]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/net/forcedeth.c
forcedeth: sideband management fix
[linux-3.10.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey.
7  *
8  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9  * trademarks of NVIDIA Corporation in the United States and other
10  * countries.
11  *
12  * Copyright (C) 2003,4,5 Manfred Spraul
13  * Copyright (C) 2004 Andrew de Quincey (wol support)
14  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
16  * Copyright (c) 2004,5,6 NVIDIA Corporation
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * (at your option) any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
26  * GNU General Public License for more details.
27  *
28  * You should have received a copy of the GNU General Public License
29  * along with this program; if not, write to the Free Software
30  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
31  *
32  * Changelog:
33  *      0.01: 05 Oct 2003: First release that compiles without warnings.
34  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
35  *                         Check all PCI BARs for the register window.
36  *                         udelay added to mii_rw.
37  *      0.03: 06 Oct 2003: Initialize dev->irq.
38  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
39  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
40  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
41  *                         irq mask updated
42  *      0.07: 14 Oct 2003: Further irq mask updates.
43  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
44  *                         added into irq handler, NULL check for drain_ring.
45  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
46  *                         requested interrupt sources.
47  *      0.10: 20 Oct 2003: First cleanup for release.
48  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
49  *                         MAC Address init fix, set_multicast cleanup.
50  *      0.12: 23 Oct 2003: Cleanups for release.
51  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
52  *                         Set link speed correctly. start rx before starting
53  *                         tx (nv_start_rx sets the link speed).
54  *      0.14: 25 Oct 2003: Nic dependant irq mask.
55  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
56  *                         open.
57  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
58  *                         increased to 1628 bytes.
59  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
60  *                         the tx length.
61  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
62  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
63  *                         addresses, really stop rx if already running
64  *                         in nv_start_rx, clean up a bit.
65  *      0.20: 07 Dec 2003: alloc fixes
66  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
67  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
68  *                         on close.
69  *      0.23: 26 Jan 2004: various small cleanups
70  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
71  *      0.25: 09 Mar 2004: wol support
72  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
73  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
74  *                         added CK804/MCP04 device IDs, code fixes
75  *                         for registers, link status and other minor fixes.
76  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
77  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
78  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
79  *                         into nv_close, otherwise reenabling for wol can
80  *                         cause DMA to kfree'd memory.
81  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
82  *                         capabilities.
83  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
84  *      0.33: 16 May 2005: Support for MCP51 added.
85  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
86  *      0.35: 26 Jun 2005: Support for MCP55 added.
87  *      0.36: 28 Jun 2005: Add jumbo frame support.
88  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
89  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
90  *                         per-packet flags.
91  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
92  *      0.40: 19 Jul 2005: Add support for mac address change.
93  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
94  *                         of nv_remove
95  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
96  *                         in the second (and later) nv_open call
97  *      0.43: 10 Aug 2005: Add support for tx checksum.
98  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
99  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
100  *      0.46: 20 Oct 2005: Add irq optimization modes.
101  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
102  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
103  *      0.49: 10 Dec 2005: Fix tso for large buffers.
104  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
105  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
106  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
107  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
108  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
109  *      0.55: 22 Mar 2006: Add flow control (pause frame).
110  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
111  *      0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
112  *      0.58: 30 Oct 2006: Added support for sideband management unit.
113  *      0.59: 30 Oct 2006: Added support for recoverable error.
114  *
115  * Known bugs:
116  * We suspect that on some hardware no TX done interrupts are generated.
117  * This means recovery from netif_stop_queue only happens if the hw timer
118  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
119  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
120  * If your hardware reliably generates tx done interrupts, then you can remove
121  * DEV_NEED_TIMERIRQ from the driver_data flags.
122  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
123  * superfluous timer interrupts from the nic.
124  */
125 #ifdef CONFIG_FORCEDETH_NAPI
126 #define DRIVERNAPI "-NAPI"
127 #else
128 #define DRIVERNAPI
129 #endif
130 #define FORCEDETH_VERSION               "0.59"
131 #define DRV_NAME                        "forcedeth"
132
133 #include <linux/module.h>
134 #include <linux/types.h>
135 #include <linux/pci.h>
136 #include <linux/interrupt.h>
137 #include <linux/netdevice.h>
138 #include <linux/etherdevice.h>
139 #include <linux/delay.h>
140 #include <linux/spinlock.h>
141 #include <linux/ethtool.h>
142 #include <linux/timer.h>
143 #include <linux/skbuff.h>
144 #include <linux/mii.h>
145 #include <linux/random.h>
146 #include <linux/init.h>
147 #include <linux/if_vlan.h>
148 #include <linux/dma-mapping.h>
149
150 #include <asm/irq.h>
151 #include <asm/io.h>
152 #include <asm/uaccess.h>
153 #include <asm/system.h>
154
155 #if 0
156 #define dprintk                 printk
157 #else
158 #define dprintk(x...)           do { } while (0)
159 #endif
160
161
162 /*
163  * Hardware access:
164  */
165
166 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
167 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
168 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
169 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
170 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
171 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
172 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
173 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
174 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
175 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
176 #define DEV_HAS_STATISTICS      0x0400  /* device supports hw statistics */
177 #define DEV_HAS_TEST_EXTENDED   0x0800  /* device supports extended diagnostic test */
178 #define DEV_HAS_MGMT_UNIT       0x1000  /* device supports management unit */
179
180 enum {
181         NvRegIrqStatus = 0x000,
182 #define NVREG_IRQSTAT_MIIEVENT  0x040
183 #define NVREG_IRQSTAT_MASK              0x81ff
184         NvRegIrqMask = 0x004,
185 #define NVREG_IRQ_RX_ERROR              0x0001
186 #define NVREG_IRQ_RX                    0x0002
187 #define NVREG_IRQ_RX_NOBUF              0x0004
188 #define NVREG_IRQ_TX_ERR                0x0008
189 #define NVREG_IRQ_TX_OK                 0x0010
190 #define NVREG_IRQ_TIMER                 0x0020
191 #define NVREG_IRQ_LINK                  0x0040
192 #define NVREG_IRQ_RX_FORCED             0x0080
193 #define NVREG_IRQ_TX_FORCED             0x0100
194 #define NVREG_IRQ_RECOVER_ERROR         0x8000
195 #define NVREG_IRQMASK_THROUGHPUT        0x00df
196 #define NVREG_IRQMASK_CPU               0x0040
197 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
198 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
199 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
200
201 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
202                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
203                                         NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
204
205         NvRegUnknownSetupReg6 = 0x008,
206 #define NVREG_UNKSETUP6_VAL             3
207
208 /*
209  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
210  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
211  */
212         NvRegPollingInterval = 0x00c,
213 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
214 #define NVREG_POLL_DEFAULT_CPU  13
215         NvRegMSIMap0 = 0x020,
216         NvRegMSIMap1 = 0x024,
217         NvRegMSIIrqMask = 0x030,
218 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
219         NvRegMisc1 = 0x080,
220 #define NVREG_MISC1_PAUSE_TX    0x01
221 #define NVREG_MISC1_HD          0x02
222 #define NVREG_MISC1_FORCE       0x3b0f3c
223
224         NvRegMacReset = 0x3c,
225 #define NVREG_MAC_RESET_ASSERT  0x0F3
226         NvRegTransmitterControl = 0x084,
227 #define NVREG_XMITCTL_START     0x01
228 #define NVREG_XMITCTL_MGMT_ST   0x40000000
229 #define NVREG_XMITCTL_SYNC_MASK         0x000f0000
230 #define NVREG_XMITCTL_SYNC_NOT_READY    0x0
231 #define NVREG_XMITCTL_SYNC_PHY_INIT     0x00040000
232 #define NVREG_XMITCTL_MGMT_SEMA_MASK    0x00000f00
233 #define NVREG_XMITCTL_MGMT_SEMA_FREE    0x0
234 #define NVREG_XMITCTL_HOST_SEMA_MASK    0x0000f000
235 #define NVREG_XMITCTL_HOST_SEMA_ACQ     0x0000f000
236 #define NVREG_XMITCTL_HOST_LOADED       0x00004000
237 #define NVREG_XMITCTL_TX_PATH_EN        0x01000000
238         NvRegTransmitterStatus = 0x088,
239 #define NVREG_XMITSTAT_BUSY     0x01
240
241         NvRegPacketFilterFlags = 0x8c,
242 #define NVREG_PFF_PAUSE_RX      0x08
243 #define NVREG_PFF_ALWAYS        0x7F0000
244 #define NVREG_PFF_PROMISC       0x80
245 #define NVREG_PFF_MYADDR        0x20
246 #define NVREG_PFF_LOOPBACK      0x10
247
248         NvRegOffloadConfig = 0x90,
249 #define NVREG_OFFLOAD_HOMEPHY   0x601
250 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
251         NvRegReceiverControl = 0x094,
252 #define NVREG_RCVCTL_START      0x01
253 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
