]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/net/e1000/e1000_main.c
Merge branch 'tmp' into upstream
[linux-3.10.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.2.7-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         /* required last entry */
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
113                                     struct e1000_tx_ring *txdr);
114 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
115                                     struct e1000_rx_ring *rxdr);
116 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
117                                     struct e1000_tx_ring *tx_ring);
118 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
119                                     struct e1000_rx_ring *rx_ring);
120
121 /* Local Function Prototypes */
122
123 static int e1000_init_module(void);
124 static void e1000_exit_module(void);
125 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
126 static void __devexit e1000_remove(struct pci_dev *pdev);
127 static int e1000_alloc_queues(struct e1000_adapter *adapter);
128 static int e1000_sw_init(struct e1000_adapter *adapter);
129 static int e1000_open(struct net_device *netdev);
130 static int e1000_close(struct net_device *netdev);
131 static void e1000_configure_tx(struct e1000_adapter *adapter);
132 static void e1000_configure_rx(struct e1000_adapter *adapter);
133 static void e1000_setup_rctl(struct e1000_adapter *adapter);
134 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
136 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
137                                 struct e1000_tx_ring *tx_ring);
138 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
139                                 struct e1000_rx_ring *rx_ring);
140 static void e1000_set_multi(struct net_device *netdev);
141 static void e1000_update_phy_info(unsigned long data);
142 static void e1000_watchdog(unsigned long data);
143 static void e1000_82547_tx_fifo_stall(unsigned long data);
144 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
145 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
146 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
147 static int e1000_set_mac(struct net_device *netdev, void *p);
148 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
149 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
150                                     struct e1000_tx_ring *tx_ring);
151 #ifdef CONFIG_E1000_NAPI
152 static int e1000_clean(struct net_device *poll_dev, int *budget);
153 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
154                                     struct e1000_rx_ring *rx_ring,
155                                     int *work_done, int work_to_do);
156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
157                                        struct e1000_rx_ring *rx_ring,
158                                        int *work_done, int work_to_do);
159 #else
160 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
161                                     struct e1000_rx_ring *rx_ring);
162 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
163                                        struct e1000_rx_ring *rx_ring);
164 #endif
165 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
166                                    struct e1000_rx_ring *rx_ring,
167                                    int cleaned_count);
168 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
169                                       struct e1000_rx_ring *rx_ring,
170                                       int cleaned_count);
171 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
172 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
173                            int cmd);
174 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
176 static void e1000_tx_timeout(struct net_device *dev);
177 static void e1000_reset_task(struct net_device *dev);
178 static void e1000_smartspeed(struct e1000_adapter *adapter);
179 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
180                                        struct sk_buff *skb);
181
182 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
183 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
185 static void e1000_restore_vlan(struct e1000_adapter *adapter);
186
187 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
188 #ifdef CONFIG_PM
189 static int e1000_resume(struct pci_dev *pdev);
190 #endif
191 static void e1000_shutdown(struct pci_dev *pdev);
192
193 #ifdef CONFIG_NET_POLL_CONTROLLER
194 /* for netdump / net console */
195 static void e1000_netpoll (struct net_device *netdev);
196 #endif
197
198 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
199                      pci_channel_state_t state);
200 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
201 static void e1000_io_resume(struct pci_dev *pdev);
202
203 static struct pci_error_handlers e1000_err_handler = {
204         .error_detected = e1000_io_error_detected,
205         .slot_reset = e1000_io_slot_reset,
206         .resume = e1000_io_resume,
207 };
208
209 static struct pci_driver e1000_driver = {
210         .name     = e1000_driver_name,
211         .id_table = e1000_pci_tbl,
212         .probe    = e1000_probe,
213         .remove   = __devexit_p(e1000_remove),
214         /* Power Managment Hooks */
215         .suspend  = e1000_suspend,
216 #ifdef CONFIG_PM
217         .resume   = e1000_resume,
218 #endif
219         .shutdown = e1000_shutdown,
220         .err_handler = &e1000_err_handler
221 };
222
223 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
224 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(DRV_VERSION);
227
228 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232 /**
233  * e1000_init_module - Driver Registration Routine
234  *
235  * e1000_init_module is the first routine called when the driver is
236  * loaded. All it does is register with the PCI subsystem.
237  **/
238
239 static int __init
240 e1000_init_module(void)
241 {
242         int ret;
243         printk(KERN_INFO "%s - version %s\n",
244                e1000_driver_string, e1000_driver_version);
245
246         printk(KERN_INFO "%s\n", e1000_copyright);
247
248         ret = pci_register_driver(&e1000_driver);
249
250         return ret;
251 }
252
253 module_init(e1000_init_module);
254
255 /**
256  * e1000_exit_module - Driver Exit Cleanup Routine
257  *
258  * e1000_exit_module is called just before the driver is removed
259  * from memory.
260  **/
261
262 static void __exit
263 e1000_exit_module(void)
264 {
265         pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272         struct net_device *netdev = adapter->netdev;
273         int flags, err = 0;
274
275         flags = IRQF_SHARED;
276 #ifdef CONFIG_PCI_MSI
277         if (adapter->hw.mac_type > e1000_82547_rev_2) {
278                 adapter->have_msi = TRUE;
279                 if ((err = pci_enable_msi(adapter->pdev))) {
280                         DPRINTK(PROBE, ERR,
281                          "Unable to allocate MSI interrupt Error: %d\n", err);
282                         adapter->have_msi = FALSE;
283                 }
284         }
285         if (adapter->have_msi)
286                 flags &= ~IRQF_SHARED;
287 #endif
288         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
289                                netdev->name, netdev)))
290                 DPRINTK(PROBE, ERR,
291                         "Unable to allocate interrupt Error: %d\n", err);
292
293         return err;
294 }
295
296 static void e1000_free_irq(struct e1000_adapter *adapter)
297 {
298         struct net_device *netdev = adapter->netdev;
299
300         free_irq(adapter->pdev->irq, netdev);
301
302 #ifdef CONFIG_PCI_MSI
303         if (adapter->have_msi)
304                 pci_disable_msi(adapter->pdev);
305 #endif
306 }
307
308 /**
309  * e1000_irq_disable - Mask off interrupt generation on the NIC
310  * @adapter: board private structure
311  **/
312
313 static void
314 e1000_irq_disable(struct e1000_adapter *adapter)
315 {
316         atomic_inc(&adapter->irq_sem);
317         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
318         E1000_WRITE_FLUSH(&adapter->hw);
319         synchronize_irq(adapter->pdev->irq);
320 }
321
322 /**
323  * e1000_irq_enable - Enable default interrupt generation settings
324  * @adapter: board private structure
325  **/
326
327 static void
328 e1000_irq_enable(struct e1000_adapter *adapter)
329 {
330         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
331                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
332                 E1000_WRITE_FLUSH(&adapter->hw);
333         }
334 }
335
336 static void
337 e1000_update_mng_vlan(struct e1000_adapter *adapter)
338 {
339         struct net_device *netdev = adapter->netdev;
340         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
341         uint16_t old_vid = adapter->mng_vlan_id;
342         if (adapter->vlgrp) {
343                 if (!adapter->vlgrp->vlan_devices[vid]) {
344                         if (adapter->hw.mng_cookie.status &
345                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
346                                 e1000_vlan_rx_add_vid(netdev, vid);
347                                 adapter->mng_vlan_id = vid;
348                         } else
349                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
350
351                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
352                                         (vid != old_vid) &&
353                                         !adapter->vlgrp->vlan_devices[old_vid])
354                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
355                 } else
356                         adapter->mng_vlan_id = vid;
357         }
358 }
359
360 /**
361  * e1000_release_hw_control - release control of the h/w to f/w
362  * @adapter: address of board private structure
363  *
364  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
365  * For ASF and Pass Through versions of f/w this means that the
366  * driver is no longer loaded. For AMT version (only with 82573) i
367  * of the f/w this means that the netowrk i/f is closed.
368  *
369  **/
370
371 static void
372 e1000_release_hw_control(struct e1000_adapter *adapter)
373 {
374         uint32_t ctrl_ext;
375         uint32_t swsm;
376         uint32_t extcnf;
377
378         /* Let firmware taken over control of h/w */
379         switch (adapter->hw.mac_type) {
380         case e1000_82571:
381         case e1000_82572:
382         case e1000_80003es2lan:
383                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
384                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
385                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
386                 break;
387         case e1000_82573:
388                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
389                 E1000_WRITE_REG(&adapter->hw, SWSM,
390                                 swsm & ~E1000_SWSM_DRV_LOAD);
391         case e1000_ich8lan:
392                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
393                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
394                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
395                 break;
396         default:
397                 break;
398         }
399 }
400
401 /**
402  * e1000_get_hw_control - get control of the h/w from f/w
403  * @adapter: address of board private structure
404  *
405  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
406  * For ASF and Pass Through versions of f/w this means that
407  * the driver is loaded. For AMT version (only with 82573)
408  * of the f/w this means that the netowrk i/f is open.
