain_tx(dev);
3423                 /* delete queues */
3424                 free_rings(dev);
3425         }
3426
3427         /* set new values */
3428         np->rx_ring_size = ring->rx_pending;
3429         np->tx_ring_size = ring->tx_pending;
3430         np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3431         np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3432         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3433                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3434                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3435         } else {
3436                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3437                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3438         }
3439         np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3440         np->rx_dma = (dma_addr_t*)rx_dma;
3441         np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3442         np->tx_dma = (dma_addr_t*)tx_dma;
3443         np->tx_dma_len = (unsigned int*)tx_dma_len;
3444         np->ring_addr = ring_addr;
3445
3446         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3447         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3448         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3449         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3450         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3451
3452         if (netif_running(dev)) {
3453                 /* reinit driver view of the queues */
3454                 set_bufsize(dev);
3455                 if (nv_init_ring(dev)) {
3456                         if (!np->in_shutdown)
3457                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3458                 }
3459
3460                 /* reinit nic view of the queues */
3461                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3462                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3463                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3464                         base + NvRegRingSizes);
3465                 pci_push(base);
3466                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3467                 pci_push(base);
3468
3469                 /* restart engines */
3470                 nv_start_rx(dev);
3471                 nv_start_tx(dev);
3472                 spin_unlock(&np->lock);
3473                 netif_tx_unlock_bh(dev);
3474                 nv_enable_irq(dev);
3475         }
3476         return 0;
3477 exit:
3478         return -ENOMEM;
3479 }
3480
3481 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3482 {
3483         struct fe_priv *np = netdev_priv(dev);
3484
3485         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3486         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3487         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3488 }
3489
3490 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3491 {
3492         struct fe_priv *np = netdev_priv(dev);
3493         int adv, bmcr;
3494
3495         if ((!np->autoneg && np->duplex == 0) ||
3496             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3497                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3498                        dev->name);
3499                 return -EINVAL;
3500         }
3501         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3502                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3503                 return -EINVAL;
3504         }
3505
3506         netif_carrier_off(dev);
3507         if (netif_running(dev)) {
3508                 nv_disable_irq(dev);
3509                 netif_tx_lock_bh(dev);
3510                 spin_lock(&np->lock);
3511                 /* stop engines */
3512                 nv_stop_rx(dev);
3513                 nv_stop_tx(dev);
3514                 spin_unlock(&np->lock);
3515                 netif_tx_unlock_bh(dev);
3516         }
3517
3518         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3519         if (pause->rx_pause)
3520                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3521         if (pause->tx_pause)
3522                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3523
3524         if (np->autoneg && pause->autoneg) {
3525                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3526
3527                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3528                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3529                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3530                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3531                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3532                         adv |=  ADVERTISE_PAUSE_ASYM;
3533                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3534
3535                 if (netif_running(dev))
3536                         printk(KERN_INFO "%s: link down.\n", dev->name);
3537                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3538                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3539                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3540         } else {
3541                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3542                 if (pause->rx_pause)
3543                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3544                 if (pause->tx_pause)
3545                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3546
3547                 if (!netif_running(dev))
3548                         nv_update_linkspeed(dev);
3549                 else
3550                         nv_update_pause(dev, np->pause_flags);
3551         }
3552
3553         if (netif_running(dev)) {
3554                 nv_start_rx(dev);
3555                 nv_start_tx(dev);
3556                 nv_enable_irq(dev);
3557         }
3558         return 0;
3559 }
3560
3561 static u32 nv_get_rx_csum(struct net_device *dev)
3562 {
3563         struct fe_priv *np = netdev_priv(dev);
3564         return (np->rx_csum) != 0;
3565 }
3566
3567 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3568 {
3569         struct fe_priv *np = netdev_priv(dev);
3570         u8 __iomem *base = get_hwbase(dev);
3571         int retcode = 0;
3572
3573         if (np->driver_data & DEV_HAS_CHECKSUM) {
3574                 if (data) {
3575                         np->rx_csum = 1;
3576                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3577                 } else {
3578                         np->rx_csum = 0;
3579                         /* vlan is dependent on rx checksum offload */
3580                         if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