254         NvRegReceiverStatus = 0x98,
255 #define NVREG_RCVSTAT_BUSY      0x01
256
257         NvRegRandomSeed = 0x9c,
258 #define NVREG_RNDSEED_MASK      0x00ff
259 #define NVREG_RNDSEED_FORCE     0x7f00
260 #define NVREG_RNDSEED_FORCE2    0x2d00
261 #define NVREG_RNDSEED_FORCE3    0x7400
262
263         NvRegTxDeferral = 0xA0,
264 #define NVREG_TX_DEFERRAL_DEFAULT       0x15050f
265 #define NVREG_TX_DEFERRAL_RGMII_10_100  0x16070f
266 #define NVREG_TX_DEFERRAL_RGMII_1000    0x14050f
267         NvRegRxDeferral = 0xA4,
268 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
269         NvRegMacAddrA = 0xA8,
270         NvRegMacAddrB = 0xAC,
271         NvRegMulticastAddrA = 0xB0,
272 #define NVREG_MCASTADDRA_FORCE  0x01
273         NvRegMulticastAddrB = 0xB4,
274         NvRegMulticastMaskA = 0xB8,
275         NvRegMulticastMaskB = 0xBC,
276
277         NvRegPhyInterface = 0xC0,
278 #define PHY_RGMII               0x10000000
279
280         NvRegTxRingPhysAddr = 0x100,
281         NvRegRxRingPhysAddr = 0x104,
282         NvRegRingSizes = 0x108,
283 #define NVREG_RINGSZ_TXSHIFT 0
284 #define NVREG_RINGSZ_RXSHIFT 16
285         NvRegTransmitPoll = 0x10c,
286 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
287         NvRegLinkSpeed = 0x110,
288 #define NVREG_LINKSPEED_FORCE 0x10000
289 #define NVREG_LINKSPEED_10      1000
290 #define NVREG_LINKSPEED_100     100
291 #define NVREG_LINKSPEED_1000    50
292 #define NVREG_LINKSPEED_MASK    (0xFFF)
293         NvRegUnknownSetupReg5 = 0x130,
294 #define NVREG_UNKSETUP5_BIT31   (1<<31)
295         NvRegTxWatermark = 0x13c,
296 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
297 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
298 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
299         NvRegTxRxControl = 0x144,
300 #define NVREG_TXRXCTL_KICK      0x0001
301 #define NVREG_TXRXCTL_BIT1      0x0002
302 #define NVREG_TXRXCTL_BIT2      0x0004
303 #define NVREG_TXRXCTL_IDLE      0x0008
304 #define NVREG_TXRXCTL_RESET     0x0010
305 #define NVREG_TXRXCTL_RXCHECK   0x0400
306 #define NVREG_TXRXCTL_DESC_1    0
307 #define NVREG_TXRXCTL_DESC_2    0x02100
308 #define NVREG_TXRXCTL_DESC_3    0x02200
309 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
310 #define NVREG_TXRXCTL_VLANINS   0x00080
311         NvRegTxRingPhysAddrHigh = 0x148,
312         NvRegRxRingPhysAddrHigh = 0x14C,
313         NvRegTxPauseFrame = 0x170,
314 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
315 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
316         NvRegMIIStatus = 0x180,
317 #define NVREG_MIISTAT_ERROR             0x0001
318 #define NVREG_MIISTAT_LINKCHANGE        0x0008
319 #define NVREG_MIISTAT_MASK              0x000f
320 #define NVREG_MIISTAT_MASK2             0x000f
321         NvRegMIIMask = 0x184,
322 #define NVREG_MII_LINKCHANGE            0x0008
323
324         NvRegAdapterControl = 0x188,
325 #define NVREG_ADAPTCTL_START    0x02
326 #define NVREG_ADAPTCTL_LINKUP   0x04
327 #define NVREG_ADAPTCTL_PHYVALID 0x40000
328 #define NVREG_ADAPTCTL_RUNNING  0x100000
329 #define NVREG_ADAPTCTL_PHYSHIFT 24
330         NvRegMIISpeed = 0x18c,
331 #define NVREG_MIISPEED_BIT8     (1<<8)
332 #define NVREG_MIIDELAY  5
333         NvRegMIIControl = 0x190,
334 #define NVREG_MIICTL_INUSE      0x08000
335 #define NVREG_MIICTL_WRITE      0x00400
336 #define NVREG_MIICTL_ADDRSHIFT  5
337         NvRegMIIData = 0x194,
338         NvRegWakeUpFlags = 0x200,
339 #define NVREG_WAKEUPFLAGS_VAL           0x7770
340 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
341 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
342 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
343 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
344 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
345 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
346 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
347 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
348 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
349 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
350
351         NvRegPatternCRC = 0x204,
352         NvRegPatternMask = 0x208,
353         NvRegPowerCap = 0x268,
354 #define NVREG_POWERCAP_D3SUPP   (1<<30)
355 #define NVREG_POWERCAP_D2SUPP   (1<<26)
356 #define NVREG_POWERCAP_D1SUPP   (1<<25)
357         NvRegPowerState = 0x26c,
358 #define NVREG_POWERSTATE_POWEREDUP      0x8000
359 #define NVREG_POWERSTATE_VALID          0x0100
360 #define NVREG_POWERSTATE_MASK           0x0003
361 #define NVREG_POWERSTATE_D0             0x0000
362 #define NVREG_POWERSTATE_D1             0x0001
363 #define NVREG_POWERSTATE_D2             0x0002
364 #define NVREG_POWERSTATE_D3             0x0003
365         NvRegTxCnt = 0x280,
366         NvRegTxZeroReXmt = 0x284,
367         NvRegTxOneReXmt = 0x288,
368         NvRegTxManyReXmt = 0x28c,
369         NvRegTxLateCol = 0x290,
370         NvRegTxUnderflow = 0x294,
371         NvRegTxLossCarrier = 0x298,
372         NvRegTxExcessDef = 0x29c,
373         NvRegTxRetryErr = 0x2a0,
374         NvRegRxFrameErr = 0x2a4,
375         NvRegRxExtraByte = 0x2a8,
376         NvRegRxLateCol = 0x2ac,
377         NvRegRxRunt = 0x2b0,
378         NvRegRxFrameTooLong = 0x2b4,
379         NvRegRxOverflow = 0x2b8,
380         NvRegRxFCSErr = 0x2bc,
381         NvRegRxFrameAlignErr = 0x2c0,
382         NvRegRxLenErr = 0x2c4,
383         NvRegRxUnicast = 0x2c8,
384         NvRegRxMulticast = 0x2cc,
385         NvRegRxBroadcast = 0x2d0,
386         NvRegTxDef = 0x2d4,
387         NvRegTxFrame = 0x2d8,
388         NvRegRxCnt = 0x2dc,
389         NvRegTxPause = 0x2e0,
390         NvRegRxPause = 0x2e4,
391         NvRegRxDropFrame = 0x2e8,
392         NvRegVlanControl = 0x300,
393 #define NVREG_VLANCONTROL_ENABLE        0x2000
394         NvRegMSIXMap0 = 0x3e0,
395         NvRegMSIXMap1 = 0x3e4,
396         NvRegMSIXIrqStatus = 0x3f0,
397
398         NvRegPowerState2 = 0x600,
399 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
400 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
401 };
402
403 /* Big endian: should work, but is untested */
404 struct ring_desc {
405         __le32 buf;
406         __le32 flaglen;
407 };
408
409 struct ring_desc_ex {
410         __le32 bufhigh;
411         __le32 buflow;
412         __le32 txvlan;
413         __le32 flaglen;
414 };
415
416 union ring_type {
417         struct ring_desc* orig;
418         struct ring_desc_ex* ex;
419 };
420
421 #define FLAG_MASK_V1 0xffff0000
422 #define FLAG_MASK_V2 0xffffc000
423 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
424 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
425
426 #define NV_TX_LASTPACKET        (1<<16)
427 #define NV_TX_RETRYERROR        (1<<19)
428 #define NV_TX_FORCED_INTERRUPT  (1<<24)
429 #define NV_TX_DEFERRED          (1<<26)
430 #define NV_TX_CARRIERLOST       (1<<27)
431 #define NV_TX_LATECOLLISION     (1<<28)
432 #define NV_TX_UNDERFLOW         (1<<29)
433 #define NV_TX_ERROR             (1<<30)
434 #define NV_TX_VALID             (1<<31)
435
436 #define NV_TX2_LASTPACKET       (1<<29)
437 #define NV_TX2_RETRYERROR       (1<<18)
438 #define NV_TX2_FORCED_INTERRUPT (1<<30)
439 #define NV_TX2_DEFERRED         (1<<25)
440 #define NV_TX2_CARRIERLOST      (1<<26)
441 #define NV_TX2_LATECOLLISION    (1<<27)
442 #define NV_TX2_UNDERFLOW        (1<<28)
443 /* error and valid are the same for both */
444 #define NV_TX2_ERROR            (1<<30)
445 #define NV_TX2_VALID            (1<<31)
446 #define NV_TX2_TSO              (1<<28)
447 #define NV_TX2_TSO_SHIFT        14
448 #define NV_TX2_TSO_MAX_SHIFT    14
449 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
450 #define NV_TX2_CHECKSUM_L3      (1<<27)
451 #define NV_TX2_CHECKSUM_L4      (1<<26)
452
453 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
454
455 #define NV_RX_DESCRIPTORVALID   (1<<16)
456 #define NV_RX_MISSEDFRAME       (1<<17)
457 #define NV_RX_SUBSTRACT1        (1<<18)
458 #define NV_RX_ERROR1            (1<<23)
459 #define NV_RX_ERROR2            (1<<24)
460 #define NV_RX_ERROR3            (1<<25)
461 #define NV_RX_ERROR4            (1<<26)
462 #define NV_RX_CRCERR            (1<<27)
463 #define NV_RX_OVERFLOW          (1<<28)
464 #define NV_RX_FRAMINGERR        (1<<29)
465 #define NV_RX_ERROR             (1<<30)
466 #define NV_RX_AVAIL             (1<<31)
467
468 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
469 #define NV_RX2_CHECKSUMOK1      (0x10000000)
470 #define NV_RX2_CHECKSUMOK2      (0x14000000)
471 #define NV_RX2_CHECKSUMOK3      (0x18000000)
472 #define NV_RX2_DESCRIPTORVALID  (1<<29)
473 #define NV_RX2_SUBSTRACT1       (1<<25)
474 #define NV_RX2_ERROR1           (1<<18)
475 #define NV_RX2_ERROR2           (1<<19)
476 #define NV_RX2_ERROR3           (1<<20)
477 #define NV_RX2_ERROR4           (1<<21)
478 #define NV_RX2_CRCERR           (1<<22)
479 #define NV_RX2_OVERFLOW         (1<<23)
480 #define NV_RX2_FRAMINGERR       (1<<24)
481 /* error and avail are the same for both */
482 #define NV_RX2_ERROR            (1<<30)
483 #define NV_RX2_AVAIL            (1<<31)
484
485 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
486 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
487
488 /* Miscelaneous hardware related defines: */
489 #define NV_PCI_REGSZ_VER1       0x270
490 #define NV_PCI_REGSZ_VER2       0x604
491
492 /* various timeout delays: all in usec */
493 #define NV_TXRX_RESET_DELAY     4
494 #define NV_TXSTOP_DELAY1        10
495 #define NV_TXSTOP_DELAY1MAX     500000
496 #define NV_TXSTOP_DELAY2        100
497 #define NV_RXSTOP_DELAY1        10
498 #define NV_RXSTOP_DELAY1MAX     500000
499 #define NV_RXSTOP_DELAY2        100
500 #define NV_SETUP5_DELAY         5
501 #define NV_SETUP5_DELAYMAX      50000
502 #define NV_POWERUP_DELAY        5
503 #define NV_POWERUP_DELAYMAX     5000
504 #define NV_MIIBUSY_DELAY        50
505 #define NV_MIIPHY_DELAY 10
506 #define NV_MIIPHY_DELAYMAX      10000
507 #define NV_MAC_RESET_DELAY      64
508
509 #define NV_WAKEUPPATTERNS       5
510 #define NV_WAKEUPMASKENTRIES    4
511
512 /* General driver defaults */
513 #define NV_WATCHDOG_TIMEO       (5*HZ)
514
515 #define RX_RING_DEFAULT         128
516 #define TX_RING_DEFAULT         256
517 #define RX_RING_MIN             128
518 #define TX_RING_MIN             64
519 #define RING_MAX_DESC_VER_1     1024
520 #define RING_MAX_DESC_VER_2_3   16384
521 /*
522  * Difference between the get and put pointers for the tx ring.
523  * This is used to throttle the amount of data outstanding in the
524  * tx ring.
525  */
526 #define TX_LIMIT_DIFFERENCE     1
527
528 /* rx/tx mac addr + type + vlan + align + slack*/
529 #define NV_RX_HEADERS           (64)
530 /* even more slack. */
531 #define NV_RX_ALLOC_PAD         (64)
532
533 /* maximum mtu size */
534 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
535 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
536
537 #define OOM_REFILL      (1+HZ/20)
538 #define POLL_WAIT       (1+HZ/100)
539 #define LINK_TIMEOUT    (3*HZ)
540 #define STATS_INTERVAL  (10*HZ)
541
542 /*
543  * desc_ver values:
544  * The nic supports three different descriptor types:
545  * - DESC_VER_1: Original
546  * - DESC_VER_2: support for jumbo frames.
547  * - DESC_VER_3: 64-bit format.