409  *
410  **/
411
412 static void
413 e1000_get_hw_control(struct e1000_adapter *adapter)
414 {
415         uint32_t ctrl_ext;
416         uint32_t swsm;
417         uint32_t extcnf;
418         /* Let firmware know the driver has taken over */
419         switch (adapter->hw.mac_type) {
420         case e1000_82571:
421         case e1000_82572:
422         case e1000_80003es2lan:
423                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
424                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
425                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
426                 break;
427         case e1000_82573:
428                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
429                 E1000_WRITE_REG(&adapter->hw, SWSM,
430                                 swsm | E1000_SWSM_DRV_LOAD);
431                 break;
432         case e1000_ich8lan:
433                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
434                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
435                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
436                 break;
437         default:
438                 break;
439         }
440 }
441
442 int
443 e1000_up(struct e1000_adapter *adapter)
444 {
445         struct net_device *netdev = adapter->netdev;
446         int i;
447
448         /* hardware has been reset, we need to reload some things */
449
450         e1000_set_multi(netdev);
451
452         e1000_restore_vlan(adapter);
453
454         e1000_configure_tx(adapter);
455         e1000_setup_rctl(adapter);
456         e1000_configure_rx(adapter);
457         /* call E1000_DESC_UNUSED which always leaves
458          * at least 1 descriptor unused to make sure
459          * next_to_use != next_to_clean */
460         for (i = 0; i < adapter->num_rx_queues; i++) {
461                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
462                 adapter->alloc_rx_buf(adapter, ring,
463                                       E1000_DESC_UNUSED(ring));
464         }
465
466         adapter->tx_queue_len = netdev->tx_queue_len;
467
468         mod_timer(&adapter->watchdog_timer, jiffies);
469
470 #ifdef CONFIG_E1000_NAPI
471         netif_poll_enable(netdev);
472 #endif
473         e1000_irq_enable(adapter);
474
475         return 0;
476 }
477
478 /**
479  * e1000_power_up_phy - restore link in case the phy was powered down
480  * @adapter: address of board private structure
481  *
482  * The phy may be powered down to save power and turn off link when the
483  * driver is unloaded and wake on lan is not enabled (among others)
484  * *** this routine MUST be followed by a call to e1000_reset ***
485  *
486  **/
487
488 void e1000_power_up_phy(struct e1000_adapter *adapter)
489 {
490         uint16_t mii_reg = 0;
491
492         /* Just clear the power down bit to wake the phy back up */
493         if (adapter->hw.media_type == e1000_media_type_copper) {
494                 /* according to the manual, the phy will retain its
495                  * settings across a power-down/up cycle */
496                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
497                 mii_reg &= ~MII_CR_POWER_DOWN;
498                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
499         }
500 }
501
502 static void e1000_power_down_phy(struct e1000_adapter *adapter)
503 {
504         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
505                                       e1000_check_mng_mode(&adapter->hw);
506         /* Power down the PHY so no link is implied when interface is down
507          * The PHY cannot be powered down if any of the following is TRUE
508          * (a) WoL is enabled
509          * (b) AMT is active
510          * (c) SoL/IDER session is active */
511         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
512             adapter->hw.mac_type != e1000_ich8lan &&
513             adapter->hw.media_type == e1000_media_type_copper &&
514             !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
515             !mng_mode_enabled &&
516             !e1000_check_phy_reset_block(&adapter->hw)) {
517                 uint16_t mii_reg = 0;
518                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
519                 mii_reg |= MII_CR_POWER_DOWN;
520                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
521                 mdelay(1);
522         }
523 }
524
525 void
526 e1000_down(struct e1000_adapter *adapter)
527 {
528         struct net_device *netdev = adapter->netdev;
529
530         e1000_irq_disable(adapter);
531
532         del_timer_sync(&adapter->tx_fifo_stall_timer);
533         del_timer_sync(&adapter->watchdog_timer);
534         del_timer_sync(&adapter->phy_info_timer);
535
536 #ifdef CONFIG_E1000_NAPI
537         netif_poll_disable(netdev);
538 #endif
539         netdev->tx_queue_len = adapter->tx_queue_len;
540         adapter->link_speed = 0;
541         adapter->link_duplex = 0;
542         netif_carrier_off(netdev);
543         netif_stop_queue(netdev);
544
545         e1000_reset(adapter);
546         e1000_clean_all_tx_rings(adapter);
547         e1000_clean_all_rx_rings(adapter);
548 }
549
550 void
551 e1000_reinit_locked(struct e1000_adapter *adapter)
552 {
553         WARN_ON(in_interrupt());
554         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
555                 msleep(1);
556         e1000_down(adapter);
557         e1000_up(adapter);
558         clear_bit(__E1000_RESETTING, &adapter->flags);
559 }
560
561 void
562 e1000_reset(struct e1000_adapter *adapter)
563 {
564         uint32_t pba, manc;
565         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
566
567         /* Repartition Pba for greater than 9k mtu
568          * To take effect CTRL.RST is required.
569          */
570
571         switch (adapter->hw.mac_type) {
572         case e1000_82547:
573         case e1000_82547_rev_2:
574                 pba = E1000_PBA_30K;
575                 break;
576         case e1000_82571:
577         case e1000_82572:
578         case e1000_80003es2lan:
579                 pba = E1000_PBA_38K;
580                 break;
581         case e1000_82573:
582                 pba = E1000_PBA_12K;
583                 break;
584         case e1000_ich8lan:
585                 pba = E1000_PBA_8K;
586                 break;
587         default:
588                 pba = E1000_PBA_48K;
589                 break;
590         }
591
592         if ((adapter->hw.mac_type != e1000_82573) &&
593            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
594                 pba -= 8; /* allocate more FIFO for Tx */
595
596
597         if (adapter->hw.mac_type == e1000_82547) {
598                 adapter->tx_fifo_head = 0;
599                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
600                 adapter->tx_fifo_size =
601                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
602                 atomic_set(&adapter->tx_fifo_stall, 0);
603         }
604
605         E1000_WRITE_REG(&adapter->hw, PBA, pba);
606
607         /* flow control settings */
608         /* Set the FC high water mark to 90% of the FIFO size.
609          * Required to clear last 3 LSB */
610         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
611         /* We can't use 90% on small FIFOs because the remainder
612          * would be less than 1 full frame.  In this case, we size
613          * it to allow at least a full frame above the high water
614          *  mark. */
615         if (pba < E1000_PBA_16K)
616                 fc_high_water_mark = (pba * 1024) - 1600;
617
618         adapter->hw.fc_high_water = fc_high_water_mark;
619         adapter->hw.fc_low_water = fc_high_water_mark - 8;
620         if (adapter->hw.mac_type == e1000_80003es2lan)
621                 adapter->hw.fc_pause_time = 0xFFFF;
622         else
623                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
624         adapter->hw.fc_send_xon = 1;
625         adapter->hw.fc = adapter->hw.original_fc;
626
627         /* Allow time for pending master requests to run */
628         e1000_reset_hw(&adapter->hw);
629         if (adapter->hw.mac_type >= e1000_82544)
630                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
631         if (e1000_init_hw(&adapter->hw))
632                 DPRINTK(PROBE, ERR, "Hardware Error\n");
633         e1000_update_mng_vlan(adapter);
634         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
635         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
636
637         e1000_reset_adaptive(&adapter->hw);
638         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
639
640         if (!adapter->smart_power_down &&
641             (adapter->hw.mac_type == e1000_82571 ||
642              adapter->hw.mac_type == e1000_82572)) {
643                 uint16_t phy_data = 0;
644                 /* speed up time to link by disabling smart power down, ignore
645                  * the return value of this function because there is nothing
646                  * different we would do if it failed */
647                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
648                                    &phy_data);
649                 phy_data &= ~IGP02E1000_PM_SPD;
650                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
651                                     phy_data);
652         }
653
654         if (adapter->hw.mac_type < e1000_ich8lan)
655         /* FIXME: this code is duplicate and wrong for PCI Express */
656         if (adapter->en_mng_pt) {
657                 manc = E1000_READ_REG(&adapter->hw, MANC);
658                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
659                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
660         }
661 }
662
663 /**
664  * e1000_probe - Device Initialization Routine
665  * @pdev: PCI device information struct
666  * @ent: entry in e1000_pci_tbl
667  *
668  * Returns 0 on success, negative on failure
669  *
670  * e1000_probe initializes an adapter identified by a pci_dev structure.
671  * The OS initialization, configuring of the adapter private structure,
672  * and a hardware reset occur.
673  **/
674
675 static int __devinit
676 e1000_probe(struct pci_dev *pdev,
677             const struct pci_device_id *ent)
678 {
679         struct net_device *netdev;
680         struct e1000_adapter *adapter;
681         unsigned long mmio_start, mmio_len;
682         unsigned long flash_start, flash_len;
683
684         static int cards_found = 0;
685         static int global_quad_port_a = 0; /* global ksp3 port a indication */
686         int i, err, pci_using_dac;
687         uint16_t eeprom_data = 0;
688         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
689         if ((err = pci_enable_device(pdev)))
690                 return err;
691
692         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
693             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
694                 pci_using_dac = 1;
695         } else {
696                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
697                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
698                         E1000_ERR("No usable DMA configuration, aborting\n");
699                         goto err_dma;
700                 }
701                 pci_using_dac = 0;
702         }
703
704         if ((err = pci_request_regions(pdev, e1000_driver_name)))
705                 goto err_pci_reg;
706
707         pci_set_master(pdev);
708
709         err = -ENOMEM;
710         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
711         if (!netdev)
712                 goto err_alloc_etherdev;
713
714         SET_MODULE_OWNER(netdev);
715         SET_NETDEV_DEV(netdev, &pdev->dev);
716
717         pci_set_drvdata(pdev, netdev);
718         adapter = netdev_priv(netdev);
719         adapter->netdev = netdev;
720         adapter->pdev = pdev;
721         adapter->hw.back = adapter;
722         adapter->msg_enable = (1 << debug) - 1;
723
724         mmio_start = pci_resource_start(pdev, BAR_0);
725         mmio_len = pci_resource_len(pdev, BAR_0);
726
727         err = -EIO;
728         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
729         if (!adapter->hw.hw_addr)
730                 goto err_ioremap;
731
732         for (i = BAR_1; i <= BAR_5; i++) {
733                 if (pci_resource_len(pdev, i) == 0)
734                         continue;
735                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
736                         adapter->hw.io_base = pci_resource_start(pdev, i);
737                         break;
738                 }
739         }
740
741         netdev->open = &e1000_open;
742         netdev->stop = &e1000_close;
743         netdev->hard_start_xmit = &e1000_xmit_frame;
744         netdev->get_stats = &e1000_get_stats;
745         netdev->set_multicast_list = &e1000_set_multi;
746         netdev->set_mac_address = &e1000_set_mac;
747         netdev->change_mtu = &e1000_change_mtu;