3581                                 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3582                 }
3583                 if (netif_running(dev)) {
3584                         spin_lock_irq(&np->lock);
3585                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3586                         spin_unlock_irq(&np->lock);
3587                 }
3588         } else {
3589                 return -EINVAL;
3590         }
3591
3592         return retcode;
3593 }
3594
3595 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3596 {
3597         struct fe_priv *np = netdev_priv(dev);
3598
3599         if (np->driver_data & DEV_HAS_CHECKSUM)
3600                 return ethtool_op_set_tx_hw_csum(dev, data);
3601         else
3602                 return -EOPNOTSUPP;
3603 }
3604
3605 static int nv_set_sg(struct net_device *dev, u32 data)
3606 {
3607         struct fe_priv *np = netdev_priv(dev);
3608
3609         if (np->driver_data & DEV_HAS_CHECKSUM)
3610                 return ethtool_op_set_sg(dev, data);
3611         else
3612                 return -EOPNOTSUPP;
3613 }
3614
3615 static int nv_get_stats_count(struct net_device *dev)
3616 {
3617         struct fe_priv *np = netdev_priv(dev);
3618
3619         if (np->driver_data & DEV_HAS_STATISTICS)
3620                 return sizeof(struct nv_ethtool_stats)/sizeof(u64);
3621         else
3622                 return 0;
3623 }
3624
3625 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3626 {
3627         struct fe_priv *np = netdev_priv(dev);
3628
3629         /* update stats */
3630         nv_do_stats_poll((unsigned long)dev);
3631
3632         memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3633 }
3634
3635 static int nv_self_test_count(struct net_device *dev)
3636 {
3637         struct fe_priv *np = netdev_priv(dev);
3638
3639         if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3640                 return NV_TEST_COUNT_EXTENDED;
3641         else
3642                 return NV_TEST_COUNT_BASE;
3643 }
3644
3645 static int nv_link_test(struct net_device *dev)
3646 {
3647         struct fe_priv *np = netdev_priv(dev);
3648         int mii_status;
3649
3650         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3651         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3652
3653         /* check phy link status */
3654         if (!(mii_status & BMSR_LSTATUS))
3655                 return 0;
3656         else
3657                 return 1;
3658 }
3659
3660 static int nv_register_test(struct net_device *dev)
3661 {
3662         u8 __iomem *base = get_hwbase(dev);
3663         int i = 0;
3664         u32 orig_read, new_read;
3665
3666         do {
3667                 orig_read = readl(base + nv_registers_test[i].reg);
3668
3669                 /* xor with mask to toggle bits */
3670                 orig_read ^= nv_registers_test[i].mask;
3671
3672                 writel(orig_read, base + nv_registers_test[i].reg);
3673
3674                 new_read = readl(base + nv_registers_test[i].reg);
3675
3676                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3677                         return 0;
3678
3679                 /* restore original value */
3680                 orig_read ^= nv_registers_test[i].mask;
3681                 writel(orig_read, base + nv_registers_test[i].reg);
3682
3683         } while (nv_registers_test[++i].reg != 0);
3684
3685         return 1;
3686 }
3687
3688 static int nv_interrupt_test(struct net_device *dev)
3689 {
3690         struct fe_priv *np = netdev_priv(dev);
3691         u8 __iomem *base = get_hwbase(dev);
3692         int ret = 1;
3693         int testcnt;
3694         u32 save_msi_flags, save_poll_interval = 0;
3695
3696         if (netif_running(dev)) {
3697                 /* free current irq */
3698                 nv_free_irq(dev);
3699                 save_poll_interval = readl(base+NvRegPollingInterval);
3700         }
3701
3702         /* flag to test interrupt handler */
3703         np->intr_test = 0;
3704
3705         /* setup test irq */
3706         save_msi_flags = np->msi_flags;
3707         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3708         np->msi_flags |= 0x001; /* setup 1 vector */
3709         if (nv_request_irq(dev, 1))
3710                 return 0;
3711
3712         /* setup timer interrupt */
3713         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3714         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3715
3716         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3717
3718         /* wait for at least one interrupt */
3719         msleep(100);
3720
3721         spin_lock_irq(&np->lock);
3722
3723         /* flag should be set within ISR */
3724         testcnt = np->intr_test;
3725         if (!testcnt)
3726                 ret = 2;
3727
3728         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3729         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3730                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3731         else
3732                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3733
3734         spin_unlock_irq(&np->lock);
3735
3736         nv_free_irq(dev);
3737
3738         np->msi_flags = save_msi_flags;
3739
3740         if (netif_running(dev)) {
3741                 writel(save_poll_interval, base + NvRegPollingInterval);
3742                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3743                 /* restore original irq */
3744                 if (nv_request_irq(dev, 0))
3745                         return 0;
3746         }
3747
3748         return ret;
3749 }
3750
3751 static int nv_loopback_test(struct net_device *dev)
3752 {
3753         struct fe_priv *np = netdev_priv(dev);
3754         u8 __iomem *base = get_hwbase(dev);
3755         struct sk_buff *tx_skb, *rx_skb;
3756         dma_addr_t test_dma_addr;
3757         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3758         u32 flags;
3759         int len, i, pkt_len;
3760         u8 *pkt_data;
3761         u32 filter_flags = 0;
3762         u32 misc1_flags = 0;
3763         int ret = 1;
3764
3765         if (netif_running(dev)) {
3766                 nv_disable_irq(dev);
3767                 filter_flags = readl(base + NvRegPacketFilterFlags);
3768                 misc1_flags = readl(base + NvRegMisc1);
3769         } else {
3770                 nv_txrx_reset(dev);
3771         }
3772
3773         /* reinit driver view of the rx queue */
3774         set_bufsize(dev);
3775         nv_init_ring(dev);
3776
3777         /* setup hardware for loopback */
3778         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3779         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3780
3781         /* reinit nic view of the rx queue */