548  */
549 #define DESC_VER_1      1
550 #define DESC_VER_2      2
551 #define DESC_VER_3      3
552
553 /* PHY defines */
554 #define PHY_OUI_MARVELL 0x5043
555 #define PHY_OUI_CICADA  0x03f1
556 #define PHYID1_OUI_MASK 0x03ff
557 #define PHYID1_OUI_SHFT 6
558 #define PHYID2_OUI_MASK 0xfc00
559 #define PHYID2_OUI_SHFT 10
560 #define PHYID2_MODEL_MASK               0x03f0
561 #define PHY_MODEL_MARVELL_E3016         0x220
562 #define PHY_MARVELL_E3016_INITMASK      0x0300
563 #define PHY_INIT1       0x0f000
564 #define PHY_INIT2       0x0e00
565 #define PHY_INIT3       0x01000
566 #define PHY_INIT4       0x0200
567 #define PHY_INIT5       0x0004
568 #define PHY_INIT6       0x02000
569 #define PHY_GIGABIT     0x0100
570
571 #define PHY_TIMEOUT     0x1
572 #define PHY_ERROR       0x2
573
574 #define PHY_100 0x1
575 #define PHY_1000        0x2
576 #define PHY_HALF        0x100
577
578 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
579 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
580 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
581 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
582 #define NV_PAUSEFRAME_RX_REQ     0x0010
583 #define NV_PAUSEFRAME_TX_REQ     0x0020
584 #define NV_PAUSEFRAME_AUTONEG    0x0040
585
586 /* MSI/MSI-X defines */
587 #define NV_MSI_X_MAX_VECTORS  8
588 #define NV_MSI_X_VECTORS_MASK 0x000f
589 #define NV_MSI_CAPABLE        0x0010
590 #define NV_MSI_X_CAPABLE      0x0020
591 #define NV_MSI_ENABLED        0x0040
592 #define NV_MSI_X_ENABLED      0x0080
593
594 #define NV_MSI_X_VECTOR_ALL   0x0
595 #define NV_MSI_X_VECTOR_RX    0x0
596 #define NV_MSI_X_VECTOR_TX    0x1
597 #define NV_MSI_X_VECTOR_OTHER 0x2
598
599 /* statistics */
600 struct nv_ethtool_str {
601         char name[ETH_GSTRING_LEN];
602 };
603
604 static const struct nv_ethtool_str nv_estats_str[] = {
605         { "tx_bytes" },
606         { "tx_zero_rexmt" },
607         { "tx_one_rexmt" },
608         { "tx_many_rexmt" },
609         { "tx_late_collision" },
610         { "tx_fifo_errors" },
611         { "tx_carrier_errors" },
612         { "tx_excess_deferral" },
613         { "tx_retry_error" },
614         { "tx_deferral" },
615         { "tx_packets" },
616         { "tx_pause" },
617         { "rx_frame_error" },
618         { "rx_extra_byte" },
619         { "rx_late_collision" },
620         { "rx_runt" },
621         { "rx_frame_too_long" },
622         { "rx_over_errors" },
623         { "rx_crc_errors" },
624         { "rx_frame_align_error" },
625         { "rx_length_error" },
626         { "rx_unicast" },
627         { "rx_multicast" },
628         { "rx_broadcast" },
629         { "rx_bytes" },
630         { "rx_pause" },
631         { "rx_drop_frame" },
632         { "rx_packets" },
633         { "rx_errors_total" }
634 };
635
636 struct nv_ethtool_stats {
637         u64 tx_bytes;
638         u64 tx_zero_rexmt;
639         u64 tx_one_rexmt;
640         u64 tx_many_rexmt;
641         u64 tx_late_collision;
642         u64 tx_fifo_errors;
643         u64 tx_carrier_errors;
644         u64 tx_excess_deferral;
645         u64 tx_retry_error;
646         u64 tx_deferral;
647         u64 tx_packets;
648         u64 tx_pause;
649         u64 rx_frame_error;
650         u64 rx_extra_byte;
651         u64 rx_late_collision;
652         u64 rx_runt;
653         u64 rx_frame_too_long;
654         u64 rx_over_errors;
655         u64 rx_crc_errors;
656         u64 rx_frame_align_error;
657         u64 rx_length_error;
658         u64 rx_unicast;
659         u64 rx_multicast;
660         u64 rx_broadcast;
661         u64 rx_bytes;
662         u64 rx_pause;
663         u64 rx_drop_frame;
664         u64 rx_packets;
665         u64 rx_errors_total;
666 };
667
668 /* diagnostics */
669 #define NV_TEST_COUNT_BASE 3
670 #define NV_TEST_COUNT_EXTENDED 4
671
672 static const struct nv_ethtool_str nv_etests_str[] = {
673         { "link      (online/offline)" },
674         { "register  (offline)       " },
675         { "interrupt (offline)       " },
676         { "loopback  (offline)       " }
677 };
678
679 struct register_test {
680         __le32 reg;
681         __le32 mask;
682 };
683
684 static const struct register_test nv_registers_test[] = {
685         { NvRegUnknownSetupReg6, 0x01 },
686         { NvRegMisc1, 0x03c },
687         { NvRegOffloadConfig, 0x03ff },
688         { NvRegMulticastAddrA, 0xffffffff },
689         { NvRegTxWatermark, 0x0ff },
690         { NvRegWakeUpFlags, 0x07777 },
691         { 0,0 }
692 };
693
694 /*
695  * SMP locking:
696  * All hardware access under dev->priv->lock, except the performance
697  * critical parts:
698  * - rx is (pseudo-) lockless: it relies on the single-threading provided
699  *      by the arch code for interrupts.
700  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
701  *      needs dev->priv->lock :-(
702  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
703  */
704
705 /* in dev: base, irq */
706 struct fe_priv {
707         spinlock_t lock;
708
709         /* General data:
710          * Locking: spin_lock(&np->lock); */
711         struct net_device_stats stats;
712         struct nv_ethtool_stats estats;
713         int in_shutdown;
714         u32 linkspeed;
715         int duplex;
716         int autoneg;
717         int fixed_mode;
718         int phyaddr;
719         int wolenabled;
720         unsigned int phy_oui;
721         unsigned int phy_model;
722         u16 gigabit;
723         int intr_test;
724         int recover_error;
725
726         /* General data: RO fields */
727         dma_addr_t ring_addr;
728         struct pci_dev *pci_dev;
729         u32 orig_mac[2];
730         u32 irqmask;
731         u32 desc_ver;
732         u32 txrxctl_bits;
733         u32 vlanctl_bits;
734         u32 driver_data;
735         u32 register_size;
736         int rx_csum;
737         u32 mac_in_use;
738
739         void __iomem *base;
740
741         /* rx specific fields.
742          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
743          */
744         union ring_type rx_ring;
745         unsigned int cur_rx, refill_rx;
746         struct sk_buff **rx_skbuff;
747         dma_addr_t *rx_dma;
748         unsigned int rx_buf_sz;
749         unsigned int pkt_limit;
750         struct timer_list oom_kick;
751         struct timer_list nic_poll;
752         struct timer_list stats_poll;
753         u32 nic_poll_irq;
754         int rx_ring_size;
755
756         /* media detection workaround.
757          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
758          */
759         int need_linktimer;
760         unsigned long link_timeout;
761         /*
762          * tx specific fields.
763          */
764         union ring_type tx_ring;
765         unsigned int next_tx, nic_tx;
766         struct sk_buff **tx_skbuff;
767         dma_addr_t *tx_dma;
768         unsigned int *tx_dma_len;
769         u32 tx_flags;
770         int tx_ring_size;
771         int tx_limit_start;
772         int tx_limit_stop;
773
774         /* vlan fields */
775         struct vlan_group *vlangrp;
776
777         /* msi/msi-x fields */
778         u32 msi_flags;
779         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
780
781         /* flow control */
782         u32 pause_flags;
783 };
784
785 /*
786  * Maximum number of loops until we assume that a bit in the irq mask
787  * is stuck. Overridable with module param.
788  */
789 static int max_interrupt_work = 5;
790
791 /*
792  * Optimization can be either throuput mode or cpu mode
793  *
794  * Throughput Mode: Every tx and rx packet will generate an interrupt.
795  * CPU Mode: Interrupts are controlled by a timer.
796  */
797 enum {
798         NV_OPTIMIZATION_MODE_THROUGHPUT,
799         NV_OPTIMIZATION_MODE_CPU
800 };
801 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
802
803 /*
804  * Poll interval for timer irq
805  *
806  * This interval determines how frequent an interrupt is generated.
807  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
808  * Min = 0, and Max = 65535
809  */
810 static int poll_interval = -1;
811
812 /*
813  * MSI interrupts
814  */
815 enum {
816         NV_MSI_INT_DISABLED,
817         NV_MSI_INT_ENABLED
818 };
819 static int msi = NV_MSI_INT_ENABLED;
820
821 /*
822  * MSIX interrupts
823  */
824 enum {
825         NV_MSIX_INT_DISABLED,
826         NV_MSIX_INT_ENABLED
827 };
828 static int msix = NV_MSIX_INT_ENABLED;
829
830 /*
831  * DMA 64bit
832  */
833 enum {
834         NV_DMA_64BIT_DISABLED,
835         NV_DMA_64BIT_ENABLED
836 };
837 static int dma_64bit = NV_DMA_64BIT_ENABLED;
838
839 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
840 {
841         return netdev_priv(dev);
842 }
843
844 static inline u8 __iomem *get_hwbase(struct net_device *dev)
845 {
846         return ((struct fe_priv *)netdev_priv(dev))->base;
847 }
848
849 static inline void pci_push(u8 __iomem *base)
850 {
851         /* force out pending posted writes */
852         readl(base);
853 }
854
855 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
856 {
857         return le32_to_cpu(prd->flaglen)
858                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
859 }
860
861 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
862 {
863         return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
864 }
865
866 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
867                                 int delay, int delaymax, const char *msg)
868 {
869         u8 __iomem *base = get_hwbase(dev);
870
871         pci_push(base);
872         do {
873                 udelay(delay);
874                 delaymax -= delay;
875                 if (delaymax < 0) {
876                         if (msg)
877                                 printk(msg);
878                         return 1;
879                 }
880         } while ((readl(base + offset) & mask) != target);
881         return 0;
882 }
883
884 #define NV_SETUP_RX_RING 0x01
885 #define NV_SETUP_TX_RING 0x02
886
887 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
888 {
889         struct fe_priv *np = get_nvpriv(dev);
890         u8 __iomem *base = get_hwbase(dev);
891
892         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
893                 if (rxtx_flags & NV_SETUP_RX_RING) {
894                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
895                 }
896                 if (rxtx_flags & NV_SETUP_TX_RING) {
897                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
898                 }
899         } else {
900                 if (rxtx_flags & NV_SETUP_RX_RING) {
901                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
902                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
903                 }
904                 if (rxtx_flags & NV_SETUP_TX_RING) {
905                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
906                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
907                 }
908         }
909 }
910
911 static void free_rings(struct net_device *dev)
912 {
913         struct fe_priv *np = get_nvpriv(dev);
914
915         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
916                 if (np->rx_ring.orig)
917                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
918                                             np->rx_ring.orig, np->ring_addr);
919         } else {
920                 if (np->rx_ring.ex)
921                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
922                                             np->rx_ring.ex, np->ring_addr);
923         }
924         if (np->rx_skbuff)
925                 kfree(np->rx_skbuff);
926         if (np->rx_dma)
927                 kfree(np->rx_dma);
928         if (np->tx_skbuff)
929                 kfree(np->tx_skbuff);
930         if (np->tx_dma)
931                 kfree(np->tx_dma);
932         if (np->tx_dma_len)
933                 kfree(np->tx_dma_len);
934 }
935
936 static int using_multi_irqs(struct net_device *dev)
937 {
938         struct fe_priv *np = get_nvpriv(dev);
939
940         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
941             ((np->msi_flags & NV_MSI_X_ENABLED) &&
942              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
943                 return 0;
944         else
945                 return 1;
946 }
947
948 static void nv_enable_irq(struct net_device *dev)
949 {
950         struct fe_priv *np = get_nvpriv(dev);
951
952         if (!using_multi_irqs(dev)) {
953                 if (np->msi_flags & NV_MSI_X_ENABLED)
954                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
955                 else
956                         enable_irq(dev->irq);
957         } else {
958                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
959                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
960                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
961         }
962 }
963
964 static void nv_disable_irq(struct net_device *dev)
965 {
966         struct fe_priv *np = get_nvpriv(dev);
967
968         if (!using_multi_irqs(dev)) {
969                 if (np->msi_flags & NV_MSI_X_ENABLED)
970                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
971                 else
972                         disable_irq(dev->irq);
973         } else {
974                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
975                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
976                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
977         }
978 }
979
980 /* In MSIX mode, a write to irqmask behaves as XOR */
981 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
982 {
983         u8 __iomem *base = get_hwbase(dev);
984
985         writel(mask, base + NvRegIrqMask);
986 }
987
988 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
989 {
990         struct fe_priv *np = get_nvpriv(dev);
991         u8 __iomem *base = get_hwbase(dev);
992
993         if (np->msi_flags & NV_MSI_X_ENABLED) {
994                 writel(mask, base + NvRegIrqMask);
995         } else {
996                 if (np->msi_flags & NV_MSI_ENABLED)
997                         writel(0, base + NvRegMSIIrqMask);
998                 writel(0, base + NvRegIrqMask);
999         }
1000 }
1001
1002 #define MII_READ        (-1)
1003 /* mii_rw: read/write a register on the PHY.