748         netdev->do_ioctl = &e1000_ioctl;
749         e1000_set_ethtool_ops(netdev);
750         netdev->tx_timeout = &e1000_tx_timeout;
751         netdev->watchdog_timeo = 5 * HZ;
752 #ifdef CONFIG_E1000_NAPI
753         netdev->poll = &e1000_clean;
754         netdev->weight = 64;
755 #endif
756         netdev->vlan_rx_register = e1000_vlan_rx_register;
757         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
758         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
759 #ifdef CONFIG_NET_POLL_CONTROLLER
760         netdev->poll_controller = e1000_netpoll;
761 #endif
762         strcpy(netdev->name, pci_name(pdev));
763
764         netdev->mem_start = mmio_start;
765         netdev->mem_end = mmio_start + mmio_len;
766         netdev->base_addr = adapter->hw.io_base;
767
768         adapter->bd_number = cards_found;
769
770         /* setup the private structure */
771
772         if ((err = e1000_sw_init(adapter)))
773                 goto err_sw_init;
774
775         err = -EIO;
776         /* Flash BAR mapping must happen after e1000_sw_init
777          * because it depends on mac_type */
778         if ((adapter->hw.mac_type == e1000_ich8lan) &&
779            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
780                 flash_start = pci_resource_start(pdev, 1);
781                 flash_len = pci_resource_len(pdev, 1);
782                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
783                 if (!adapter->hw.flash_address)
784                         goto err_flashmap;
785         }
786
787         if (e1000_check_phy_reset_block(&adapter->hw))
788                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
789
790         if (adapter->hw.mac_type >= e1000_82543) {
791                 netdev->features = NETIF_F_SG |
792                                    NETIF_F_HW_CSUM |
793                                    NETIF_F_HW_VLAN_TX |
794                                    NETIF_F_HW_VLAN_RX |
795                                    NETIF_F_HW_VLAN_FILTER;
796                 if (adapter->hw.mac_type == e1000_ich8lan)
797                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
798         }
799
800 #ifdef NETIF_F_TSO
801         if ((adapter->hw.mac_type >= e1000_82544) &&
802            (adapter->hw.mac_type != e1000_82547))
803                 netdev->features |= NETIF_F_TSO;
804
805 #ifdef NETIF_F_TSO_IPV6
806         if (adapter->hw.mac_type > e1000_82547_rev_2)
807                 netdev->features |= NETIF_F_TSO_IPV6;
808 #endif
809 #endif
810         if (pci_using_dac)
811                 netdev->features |= NETIF_F_HIGHDMA;
812
813         netdev->features |= NETIF_F_LLTX;
814
815         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
816
817         /* initialize eeprom parameters */
818
819         if (e1000_init_eeprom_params(&adapter->hw)) {
820                 E1000_ERR("EEPROM initialization failed\n");
821                 goto err_eeprom;
822         }
823
824         /* before reading the EEPROM, reset the controller to
825          * put the device in a known good starting state */
826
827         e1000_reset_hw(&adapter->hw);
828
829         /* make sure the EEPROM is good */
830
831         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
832                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
833                 goto err_eeprom;
834         }
835
836         /* copy the MAC address out of the EEPROM */
837
838         if (e1000_read_mac_addr(&adapter->hw))
839                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
840         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
841         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
842
843         if (!is_valid_ether_addr(netdev->perm_addr)) {
844                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
845                 goto err_eeprom;
846         }
847
848         e1000_get_bus_info(&adapter->hw);
849
850         init_timer(&adapter->tx_fifo_stall_timer);
851         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
852         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
853
854         init_timer(&adapter->watchdog_timer);
855         adapter->watchdog_timer.function = &e1000_watchdog;
856         adapter->watchdog_timer.data = (unsigned long) adapter;
857
858         init_timer(&adapter->phy_info_timer);
859         adapter->phy_info_timer.function = &e1000_update_phy_info;
860         adapter->phy_info_timer.data = (unsigned long) adapter;
861
862         INIT_WORK(&adapter->reset_task,
863                 (void (*)(void *))e1000_reset_task, netdev);
864
865         /* we're going to reset, so assume we have no link for now */
866
867         netif_carrier_off(netdev);
868         netif_stop_queue(netdev);
869
870         e1000_check_options(adapter);
871
872         /* Initial Wake on LAN setting
873          * If APM wake is enabled in the EEPROM,
874          * enable the ACPI Magic Packet filter
875          */
876
877         switch (adapter->hw.mac_type) {
878         case e1000_82542_rev2_0:
879         case e1000_82542_rev2_1:
880         case e1000_82543:
881                 break;
882         case e1000_82544:
883                 e1000_read_eeprom(&adapter->hw,
884                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
885                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
886                 break;
887         case e1000_ich8lan:
888                 e1000_read_eeprom(&adapter->hw,
889                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
890                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
891                 break;
892         case e1000_82546:
893         case e1000_82546_rev_3:
894         case e1000_82571:
895         case e1000_80003es2lan:
896                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
897                         e1000_read_eeprom(&adapter->hw,
898                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
899                         break;
900                 }
901                 /* Fall Through */
902         default:
903                 e1000_read_eeprom(&adapter->hw,
904                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
905                 break;
906         }
907         if (eeprom_data & eeprom_apme_mask)
908                 adapter->eeprom_wol |= E1000_WUFC_MAG;
909
910         /* now that we have the eeprom settings, apply the special cases
911          * where the eeprom may be wrong or the board simply won't support
912          * wake on lan on a particular port */
913         switch (pdev->device) {
914         case E1000_DEV_ID_82546GB_PCIE:
915                 adapter->eeprom_wol = 0;
916                 break;
917         case E1000_DEV_ID_82546EB_FIBER:
918         case E1000_DEV_ID_82546GB_FIBER:
919         case E1000_DEV_ID_82571EB_FIBER:
920                 /* Wake events only supported on port A for dual fiber
921                  * regardless of eeprom setting */
922                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
923                         adapter->eeprom_wol = 0;
924                 break;
925         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
926         case E1000_DEV_ID_82571EB_QUAD_COPPER:
927                 /* if quad port adapter, disable WoL on all but port A */
928                 if (global_quad_port_a != 0)
929                         adapter->eeprom_wol = 0;
930                 else
931                         adapter->quad_port_a = 1;
932                 /* Reset for multiple quad port adapters */
933                 if (++global_quad_port_a == 4)
934                         global_quad_port_a = 0;
935                 break;
936         }
937
938         /* initialize the wol settings based on the eeprom settings */
939         adapter->wol = adapter->eeprom_wol;
940
941         /* print bus type/speed/width info */
942         {
943         struct e1000_hw *hw = &adapter->hw;
944         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
945                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
946                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
947                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
948                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
949                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
950                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
951                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
952                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
953                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
954                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
955                  "32-bit"));
956         }
957
958         for (i = 0; i < 6; i++)
959                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
960
961         /* reset the hardware with the new settings */
962         e1000_reset(adapter);
963
964         /* If the controller is 82573 and f/w is AMT, do not set
965          * DRV_LOAD until the interface is up.  For all other cases,
966          * let the f/w know that the h/w is now under the control
967          * of the driver. */
968         if (adapter->hw.mac_type != e1000_82573 ||
969             !e1000_check_mng_mode(&adapter->hw))
970                 e1000_get_hw_control(adapter);
971
972         strcpy(netdev->name, "eth%d");
973         if ((err = register_netdev(netdev)))
974                 goto err_register;
975
976         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
977
978         cards_found++;
979         return 0;
980
981 err_register:
982         e1000_release_hw_control(adapter);
983 err_eeprom:
984         if (!e1000_check_phy_reset_block(&adapter->hw))
985                 e1000_phy_hw_reset(&adapter->hw);
986
987         if (adapter->hw.flash_address)
988                 iounmap(adapter->hw.flash_address);
989 err_flashmap:
990 #ifdef CONFIG_E1000_NAPI
991         for (i = 0; i < adapter->num_rx_queues; i++)
992                 dev_put(&adapter->polling_netdev[i]);
993 #endif
994
995         kfree(adapter->tx_ring);
996         kfree(adapter->rx_ring);
997 #ifdef CONFIG_E1000_NAPI
998         kfree(adapter->polling_netdev);
999 #endif
1000 err_sw_init:
1001         iounmap(adapter->hw.hw_addr);
1002 err_ioremap:
1003         free_netdev(netdev);
1004 err_alloc_etherdev:
1005         pci_release_regions(pdev);
1006 err_pci_reg:
1007 err_dma:
1008         pci_disable_device(pdev);
1009         return err;
1010 }
1011
1012 /**
1013  * e1000_remove - Device Removal Routine
1014  * @pdev: PCI device information struct
1015  *
1016  * e1000_remove is called by the PCI subsystem to alert the driver
1017  * that it should release a PCI device.  The could be caused by a
1018  * Hot-Plug event, or because the driver is going to be removed from
1019  * memory.
1020  **/
1021
1022 static void __devexit
1023 e1000_remove(struct pci_dev *pdev)
1024 {
1025         struct net_device *netdev = pci_get_drvdata(pdev);
1026         struct e1000_adapter *adapter = netdev_priv(netdev);
1027         uint32_t manc;
1028 #ifdef CONFIG_E1000_NAPI
1029         int i;
1030 #endif
1031
1032         flush_scheduled_work();
1033
1034         if (adapter->hw.mac_type >= e1000_82540 &&
1035            adapter->hw.mac_type != e1000_ich8lan &&
1036            adapter->hw.media_type == e1000_media_type_copper) {
1037                 manc = E1000_READ_REG(&adapter->hw, MANC);
1038                 if (manc & E1000_MANC_SMBUS_EN) {
1039                         manc |= E1000_MANC_ARP_EN;
1040                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1041                 }
1042         }
1043
1044         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1045          * would have already happened in close and is redundant. */
1046         e1000_release_hw_control(adapter);
1047
1048         unregister_netdev(netdev);
1049 #ifdef CONFIG_E1000_NAPI
1050         for (i = 0; i < adapter->num_rx_queues; i++)
1051                 dev_put(&adapter->polling_netdev[i]);
1052 #endif
1053
1054         if (!e1000_check_phy_reset_block(&adapter->hw))
1055                 e1000_phy_hw_reset(&adapter->hw);
1056
1057         kfree(adapter->tx_ring);
1058         kfree(adapter->rx_ring);
1059 #ifdef CONFIG_E1000_NAPI
1060         kfree(adapter->polling_netdev);
1061 #endif
1062
1063         iounmap(adapter->hw.hw_addr);
1064         if (adapter->hw.flash_address)
1065                 iounmap(adapter->hw.flash_address);
1066         pci_release_regions(pdev);
1067
1068         free_netdev(netdev);
1069
1070         pci_disable_device(pdev);
1071 }
1072
1073 /**
1074  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1075  * @adapter: board private structure to initialize
1076  *
1077  * e1000_sw_init initializes the Adapter private data structure.
1078  * Fields are initialized based on PCI device information and
1079  * OS network device settings (MTU size).