3782         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3783         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3784         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3785                 base + NvRegRingSizes);
3786         pci_push(base);
3787
3788         /* restart rx engine */
3789         nv_start_rx(dev);
3790         nv_start_tx(dev);
3791
3792         /* setup packet for tx */
3793         pkt_len = ETH_DATA_LEN;
3794         tx_skb = dev_alloc_skb(pkt_len);
3795         if (!tx_skb) {
3796                 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
3797                          " of %s\n", dev->name);
3798                 ret = 0;
3799                 goto out;
3800         }
3801         pkt_data = skb_put(tx_skb, pkt_len);
3802         for (i = 0; i < pkt_len; i++)
3803                 pkt_data[i] = (u8)(i & 0xff);
3804         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3805                                        tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3806
3807         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3808                 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
3809                 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3810         } else {
3811                 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
3812                 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3813                 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3814         }
3815         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3816         pci_push(get_hwbase(dev));
3817
3818         msleep(500);
3819
3820         /* check for rx of the packet */
3821         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3822                 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
3823                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3824
3825         } else {
3826                 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
3827                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3828         }
3829
3830         if (flags & NV_RX_AVAIL) {
3831                 ret = 0;
3832         } else if (np->desc_ver == DESC_VER_1) {
3833                 if (flags & NV_RX_ERROR)
3834                         ret = 0;
3835         } else {
3836                 if (flags & NV_RX2_ERROR) {
3837                         ret = 0;
3838                 }
3839         }
3840
3841         if (ret) {
3842                 if (len != pkt_len) {
3843                         ret = 0;
3844                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3845                                 dev->name, len, pkt_len);
3846                 } else {
3847                         rx_skb = np->rx_skbuff[0];
3848                         for (i = 0; i < pkt_len; i++) {
3849                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3850                                         ret = 0;
3851                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3852                                                 dev->name, i);
3853                                         break;
3854                                 }
3855                         }
3856                 }
3857         } else {
3858                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3859         }
3860
3861         pci_unmap_page(np->pci_dev, test_dma_addr,
3862                        tx_skb->end-tx_skb->data,
3863                        PCI_DMA_TODEVICE);
3864         dev_kfree_skb_any(tx_skb);
3865  out:
3866         /* stop engines */
3867         nv_stop_rx(dev);
3868         nv_stop_tx(dev);
3869         nv_txrx_reset(dev);
3870         /* drain rx queue */
3871         nv_drain_rx(dev);
3872         nv_drain_tx(dev);
3873
3874         if (netif_running(dev)) {
3875                 writel(misc1_flags, base + NvRegMisc1);
3876                 writel(filter_flags, base + NvRegPacketFilterFlags);
3877                 nv_enable_irq(dev);
3878         }
3879
3880         return ret;
3881 }
3882
3883 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3884 {
3885         struct fe_priv *np = netdev_priv(dev);
3886         u8 __iomem *base = get_hwbase(dev);
3887         int result;
3888         memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3889
3890         if (!nv_link_test(dev)) {
3891                 test->flags |= ETH_TEST_FL_FAILED;
3892                 buffer[0] = 1;
3893         }
3894
3895         if (test->flags & ETH_TEST_FL_OFFLINE) {
3896                 if (netif_running(dev)) {
3897                         netif_stop_queue(dev);
3898                         netif_poll_disable(dev);
3899                         netif_tx_lock_bh(dev);
3900                         spin_lock_irq(&np->lock);
3901                         nv_disable_hw_interrupts(dev, np->irqmask);
3902                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3903                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3904                         } else {
3905                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3906                         }
3907                         /* stop engines */
3908                         nv_stop_rx(dev);
3909                         nv_stop_tx(dev);
3910                         nv_txrx_reset(dev);
3911                         /* drain rx queue */
3912                         nv_drain_rx(dev);
3913                         nv_drain_tx(dev);
3914                         spin_unlock_irq(&np->lock);
3915                         netif_tx_unlock_bh(dev);
3916                 }
3917
3918                 if (!nv_register_test(dev)) {
3919                         test->flags |= ETH_TEST_FL_FAILED;
3920                         buffer[1] = 1;
3921                 }
3922
3923                 result = nv_interrupt_test(dev);
3924                 if (result != 1) {
3925                         test->flags |= ETH_TEST_FL_FAILED;
3926                         buffer[2] = 1;
3927                 }
3928                 if (result == 0) {
3929                         /* bail out */
3930                         return;
3931                 }
3932
3933                 if (!nv_loopback_test(dev)) {
3934                         test->flags |= ETH_TEST_FL_FAILED;
3935                         buffer[3] = 1;
3936                 }
3937
3938                 if (netif_running(dev)) {
3939                         /* reinit driver view of the rx queue */
3940                         set_bufsize(dev);
3941                         if (nv_init_ring(dev)) {
3942                                 if (!np->in_shutdown)
3943                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3944                         }
3945                         /* reinit nic view of the rx queue */