1004  *
1005  * Caller must guarantee serialization
1006  */
1007 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1008 {
1009         u8 __iomem *base = get_hwbase(dev);
1010         u32 reg;
1011         int retval;
1012
1013         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1014
1015         reg = readl(base + NvRegMIIControl);
1016         if (reg & NVREG_MIICTL_INUSE) {
1017                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1018                 udelay(NV_MIIBUSY_DELAY);
1019         }
1020
1021         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1022         if (value != MII_READ) {
1023                 writel(value, base + NvRegMIIData);
1024                 reg |= NVREG_MIICTL_WRITE;
1025         }
1026         writel(reg, base + NvRegMIIControl);
1027
1028         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1029                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1030                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1031                                 dev->name, miireg, addr);
1032                 retval = -1;
1033         } else if (value != MII_READ) {
1034                 /* it was a write operation - fewer failures are detectable */
1035                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1036                                 dev->name, value, miireg, addr);
1037                 retval = 0;
1038         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1039                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1040                                 dev->name, miireg, addr);
1041                 retval = -1;
1042         } else {
1043                 retval = readl(base + NvRegMIIData);
1044                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1045                                 dev->name, miireg, addr, retval);
1046         }
1047
1048         return retval;
1049 }
1050
1051 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1052 {
1053         struct fe_priv *np = netdev_priv(dev);
1054         u32 miicontrol;
1055         unsigned int tries = 0;
1056
1057         miicontrol = BMCR_RESET | bmcr_setup;
1058         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1059                 return -1;
1060         }
1061
1062         /* wait for 500ms */
1063         msleep(500);
1064
1065         /* must wait till reset is deasserted */
1066         while (miicontrol & BMCR_RESET) {
1067                 msleep(10);
1068                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1069                 /* FIXME: 100 tries seem excessive */
1070                 if (tries++ > 100)
1071                         return -1;
1072         }
1073         return 0;
1074 }
1075
1076 static int phy_init(struct net_device *dev)
1077 {
1078         struct fe_priv *np = get_nvpriv(dev);
1079         u8 __iomem *base = get_hwbase(dev);
1080         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1081
1082         /* phy errata for E3016 phy */
1083         if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1084                 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1085                 reg &= ~PHY_MARVELL_E3016_INITMASK;
1086                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1087                         printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1088                         return PHY_ERROR;
1089                 }
1090         }
1091
1092         /* set advertise register */
1093         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1094         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1095         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1096                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1097                 return PHY_ERROR;
1098         }
1099
1100         /* get phy interface type */
1101         phyinterface = readl(base + NvRegPhyInterface);
1102
1103         /* see if gigabit phy */
1104         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1105         if (mii_status & PHY_GIGABIT) {
1106                 np->gigabit = PHY_GIGABIT;
1107                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1108                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1109                 if (phyinterface & PHY_RGMII)
1110                         mii_control_1000 |= ADVERTISE_1000FULL;
1111                 else
1112                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1113
1114                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1115                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1116                         return PHY_ERROR;
1117                 }
1118         }
1119         else
1120                 np->gigabit = 0;
1121
1122         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1123         mii_control |= BMCR_ANENABLE;
1124
1125         /* reset the phy
1126          * (certain phys need bmcr to be setup with reset)
1127          */
1128         if (phy_reset(dev, mii_control)) {
1129                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1130                 return PHY_ERROR;
1131         }
1132
1133         /* phy vendor specific configuration */
1134         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1135                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1136                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1137                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1138                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1139                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1140                         return PHY_ERROR;
1141                 }
1142                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1143                 phy_reserved |= PHY_INIT5;
1144                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1145                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1146                         return PHY_ERROR;
1147                 }
1148         }
1149         if (np->phy_oui == PHY_OUI_CICADA) {
1150                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1151                 phy_reserved |= PHY_INIT6;
1152                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1153                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1154                         return PHY_ERROR;
1155                 }
1156         }
1157         /* some phys clear out pause advertisment on reset, set it back */
1158         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1159
1160         /* restart auto negotiation */
1161         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1162         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1163         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1164                 return PHY_ERROR;
1165         }
1166
1167         return 0;
1168 }
1169
1170 static void nv_start_rx(struct net_device *dev)
1171 {
1172         struct fe_priv *np = netdev_priv(dev);
1173         u8 __iomem *base = get_hwbase(dev);
1174         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1175
1176         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1177         /* Already running? Stop it. */
1178         if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1179                 rx_ctrl &= ~NVREG_RCVCTL_START;
1180                 writel(rx_ctrl, base + NvRegReceiverControl);
1181                 pci_push(base);
1182         }
1183         writel(np->linkspeed, base + NvRegLinkSpeed);
1184         pci_push(base);
1185         rx_ctrl |= NVREG_RCVCTL_START;
1186         if (np->mac_in_use)
1187                 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1188         writel(rx_ctrl, base + NvRegReceiverControl);
1189         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1190                                 dev->name, np->duplex, np->linkspeed);
1191         pci_push(base);
1192 }
1193
1194 static void nv_stop_rx(struct net_device *dev)
1195 {
1196         struct fe_priv *np = netdev_priv(dev);
1197         u8 __iomem *base = get_hwbase(dev);
1198         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1199
1200         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1201         if (!np->mac_in_use)
1202                 rx_ctrl &= ~NVREG_RCVCTL_START;
1203         else
1204                 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1205         writel(rx_ctrl, base + NvRegReceiverControl);
1206         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1207                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1208                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1209
1210         udelay(NV_RXSTOP_DELAY2);
1211         if (!np->mac_in_use)
1212                 writel(0, base + NvRegLinkSpeed);
1213 }
1214
1215 static void nv_start_tx(struct net_device *dev)
1216 {
1217         struct fe_priv *np = netdev_priv(dev);
1218         u8 __iomem *base = get_hwbase(dev);
1219         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1220
1221         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1222         tx_ctrl |= NVREG_XMITCTL_START;
1223         if (np->mac_in_use)
1224                 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1225         writel(tx_ctrl, base + NvRegTransmitterControl);
1226         pci_push(base);
1227 }
1228
1229 static void nv_stop_tx(struct net_device *dev)
1230 {
1231         struct fe_priv *np = netdev_priv(dev);
1232         u8 __iomem *base = get_hwbase(dev);
1233         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1234
1235         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1236         if (!np->mac_in_use)
1237                 tx_ctrl &= ~NVREG_XMITCTL_START;
1238         else
1239                 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1240         writel(tx_ctrl, base + NvRegTransmitterControl);
1241         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1242                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1243                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1244
1245         udelay(NV_TXSTOP_DELAY2);
1246         if (!np->mac_in_use)
1247                 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1248                        base + NvRegTransmitPoll);
1249 }
1250
1251 static void nv_txrx_reset(struct net_device *dev)
1252 {
1253         struct fe_priv *np = netdev_priv(dev);
1254         u8 __iomem *base = get_hwbase(dev);
1255
1256         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1257         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1258         pci_push(base);
1259         udelay(NV_TXRX_RESET_DELAY);
1260         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1261         pci_push(base);
1262 }
1263
1264 static void nv_mac_reset(struct net_device *dev)
1265 {
1266         struct fe_priv *np = netdev_priv(dev);
1267         u8 __iomem *base = get_hwbase(dev);
1268
1269         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1270         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1271         pci_push(base);
1272         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1273         pci_push(base);
1274         udelay(NV_MAC_RESET_DELAY);
1275         writel(0, base + NvRegMacReset);
1276         pci_push(base);
1277         udelay(NV_MAC_RESET_DELAY);
1278         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1279         pci_push(base);
1280 }
1281
1282 /*
1283  * nv_get_stats: dev->get_stats function
1284  * Get latest stats value from the nic.
1285  * Called with read_lock(&dev_base_lock) held for read -
1286  * only synchronized against unregister_netdevice.
1287  */
1288 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1289 {
1290         struct fe_priv *np = netdev_priv(dev);
1291
1292         /* It seems that the nic always generates interrupts and doesn't
1293          * accumulate errors internally. Thus the current values in np->stats
1294          * are already up to date.
1295          */
1296         return &np->stats;
1297 }
1298
1299 /*
1300  * nv_alloc_rx: fill rx ring entries.
1301  * Return 1 if the allocations for the skbs failed and the
1302  * rx engine is without Available descriptors
1303  */
1304 static int nv_alloc_rx(struct net_device *dev)
1305 {
1306         struct fe_priv *np = netdev_priv(dev);
1307         unsigned int refill_rx = np->refill_rx;
1308         int nr;
1309
1310         while (np->cur_rx != refill_rx) {
1311                 struct sk_buff *skb;
1312
1313                 nr = refill_rx % np->rx_ring_size;
1314                 if (np->rx_skbuff[nr] == NULL) {
1315
1316                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1317                         if (!skb)
1318                                 break;
1319
1320                         skb->dev = dev;
1321                         np->rx_skbuff[nr] = skb;
1322                 } else {
1323                         skb = np->rx_skbuff[nr];
1324                 }
1325                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1326                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1327                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1328                         np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
1329                         wmb();
1330                         np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1331                 } else {
1332                         np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1333                         np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1334                         wmb();
1335                         np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1336                 }
1337                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1338                                         dev->name, refill_rx);
1339                 refill_rx++;
1340         }
1341         np->refill_rx = refill_rx;
1342         if (np->cur_rx - refill_rx == np->rx_ring_size)
1343                 return 1;
1344         return 0;
1345 }
1346
1347 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1348 #ifdef CONFIG_FORCEDETH_NAPI
1349 static void nv_do_rx_refill(unsigned long data)
1350 {
1351         struct net_device *dev = (struct net_device *) data;
1352
1353         /* Just reschedule NAPI rx processing */
1354         netif_rx_schedule(dev);
1355 }
1356 #else
1357 static void nv_do_rx_refill(unsigned long data)
1358 {
1359         struct net_device *dev = (struct net_device *) data;
1360         struct fe_priv *np = netdev_priv(dev);
1361
1362         if (!using_multi_irqs(dev)) {
1363                 if (np->msi_flags & NV_MSI_X_ENABLED)
1364                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1365                 else
1366                         disable_irq(dev->irq);
1367         } else {
1368                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1369         }
1370         if (nv_alloc_rx(dev)) {
1371                 spin_lock_irq(&np->lock);
1372                 if (!np->in_shutdown)
1373                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1374                 spin_unlock_irq(&np->lock);
1375         }
1376         if (!using_multi_irqs(dev)) {
1377                 if (np->msi_flags & NV_MSI_X_ENABLED)
1378                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1379                 else
1380                         enable_irq(dev->irq);
1381         } else {
1382                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1383         }
1384 }
1385 #endif
1386
1387 static void nv_init_rx(struct net_device *dev)
1388 {
1389         struct fe_priv *np = netdev_priv(dev);
1390         int i;
1391
1392         np->cur_rx = np->rx_ring_size;
1393         np->refill_rx = 0;
1394         for (i = 0; i < np->rx_ring_size; i++)
1395                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1396                         np->rx_ring.orig[i].flaglen = 0;
1397                 else
1398                         np->rx_ring.ex[i].flaglen = 0;
1399 }
1400
1401 static void nv_init_tx(struct net_device *dev)
1402 {
1403         struct fe_priv *np = netdev_priv(dev);
1404         int i;
1405
1406         np->next_tx = np->nic_tx = 0;
1407         for (i = 0; i < np->tx_ring_size; i++) {
1408                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1409                         np->tx_ring.orig[i].flaglen = 0;
1410                 else
1411                         np->tx_ring.ex[i].flaglen = 0;
1412                 np->tx_skbuff[i] = NULL;
1413                 np->tx_dma[i] = 0;
1414         }
1415 }
1416
1417 static int nv_init_ring(struct net_device *dev)
1418 {
1419         nv_init_tx(dev);
1420         nv_init_rx(dev);
1421         return nv_alloc_rx(dev);
1422 }
1423
1424 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1425 {
1426         struct fe_priv *np = netdev_priv(dev);
1427
1428         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1429                 dev->name, skbnr);
1430
1431         if (np->tx_dma[skbnr]) {
1432                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1433                                np->tx_dma_len[skbnr],
1434                                PCI_DMA_TODEVICE);
1435                 np->tx_dma[skbnr] = 0;
1436         }
1437
1438         if (np->tx_skbuff[skbnr]) {
1439                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1440                 np->tx_skbuff[skbnr] = NULL;
1441                 return 1;
1442         } else {
1443                 return 0;
1444         }
1445 }
1446
1447 static void nv_drain_tx(struct net_device *dev)
1448 {
1449         struct fe_priv *np = netdev_priv(dev);
1450         unsigned int i;
1451
1452         for (i = 0; i < np->tx_ring_size; i++) {
1453                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1454                         np->tx_ring.orig[i].flaglen = 0;
1455                 else
1456                         np->tx_ring.ex[i].flaglen = 0;
1457                 if (nv_release_txskb(dev, i))
1458                         np->stats.tx_dropped++;
1459         }
1460 }
1461
1462 static void nv_drain_rx(struct net_device *dev)
1463 {
1464         struct fe_priv *np = netdev_priv(dev);
1465         int i;
1466         for (i = 0; i < np->rx_ring_size; i++) {
1467                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1468                         np->rx_ring.orig[i].flaglen = 0;
1469                 else
1470                         np->rx_ring.ex[i].flaglen = 0;
1471                 wmb();
1472                 if (np->rx_skbuff[i]) {
1473                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1474                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1475                                                 PCI_DMA_FROMDEVICE);
1476                         dev_kfree_skb(np->rx_skbuff[i]);
1477                         np->rx_skbuff[i] = NULL;
1478                 }
1479         }
1480 }
1481
1482 static void drain_ring(struct net_device *dev)
1483 {
1484         nv_drain_tx(dev);
1485         nv_drain_rx(dev);
1486 }
1487
1488 /*
1489  * nv_start_xmit: dev->hard_start_xmit function
1490  * Called with netif_tx_lock held.