1080  **/
1081
1082 static int __devinit
1083 e1000_sw_init(struct e1000_adapter *adapter)
1084 {
1085         struct e1000_hw *hw = &adapter->hw;
1086         struct net_device *netdev = adapter->netdev;
1087         struct pci_dev *pdev = adapter->pdev;
1088 #ifdef CONFIG_E1000_NAPI
1089         int i;
1090 #endif
1091
1092         /* PCI config space info */
1093
1094         hw->vendor_id = pdev->vendor;
1095         hw->device_id = pdev->device;
1096         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1097         hw->subsystem_id = pdev->subsystem_device;
1098
1099         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1100
1101         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1102
1103         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1104         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1105         hw->max_frame_size = netdev->mtu +
1106                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1107         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1108
1109         /* identify the MAC */
1110
1111         if (e1000_set_mac_type(hw)) {
1112                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1113                 return -EIO;
1114         }
1115
1116         switch (hw->mac_type) {
1117         default:
1118                 break;
1119         case e1000_82541:
1120         case e1000_82547:
1121         case e1000_82541_rev_2:
1122         case e1000_82547_rev_2:
1123                 hw->phy_init_script = 1;
1124                 break;
1125         }
1126
1127         e1000_set_media_type(hw);
1128
1129         hw->wait_autoneg_complete = FALSE;
1130         hw->tbi_compatibility_en = TRUE;
1131         hw->adaptive_ifs = TRUE;
1132
1133         /* Copper options */
1134
1135         if (hw->media_type == e1000_media_type_copper) {
1136                 hw->mdix = AUTO_ALL_MODES;
1137                 hw->disable_polarity_correction = FALSE;
1138                 hw->master_slave = E1000_MASTER_SLAVE;
1139         }
1140
1141         adapter->num_tx_queues = 1;
1142         adapter->num_rx_queues = 1;
1143
1144         if (e1000_alloc_queues(adapter)) {
1145                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1146                 return -ENOMEM;
1147         }
1148
1149 #ifdef CONFIG_E1000_NAPI
1150         for (i = 0; i < adapter->num_rx_queues; i++) {
1151                 adapter->polling_netdev[i].priv = adapter;
1152                 adapter->polling_netdev[i].poll = &e1000_clean;
1153                 adapter->polling_netdev[i].weight = 64;
1154                 dev_hold(&adapter->polling_netdev[i]);
1155                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1156         }
1157         spin_lock_init(&adapter->tx_queue_lock);
1158 #endif
1159
1160         atomic_set(&adapter->irq_sem, 1);
1161         spin_lock_init(&adapter->stats_lock);
1162
1163         return 0;
1164 }
1165
1166 /**
1167  * e1000_alloc_queues - Allocate memory for all rings
1168  * @adapter: board private structure to initialize
1169  *
1170  * We allocate one ring per queue at run-time since we don't know the
1171  * number of queues at compile-time.  The polling_netdev array is
1172  * intended for Multiqueue, but should work fine with a single queue.
1173  **/
1174
1175 static int __devinit
1176 e1000_alloc_queues(struct e1000_adapter *adapter)
1177 {
1178         int size;
1179
1180         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1181         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1182         if (!adapter->tx_ring)
1183                 return -ENOMEM;
1184         memset(adapter->tx_ring, 0, size);
1185
1186         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1187         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1188         if (!adapter->rx_ring) {
1189                 kfree(adapter->tx_ring);
1190                 return -ENOMEM;
1191         }
1192         memset(adapter->rx_ring, 0, size);
1193
1194 #ifdef CONFIG_E1000_NAPI
1195         size = sizeof(struct net_device) * adapter->num_rx_queues;
1196         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1197         if (!adapter->polling_netdev) {
1198                 kfree(adapter->tx_ring);
1199                 kfree(adapter->rx_ring);
1200                 return -ENOMEM;
1201         }
1202         memset(adapter->polling_netdev, 0, size);
1203 #endif
1204
1205         return E1000_SUCCESS;
1206 }
1207
1208 /**
1209  * e1000_open - Called when a network interface is made active
1210  * @netdev: network interface device structure
1211  *
1212  * Returns 0 on success, negative value on failure
1213  *
1214  * The open entry point is called when a network interface is made
1215  * active by the system (IFF_UP).  At this point all resources needed
1216  * for transmit and receive operations are allocated, the interrupt
1217  * handler is registered with the OS, the watchdog timer is started,
1218  * and the stack is notified that the interface is ready.
1219  **/
1220
1221 static int
1222 e1000_open(struct net_device *netdev)
1223 {
1224         struct e1000_adapter *adapter = netdev_priv(netdev);
1225         int err;
1226
1227         /* disallow open during test */
1228         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1229                 return -EBUSY;
1230
1231         /* allocate transmit descriptors */
1232
1233         if ((err = e1000_setup_all_tx_resources(adapter)))
1234                 goto err_setup_tx;
1235
1236         /* allocate receive descriptors */
1237
1238         if ((err = e1000_setup_all_rx_resources(adapter)))
1239                 goto err_setup_rx;
1240
1241         err = e1000_request_irq(adapter);
1242         if (err)
1243                 goto err_req_irq;
1244
1245         e1000_power_up_phy(adapter);
1246
1247         if ((err = e1000_up(adapter)))
1248                 goto err_up;
1249         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1250         if ((adapter->hw.mng_cookie.status &
1251                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1252                 e1000_update_mng_vlan(adapter);
1253         }
1254
1255         /* If AMT is enabled, let the firmware know that the network
1256          * interface is now open */
1257         if (adapter->hw.mac_type == e1000_82573 &&
1258             e1000_check_mng_mode(&adapter->hw))
1259                 e1000_get_hw_control(adapter);
1260
1261         return E1000_SUCCESS;
1262
1263 err_up:
1264         e1000_power_down_phy(adapter);
1265         e1000_free_irq(adapter);
1266 err_req_irq:
1267         e1000_free_all_rx_resources(adapter);
1268 err_setup_rx:
1269         e1000_free_all_tx_resources(adapter);
1270 err_setup_tx:
1271         e1000_reset(adapter);
1272
1273         return err;
1274 }
1275
1276 /**
1277  * e1000_close - Disables a network interface
1278  * @netdev: network interface device structure
1279  *
1280  * Returns 0, this is not allowed to fail
1281  *
1282  * The close entry point is called when an interface is de-activated
1283  * by the OS.  The hardware is still under the drivers control, but
1284  * needs to be disabled.  A global MAC reset is issued to stop the
1285  * hardware, and all transmit and receive resources are freed.
1286  **/
1287
1288 static int
1289 e1000_close(struct net_device *netdev)
1290 {
1291         struct e1000_adapter *adapter = netdev_priv(netdev);
1292
1293         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1294         e1000_down(adapter);
1295         e1000_power_down_phy(adapter);
1296         e1000_free_irq(adapter);
1297
1298         e1000_free_all_tx_resources(adapter);
1299         e1000_free_all_rx_resources(adapter);
1300
1301         if ((adapter->hw.mng_cookie.status &
1302                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1303                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1304         }
1305
1306         /* If AMT is enabled, let the firmware know that the network
1307          * interface is now closed */
1308         if (adapter->hw.mac_type == e1000_82573 &&
1309             e1000_check_mng_mode(&adapter->hw))
1310                 e1000_release_hw_control(adapter);
1311
1312         return 0;
1313 }
1314
1315 /**
1316  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1317  * @adapter: address of board private structure
1318  * @start: address of beginning of memory
1319  * @len: length of memory
1320  **/
1321 static boolean_t
1322 e1000_check_64k_bound(struct e1000_adapter *adapter,
1323                       void *start, unsigned long len)
1324 {
1325         unsigned long begin = (unsigned long) start;
1326         unsigned long end = begin + len;
1327
1328         /* First rev 82545 and 82546 need to not allow any memory
1329          * write location to cross 64k boundary due to errata 23 */
1330         if (adapter->hw.mac_type == e1000_82545 ||
1331             adapter->hw.mac_type == e1000_82546) {
1332                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1333         }
1334
1335         return TRUE;
1336 }
1337
1338 /**
1339  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1340  * @adapter: board private structure
1341  * @txdr:    tx descriptor ring (for a specific queue) to setup
1342  *
1343  * Return 0 on success, negative on failure
1344  **/
1345
1346 static int
1347 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1348                          struct e1000_tx_ring *txdr)
1349 {
1350         struct pci_dev *pdev = adapter->pdev;
1351         int size;
1352
1353         size = sizeof(struct e1000_buffer) * txdr->count;
1354         txdr->buffer_info = vmalloc(size);
1355         if (!txdr->buffer_info) {
1356                 DPRINTK(PROBE, ERR,
1357                 "Unable to allocate memory for the transmit descriptor ring\n");
1358                 return -ENOMEM;
1359         }
1360         memset(txdr->buffer_info, 0, size);
1361
1362         /* round up to nearest 4K */
1363
1364         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1365         E1000_ROUNDUP(txdr->size, 4096);
1366
1367         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1368         if (!txdr->desc) {
1369 setup_tx_desc_die:
1370                 vfree(txdr->buffer_info);
1371                 DPRINTK(PROBE, ERR,
1372                 "Unable to allocate memory for the transmit descriptor ring\n");
1373                 return -ENOMEM;
1374         }
1375
1376         /* Fix for errata 23, can't cross 64kB boundary */
1377         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1378                 void *olddesc = txdr->desc;
1379                 dma_addr_t olddma = txdr->dma;
1380                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1381                                      "at %p\n", txdr->size, txdr->desc);
1382                 /* Try again, without freeing the previous */
1383                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1384                 /* Failed allocation, critical failure */
1385                 if (!txdr->desc) {
1386                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1387                         goto setup_tx_desc_die;
1388                 }
1389
1390                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1391                         /* give up */
1392                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1393                                             txdr->dma);
1394                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1395                         DPRINTK(PROBE, ERR,
1396                                 "Unable to allocate aligned memory "
1397                                 "for the transmit descriptor ring\n");
1398                         vfree(txdr->buffer_info);
1399                         return -ENOMEM;
1400                 } else {
1401                         /* Free old allocation, new allocation was successful */
1402                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1403                 }
1404         }
1405         memset(txdr->desc, 0, txdr->size);
1406
1407         txdr->next_to_use = 0;
1408         txdr->next_to_clean = 0;
1409         spin_lock_init(&txdr->tx_lock);
1410
1411         return 0;
1412 }
1413
1414 /**
1415  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1416  *                                (Descriptors) for all queues
1417  * @adapter: board private structure
1418  *
1419  * Return 0 on success, negative on failure
1420  **/
1421
1422 int
1423 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1424 {
1425         int i, err = 0;
1426
1427         for (i = 0; i < adapter->num_tx_queues; i++) {
1428                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1429                 if (err) {
1430                         DPRINTK(PROBE, ERR,
1431                                 "Allocation for Tx Queue %u failed\n", i);
1432                         for (i-- ; i >= 0; i--)
1433                                 e1000_free_tx_resources(adapter,
1434                                                         &adapter->tx_ring[i]);
1435                         break;
1436                 }
1437         }
1438
1439         return err;
1440 }
1441
1442 /**
1443  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1444  * @adapter: board private structure
1445  *
1446  * Configure the Tx unit of the MAC after a reset.