3946                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3947                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3948                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3949                                 base + NvRegRingSizes);
3950                         pci_push(base);
3951                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3952                         pci_push(base);
3953                         /* restart rx engine */
3954                         nv_start_rx(dev);
3955                         nv_start_tx(dev);
3956                         netif_start_queue(dev);
3957                         netif_poll_enable(dev);
3958                         nv_enable_hw_interrupts(dev, np->irqmask);
3959                 }
3960         }
3961 }
3962
3963 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3964 {
3965         switch (stringset) {
3966         case ETH_SS_STATS:
3967                 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3968                 break;
3969         case ETH_SS_TEST:
3970                 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3971                 break;
3972         }
3973 }
3974
3975 static const struct ethtool_ops ops = {
3976         .get_drvinfo = nv_get_drvinfo,
3977         .get_link = ethtool_op_get_link,
3978         .get_wol = nv_get_wol,
3979         .set_wol = nv_set_wol,
3980         .get_settings = nv_get_settings,
3981         .set_settings = nv_set_settings,
3982         .get_regs_len = nv_get_regs_len,
3983         .get_regs = nv_get_regs,
3984         .nway_reset = nv_nway_reset,
3985         .get_perm_addr = ethtool_op_get_perm_addr,
3986         .get_tso = ethtool_op_get_tso,
3987         .set_tso = nv_set_tso,
3988         .get_ringparam = nv_get_ringparam,
3989         .set_ringparam = nv_set_ringparam,
3990         .get_pauseparam = nv_get_pauseparam,
3991         .set_pauseparam = nv_set_pauseparam,
3992         .get_rx_csum = nv_get_rx_csum,
3993         .set_rx_csum = nv_set_rx_csum,
3994         .get_tx_csum = ethtool_op_get_tx_csum,
3995         .set_tx_csum = nv_set_tx_csum,
3996         .get_sg = ethtool_op_get_sg,
3997         .set_sg = nv_set_sg,
3998         .get_strings = nv_get_strings,
3999         .get_stats_count = nv_get_stats_count,
4000         .get_ethtool_stats = nv_get_ethtool_stats,
4001         .self_test_count = nv_self_test_count,
4002         .self_test = nv_self_test,
4003 };
4004
4005 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4006 {
4007         struct fe_priv *np = get_nvpriv(dev);
4008
4009         spin_lock_irq(&np->lock);
4010
4011         /* save vlan group */
4012         np->vlangrp = grp;
4013
4014         if (grp) {
4015                 /* enable vlan on MAC */
4016                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4017         } else {
4018                 /* disable vlan on MAC */
4019                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4020                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4021         }
4022
4023         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4024
4025         spin_unlock_irq(&np->lock);
4026 };
4027
4028 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
4029 {
4030         /* nothing to do */
4031 };
4032
4033 static int nv_open(struct net_device *dev)
4034 {
4035         struct fe_priv *np = netdev_priv(dev);
4036         u8 __iomem *base = get_hwbase(dev);
4037         int ret = 1;
4038         int oom, i;
4039
4040         dprintk(KERN_DEBUG "nv_open: begin\n");
4041
4042         /* erase previous misconfiguration */
4043         if (np->driver_data & DEV_HAS_POWER_CNTRL)
4044                 nv_mac_reset(dev);
4045         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4046         writel(0, base + NvRegMulticastAddrB);
4047         writel(0, base + NvRegMulticastMaskA);
4048         writel(0, base + NvRegMulticastMaskB);
4049         writel(0, base + NvRegPacketFilterFlags);
4050
4051         writel(0, base + NvRegTransmitterControl);
4052         writel(0, base + NvRegReceiverControl);
4053
4054         writel(0, base + NvRegAdapterControl);
4055
4056         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4057                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
4058
4059         /* initialize descriptor rings */
4060         set_bufsize(dev);
4061         oom = nv_init_ring(dev);
4062
4063         writel(0, base + NvRegLinkSpeed);
4064         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4065         nv_txrx_reset(dev);
4066         writel(0, base + NvRegUnknownSetupReg6);
4067
4068         np->in_shutdown = 0;
4069
4070         /* give hw rings */
4071         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4072         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4073                 base + NvRegRingSizes);
4074
4075         writel(np->linkspeed, base + NvRegLinkSpeed);
4076         if (np->desc_ver == DESC_VER_1)
4077                 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4078         else
4079                 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4080         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4081         writel(np->vlanctl_bits, base + NvRegVlanControl);
4082         pci_push(base);
4083         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4084         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4085                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4086                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4087
4088         writel(0, base + NvRegUnknownSetupReg4);
4089         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4090         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4091
4092         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4093         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4094         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4095         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4096
4097         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4098         get_random_bytes(&i, sizeof(i));
4099         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4100         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4101         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4102         if (poll_interval == -1) {
4103                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4104                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4105                 else
4106                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4107         }
4108         else
4109                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4110         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4111         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4112                         base + NvRegAdapterControl);