1491  */
1492 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1493 {
1494         struct fe_priv *np = netdev_priv(dev);
1495         u32 tx_flags = 0;
1496         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1497         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1498         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1499         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1500         unsigned int i;
1501         u32 offset = 0;
1502         u32 bcnt;
1503         u32 size = skb->len-skb->data_len;
1504         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1505         u32 tx_flags_vlan = 0;
1506
1507         /* add fragments to entries count */
1508         for (i = 0; i < fragments; i++) {
1509                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1510                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1511         }
1512
1513         spin_lock_irq(&np->lock);
1514
1515         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1516                 spin_unlock_irq(&np->lock);
1517                 netif_stop_queue(dev);
1518                 return NETDEV_TX_BUSY;
1519         }
1520
1521         /* setup the header buffer */
1522         do {
1523                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1524                 nr = (nr + 1) % np->tx_ring_size;
1525
1526                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1527                                                 PCI_DMA_TODEVICE);
1528                 np->tx_dma_len[nr] = bcnt;
1529
1530                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1531                         np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1532                         np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1533                 } else {
1534                         np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1535                         np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1536                         np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1537                 }
1538                 tx_flags = np->tx_flags;
1539                 offset += bcnt;
1540                 size -= bcnt;
1541         } while (size);
1542
1543         /* setup the fragments */
1544         for (i = 0; i < fragments; i++) {
1545                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1546                 u32 size = frag->size;
1547                 offset = 0;
1548
1549                 do {
1550                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1551                         nr = (nr + 1) % np->tx_ring_size;
1552
1553                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1554                                                       PCI_DMA_TODEVICE);
1555                         np->tx_dma_len[nr] = bcnt;
1556
1557                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1558                                 np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1559                                 np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1560                         } else {
1561                                 np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1562                                 np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1563                                 np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1564                         }
1565                         offset += bcnt;
1566                         size -= bcnt;
1567                 } while (size);
1568         }
1569
1570         /* set last fragment flag  */
1571         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1572                 np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1573         } else {
1574                 np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1575         }
1576
1577         np->tx_skbuff[nr] = skb;
1578
1579 #ifdef NETIF_F_TSO
1580         if (skb_is_gso(skb))
1581                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1582         else
1583 #endif
1584         tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1585                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1586
1587         /* vlan tag */
1588         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1589                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1590         }
1591
1592         /* set tx flags */
1593         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1594                 np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1595         } else {
1596                 np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
1597                 np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1598         }
1599
1600         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1601                 dev->name, np->next_tx, entries, tx_flags_extra);
1602         {
1603                 int j;
1604                 for (j=0; j<64; j++) {
1605                         if ((j%16) == 0)
1606                                 dprintk("\n%03x:", j);
1607                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1608                 }
1609                 dprintk("\n");
1610         }
1611
1612         np->next_tx += entries;
1613
1614         dev->trans_start = jiffies;
1615         spin_unlock_irq(&np->lock);
1616         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1617         pci_push(get_hwbase(dev));
1618         return NETDEV_TX_OK;
1619 }
1620
1621 /*
1622  * nv_tx_done: check for completed packets, release the skbs.
1623  *
1624  * Caller must own np->lock.
1625  */
1626 static void nv_tx_done(struct net_device *dev)
1627 {
1628         struct fe_priv *np = netdev_priv(dev);
1629         u32 flags;
1630         unsigned int i;
1631         struct sk_buff *skb;
1632
1633         while (np->nic_tx != np->next_tx) {
1634                 i = np->nic_tx % np->tx_ring_size;
1635
1636                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1637                         flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
1638                 else
1639                         flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
1640
1641                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
1642                                         dev->name, np->nic_tx, flags);
1643                 if (flags & NV_TX_VALID)
1644                         break;
1645                 if (np->desc_ver == DESC_VER_1) {
1646                         if (flags & NV_TX_LASTPACKET) {
1647                                 skb = np->tx_skbuff[i];
1648                                 if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1649                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1650                                         if (flags & NV_TX_UNDERFLOW)
1651                                                 np->stats.tx_fifo_errors++;
1652                                         if (flags & NV_TX_CARRIERLOST)
1653                                                 np->stats.tx_carrier_errors++;
1654                                         np->stats.tx_errors++;
1655                                 } else {
1656                                         np->stats.tx_packets++;
1657                                         np->stats.tx_bytes += skb->len;
1658                                 }
1659                         }
1660                 } else {
1661                         if (flags & NV_TX2_LASTPACKET) {
1662                                 skb = np->tx_skbuff[i];
1663                                 if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1664                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1665                                         if (flags & NV_TX2_UNDERFLOW)
1666                                                 np->stats.tx_fifo_errors++;
1667                                         if (flags & NV_TX2_CARRIERLOST)
1668                                                 np->stats.tx_carrier_errors++;
1669                                         np->stats.tx_errors++;
1670                                 } else {
1671                                         np->stats.tx_packets++;
1672                                         np->stats.tx_bytes += skb->len;
1673                                 }
1674                         }
1675                 }
1676                 nv_release_txskb(dev, i);
1677                 np->nic_tx++;
1678         }
1679         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1680                 netif_wake_queue(dev);
1681 }
1682
1683 /*
1684  * nv_tx_timeout: dev->tx_timeout function
1685  * Called with netif_tx_lock held.
1686  */
1687 static void nv_tx_timeout(struct net_device *dev)
1688 {
1689         struct fe_priv *np = netdev_priv(dev);
1690         u8 __iomem *base = get_hwbase(dev);
1691         u32 status;
1692
1693         if (np->msi_flags & NV_MSI_X_ENABLED)
1694                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1695         else
1696                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1697
1698         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1699
1700         {
1701                 int i;
1702
1703                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1704                                 dev->name, (unsigned long)np->ring_addr,
1705                                 np->next_tx, np->nic_tx);
1706                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1707                 for (i=0;i<=np->register_size;i+= 32) {
1708                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1709                                         i,
1710                                         readl(base + i + 0), readl(base + i + 4),
1711                                         readl(base + i + 8), readl(base + i + 12),
1712                                         readl(base + i + 16), readl(base + i + 20),
1713                                         readl(base + i + 24), readl(base + i + 28));
1714                 }
1715                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1716                 for (i=0;i<np->tx_ring_size;i+= 4) {
1717                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1718                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1719                                        i,
1720                                        le32_to_cpu(np->tx_ring.orig[i].buf),
1721                                        le32_to_cpu(np->tx_ring.orig[i].flaglen),
1722                                        le32_to_cpu(np->tx_ring.orig[i+1].buf),
1723                                        le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
1724                                        le32_to_cpu(np->tx_ring.orig[i+2].buf),
1725                                        le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
1726                                        le32_to_cpu(np->tx_ring.orig[i+3].buf),
1727                                        le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
1728                         } else {
1729                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1730                                        i,
1731                                        le32_to_cpu(np->tx_ring.ex[i].bufhigh),
1732                                        le32_to_cpu(np->tx_ring.ex[i].buflow),
1733                                        le32_to_cpu(np->tx_ring.ex[i].flaglen),
1734                                        le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
1735                                        le32_to_cpu(np->tx_ring.ex[i+1].buflow),
1736                                        le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
1737                                        le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
1738                                        le32_to_cpu(np->tx_ring.ex[i+2].buflow),
1739                                        le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
1740                                        le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
1741                                        le32_to_cpu(np->tx_ring.ex[i+3].buflow),
1742                                        le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
1743                         }
1744                 }
1745         }
1746
1747         spin_lock_irq(&np->lock);
1748
1749         /* 1) stop tx engine */
1750         nv_stop_tx(dev);
1751
1752         /* 2) check that the packets were not sent already: */
1753         nv_tx_done(dev);
1754
1755         /* 3) if there are dead entries: clear everything */
1756         if (np->next_tx != np->nic_tx) {
1757                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1758                 nv_drain_tx(dev);
1759                 np->next_tx = np->nic_tx = 0;
1760                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1761                 netif_wake_queue(dev);
1762         }
1763
1764         /* 4) restart tx engine */
1765         nv_start_tx(dev);
1766         spin_unlock_irq(&np->lock);
1767 }
1768
1769 /*
1770  * Called when the nic notices a mismatch between the actual data len on the
1771  * wire and the len indicated in the 802 header
1772  */
1773 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1774 {
1775         int hdrlen;     /* length of the 802 header */
1776         int protolen;   /* length as stored in the proto field */
1777
1778         /* 1) calculate len according to header */
1779         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
1780                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1781                 hdrlen = VLAN_HLEN;
1782         } else {
1783                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1784                 hdrlen = ETH_HLEN;
1785         }
1786         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1787                                 dev->name, datalen, protolen, hdrlen);
1788         if (protolen > ETH_DATA_LEN)
1789                 return datalen; /* Value in proto field not a len, no checks possible */
1790
1791         protolen += hdrlen;
1792         /* consistency checks: */
1793         if (datalen > ETH_ZLEN) {
1794                 if (datalen >= protolen) {
1795                         /* more data on wire than in 802 header, trim of
1796                          * additional data.
1797                          */
1798                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1799                                         dev->name, protolen);
1800                         return protolen;
1801                 } else {
1802                         /* less data on wire than mentioned in header.
1803                          * Discard the packet.
1804                          */
1805                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1806                                         dev->name);
1807                         return -1;
1808                 }
1809         } else {
1810                 /* short packet. Accept only if 802 values are also short */
1811                 if (protolen > ETH_ZLEN) {
1812                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1813                                         dev->name);
1814                         return -1;
1815                 }
1816                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1817                                 dev->name, datalen);
1818                 return datalen;
1819         }
1820 }
1821
1822 static int nv_rx_process(struct net_device *dev, int limit)
1823 {
1824         struct fe_priv *np = netdev_priv(dev);
1825         u32 flags;
1826         u32 vlanflags = 0;
1827         int count;
1828
1829         for (count = 0; count < limit; ++count) {
1830                 struct sk_buff *skb;
1831                 int len;
1832                 int i;
1833                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1834                         break;  /* we scanned the whole ring - do not continue */
1835
1836                 i = np->cur_rx % np->rx_ring_size;
1837                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1838                         flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
1839                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1840                 } else {
1841                         flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
1842                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1843                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
1844                 }
1845
1846                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
1847                                         dev->name, np->cur_rx, flags);
1848
1849                 if (flags & NV_RX_AVAIL)
1850                         break;  /* still owned by hardware, */
1851
1852                 /*
1853                  * the packet is for us - immediately tear down the pci mapping.
1854                  * TODO: check if a prefetch of the first cacheline improves
1855                  * the performance.