1447  **/
1448
1449 static void
1450 e1000_configure_tx(struct e1000_adapter *adapter)
1451 {
1452         uint64_t tdba;
1453         struct e1000_hw *hw = &adapter->hw;
1454         uint32_t tdlen, tctl, tipg, tarc;
1455         uint32_t ipgr1, ipgr2;
1456
1457         /* Setup the HW Tx Head and Tail descriptor pointers */
1458
1459         switch (adapter->num_tx_queues) {
1460         case 1:
1461         default:
1462                 tdba = adapter->tx_ring[0].dma;
1463                 tdlen = adapter->tx_ring[0].count *
1464                         sizeof(struct e1000_tx_desc);
1465                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1466                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1467                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1468                 E1000_WRITE_REG(hw, TDT, 0);
1469                 E1000_WRITE_REG(hw, TDH, 0);
1470                 adapter->tx_ring[0].tdh = E1000_TDH;
1471                 adapter->tx_ring[0].tdt = E1000_TDT;
1472                 break;
1473         }
1474
1475         /* Set the default values for the Tx Inter Packet Gap timer */
1476
1477         if (hw->media_type == e1000_media_type_fiber ||
1478             hw->media_type == e1000_media_type_internal_serdes)
1479                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1480         else
1481                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1482
1483         switch (hw->mac_type) {
1484         case e1000_82542_rev2_0:
1485         case e1000_82542_rev2_1:
1486                 tipg = DEFAULT_82542_TIPG_IPGT;
1487                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1488                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1489                 break;
1490         case e1000_80003es2lan:
1491                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1492                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1493                 break;
1494         default:
1495                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1496                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1497                 break;
1498         }
1499         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1500         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1501         E1000_WRITE_REG(hw, TIPG, tipg);
1502
1503         /* Set the Tx Interrupt Delay register */
1504
1505         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1506         if (hw->mac_type >= e1000_82540)
1507                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1508
1509         /* Program the Transmit Control Register */
1510
1511         tctl = E1000_READ_REG(hw, TCTL);
1512
1513         tctl &= ~E1000_TCTL_CT;
1514         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1515                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1516
1517 #ifdef DISABLE_MULR
1518         /* disable Multiple Reads for debugging */
1519         tctl &= ~E1000_TCTL_MULR;
1520 #endif
1521
1522         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1523                 tarc = E1000_READ_REG(hw, TARC0);
1524                 tarc |= ((1 << 25) | (1 << 21));
1525                 E1000_WRITE_REG(hw, TARC0, tarc);
1526                 tarc = E1000_READ_REG(hw, TARC1);
1527                 tarc |= (1 << 25);
1528                 if (tctl & E1000_TCTL_MULR)
1529                         tarc &= ~(1 << 28);
1530                 else
1531                         tarc |= (1 << 28);
1532                 E1000_WRITE_REG(hw, TARC1, tarc);
1533         } else if (hw->mac_type == e1000_80003es2lan) {
1534                 tarc = E1000_READ_REG(hw, TARC0);
1535                 tarc |= 1;
1536                 E1000_WRITE_REG(hw, TARC0, tarc);
1537                 tarc = E1000_READ_REG(hw, TARC1);
1538                 tarc |= 1;
1539                 E1000_WRITE_REG(hw, TARC1, tarc);
1540         }
1541
1542         e1000_config_collision_dist(hw);
1543
1544         /* Setup Transmit Descriptor Settings for eop descriptor */
1545         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1546                 E1000_TXD_CMD_IFCS;
1547
1548         if (hw->mac_type < e1000_82543)
1549                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1550         else
1551                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1552
1553         /* Cache if we're 82544 running in PCI-X because we'll
1554          * need this to apply a workaround later in the send path. */
1555         if (hw->mac_type == e1000_82544 &&
1556             hw->bus_type == e1000_bus_type_pcix)
1557                 adapter->pcix_82544 = 1;
1558
1559         E1000_WRITE_REG(hw, TCTL, tctl);
1560
1561 }
1562
1563 /**
1564  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565  * @adapter: board private structure
1566  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1567  *
1568  * Returns 0 on success, negative on failure
1569  **/
1570
1571 static int
1572 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1573                          struct e1000_rx_ring *rxdr)
1574 {
1575         struct pci_dev *pdev = adapter->pdev;
1576         int size, desc_len;
1577
1578         size = sizeof(struct e1000_buffer) * rxdr->count;
1579         rxdr->buffer_info = vmalloc(size);
1580         if (!rxdr->buffer_info) {
1581                 DPRINTK(PROBE, ERR,
1582                 "Unable to allocate memory for the receive descriptor ring\n");
1583                 return -ENOMEM;
1584         }
1585         memset(rxdr->buffer_info, 0, size);
1586
1587         size = sizeof(struct e1000_ps_page) * rxdr->count;
1588         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1589         if (!rxdr->ps_page) {
1590                 vfree(rxdr->buffer_info);
1591                 DPRINTK(PROBE, ERR,
1592                 "Unable to allocate memory for the receive descriptor ring\n");
1593                 return -ENOMEM;
1594         }
1595         memset(rxdr->ps_page, 0, size);
1596
1597         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1598         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1599         if (!rxdr->ps_page_dma) {
1600                 vfree(rxdr->buffer_info);
1601                 kfree(rxdr->ps_page);
1602                 DPRINTK(PROBE, ERR,
1603                 "Unable to allocate memory for the receive descriptor ring\n");
1604                 return -ENOMEM;
1605         }
1606         memset(rxdr->ps_page_dma, 0, size);
1607
1608         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1609                 desc_len = sizeof(struct e1000_rx_desc);
1610         else
1611                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1612
1613         /* Round up to nearest 4K */
1614
1615         rxdr->size = rxdr->count * desc_len;
1616         E1000_ROUNDUP(rxdr->size, 4096);
1617
1618         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1619
1620         if (!rxdr->desc) {
1621                 DPRINTK(PROBE, ERR,
1622                 "Unable to allocate memory for the receive descriptor ring\n");
1623 setup_rx_desc_die:
1624                 vfree(rxdr->buffer_info);
1625                 kfree(rxdr->ps_page);
1626                 kfree(rxdr->ps_page_dma);
1627                 return -ENOMEM;
1628         }
1629
1630         /* Fix for errata 23, can't cross 64kB boundary */
1631         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1632                 void *olddesc = rxdr->desc;
1633                 dma_addr_t olddma = rxdr->dma;
1634                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1635                                      "at %p\n", rxdr->size, rxdr->desc);
1636                 /* Try again, without freeing the previous */
1637                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1638                 /* Failed allocation, critical failure */
1639                 if (!rxdr->desc) {
1640                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1641                         DPRINTK(PROBE, ERR,
1642                                 "Unable to allocate memory "
1643                                 "for the receive descriptor ring\n");
1644                         goto setup_rx_desc_die;
1645                 }
1646
1647                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1648                         /* give up */
1649                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1650                                             rxdr->dma);
1651                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1652                         DPRINTK(PROBE, ERR,
1653                                 "Unable to allocate aligned memory "
1654                                 "for the receive descriptor ring\n");
1655                         goto setup_rx_desc_die;
1656                 } else {
1657                         /* Free old allocation, new allocation was successful */
1658                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1659                 }
1660         }
1661         memset(rxdr->desc, 0, rxdr->size);
1662
1663         rxdr->next_to_clean = 0;
1664         rxdr->next_to_use = 0;
1665
1666         return 0;
1667 }
1668
1669 /**
1670  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1671  *                                (Descriptors) for all queues
1672  * @adapter: board private structure
1673  *
1674  * Return 0 on success, negative on failure
1675  **/
1676
1677 int
1678 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1679 {
1680         int i, err = 0;
1681
1682         for (i = 0; i < adapter->num_rx_queues; i++) {
1683                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1684                 if (err) {
1685                         DPRINTK(PROBE, ERR,
1686                                 "Allocation for Rx Queue %u failed\n", i);
1687                         for (i-- ; i >= 0; i--)
1688                                 e1000_free_rx_resources(adapter,
1689                                                         &adapter->rx_ring[i]);
1690                         break;
1691                 }
1692         }
1693
1694         return err;
1695 }
1696
1697 /**
1698  * e1000_setup_rctl - configure the receive control registers
1699  * @adapter: Board private structure
1700  **/
1701 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1702                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1703 static void
1704 e1000_setup_rctl(struct e1000_adapter *adapter)
1705 {
1706         uint32_t rctl, rfctl;
1707         uint32_t psrctl = 0;
1708 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1709         uint32_t pages = 0;
1710 #endif
1711
1712         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1713
1714         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1715
1716         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1717                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1718                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1719
1720         if (adapter->hw.tbi_compatibility_on == 1)
1721                 rctl |= E1000_RCTL_SBP;
1722         else
1723                 rctl &= ~E1000_RCTL_SBP;
1724
1725         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1726                 rctl &= ~E1000_RCTL_LPE;
1727         else
1728                 rctl |= E1000_RCTL_LPE;
1729
1730         /* Setup buffer sizes */
1731         rctl &= ~E1000_RCTL_SZ_4096;
1732         rctl |= E1000_RCTL_BSEX;
1733         switch (adapter->rx_buffer_len) {
1734                 case E1000_RXBUFFER_256:
1735                         rctl |= E1000_RCTL_SZ_256;
1736                         rctl &= ~E1000_RCTL_BSEX;
1737                         break;
1738                 case E1000_RXBUFFER_512:
1739                         rctl |= E1000_RCTL_SZ_512;
1740                         rctl &= ~E1000_RCTL_BSEX;
1741                         break;
1742                 case E1000_RXBUFFER_1024:
1743                         rctl |= E1000_RCTL_SZ_1024;
1744                         rctl &= ~E1000_RCTL_BSEX;
1745                         break;
1746                 case E1000_RXBUFFER_2048:
1747                 default:
1748                         rctl |= E1000_RCTL_SZ_2048;
1749                         rctl &= ~E1000_RCTL_BSEX;
1750                         break;
1751                 case E1000_RXBUFFER_4096:
1752                         rctl |= E1000_RCTL_SZ_4096;
1753                         break;
1754                 case E1000_RXBUFFER_8192:
1755                         rctl |= E1000_RCTL_SZ_8192;
1756                         break;
1757                 case E1000_RXBUFFER_16384:
1758                         rctl |= E1000_RCTL_SZ_16384;
1759                         break;
1760         }
1761
1762 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1763         /* 82571 and greater support packet-split where the protocol
1764          * header is placed in skb->data and the packet data is
1765          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1766          * In the case of a non-split, skb->data is linearly filled,
1767          * followed by the page buffers.  Therefore, skb->data is
1768          * sized to hold the largest protocol header.