4113         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4114         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
4115         if (np->wolenabled)
4116                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4117
4118         i = readl(base + NvRegPowerState);
4119         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4120                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4121
4122         pci_push(base);
4123         udelay(10);
4124         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4125
4126         nv_disable_hw_interrupts(dev, np->irqmask);
4127         pci_push(base);
4128         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4129         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4130         pci_push(base);
4131
4132         if (nv_request_irq(dev, 0)) {
4133                 goto out_drain;
4134         }
4135
4136         /* ask for interrupts */
4137         nv_enable_hw_interrupts(dev, np->irqmask);
4138
4139         spin_lock_irq(&np->lock);
4140         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4141         writel(0, base + NvRegMulticastAddrB);
4142         writel(0, base + NvRegMulticastMaskA);
4143         writel(0, base + NvRegMulticastMaskB);
4144         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4145         /* One manual link speed update: Interrupts are enabled, future link
4146          * speed changes cause interrupts and are handled by nv_link_irq().
4147          */
4148         {
4149                 u32 miistat;
4150                 miistat = readl(base + NvRegMIIStatus);
4151                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4152                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4153         }
4154         /* set linkspeed to invalid value, thus force nv_update_linkspeed
4155          * to init hw */
4156         np->linkspeed = 0;
4157         ret = nv_update_linkspeed(dev);
4158         nv_start_rx(dev);
4159         nv_start_tx(dev);
4160         netif_start_queue(dev);
4161         netif_poll_enable(dev);
4162
4163         if (ret) {
4164                 netif_carrier_on(dev);
4165         } else {
4166                 printk("%s: no link during initialization.\n", dev->name);
4167                 netif_carrier_off(dev);
4168         }
4169         if (oom)
4170                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4171
4172         /* start statistics timer */
4173         if (np->driver_data & DEV_HAS_STATISTICS)
4174                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4175
4176         spin_unlock_irq(&np->lock);
4177
4178         return 0;
4179 out_drain:
4180         drain_ring(dev);
4181         return ret;
4182 }
4183
4184 static int nv_close(struct net_device *dev)
4185 {
4186         struct fe_priv *np = netdev_priv(dev);
4187         u8 __iomem *base;
4188
4189         spin_lock_irq(&np->lock);
4190         np->in_shutdown = 1;
4191         spin_unlock_irq(&np->lock);
4192         netif_poll_disable(dev);
4193         synchronize_irq(dev->irq);
4194
4195         del_timer_sync(&np->oom_kick);
4196         del_timer_sync(&np->nic_poll);
4197         del_timer_sync(&np->stats_poll);
4198
4199         netif_stop_queue(dev);
4200         spin_lock_irq(&np->lock);
4201         nv_stop_tx(dev);
4202         nv_stop_rx(dev);
4203         nv_txrx_reset(dev);
4204
4205         /* disable interrupts on the nic or we will lock up */
4206         base = get_hwbase(dev);
4207         nv_disable_hw_interrupts(dev, np->irqmask);
4208         pci_push(base);
4209         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4210
4211         spin_unlock_irq(&np->lock);
4212
4213         nv_free_irq(dev);
4214
4215         drain_ring(dev);
4216
4217         if (np->wolenabled)
4218                 nv_start_rx(dev);
4219
4220         /* FIXME: power down nic */
4221
4222         return 0;
4223 }
4224
4225 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4226 {
4227         struct net_device *dev;
4228         struct fe_priv *np;
4229         unsigned long addr;
4230         u8 __iomem *base;
4231         int err, i;
4232         u32 powerstate, txreg;
4233
4234         dev = alloc_etherdev(sizeof(struct fe_priv));
4235         err = -ENOMEM;
4236         if (!dev)
4237                 goto out;
4238
4239         np = netdev_priv(dev);
4240         np->pci_dev = pci_dev;
4241         spin_lock_init(&np->lock);
4242         SET_MODULE_OWNER(dev);
4243         SET_NETDEV_DEV(dev, &pci_dev->dev);
4244
4245         init_timer(&np->oom_kick);
4246         np->oom_kick.data = (unsigned long) dev;
4247         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
4248         init_timer(&np->nic_poll);
4249         np->nic_poll.data = (unsigned long) dev;
4250         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
4251         init_timer(&np->stats_poll);
4252         np->stats_poll.data = (unsigned long) dev;
4253         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
4254
4255         err = pci_enable_device(pci_dev);
4256         if (err) {
4257                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4258                                 err, pci_name(pci_dev));
4259                 goto out_free;
4260         }
4261
4262         pci_set_master(pci_dev);
4263
4264         err = pci_request_regions(pci_dev, DRV_NAME);
4265         if (err < 0)
4266                 goto out_disable;
4267
4268         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4269                 np->register_size = NV_PCI_REGSZ_VER2;
4270         else
4271                 np->register_size = NV_PCI_REGSZ_VER1;
4272
4273         err = -EINVAL;
4274         addr = 0;
4275         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4276                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4277                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4278                                 pci_resource_len(pci_dev, i),
4279                                 pci_resource_flags(pci_dev, i));
4280                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4281                                 pci_resource_len(pci_dev, i) >= np->register_size) {
4282                         addr = pci_resource_start(pci_dev, i);
4283                         break;
4284                 }
4285         }
4286         if (i == DEVICE_COUNT_RESOURCE) {
4287                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4288                                         pci_name(pci_dev));
4289                 goto out_relreg;
4290         }
4291
4292         /* copy of driver data */
4293         np->driver_data = id->driver_data;
4294