1856                  */
1857                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1858                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1859                                 PCI_DMA_FROMDEVICE);
1860
1861                 {
1862                         int j;
1863                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
1864                         for (j=0; j<64; j++) {
1865                                 if ((j%16) == 0)
1866                                         dprintk("\n%03x:", j);
1867                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1868                         }
1869                         dprintk("\n");
1870                 }
1871                 /* look at what we actually got: */
1872                 if (np->desc_ver == DESC_VER_1) {
1873                         if (!(flags & NV_RX_DESCRIPTORVALID))
1874                                 goto next_pkt;
1875
1876                         if (flags & NV_RX_ERROR) {
1877                                 if (flags & NV_RX_MISSEDFRAME) {
1878                                         np->stats.rx_missed_errors++;
1879                                         np->stats.rx_errors++;
1880                                         goto next_pkt;
1881                                 }
1882                                 if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1883                                         np->stats.rx_errors++;
1884                                         goto next_pkt;
1885                                 }
1886                                 if (flags & NV_RX_CRCERR) {
1887                                         np->stats.rx_crc_errors++;
1888                                         np->stats.rx_errors++;
1889                                         goto next_pkt;
1890                                 }
1891                                 if (flags & NV_RX_OVERFLOW) {
1892                                         np->stats.rx_over_errors++;
1893                                         np->stats.rx_errors++;
1894                                         goto next_pkt;
1895                                 }
1896                                 if (flags & NV_RX_ERROR4) {
1897                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1898                                         if (len < 0) {
1899                                                 np->stats.rx_errors++;
1900                                                 goto next_pkt;
1901                                         }
1902                                 }
1903                                 /* framing errors are soft errors. */
1904                                 if (flags & NV_RX_FRAMINGERR) {
1905                                         if (flags & NV_RX_SUBSTRACT1) {
1906                                                 len--;
1907                                         }
1908                                 }
1909                         }
1910                 } else {
1911                         if (!(flags & NV_RX2_DESCRIPTORVALID))
1912                                 goto next_pkt;
1913
1914                         if (flags & NV_RX2_ERROR) {
1915                                 if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1916                                         np->stats.rx_errors++;
1917                                         goto next_pkt;
1918                                 }
1919                                 if (flags & NV_RX2_CRCERR) {
1920                                         np->stats.rx_crc_errors++;
1921                                         np->stats.rx_errors++;
1922                                         goto next_pkt;
1923                                 }
1924                                 if (flags & NV_RX2_OVERFLOW) {
1925                                         np->stats.rx_over_errors++;
1926                                         np->stats.rx_errors++;
1927                                         goto next_pkt;
1928                                 }
1929                                 if (flags & NV_RX2_ERROR4) {
1930                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1931                                         if (len < 0) {
1932                                                 np->stats.rx_errors++;
1933                                                 goto next_pkt;
1934                                         }
1935                                 }
1936                                 /* framing errors are soft errors */
1937                                 if (flags & NV_RX2_FRAMINGERR) {
1938                                         if (flags & NV_RX2_SUBSTRACT1) {
1939                                                 len--;
1940                                         }
1941                                 }
1942                         }
1943                         if (np->rx_csum) {
1944                                 flags &= NV_RX2_CHECKSUMMASK;
1945                                 if (flags == NV_RX2_CHECKSUMOK1 ||
1946                                     flags == NV_RX2_CHECKSUMOK2 ||
1947                                     flags == NV_RX2_CHECKSUMOK3) {
1948                                         dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1949                                         np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1950                                 } else {
1951                                         dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1952                                 }
1953                         }
1954                 }
1955                 /* got a valid packet - forward it to the network core */
1956                 skb = np->rx_skbuff[i];
1957                 np->rx_skbuff[i] = NULL;
1958
1959                 skb_put(skb, len);
1960                 skb->protocol = eth_type_trans(skb, dev);
1961                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1962                                         dev->name, np->cur_rx, len, skb->protocol);
1963 #ifdef CONFIG_FORCEDETH_NAPI
1964                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
1965                         vlan_hwaccel_receive_skb(skb, np->vlangrp,
1966                                                  vlanflags & NV_RX3_VLAN_TAG_MASK);
1967                 else
1968                         netif_receive_skb(skb);
1969 #else
1970                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
1971                         vlan_hwaccel_rx(skb, np->vlangrp,
1972                                         vlanflags & NV_RX3_VLAN_TAG_MASK);
1973                 else
1974                         netif_rx(skb);
1975 #endif
1976                 dev->last_rx = jiffies;
1977                 np->stats.rx_packets++;
1978                 np->stats.rx_bytes += len;
1979 next_pkt:
1980                 np->cur_rx++;
1981         }
1982
1983         return count;
1984 }
1985
1986 static void set_bufsize(struct net_device *dev)
1987 {
1988         struct fe_priv *np = netdev_priv(dev);
1989
1990         if (dev->mtu <= ETH_DATA_LEN)
1991                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1992         else
1993                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1994 }
1995
1996 /*
1997  * nv_change_mtu: dev->change_mtu function
1998  * Called with dev_base_lock held for read.
1999  */
2000 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2001 {
2002         struct fe_priv *np = netdev_priv(dev);
2003         int old_mtu;
2004
2005         if (new_mtu < 64 || new_mtu > np->pkt_limit)
2006                 return -EINVAL;
2007
2008         old_mtu = dev->mtu;
2009         dev->mtu = new_mtu;
2010
2011         /* return early if the buffer sizes will not change */
2012         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2013                 return 0;
2014         if (old_mtu == new_mtu)
2015                 return 0;
2016
2017         /* synchronized against open : rtnl_lock() held by caller */
2018         if (netif_running(dev)) {
2019                 u8 __iomem *base = get_hwbase(dev);
2020                 /*
2021                  * It seems that the nic preloads valid ring entries into an
2022                  * internal buffer. The procedure for flushing everything is
2023                  * guessed, there is probably a simpler approach.
2024                  * Changing the MTU is a rare event, it shouldn't matter.
2025                  */
2026                 nv_disable_irq(dev);
2027                 netif_tx_lock_bh(dev);
2028                 spin_lock(&np->lock);
2029                 /* stop engines */
2030                 nv_stop_rx(dev);
2031                 nv_stop_tx(dev);
2032                 nv_txrx_reset(dev);
2033                 /* drain rx queue */
2034                 nv_drain_rx(dev);
2035                 nv_drain_tx(dev);
2036                 /* reinit driver view of the rx queue */
2037                 set_bufsize(dev);
2038                 if (nv_init_ring(dev)) {
2039                         if (!np->in_shutdown)
2040                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2041                 }
2042                 /* reinit nic view of the rx queue */
2043                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2044                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2045                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2046                         base + NvRegRingSizes);
2047                 pci_push(base);
2048                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2049                 pci_push(base);
2050
2051                 /* restart rx engine */
2052                 nv_start_rx(dev);
2053                 nv_start_tx(dev);
2054                 spin_unlock(&np->lock);
2055                 netif_tx_unlock_bh(dev);
2056                 nv_enable_irq(dev);
2057         }
2058         return 0;
2059 }
2060
2061 static void nv_copy_mac_to_hw(struct net_device *dev)
2062 {
2063         u8 __iomem *base = get_hwbase(dev);
2064         u32 mac[2];
2065
2066         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2067                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2068         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2069
2070         writel(mac[0], base + NvRegMacAddrA);
2071         writel(mac[1], base + NvRegMacAddrB);
2072 }
2073
2074 /*
2075  * nv_set_mac_address: dev->set_mac_address function
2076  * Called with rtnl_lock() held.
2077  */
2078 static int nv_set_mac_address(struct net_device *dev, void *addr)
2079 {
2080         struct fe_priv *np = netdev_priv(dev);
2081         struct sockaddr *macaddr = (struct sockaddr*)addr;
2082
2083         if (!is_valid_ether_addr(macaddr->sa_data))
2084                 return -EADDRNOTAVAIL;
2085
2086         /* synchronized against open : rtnl_lock() held by caller */
2087         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2088
2089         if (netif_running(dev)) {
2090                 netif_tx_lock_bh(dev);
2091                 spin_lock_irq(&np->lock);
2092
2093                 /* stop rx engine */
2094                 nv_stop_rx(dev);
2095
2096                 /* set mac address */
2097                 nv_copy_mac_to_hw(dev);
2098
2099                 /* restart rx engine */
2100                 nv_start_rx(dev);
2101                 spin_unlock_irq(&np->lock);
2102                 netif_tx_unlock_bh(dev);
2103         } else {
2104                 nv_copy_mac_to_hw(dev);
2105         }
2106         return 0;
2107 }
2108
2109 /*
2110  * nv_set_multicast: dev->set_multicast function
2111  * Called with netif_tx_lock held.
2112  */
2113 static void nv_set_multicast(struct net_device *dev)
2114 {
2115         struct fe_priv *np = netdev_priv(dev);
2116         u8 __iomem *base = get_hwbase(dev);
2117         u32 addr[2];
2118         u32 mask[2];
2119         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2120
2121         memset(addr, 0, sizeof(addr));
2122         memset(mask, 0, sizeof(mask));
2123
2124         if (dev->flags & IFF_PROMISC) {
2125                 pff |= NVREG_PFF_PROMISC;
2126         } else {
2127                 pff |= NVREG_PFF_MYADDR;
2128
2129                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2130                         u32 alwaysOff[2];
2131                         u32 alwaysOn[2];
2132
2133                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2134                         if (dev->flags & IFF_ALLMULTI) {
2135                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2136                         } else {
2137                                 struct dev_mc_list *walk;
2138
2139                                 walk = dev->mc_list;
2140                                 while (walk != NULL) {
2141                                         u32 a, b;
2142                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2143                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2144                                         alwaysOn[0] &= a;
2145                                         alwaysOff[0] &= ~a;
2146                                         alwaysOn[1] &= b;
2147                                         alwaysOff[1] &= ~b;
2148                                         walk = walk->next;
2149                                 }
2150                         }
2151                         addr[0] = alwaysOn[0];
2152                         addr[1] = alwaysOn[1];
2153                         mask[0] = alwaysOn[0] | alwaysOff[0];
2154                         mask[1] = alwaysOn[1] | alwaysOff[1];
2155                 }
2156         }
2157         addr[0] |= NVREG_MCASTADDRA_FORCE;
2158         pff |= NVREG_PFF_ALWAYS;
2159         spin_lock_irq(&np->lock);
2160         nv_stop_rx(dev);
2161         writel(addr[0], base + NvRegMulticastAddrA);
2162         writel(addr[1], base + NvRegMulticastAddrB);
2163         writel(mask[0], base + NvRegMulticastMaskA);
2164         writel(mask[1], base + NvRegMulticastMaskB);
2165         writel(pff, base + NvRegPacketFilterFlags);
2166         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2167                 dev->name);
2168         nv_start_rx(dev);
2169         spin_unlock_irq(&np->lock);
2170 }
2171
2172 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2173 {
2174         struct fe_priv *np = netdev_priv(dev);
2175         u8 __iomem *base = get_hwbase(dev);
2176
2177         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2178
2179         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2180                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2181                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2182                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2183                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2184                 } else {
2185                         writel(pff, base + NvRegPacketFilterFlags);
2186                 }
2187         }
2188         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2189                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2190                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2191                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2192                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2193                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2194                 } else {
2195                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2196                         writel(regmisc, base + NvRegMisc1);
2197                 }
2198         }
2199 }
2200
2201 /**
2202  * nv_update_linkspeed: Setup the MAC according to the link partner
2203  * @dev: Network device to be configured
2204  *
2205  * The function queries the PHY and checks if there is a link partner.
2206  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2207  * set to 10 MBit HD.
2208  *
2209  * The function returns 0 if there is no link partner and 1 if there is
2210  * a good link partner.
2211  */
2212 static int nv_update_linkspeed(struct net_device *dev)
2213 {
2214         struct fe_priv *np = netdev_priv(dev);
2215         u8 __iomem *base = get_hwbase(dev);
2216         int adv = 0;
2217         int lpa = 0;
2218         int adv_lpa, adv_pause, lpa_pause;
2219         int newls = np->linkspeed;
2220         int newdup = np->duplex;
2221         int mii_status;
2222         int retval = 0;
2223         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2224
2225         /* BMSR_LSTATUS is latched, read it twice:
2226          * we want the current value.