1769          */
1770         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1771         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1772             PAGE_SIZE <= 16384)
1773                 adapter->rx_ps_pages = pages;
1774         else
1775                 adapter->rx_ps_pages = 0;
1776 #endif
1777         if (adapter->rx_ps_pages) {
1778                 /* Configure extra packet-split registers */
1779                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1780                 rfctl |= E1000_RFCTL_EXTEN;
1781                 /* disable IPv6 packet split support */
1782                 rfctl |= E1000_RFCTL_IPV6_DIS;
1783                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1784
1785                 rctl |= E1000_RCTL_DTYP_PS;
1786
1787                 psrctl |= adapter->rx_ps_bsize0 >>
1788                         E1000_PSRCTL_BSIZE0_SHIFT;
1789
1790                 switch (adapter->rx_ps_pages) {
1791                 case 3:
1792                         psrctl |= PAGE_SIZE <<
1793                                 E1000_PSRCTL_BSIZE3_SHIFT;
1794                 case 2:
1795                         psrctl |= PAGE_SIZE <<
1796                                 E1000_PSRCTL_BSIZE2_SHIFT;
1797                 case 1:
1798                         psrctl |= PAGE_SIZE >>
1799                                 E1000_PSRCTL_BSIZE1_SHIFT;
1800                         break;
1801                 }
1802
1803                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1804         }
1805
1806         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1807 }
1808
1809 /**
1810  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1811  * @adapter: board private structure
1812  *
1813  * Configure the Rx unit of the MAC after a reset.
1814  **/
1815
1816 static void
1817 e1000_configure_rx(struct e1000_adapter *adapter)
1818 {
1819         uint64_t rdba;
1820         struct e1000_hw *hw = &adapter->hw;
1821         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1822
1823         if (adapter->rx_ps_pages) {
1824                 /* this is a 32 byte descriptor */
1825                 rdlen = adapter->rx_ring[0].count *
1826                         sizeof(union e1000_rx_desc_packet_split);
1827                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1828                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1829         } else {
1830                 rdlen = adapter->rx_ring[0].count *
1831                         sizeof(struct e1000_rx_desc);
1832                 adapter->clean_rx = e1000_clean_rx_irq;
1833                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1834         }
1835
1836         /* disable receives while setting up the descriptors */
1837         rctl = E1000_READ_REG(hw, RCTL);
1838         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1839
1840         /* set the Receive Delay Timer Register */
1841         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1842
1843         if (hw->mac_type >= e1000_82540) {
1844                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1845                 if (adapter->itr > 1)
1846                         E1000_WRITE_REG(hw, ITR,
1847                                 1000000000 / (adapter->itr * 256));
1848         }
1849
1850         if (hw->mac_type >= e1000_82571) {
1851                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1852                 /* Reset delay timers after every interrupt */
1853                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1854 #ifdef CONFIG_E1000_NAPI
1855                 /* Auto-Mask interrupts upon ICR read. */
1856                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1857 #endif
1858                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1859                 E1000_WRITE_REG(hw, IAM, ~0);
1860                 E1000_WRITE_FLUSH(hw);
1861         }
1862
1863         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1864          * the Base and Length of the Rx Descriptor Ring */
1865         switch (adapter->num_rx_queues) {
1866         case 1:
1867         default:
1868                 rdba = adapter->rx_ring[0].dma;
1869                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1870                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1871                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1872                 E1000_WRITE_REG(hw, RDT, 0);
1873                 E1000_WRITE_REG(hw, RDH, 0);
1874                 adapter->rx_ring[0].rdh = E1000_RDH;
1875                 adapter->rx_ring[0].rdt = E1000_RDT;
1876                 break;
1877         }
1878
1879         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1880         if (hw->mac_type >= e1000_82543) {
1881                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1882                 if (adapter->rx_csum == TRUE) {
1883                         rxcsum |= E1000_RXCSUM_TUOFL;
1884
1885                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1886                          * Must be used in conjunction with packet-split. */
1887                         if ((hw->mac_type >= e1000_82571) &&
1888                             (adapter->rx_ps_pages)) {
1889                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1890                         }
1891                 } else {
1892                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1893                         /* don't need to clear IPPCSE as it defaults to 0 */
1894                 }
1895                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1896         }
1897
1898         /* Enable Receives */
1899         E1000_WRITE_REG(hw, RCTL, rctl);
1900 }
1901
1902 /**
1903  * e1000_free_tx_resources - Free Tx Resources per Queue
1904  * @adapter: board private structure
1905  * @tx_ring: Tx descriptor ring for a specific queue
1906  *
1907  * Free all transmit software resources
1908  **/
1909
1910 static void
1911 e1000_free_tx_resources(struct e1000_adapter *adapter,
1912                         struct e1000_tx_ring *tx_ring)
1913 {
1914         struct pci_dev *pdev = adapter->pdev;
1915
1916         e1000_clean_tx_ring(adapter, tx_ring);
1917
1918         vfree(tx_ring->buffer_info);
1919         tx_ring->buffer_info = NULL;
1920
1921         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1922
1923         tx_ring->desc = NULL;
1924 }
1925
1926 /**
1927  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1928  * @adapter: board private structure
1929  *
1930  * Free all transmit software resources
1931  **/
1932
1933 void
1934 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1935 {
1936         int i;
1937
1938         for (i = 0; i < adapter->num_tx_queues; i++)
1939                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1940 }
1941
1942 static void
1943 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1944                         struct e1000_buffer *buffer_info)
1945 {
1946         if (buffer_info->dma) {
1947                 pci_unmap_page(adapter->pdev,
1948                                 buffer_info->dma,
1949                                 buffer_info->length,
1950                                 PCI_DMA_TODEVICE);
1951         }
1952         if (buffer_info->skb)
1953                 dev_kfree_skb_any(buffer_info->skb);
1954         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1955 }
1956
1957 /**
1958  * e1000_clean_tx_ring - Free Tx Buffers
1959  * @adapter: board private structure
1960  * @tx_ring: ring to be cleaned
1961  **/
1962
1963 static void
1964 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1965                     struct e1000_tx_ring *tx_ring)
1966 {
1967         struct e1000_buffer *buffer_info;
1968         unsigned long size;
1969         unsigned int i;
1970
1971         /* Free all the Tx ring sk_buffs */
1972
1973         for (i = 0; i < tx_ring->count; i++) {
1974                 buffer_info = &tx_ring->buffer_info[i];
1975                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1976         }
1977
1978         size = sizeof(struct e1000_buffer) * tx_ring->count;
1979         memset(tx_ring->buffer_info, 0, size);
1980
1981         /* Zero out the descriptor ring */
1982
1983         memset(tx_ring->desc, 0, tx_ring->size);
1984
1985         tx_ring->next_to_use = 0;
1986         tx_ring->next_to_clean = 0;
1987         tx_ring->last_tx_tso = 0;
1988
1989         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1990         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1991 }
1992
1993 /**
1994  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1995  * @adapter: board private structure
1996  **/
1997
1998 static void
1999 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2000 {
2001         int i;
2002
2003         for (i = 0; i < adapter->num_tx_queues; i++)
2004                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2005 }
2006
2007 /**
2008  * e1000_free_rx_resources - Free Rx Resources
2009  * @adapter: board private structure
2010  * @rx_ring: ring to clean the resources from
2011  *
2012  * Free all receive software resources
2013  **/
2014
2015 static void
2016 e1000_free_rx_resources(struct e1000_adapter *adapter,
2017                         struct e1000_rx_ring *rx_ring)
2018 {
2019         struct pci_dev *pdev = adapter->pdev;
2020
2021         e1000_clean_rx_ring(adapter, rx_ring);
2022
2023         vfree(rx_ring->buffer_info);
2024         rx_ring->buffer_info = NULL;
2025         kfree(rx_ring->ps_page);
2026         rx_ring->ps_page = NULL;
2027         kfree(rx_ring->ps_page_dma);
2028         rx_ring->ps_page_dma = NULL;
2029
2030         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2031
2032         rx_ring->desc = NULL;
2033 }
2034
2035 /**
2036  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2037  * @adapter: board private structure
2038  *
2039  * Free all receive software resources
2040  **/
2041
2042 void
2043 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2044 {
2045         int i;
2046
2047         for (i = 0; i < adapter->num_rx_queues; i++)
2048                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2049 }
2050
2051 /**
2052  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2053  * @adapter: board private structure
2054  * @rx_ring: ring to free buffers from
2055  **/
2056
2057 static void
2058 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2059                     struct e1000_rx_ring *rx_ring)
2060 {
2061         struct e1000_buffer *buffer_info;
2062         struct e1000_ps_page *ps_page;
2063         struct e1000_ps_page_dma *ps_page_dma;
2064         struct pci_dev *pdev = adapter->pdev;
2065         unsigned long size;
2066         unsigned int i, j;
2067
2068         /* Free all the Rx ring sk_buffs */
2069         for (i = 0; i < rx_ring->count; i++) {
2070                 buffer_info = &rx_ring->buffer_info[i];
2071                 if (buffer_info->skb) {
2072                         pci_unmap_single(pdev,
2073                                          buffer_info->dma,
2074                                          buffer_info->length,
2075                                          PCI_DMA_FROMDEVICE);
2076
2077                         dev_kfree_skb(buffer_info->skb);
2078                         buffer_info->skb = NULL;
2079                 }
2080                 ps_page = &rx_ring->ps_page[i];
2081                 ps_page_dma = &rx_ring->ps_page_dma[i];
2082                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2083                         if (!ps_page->ps_page[j]) break;
2084                         pci_unmap_page(pdev,
2085                                        ps_page_dma->ps_page_dma[j],
2086                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2087                         ps_page_dma->ps_page_dma[j] = 0;
2088                         put_page(ps_page->ps_page[j]);
2089                         ps_page->ps_page[j] = NULL;
2090                 }
2091         }
2092
2093         size = sizeof(struct e1000_buffer) * rx_ring->count;
2094         memset(rx_ring->buffer_info, 0, size);
2095         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2096         memset(rx_ring->ps_page, 0, size);