4295         /* handle different descriptor versions */
4296         if (id->driver_data & DEV_HAS_HIGH_DMA) {
4297                 /* packet format 3: supports 40-bit addressing */
4298                 np->desc_ver = DESC_VER_3;
4299                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4300                 if (dma_64bit) {
4301                         if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4302                                 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4303                                        pci_name(pci_dev));
4304                         } else {
4305                                 dev->features |= NETIF_F_HIGHDMA;
4306                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4307                         }
4308                         if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4309                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4310                                        pci_name(pci_dev));
4311                         }
4312                 }
4313         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4314                 /* packet format 2: supports jumbo frames */
4315                 np->desc_ver = DESC_VER_2;
4316                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4317         } else {
4318                 /* original packet format */
4319                 np->desc_ver = DESC_VER_1;
4320                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4321         }
4322
4323         np->pkt_limit = NV_PKTLIMIT_1;
4324         if (id->driver_data & DEV_HAS_LARGEDESC)
4325                 np->pkt_limit = NV_PKTLIMIT_2;
4326
4327         if (id->driver_data & DEV_HAS_CHECKSUM) {
4328                 np->rx_csum = 1;
4329                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4330                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4331 #ifdef NETIF_F_TSO
4332                 dev->features |= NETIF_F_TSO;
4333 #endif
4334         }
4335
4336         np->vlanctl_bits = 0;
4337         if (id->driver_data & DEV_HAS_VLAN) {
4338                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4339                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4340                 dev->vlan_rx_register = nv_vlan_rx_register;
4341                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4342         }
4343
4344         np->msi_flags = 0;
4345         if ((id->driver_data & DEV_HAS_MSI) && msi) {
4346                 np->msi_flags |= NV_MSI_CAPABLE;
4347         }
4348         if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4349                 np->msi_flags |= NV_MSI_X_CAPABLE;
4350         }
4351
4352         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4353         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4354                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4355         }
4356
4357
4358         err = -ENOMEM;
4359         np->base = ioremap(addr, np->register_size);
4360         if (!np->base)
4361                 goto out_relreg;
4362         dev->base_addr = (unsigned long)np->base;
4363
4364         dev->irq = pci_dev->irq;
4365
4366         np->rx_ring_size = RX_RING_DEFAULT;
4367         np->tx_ring_size = TX_RING_DEFAULT;
4368         np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4369         np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4370
4371         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4372                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4373                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4374                                         &np->ring_addr);
4375                 if (!np->rx_ring.orig)
4376                         goto out_unmap;
4377                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4378         } else {
4379                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4380                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4381                                         &np->ring_addr);
4382                 if (!np->rx_ring.ex)
4383                         goto out_unmap;
4384                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4385         }
4386         np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4387         np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4388         np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4389         np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4390         np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4391         if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4392                 goto out_freering;
4393         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4394         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4395         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4396         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4397         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4398
4399         dev->open = nv_open;
4400         dev->stop = nv_close;
4401         dev->hard_start_xmit = nv_start_xmit;
4402         dev->get_stats = nv_get_stats;
4403         dev->change_mtu = nv_change_mtu;
4404         dev->set_mac_address = nv_set_mac_address;
4405         dev->set_multicast_list = nv_set_multicast;
4406 #ifdef CONFIG_NET_POLL_CONTROLLER
4407         dev->poll_controller = nv_poll_controller;
4408 #endif
4409         dev->weight = 64;
4410 #ifdef CONFIG_FORCEDETH_NAPI
4411         dev->poll = nv_napi_poll;
4412 #endif
4413         SET_ETHTOOL_OPS(dev, &ops);
4414         dev->tx_timeout = nv_tx_timeout;
4415         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4416
4417         pci_set_drvdata(pci_dev, dev);
4418
4419         /* read the mac address */
4420         base = get_hwbase(dev);
4421         np->orig_mac[0] = readl(base + NvRegMacAddrA);
4422         np->orig_mac[1] = readl(base + NvRegMacAddrB);
4423
4424         /* check the workaround bit for correct mac address order */
4425         txreg = readl(base + NvRegTransmitPoll);
4426         if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
4427                 /* mac address is already in correct order */
4428                 dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
4429                 dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
4430                 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
4431                 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
4432                 dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
4433                 dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
4434         } else {
4435                 /* need to reverse mac address to correct order */