2227          */
2228         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2229         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2230
2231         if (!(mii_status & BMSR_LSTATUS)) {
2232                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2233                                 dev->name);
2234                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2235                 newdup = 0;
2236                 retval = 0;
2237                 goto set_speed;
2238         }
2239
2240         if (np->autoneg == 0) {
2241                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2242                                 dev->name, np->fixed_mode);
2243                 if (np->fixed_mode & LPA_100FULL) {
2244                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2245                         newdup = 1;
2246                 } else if (np->fixed_mode & LPA_100HALF) {
2247                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2248                         newdup = 0;
2249                 } else if (np->fixed_mode & LPA_10FULL) {
2250                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2251                         newdup = 1;
2252                 } else {
2253                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2254                         newdup = 0;
2255                 }
2256                 retval = 1;
2257                 goto set_speed;
2258         }
2259         /* check auto negotiation is complete */
2260         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2261                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2262                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2263                 newdup = 0;
2264                 retval = 0;
2265                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2266                 goto set_speed;
2267         }
2268
2269         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2270         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2271         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2272                                 dev->name, adv, lpa);
2273
2274         retval = 1;
2275         if (np->gigabit == PHY_GIGABIT) {
2276                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2277                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2278
2279                 if ((control_1000 & ADVERTISE_1000FULL) &&
2280                         (status_1000 & LPA_1000FULL)) {
2281                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2282                                 dev->name);
2283                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2284                         newdup = 1;
2285                         goto set_speed;
2286                 }
2287         }
2288
2289         /* FIXME: handle parallel detection properly */
2290         adv_lpa = lpa & adv;
2291         if (adv_lpa & LPA_100FULL) {
2292                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2293                 newdup = 1;
2294         } else if (adv_lpa & LPA_100HALF) {
2295                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2296                 newdup = 0;
2297         } else if (adv_lpa & LPA_10FULL) {
2298                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2299                 newdup = 1;
2300         } else if (adv_lpa & LPA_10HALF) {
2301                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2302                 newdup = 0;
2303         } else {
2304                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2305                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2306                 newdup = 0;
2307         }
2308
2309 set_speed:
2310         if (np->duplex == newdup && np->linkspeed == newls)
2311                 return retval;
2312
2313         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2314                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2315
2316         np->duplex = newdup;
2317         np->linkspeed = newls;
2318
2319         if (np->gigabit == PHY_GIGABIT) {
2320                 phyreg = readl(base + NvRegRandomSeed);
2321                 phyreg &= ~(0x3FF00);
2322                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2323                         phyreg |= NVREG_RNDSEED_FORCE3;
2324                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2325                         phyreg |= NVREG_RNDSEED_FORCE2;
2326                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2327                         phyreg |= NVREG_RNDSEED_FORCE;
2328                 writel(phyreg, base + NvRegRandomSeed);
2329         }
2330
2331         phyreg = readl(base + NvRegPhyInterface);
2332         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2333         if (np->duplex == 0)
2334                 phyreg |= PHY_HALF;
2335         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2336                 phyreg |= PHY_100;
2337         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2338                 phyreg |= PHY_1000;
2339         writel(phyreg, base + NvRegPhyInterface);
2340
2341         if (phyreg & PHY_RGMII) {
2342                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2343                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2344                 else
2345                         txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2346         } else {
2347                 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2348         }
2349         writel(txreg, base + NvRegTxDeferral);
2350
2351         if (np->desc_ver == DESC_VER_1) {
2352                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2353         } else {
2354                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2355                         txreg = NVREG_TX_WM_DESC2_3_1000;
2356                 else
2357                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2358         }
2359         writel(txreg, base + NvRegTxWatermark);
2360
2361         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2362                 base + NvRegMisc1);
2363         pci_push(base);
2364         writel(np->linkspeed, base + NvRegLinkSpeed);
2365         pci_push(base);
2366
2367         pause_flags = 0;
2368         /* setup pause frame */
2369         if (np->duplex != 0) {
2370                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2371                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2372                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2373
2374                         switch (adv_pause) {
2375                         case ADVERTISE_PAUSE_CAP:
2376                                 if (lpa_pause & LPA_PAUSE_CAP) {
2377                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2378                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2379                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2380                                 }
2381                                 break;
2382                         case ADVERTISE_PAUSE_ASYM:
2383                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2384                                 {
2385                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2386                                 }
2387                                 break;
2388                         case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2389                                 if (lpa_pause & LPA_PAUSE_CAP)
2390                                 {
2391                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2392                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2393                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2394                                 }
2395                                 if (lpa_pause == LPA_PAUSE_ASYM)
2396                                 {
2397                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2398                                 }
2399                                 break;
2400                         }
2401                 } else {
2402                         pause_flags = np->pause_flags;
2403                 }
2404         }
2405         nv_update_pause(dev, pause_flags);
2406
2407         return retval;
2408 }
2409
2410 static void nv_linkchange(struct net_device *dev)
2411 {
2412         if (nv_update_linkspeed(dev)) {
2413                 if (!netif_carrier_ok(dev)) {
2414                         netif_carrier_on(dev);
2415                         printk(KERN_INFO "%s: link up.\n", dev->name);
2416                         nv_start_rx(dev);
2417                 }
2418         } else {
2419                 if (netif_carrier_ok(dev)) {
2420                         netif_carrier_off(dev);
2421                         printk(KERN_INFO "%s: link down.\n", dev->name);
2422                         nv_stop_rx(dev);
2423                 }
2424         }
2425 }
2426
2427 static void nv_link_irq(struct net_device *dev)
2428 {
2429         u8 __iomem *base = get_hwbase(dev);
2430         u32 miistat;
2431
2432         miistat = readl(base + NvRegMIIStatus);
2433         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2434         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2435
2436         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2437                 nv_linkchange(dev);
2438         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2439 }
2440
2441 static irqreturn_t nv_nic_irq(int foo, void *data)
2442 {
2443         struct net_device *dev = (struct net_device *) data;
2444         struct fe_priv *np = netdev_priv(dev);
2445         u8 __iomem *base = get_hwbase(dev);
2446         u32 events;
2447         int i;
2448
2449         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2450
2451         for (i=0; ; i++) {
2452                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2453                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2454                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2455                 } else {
2456                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2457                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2458                 }
2459                 pci_push(base);
2460                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2461                 if (!(events & np->irqmask))
2462                         break;
2463
2464                 spin_lock(&np->lock);
2465                 nv_tx_done(dev);
2466                 spin_unlock(&np->lock);
2467
2468                 if (events & NVREG_IRQ_LINK) {
2469                         spin_lock(&np->lock);
2470                         nv_link_irq(dev);
2471                         spin_unlock(&np->lock);
2472                 }
2473                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2474                         spin_lock(&np->lock);
2475                         nv_linkchange(dev);
2476                         spin_unlock(&np->lock);
2477                         np->link_timeout = jiffies + LINK_TIMEOUT;
2478                 }
2479                 if (events & (NVREG_IRQ_TX_ERR)) {
2480                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2481                                                 dev->name, events);
2482                 }
2483                 if (events & (NVREG_IRQ_UNKNOWN)) {
2484                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2485                                                 dev->name, events);
2486                 }
2487                 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
2488                         spin_lock(&np->lock);
2489                         /* disable interrupts on the nic */
2490                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2491                                 writel(0, base + NvRegIrqMask);
2492                         else
2493                                 writel(np->irqmask, base + NvRegIrqMask);
2494                         pci_push(base);
2495
2496                         if (!np->in_shutdown) {
2497                                 np->nic_poll_irq = np->irqmask;
2498                                 np->recover_error = 1;
2499                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2500                         }
2501                         spin_unlock(&np->lock);
2502                         break;
2503                 }
2504 #ifdef CONFIG_FORCEDETH_NAPI
2505                 if (events & NVREG_IRQ_RX_ALL) {
2506                         netif_rx_schedule(dev);
2507
2508                         /* Disable furthur receive irq's */
2509                         spin_lock(&np->lock);
2510                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
2511
2512                         if (np->msi_flags & NV_MSI_X_ENABLED)
2513                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2514                         else
2515                                 writel(np->irqmask, base + NvRegIrqMask);
2516                         spin_unlock(&np->lock);
2517                 }
2518 #else
2519                 nv_rx_process(dev, dev->weight);
2520                 if (nv_alloc_rx(dev)) {
2521                         spin_lock(&np->lock);
2522                         if (!np->in_shutdown)
2523                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2524                         spin_unlock(&np->lock);
2525                 }
2526 #endif
2527                 if (i > max_interrupt_work) {
2528                         spin_lock(&np->lock);
2529                         /* disable interrupts on the nic */
2530                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2531                                 writel(0, base + NvRegIrqMask);
2532                         else
2533                                 writel(np->irqmask, base + NvRegIrqMask);
2534                         pci_push(base);
2535
2536                         if (!np->in_shutdown) {
2537                                 np->nic_poll_irq = np->irqmask;
2538                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2539                         }
2540                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2541                         spin_unlock(&np->lock);
2542                         break;
2543                 }
2544
2545         }
2546         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2547
2548         return IRQ_RETVAL(i);
2549 }
2550
2551 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
2552 {
2553         struct net_device *dev = (struct net_device *) data;
2554         struct fe_priv *np = netdev_priv(dev);
2555         u8 __iomem *base = get_hwbase(dev);
2556         u32 events;
2557         int i;
2558         unsigned long flags;
2559
2560         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2561
2562         for (i=0; ; i++) {
2563                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2564                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2565                 pci_push(base);
2566                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2567                 if (!(events & np->irqmask))
2568                         break;
2569
2570                 spin_lock_irqsave(&np->lock, flags);
2571                 nv_tx_done(dev);
2572                 spin_unlock_irqrestore(&np->lock, flags);
2573
2574                 if (events & (NVREG_IRQ_TX_ERR)) {
2575                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2576                                                 dev->name, events);
2577                 }
2578                 if (i > max_interrupt_work) {
2579                         spin_lock_irqsave(&np->lock, flags);
2580                         /* disable interrupts on the nic */
2581                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2582                         pci_push(base);
2583
2584                         if (!np->in_shutdown) {
2585                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2586                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2587                         }
2588                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2589                         spin_unlock_irqrestore(&np->lock, flags);
2590                         break;
2591                 }
2592
2593         }
2594         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2595
2596         return IRQ_RETVAL(i);
2597 }
2598
2599 #ifdef CONFIG_FORCEDETH_NAPI
2600 static int nv_napi_poll(struct net_device *dev, int *budget)
2601 {
2602         int pkts, limit = min(*budget, dev->quota);
2603         struct fe_priv *np = netdev_priv(dev);
2604         u8 __iomem *base = get_hwbase(dev);
2605         unsigned long flags;
2606
2607         pkts = nv_rx_process(dev, limit);
2608
2609         if (nv_alloc_rx(dev)) {
2610                 spin_lock_irqsave(&np->lock, flags);
2611                 if (!np->in_shutdown)
2612                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2613                 spin_unlock_irqrestore(&np->lock, flags);
2614         }
2615
2616         if (pkts < limit) {
2617                 /* all done, no more packets present */
2618                 netif_rx_complete(dev);
2619
2620                 /* re-enable receive interrupts */
2621                 spin_lock_irqsave(&np->lock, flags);
2622
2623                 np->irqmask |= NVREG_IRQ_RX_ALL;
2624                 if (np->msi_flags & NV_MSI_X_ENABLED)
2625                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2626                 else
2627                         writel(np->irqmask, base + NvRegIrqMask);
2628
2629                 spin_unlock_irqrestore(&np->lock, flags);
2630                 return 0;
2631         } else {
2632                 /* used up our quantum, so reschedule */
2633                 dev->quota -= pkts;
2634                 *budget -= pkts;
2635                 return 1;
2636         }
2637 }
2638 #endif
2639
2640 #ifdef CONFIG_FORCEDETH_NAPI
2641 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
2642 {
2643         struct net_device *dev = (struct net_device *) data;
2644         u8 __iomem *base = get_hwbase(dev);
2645         u32 events;
2646
2647         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2648         writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2649
2650         if (events) {
2651                 netif_rx_schedule(dev);
2652                 /* disable receive interrupts on the nic */
2653                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2654                 pci_push(base);
2655         }
2656         return IRQ_HANDLED;
2657 }
2658 #else
2659 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
2660 {
2661         struct net_device *dev = (struct net_device *) data;
2662         struct fe_priv *np = netdev_priv(dev);
2663         u8 __iomem *base = get_hwbase(dev);
2664         u32 events;
2665         int i;
2666         unsigned long flags;
2667
2668         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2669
2670         for (i=0; ; i++) {
2671                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2672                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2673                 pci_push(base);
2674                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2675                 if (!(events & np->irqmask))
2676                         break;
2677
2678                 nv_rx_process(dev, dev->weight);
2679                 if (nv_alloc_rx(dev)) {
2680                         spin_lock_irqsave(&np->lock, flags);
2681                         if (!np->in_shutdown)
2682                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2683                         spin_unlock_irqrestore(&np->lock, flags);
2684                 }
2685
2686                 if (i > max_interrupt_work) {
2687                         spin_lock_irqsave(&np->lock, flags);
2688                         /* disable interrupts on the nic */
2689                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2690                         pci_push(base);
2691
2692                         if (!np->in_shutdown) {
2693                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2694                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2695                         }
2696                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2697                         spin_unlock_irqrestore(&np->lock, flags);
2698                         break;
2699                 }
2700         }
2701         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2702
2703         return IRQ_RETVAL(i);
2704 }
2705 #endif
2706
2707 static irqreturn_t nv_nic_irq_other(int foo, void *data)
2708 {
2709         struct net_device *dev = (struct net_device *) data;
2710         struct fe_priv *np = netdev_priv(dev);
2711         u8 __iomem *base = get_hwbase(dev);
2712         u32 events;
2713         int i;
2714         unsigned long flags;
2715
2716         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2717
2718         for (i=0; ; i++) {
2719                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2720                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2721                 pci_push(base);
2722                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2723                 if (!(events & np->irqmask))
2724                         break;
2725
2726                 if (events & NVREG_IRQ_LINK) {
2727                         spin_lock_irqsave(&np->lock, flags);
2728                         nv_link_irq(dev);
2729                         spin_unlock_irqrestore(&np->lock, flags);
2730                 }
2731                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2732                         spin_lock_irqsave(&np->lock, flags);
2733                         nv_linkchange(dev);
2734                         spin_unlock_irqrestore(&np->lock, flags);
2735                         np->link_timeout = jiffies + LINK_TIMEOUT;
2736                 }
2737                 if (events & NVREG_IRQ_RECOVER_ERROR) {
2738                         spin_lock_irq(&np->lock);
2739                         /* disable interrupts on the nic */
2740                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2741                         pci_push(base);
2742
2743                         if (!np->in_shutdown) {
2744                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2745                                 np->recover_error = 1;
2746                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2747                         }
2748                         spin_unlock_irq(&np->lock);
2749                         break;
2750                 }
2751                 if (events & (NVREG_IRQ_UNKNOWN)) {
2752                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2753                                                 dev->name, events);
2754                 }
2755                 if (i > max_interrupt_work) {
2756                         spin_lock_irqsave(&np->lock, flags);
2757                         /* disable interrupts on the nic */
2758                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2759                         pci_push(base);
2760
2761                         if (!np->in_shutdown) {
2762                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2763                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2764                         }
2765                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2766                         spin_unlock_irqrestore(&np->lock, flags);
2767                         break;
2768                 }
2769
2770         }
2771         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2772
2773         return IRQ_RETVAL(i);
2774 }
2775
2776 static irqreturn_t nv_nic_irq_test(int foo, void *data)
2777 {
2778         struct net_device *dev = (struct net_device *) data;
2779         struct fe_priv *np = netdev_priv(dev);
2780         u8 __iomem *base = get_hwbase(dev);
2781         u32 events;
2782
2783         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2784
2785         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2786                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2787                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2788         } else {
2789                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2790                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2791         }
2792         pci_push(base);
2793         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2794         if (!(events & NVREG_IRQ_TIMER))
2795                 return IRQ_RETVAL(0);
2796
2797         spin_lock(&np->lock);
2798         np->intr_test = 1;
2799         spin_unlock(&np->lock);
2800
2801         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2802
2803         return IRQ_RETVAL(1);
2804 }
2805
2806 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2807 {
2808         u8 __iomem *base = get_hwbase(dev);
2809         int i;
2810         u32 msixmap = 0;
2811
2812         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2813          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2814          * the remaining 8 interrupts.