2097         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2098         memset(rx_ring->ps_page_dma, 0, size);
2099
2100         /* Zero out the descriptor ring */
2101
2102         memset(rx_ring->desc, 0, rx_ring->size);
2103
2104         rx_ring->next_to_clean = 0;
2105         rx_ring->next_to_use = 0;
2106
2107         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2108         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2109 }
2110
2111 /**
2112  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2113  * @adapter: board private structure
2114  **/
2115
2116 static void
2117 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2118 {
2119         int i;
2120
2121         for (i = 0; i < adapter->num_rx_queues; i++)
2122                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2123 }
2124
2125 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2126  * and memory write and invalidate disabled for certain operations
2127  */
2128 static void
2129 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2130 {
2131         struct net_device *netdev = adapter->netdev;
2132         uint32_t rctl;
2133
2134         e1000_pci_clear_mwi(&adapter->hw);
2135
2136         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2137         rctl |= E1000_RCTL_RST;
2138         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2139         E1000_WRITE_FLUSH(&adapter->hw);
2140         mdelay(5);
2141
2142         if (netif_running(netdev))
2143                 e1000_clean_all_rx_rings(adapter);
2144 }
2145
2146 static void
2147 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2148 {
2149         struct net_device *netdev = adapter->netdev;
2150         uint32_t rctl;
2151
2152         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2153         rctl &= ~E1000_RCTL_RST;
2154         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2155         E1000_WRITE_FLUSH(&adapter->hw);
2156         mdelay(5);
2157
2158         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2159                 e1000_pci_set_mwi(&adapter->hw);
2160
2161         if (netif_running(netdev)) {
2162                 /* No need to loop, because 82542 supports only 1 queue */
2163                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2164                 e1000_configure_rx(adapter);
2165                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2166         }
2167 }
2168
2169 /**
2170  * e1000_set_mac - Change the Ethernet Address of the NIC
2171  * @netdev: network interface device structure
2172  * @p: pointer to an address structure
2173  *
2174  * Returns 0 on success, negative on failure
2175  **/
2176
2177 static int
2178 e1000_set_mac(struct net_device *netdev, void *p)
2179 {
2180         struct e1000_adapter *adapter = netdev_priv(netdev);
2181         struct sockaddr *addr = p;
2182
2183         if (!is_valid_ether_addr(addr->sa_data))
2184                 return -EADDRNOTAVAIL;
2185
2186         /* 82542 2.0 needs to be in reset to write receive address registers */
2187
2188         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2189                 e1000_enter_82542_rst(adapter);
2190
2191         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2192         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2193
2194         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2195
2196         /* With 82571 controllers, LAA may be overwritten (with the default)
2197          * due to controller reset from the other port. */
2198         if (adapter->hw.mac_type == e1000_82571) {
2199                 /* activate the work around */
2200                 adapter->hw.laa_is_present = 1;
2201
2202                 /* Hold a copy of the LAA in RAR[14] This is done so that
2203                  * between the time RAR[0] gets clobbered  and the time it
2204                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2205                  * of the RARs and no incoming packets directed to this port
2206                  * are dropped. Eventaully the LAA will be in RAR[0] and
2207                  * RAR[14] */
2208                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2209                                         E1000_RAR_ENTRIES - 1);
2210         }
2211
2212         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2213                 e1000_leave_82542_rst(adapter);
2214
2215         return 0;
2216 }
2217
2218 /**
2219  * e1000_set_multi - Multicast and Promiscuous mode set
2220  * @netdev: network interface device structure
2221  *
2222  * The set_multi entry point is called whenever the multicast address
2223  * list or the network interface flags are updated.  This routine is
2224  * responsible for configuring the hardware for proper multicast,
2225  * promiscuous mode, and all-multi behavior.
2226  **/
2227
2228 static void
2229 e1000_set_multi(struct net_device *netdev)
2230 {
2231         struct e1000_adapter *adapter = netdev_priv(netdev);
2232         struct e1000_hw *hw = &adapter->hw;
2233         struct dev_mc_list *mc_ptr;
2234         uint32_t rctl;
2235         uint32_t hash_value;
2236         int i, rar_entries = E1000_RAR_ENTRIES;
2237         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2238                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2239                                 E1000_NUM_MTA_REGISTERS;
2240
2241         if (adapter->hw.mac_type == e1000_ich8lan)
2242                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2243
2244         /* reserve RAR[14] for LAA over-write work-around */
2245         if (adapter->hw.mac_type == e1000_82571)
2246                 rar_entries--;
2247
2248         /* Check for Promiscuous and All Multicast modes */
2249
2250         rctl = E1000_READ_REG(hw, RCTL);
2251
2252         if (netdev->flags & IFF_PROMISC) {
2253                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254         } else if (netdev->flags & IFF_ALLMULTI) {
2255                 rctl |= E1000_RCTL_MPE;
2256                 rctl &= ~E1000_RCTL_UPE;
2257         } else {
2258                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2259         }
2260
2261         E1000_WRITE_REG(hw, RCTL, rctl);
2262
2263         /* 82542 2.0 needs to be in reset to write receive address registers */
2264
2265         if (hw->mac_type == e1000_82542_rev2_0)
2266                 e1000_enter_82542_rst(adapter);
2267
2268         /* load the first 14 multicast address into the exact filters 1-14
2269          * RAR 0 is used for the station MAC adddress
2270          * if there are not 14 addresses, go ahead and clear the filters
2271          * -- with 82571 controllers only 0-13 entries are filled here
2272          */
2273         mc_ptr = netdev->mc_list;
2274
2275         for (i = 1; i < rar_entries; i++) {
2276                 if (mc_ptr) {
2277                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2278                         mc_ptr = mc_ptr->next;
2279                 } else {
2280                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2281                         E1000_WRITE_FLUSH(hw);
2282                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2283                         E1000_WRITE_FLUSH(hw);
2284                 }
2285         }
2286
2287         /* clear the old settings from the multicast hash table */
2288
2289         for (i = 0; i < mta_reg_count; i++) {
2290                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2291                 E1000_WRITE_FLUSH(hw);
2292         }
2293
2294         /* load any remaining addresses into the hash table */
2295
2296         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2297                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2298                 e1000_mta_set(hw, hash_value);
2299         }
2300
2301         if (hw->mac_type == e1000_82542_rev2_0)
2302                 e1000_leave_82542_rst(adapter);
2303 }
2304
2305 /* Need to wait a few seconds after link up to get diagnostic information from
2306  * the phy */
2307
2308 static void
2309 e1000_update_phy_info(unsigned long data)
2310 {
2311         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2312         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2313 }
2314
2315 /**
2316  * e1000_82547_tx_fifo_stall - Timer Call-back
2317  * @data: pointer to adapter cast into an unsigned long
2318  **/
2319
2320 static void
2321 e1000_82547_tx_fifo_stall(unsigned long data)
2322 {
2323         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2324         struct net_device *netdev = adapter->netdev;
2325         uint32_t tctl;
2326
2327         if (atomic_read(&adapter->tx_fifo_stall)) {
2328                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2329                     E1000_READ_REG(&adapter->hw, TDH)) &&
2330                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2331                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2332                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2333                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2334                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2335                         E1000_WRITE_REG(&adapter->hw, TCTL,
2336                                         tctl & ~E1000_TCTL_EN);
2337                         E1000_WRITE_REG(&adapter->hw, TDFT,
2338                                         adapter->tx_head_addr);
2339                         E1000_WRITE_REG(&adapter->hw, TDFH,
2340                                         adapter->tx_head_addr);
2341                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2342                                         adapter->tx_head_addr);
2343                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2344                                         adapter->tx_head_addr);
2345                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2346                         E1000_WRITE_FLUSH(&adapter->hw);
2347
2348                         adapter->tx_fifo_head = 0;
2349                         atomic_set(&adapter->tx_fifo_stall, 0);
2350                         netif_wake_queue(netdev);
2351                 } else {
2352                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2353                 }
2354         }
2355 }
2356
2357 /**
2358  * e1000_watchdog - Timer Call-back
2359  * @data: pointer to adapter cast into an unsigned long
2360  **/
2361 static void
2362 e1000_watchdog(unsigned long data)
2363 {
2364         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2365         struct net_device *netdev = adapter->netdev;
2366         struct e1000_tx_ring *txdr = adapter->tx_ring;
2367         uint32_t link, tctl;
2368         int32_t ret_val;
2369
2370         ret_val = e1000_check_for_link(&adapter->hw);
2371         if ((ret_val == E1000_ERR_PHY) &&
2372             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2373             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2374                 /* See e1000_kumeran_lock_loss_workaround() */
2375                 DPRINTK(LINK, INFO,
2376                         "Gigabit has been disabled, downgrading speed\n");
2377         }
2378         if (adapter->hw.mac_type == e1000_82573) {
2379                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2380                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2381                         e1000_update_mng_vlan(adapter);
2382         }
2383
2384         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2385            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2386                 link = !adapter->hw.serdes_link_down;
2387         else
2388                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2389
2390         if (link) {
2391                 if (!netif_carrier_ok(netdev)) {
2392                         boolean_t txb2b = 1;
2393                         e1000_get_speed_and_duplex(&adapter->hw,
2394                                                    &adapter->link_speed,
2395                                                    &adapter->link_duplex);
2396
2397                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2398                                adapter->link_speed,
2399                                adapter->link_duplex == FULL_DUPLEX ?