4436                 dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
4437                 dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
4438                 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4439                 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4440                 dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
4441                 dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
4442                 /* set permanent address to be correct aswell */
4443                 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
4444                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
4445                 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
4446                 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4447         }
4448         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4449
4450         if (!is_valid_ether_addr(dev->perm_addr)) {
4451                 /*
4452                  * Bad mac address. At least one bios sets the mac address
4453                  * to 01:23:45:67:89:ab
4454                  */
4455                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4456                         pci_name(pci_dev),
4457                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4458                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4459                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4460                 dev->dev_addr[0] = 0x00;
4461                 dev->dev_addr[1] = 0x00;
4462                 dev->dev_addr[2] = 0x6c;
4463                 get_random_bytes(&dev->dev_addr[3], 3);
4464         }
4465
4466         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4467                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4468                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4469
4470         /* set mac address */
4471         nv_copy_mac_to_hw(dev);
4472
4473         /* disable WOL */
4474         writel(0, base + NvRegWakeUpFlags);
4475         np->wolenabled = 0;
4476
4477         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4478                 u8 revision_id;
4479                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4480
4481                 /* take phy and nic out of low power mode */
4482                 powerstate = readl(base + NvRegPowerState2);
4483                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4484                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4485                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4486                     revision_id >= 0xA3)
4487                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4488                 writel(powerstate, base + NvRegPowerState2);
4489         }
4490
4491         if (np->desc_ver == DESC_VER_1) {
4492                 np->tx_flags = NV_TX_VALID;
4493         } else {
4494                 np->tx_flags = NV_TX2_VALID;
4495         }
4496         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4497                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4498                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4499                         np->msi_flags |= 0x0003;
4500         } else {
4501                 np->irqmask = NVREG_IRQMASK_CPU;
4502                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4503                         np->msi_flags |= 0x0001;
4504         }
4505
4506         if (id->driver_data & DEV_NEED_TIMERIRQ)
4507                 np->irqmask |= NVREG_IRQ_TIMER;
4508         if (id->driver_data & DEV_NEED_LINKTIMER) {
4509                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4510                 np->need_linktimer = 1;
4511                 np->link_timeout = jiffies + LINK_TIMEOUT;
4512         } else {
4513                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4514                 np->need_linktimer = 0;
4515         }
4516
4517         /* find a suitable phy */
4518         for (i = 1; i <= 32; i++) {
4519                 int id1, id2;
4520                 int phyaddr = i & 0x1F;
4521
4522                 spin_lock_irq(&np->lock);
4523                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4524                 spin_unlock_irq(&np->lock);
4525                 if (id1 < 0 || id1 == 0xffff)
4526                         continue;
4527                 spin_lock_irq(&np->lock);
4528                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4529                 spin_unlock_irq(&np->lock);
4530                 if (id2 < 0 || id2 == 0xffff)
4531                         continue;
4532
4533                 np->phy_model = id2 & PHYID2_MODEL_MASK;
4534                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4535                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4536                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4537                         pci_name(pci_dev), id1, id2, phyaddr);
4538                 np->phyaddr = phyaddr;
4539                 np->phy_oui = id1 | id2;
4540                 break;
4541         }
4542         if (i == 33) {
4543                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4544                        pci_name(pci_dev));
4545                 goto out_error;
4546         }
4547
4548         /* reset it */
4549         phy_init(dev);
4550
4551         /* set default link speed settings */
4552         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4553         np->duplex = 0;
4554         np->autoneg = 1;
4555
4556         err = register_netdev(dev);
4557         if (err) {
4558                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4559                 goto out_error;
4560         }
4561         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4562                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4563                         pci_name(pci_dev));
4564
4565         return 0;
4566
4567 out_error:
4568         pci_set_drvdata(pci_dev, NULL);
4569 out_freering:
4570         free_rings(dev);
4571 out_unmap:
4572         iounmap(get_hwbase(dev));
4573 out_relreg:
4574         pci_release_regions(pci_dev);
4575 out_disable:
4576         pci_disable_device(pci_dev);
4577 out_free:
4578         free_netdev(dev);
4579 out:
4580         return err;
4581 }
4582
4583 static void __devexit nv_remove(struct pci_dev *pci_dev)
4584 {
4585         struct net_device *dev = pci_get_drvdata(pci_dev);
4586         struct fe_priv *np = netdev_priv(dev);
4587         u8 __iomem *base = get_hwbase(dev);
4588
4589         unregister_netdev(dev);
4590
4591         /* special op: write back the misordered MAC address - otherwise
4592          * the next nv_probe would see a wrong address.