2815          */
2816         for (i = 0; i < 8; i++) {
2817                 if ((irqmask >> i) & 0x1) {
2818                         msixmap |= vector << (i << 2);
2819                 }
2820         }
2821         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2822
2823         msixmap = 0;
2824         for (i = 0; i < 8; i++) {
2825                 if ((irqmask >> (i + 8)) & 0x1) {
2826                         msixmap |= vector << (i << 2);
2827                 }
2828         }
2829         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2830 }
2831
2832 static int nv_request_irq(struct net_device *dev, int intr_test)
2833 {
2834         struct fe_priv *np = get_nvpriv(dev);
2835         u8 __iomem *base = get_hwbase(dev);
2836         int ret = 1;
2837         int i;
2838
2839         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2840                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2841                         np->msi_x_entry[i].entry = i;
2842                 }
2843                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2844                         np->msi_flags |= NV_MSI_X_ENABLED;
2845                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2846                                 /* Request irq for rx handling */
2847                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
2848                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2849                                         pci_disable_msix(np->pci_dev);
2850                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2851                                         goto out_err;
2852                                 }
2853                                 /* Request irq for tx handling */
2854                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
2855                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2856                                         pci_disable_msix(np->pci_dev);
2857                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2858                                         goto out_free_rx;
2859                                 }
2860                                 /* Request irq for link and timer handling */
2861                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
2862                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2863                                         pci_disable_msix(np->pci_dev);
2864                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2865                                         goto out_free_tx;
2866                                 }
2867                                 /* map interrupts to their respective vector */
2868                                 writel(0, base + NvRegMSIXMap0);
2869                                 writel(0, base + NvRegMSIXMap1);
2870                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2871                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2872                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2873                         } else {
2874                                 /* Request irq for all interrupts */
2875                                 if ((!intr_test &&
2876                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2877                                     (intr_test &&
2878                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2879                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2880                                         pci_disable_msix(np->pci_dev);
2881                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2882                                         goto out_err;
2883                                 }
2884
2885                                 /* map interrupts to vector 0 */
2886                                 writel(0, base + NvRegMSIXMap0);
2887                                 writel(0, base + NvRegMSIXMap1);
2888                         }
2889                 }
2890         }
2891         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2892                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2893                         np->msi_flags |= NV_MSI_ENABLED;
2894                         if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2895                             (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2896                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2897                                 pci_disable_msi(np->pci_dev);
2898                                 np->msi_flags &= ~NV_MSI_ENABLED;
2899                                 goto out_err;
2900                         }
2901
2902                         /* map interrupts to vector 0 */
2903                         writel(0, base + NvRegMSIMap0);
2904                         writel(0, base + NvRegMSIMap1);
2905                         /* enable msi vector 0 */
2906                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2907                 }
2908         }
2909         if (ret != 0) {
2910                 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2911                     (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
2912                         goto out_err;
2913
2914         }
2915
2916         return 0;
2917 out_free_tx:
2918         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2919 out_free_rx:
2920         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2921 out_err:
2922         return 1;
2923 }
2924
2925 static void nv_free_irq(struct net_device *dev)
2926 {
2927         struct fe_priv *np = get_nvpriv(dev);
2928         int i;
2929
2930         if (np->msi_flags & NV_MSI_X_ENABLED) {
2931                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2932                         free_irq(np->msi_x_entry[i].vector, dev);
2933                 }
2934                 pci_disable_msix(np->pci_dev);
2935                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2936         } else {
2937                 free_irq(np->pci_dev->irq, dev);
2938                 if (np->msi_flags & NV_MSI_ENABLED) {
2939                         pci_disable_msi(np->pci_dev);
2940                         np->msi_flags &= ~NV_MSI_ENABLED;
2941                 }
2942         }
2943 }
2944
2945 static void nv_do_nic_poll(unsigned long data)
2946 {
2947         struct net_device *dev = (struct net_device *) data;
2948         struct fe_priv *np = netdev_priv(dev);
2949         u8 __iomem *base = get_hwbase(dev);
2950         u32 mask = 0;
2951
2952         /*
2953          * First disable irq(s) and then
2954          * reenable interrupts on the nic, we have to do this before calling
2955          * nv_nic_irq because that may decide to do otherwise
2956          */
2957
2958         if (!using_multi_irqs(dev)) {
2959                 if (np->msi_flags & NV_MSI_X_ENABLED)
2960                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2961                 else
2962                         disable_irq_lockdep(dev->irq);
2963                 mask = np->irqmask;
2964         } else {
2965                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2966                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2967                         mask |= NVREG_IRQ_RX_ALL;
2968                 }
2969                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2970                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2971                         mask |= NVREG_IRQ_TX_ALL;
2972                 }
2973                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2974                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2975                         mask |= NVREG_IRQ_OTHER;
2976                 }
2977         }
2978         np->nic_poll_irq = 0;
2979
2980         if (np->recover_error) {
2981                 np->recover_error = 0;
2982                 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
2983                 if (netif_running(dev)) {
2984                         netif_tx_lock_bh(dev);
2985                         spin_lock(&np->lock);
2986                         /* stop engines */
2987                         nv_stop_rx(dev);
2988                         nv_stop_tx(dev);
2989                         nv_txrx_reset(dev);
2990                         /* drain rx queue */
2991                         nv_drain_rx(dev);
2992                         nv_drain_tx(dev);
2993                         /* reinit driver view of the rx queue */
2994                         set_bufsize(dev);
2995                         if (nv_init_ring(dev)) {
2996                                 if (!np->in_shutdown)
2997                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2998                         }
2999                         /* reinit nic view of the rx queue */
3000                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3001                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3002                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3003                                 base + NvRegRingSizes);
3004                         pci_push(base);
3005                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3006                         pci_push(base);
3007
3008                         /* restart rx engine */
3009                         nv_start_rx(dev);
3010                         nv_start_tx(dev);
3011                         spin_unlock(&np->lock);
3012                         netif_tx_unlock_bh(dev);
3013                 }
3014         }
3015
3016         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
3017
3018         writel(mask, base + NvRegIrqMask);
3019         pci_push(base);
3020
3021         if (!using_multi_irqs(dev)) {
3022                 nv_nic_irq(0, dev);
3023                 if (np->msi_flags & NV_MSI_X_ENABLED)
3024                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3025                 else
3026                         enable_irq_lockdep(dev->irq);
3027         } else {
3028                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3029                         nv_nic_irq_rx(0, dev);
3030                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3031                 }
3032                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3033                         nv_nic_irq_tx(0, dev);
3034                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3035                 }
3036                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3037                         nv_nic_irq_other(0, dev);
3038                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3039                 }
3040         }
3041 }
3042
3043 #ifdef CONFIG_NET_POLL_CONTROLLER
3044 static void nv_poll_controller(struct net_device *dev)
3045 {
3046         nv_do_nic_poll((unsigned long) dev);
3047 }
3048 #endif
3049
3050 static void nv_do_stats_poll(unsigned long data)
3051 {
3052         struct net_device *dev = (struct net_device *) data;
3053         struct fe_priv *np = netdev_priv(dev);
3054         u8 __iomem *base = get_hwbase(dev);
3055
3056         np->estats.tx_bytes += readl(base + NvRegTxCnt);
3057         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
3058         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
3059         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
3060         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
3061         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
3062         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
3063         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
3064         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
3065         np->estats.tx_deferral += readl(base + NvRegTxDef);
3066         np->estats.tx_packets += readl(base + NvRegTxFrame);
3067         np->estats.tx_pause += readl(base + NvRegTxPause);
3068         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
3069         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
3070         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
3071         np->estats.rx_runt += readl(base + NvRegRxRunt);
3072         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
3073         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
3074         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
3075         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
3076         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
3077         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
3078         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
3079         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
3080         np->estats.rx_bytes += readl(base + NvRegRxCnt);
3081         np->estats.rx_pause += readl(base + NvRegRxPause);
3082         np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
3083         np->estats.rx_packets =
3084                 np->estats.rx_unicast +
3085                 np->estats.rx_multicast +
3086                 np->estats.rx_broadcast;
3087         np->estats.rx_errors_total =
3088                 np->estats.rx_crc_errors +
3089                 np->estats.rx_over_errors +
3090                 np->estats.rx_frame_error +
3091                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
3092                 np->estats.rx_late_collision +
3093                 np->estats.rx_runt +
3094                 np->estats.rx_frame_too_long;
3095
3096         if (!np->in_shutdown)
3097                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
3098 }
3099
3100 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3101 {
3102         struct fe_priv *np = netdev_priv(dev);
3103         strcpy(info->driver, "forcedeth");
3104         strcpy(info->version, FORCEDETH_VERSION);
3105         strcpy(info->bus_info, pci_name(np->pci_dev));
3106 }
3107
3108 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3109 {
3110         struct fe_priv *np = netdev_priv(dev);
3111         wolinfo->supported = WAKE_MAGIC;
3112
3113         spin_lock_irq(&np->lock);
3114         if (np->wolenabled)
3115                 wolinfo->wolopts = WAKE_MAGIC;
3116         spin_unlock_irq(&np->lock);
3117 }
3118
3119 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3120 {
3121         struct fe_priv *np = netdev_priv(dev);
3122         u8 __iomem *base = get_hwbase(dev);
3123         u32 flags = 0;
3124
3125         if (wolinfo->wolopts == 0) {
3126                 np->wolenabled = 0;
3127         } else if (wolinfo->wolopts & WAKE_MAGIC) {
3128                 np->wolenabled = 1;
3129                 flags = NVREG_WAKEUPFLAGS_ENABLE;
3130         }
3131         if (netif_running(dev)) {
3132                 spin_lock_irq(&np->lock);
3133                 writel(flags, base + NvRegWakeUpFlags);
3134                 spin_unlock_irq(&np->lock);
3135         }
3136         return 0;
3137 }
3138
3139 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3140 {
3141         struct fe_priv *np = netdev_priv(dev);
3142         int adv;
3143
3144         spin_lock_irq(&np->lock);
3145         ecmd->port = PORT_MII;
3146         if (!netif_running(dev)) {