4593          */
4594         writel(np->orig_mac[0], base + NvRegMacAddrA);
4595         writel(np->orig_mac[1], base + NvRegMacAddrB);
4596
4597         /* free all structures */
4598         free_rings(dev);
4599         iounmap(get_hwbase(dev));
4600         pci_release_regions(pci_dev);
4601         pci_disable_device(pci_dev);
4602         free_netdev(dev);
4603         pci_set_drvdata(pci_dev, NULL);
4604 }
4605
4606 static struct pci_device_id pci_tbl[] = {
4607         {       /* nForce Ethernet Controller */
4608                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4609                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4610         },
4611         {       /* nForce2 Ethernet Controller */
4612                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4613                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4614         },
4615         {       /* nForce3 Ethernet Controller */
4616                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4617                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4618         },
4619         {       /* nForce3 Ethernet Controller */
4620                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4621                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4622         },
4623         {       /* nForce3 Ethernet Controller */
4624                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4625                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4626         },
4627         {       /* nForce3 Ethernet Controller */
4628                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4629                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4630         },
4631         {       /* nForce3 Ethernet Controller */
4632                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4633                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4634         },
4635         {       /* CK804 Ethernet Controller */
4636                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4637                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4638         },
4639         {       /* CK804 Ethernet Controller */
4640                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4641                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4642         },
4643         {       /* MCP04 Ethernet Controller */
4644                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4645                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4646         },
4647         {       /* MCP04 Ethernet Controller */
4648                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4649                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4650         },
4651         {       /* MCP51 Ethernet Controller */
4652                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4653                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4654         },
4655         {       /* MCP51 Ethernet Controller */
4656                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4657                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4658         },
4659         {       /* MCP55 Ethernet Controller */
4660                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4661                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4662         },
4663         {       /* MCP55 Ethernet Controller */
4664                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4665                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4666         },
4667         {       /* MCP61 Ethernet Controller */
4668                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
4669                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4670         },
4671         {       /* MCP61 Ethernet Controller */
4672                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
4673                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4674         },
4675         {       /* MCP61 Ethernet Controller */
4676                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
4677                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4678         },
4679         {       /* MCP61 Ethernet Controller */
4680                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
4681                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4682         },
4683         {       /* MCP65 Ethernet Controller */
4684                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
4685                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4686         },
4687         {       /* MCP65 Ethernet Controller */
4688                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
4689                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4690         },
4691         {       /* MCP65 Ethernet Controller */
4692                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
4693                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4694         },
4695         {       /* MCP65 Ethernet Controller */
4696                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
4697                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4698         },
4699         {0,},
4700 };
4701
4702 static struct pci_driver driver = {
4703         .name = "forcedeth",
4704         .id_table = pci_tbl,
4705         .probe = nv_probe,
4706         .remove = __devexit_p(nv_remove),
4707 };
4708
4709
4710 static int __init init_nic(void)
4711 {
4712         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4713         return pci_register_driver(&driver);
4714 }
4715
4716 static void __exit exit_nic(void)
4717 {
4718         pci_unregister_driver(&driver);
4719 }
4720
4721 module_param(max_interrupt_work, int, 0);
4722 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4723 module_param(optimization_mode, int, 0);
4724 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4725 module_param(poll_interval, int, 0);
4726 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4727 module_param(msi, int, 0);
4728 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
4729 module_param(msix, int, 0);
4730 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
4731 module_param(dma_64bit, int, 0);
4732 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
4733
4734 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4735 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4736 MODULE_LICENSE("GPL");
4737
4738 MODULE_DEVICE_TABLE(pci, pci_tbl);
4739
4740 module_init(init_nic);
4741 module_exit(exit_nic);