2400                                "Full Duplex" : "Half Duplex");
2401
2402                         /* tweak tx_queue_len according to speed/duplex
2403                          * and adjust the timeout factor */
2404                         netdev->tx_queue_len = adapter->tx_queue_len;
2405                         adapter->tx_timeout_factor = 1;
2406                         switch (adapter->link_speed) {
2407                         case SPEED_10:
2408                                 txb2b = 0;
2409                                 netdev->tx_queue_len = 10;
2410                                 adapter->tx_timeout_factor = 8;
2411                                 break;
2412                         case SPEED_100:
2413                                 txb2b = 0;
2414                                 netdev->tx_queue_len = 100;
2415                                 /* maybe add some timeout factor ? */
2416                                 break;
2417                         }
2418
2419                         if ((adapter->hw.mac_type == e1000_82571 ||
2420                              adapter->hw.mac_type == e1000_82572) &&
2421                             txb2b == 0) {
2422 #define SPEED_MODE_BIT (1 << 21)
2423                                 uint32_t tarc0;
2424                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2425                                 tarc0 &= ~SPEED_MODE_BIT;
2426                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2427                         }
2428                                 
2429 #ifdef NETIF_F_TSO
2430                         /* disable TSO for pcie and 10/100 speeds, to avoid
2431                          * some hardware issues */
2432                         if (!adapter->tso_force &&
2433                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2434                                 switch (adapter->link_speed) {
2435                                 case SPEED_10:
2436                                 case SPEED_100:
2437                                         DPRINTK(PROBE,INFO,
2438                                         "10/100 speed: disabling TSO\n");
2439                                         netdev->features &= ~NETIF_F_TSO;
2440                                         break;
2441                                 case SPEED_1000:
2442                                         netdev->features |= NETIF_F_TSO;
2443                                         break;
2444                                 default:
2445                                         /* oops */
2446                                         break;
2447                                 }
2448                         }
2449 #endif
2450
2451                         /* enable transmits in the hardware, need to do this
2452                          * after setting TARC0 */
2453                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2454                         tctl |= E1000_TCTL_EN;
2455                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2456
2457                         netif_carrier_on(netdev);
2458                         netif_wake_queue(netdev);
2459                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2460                         adapter->smartspeed = 0;
2461                 }
2462         } else {
2463                 if (netif_carrier_ok(netdev)) {
2464                         adapter->link_speed = 0;
2465                         adapter->link_duplex = 0;
2466                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2467                         netif_carrier_off(netdev);
2468                         netif_stop_queue(netdev);
2469                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2470
2471                         /* 80003ES2LAN workaround--
2472                          * For packet buffer work-around on link down event;
2473                          * disable receives in the ISR and
2474                          * reset device here in the watchdog
2475                          */
2476                         if (adapter->hw.mac_type == e1000_80003es2lan)
2477                                 /* reset device */
2478                                 schedule_work(&adapter->reset_task);
2479                 }
2480
2481                 e1000_smartspeed(adapter);
2482         }
2483
2484         e1000_update_stats(adapter);
2485
2486         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2487         adapter->tpt_old = adapter->stats.tpt;
2488         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2489         adapter->colc_old = adapter->stats.colc;
2490
2491         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2492         adapter->gorcl_old = adapter->stats.gorcl;
2493         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2494         adapter->gotcl_old = adapter->stats.gotcl;
2495
2496         e1000_update_adaptive(&adapter->hw);
2497
2498         if (!netif_carrier_ok(netdev)) {
2499                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2500                         /* We've lost link, so the controller stops DMA,
2501                          * but we've got queued Tx work that's never going
2502                          * to get done, so reset controller to flush Tx.
2503                          * (Do the reset outside of interrupt context). */
2504                         adapter->tx_timeout_count++;
2505                         schedule_work(&adapter->reset_task);
2506                 }
2507         }
2508
2509         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2510         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2511                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2512                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2513                  * else is between 2000-8000. */
2514                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2515                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2516                         adapter->gotcl - adapter->gorcl :
2517                         adapter->gorcl - adapter->gotcl) / 10000;
2518                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2519                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2520         }
2521
2522         /* Cause software interrupt to ensure rx ring is cleaned */
2523         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2524
2525         /* Force detection of hung controller every watchdog period */
2526         adapter->detect_tx_hung = TRUE;
2527
2528         /* With 82571 controllers, LAA may be overwritten due to controller
2529          * reset from the other port. Set the appropriate LAA in RAR[0] */
2530         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2531                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2532
2533         /* Reset the timer */
2534         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2535 }
2536
2537 #define E1000_TX_FLAGS_CSUM             0x00000001
2538 #define E1000_TX_FLAGS_VLAN             0x00000002
2539 #define E1000_TX_FLAGS_TSO              0x00000004
2540 #define E1000_TX_FLAGS_IPV4             0x00000008
2541 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2542 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2543
2544 static int
2545 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2546           struct sk_buff *skb)
2547 {
2548 #ifdef NETIF_F_TSO
2549         struct e1000_context_desc *context_desc;
2550         struct e1000_buffer *buffer_info;
2551         unsigned int i;
2552         uint32_t cmd_length = 0;
2553         uint16_t ipcse = 0, tucse, mss;
2554         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2555         int err;
2556
2557         if (skb_is_gso(skb)) {
2558                 if (skb_header_cloned(skb)) {
2559                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2560                         if (err)
2561                                 return err;
2562                 }
2563
2564                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2565                 mss = skb_shinfo(skb)->gso_size;
2566                 if (skb->protocol == htons(ETH_P_IP)) {
2567                         skb->nh.iph->tot_len = 0;
2568                         skb->nh.iph->check = 0;
2569                         skb->h.th->check =
2570                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2571                                                    skb->nh.iph->daddr,
2572                                                    0,
2573                                                    IPPROTO_TCP,
2574                                                    0);
2575                         cmd_length = E1000_TXD_CMD_IP;
2576                         ipcse = skb->h.raw - skb->data - 1;
2577 #ifdef NETIF_F_TSO_IPV6
2578                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2579                         skb->nh.ipv6h->payload_len = 0;
2580                         skb->h.th->check =
2581                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2582                                                  &skb->nh.ipv6h->daddr,
2583                                                  0,
2584                                                  IPPROTO_TCP,
2585                                                  0);
2586                         ipcse = 0;
2587 #endif
2588                 }
2589                 ipcss = skb->nh.raw - skb->data;
2590                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2591                 tucss = skb->h.raw - skb->data;
2592                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2593                 tucse = 0;
2594
2595                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2596                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2597
2598                 i = tx_ring->next_to_use;
2599                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2600                 buffer_info = &tx_ring->buffer_info[i];
2601
2602                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2603                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2604                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2605                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2606                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2607                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2608                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2609                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2610                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2611
2612                 buffer_info->time_stamp = jiffies;
2613
2614                 if (++i == tx_ring->count) i = 0;
2615                 tx_ring->next_to_use = i;
2616
2617                 return TRUE;
2618         }
2619 #endif
2620
2621         return FALSE;
2622 }
2623
2624 static boolean_t
2625 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2626               struct sk_buff *skb)
2627 {
2628         struct e1000_context_desc *context_desc;
2629         struct e1000_buffer *buffer_info;
2630         unsigned int i;
2631         uint8_t css;
2632
2633         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2634                 css = skb->h.raw - skb->data;
2635
2636                 i = tx_ring->next_to_use;
2637                 buffer_info = &tx_ring->buffer_info[i];
2638                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2639
2640                 context_desc->upper_setup.tcp_fields.tucss = css;
2641                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2642                 context_desc->upper_setup.tcp_fields.tucse = 0;
2643                 context_desc->tcp_seg_setup.data = 0;
2644                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2645
2646                 buffer_info->time_stamp = jiffies;
2647
2648                 if (unlikely(++i == tx_ring->count)) i = 0;
2649                 tx_ring->next_to_use = i;
2650
2651                 return TRUE;
2652         }
2653
2654         return FALSE;
2655 }
2656
2657 #define E1000_MAX_TXD_PWR       12
2658 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2659
2660 static int
2661 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2662              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2663              unsigned int nr_frags, unsigned int mss)
2664 {
2665         struct e1000_buffer *buffer_info;
2666         unsigned int len = skb->len;
2667         unsigned int offset = 0, size, count = 0, i;
2668         unsigned int f;
2669         len -= skb->data_len;
2670
2671         i = tx_ring->next_to_use;
2672
2673         while (len) {
2674                 buffer_info = &tx_ring->buffer_info[i];
2675                 size = min(len, max_per_txd);
2676 #ifdef NETIF_F_TSO
2677                 /* Workaround for Controller erratum --
2678                  * descriptor for non-tso packet in a linear SKB that follows a
2679                  * tso gets written back prematurely before the data is fully
2680                  * DMA'd to the controller */
2681                 if (!skb->data_len && tx_ring->last_tx_tso &&
2682                     !skb_is_gso(skb)) {
2683                         tx_ring->last_tx_tso = 0;
2684                         size -= 4;
2685                 }
2686
2687                 /* Workaround for premature desc write-backs
2688                  * in TSO mode.  Append 4-byte sentinel desc */
2689                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2690                         size -= 4;
2691 #endif
2692                 /* work-around for errata 10 and it applies
2693                  * to all controllers in PCI-X mode
2694                  * The fix is to make sure that the first descriptor of a
2695                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2696                  */
2697                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2698                                 (size > 2015) && count == 0))
2699                         size = 2015;
2700
2701                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2702                  * terminating buffers within evenly-aligned dwords. */
2703                 if (unlikely(adapter->pcix_82544 &&
2704                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2705                    size > 4))
2706                         size -= 4;
2707
2708                 buffer_info->length = size;
2709                 buffer_info->dma =
2710                         pci_map_single(adapter->pdev,
2711                                 skb->data + offset,
2712                                 size,
2713                                 PCI_DMA_TODEVICE);
2714                 buffer_info->time_stamp = jiffies;
2715
2716                 len -= size;
2717                 offset += size;
2718                 count++;
2719                 if (unlikely(++i == tx_ring->count)) i = 0;
2720         }
2721
2722         for (f = 0; f < nr_frags; f++) {
2723                 struct skb_frag_struct *frag;
2724
2725                 frag = &skb_shinfo(skb)->frags[f];
2726                 len = frag->size;
2727                 offset = frag->page_offset;
2728
2729                 while (len) {
2730                         buffer_info = &tx_ring->buffer_info[i];
2731                         size = min(len, max_per_txd);
2732 #ifdef NETIF_F_TSO
2733                         /* Workaround for premature desc write-backs
2734                          * in TSO mode.  Append 4-byte sentinel desc */
2735                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2736                                 size -= 4;
2737 #endif
2738                         /* Workaround for potential 82544 hang in PCI-X.
2739                          * Avoid terminating buffers within evenly-aligned
2740                          * dwords. */
2741                         if (unlikely(adapter->pcix_82544 &&
2742                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2743                            size > 4))
2744                                 size -= 4;
2745
2746                         buffer_info->length = size;
2747                         buffer_info->dma =
2748                                 pci_map_page(adapter->pdev,
2749                                         frag->page,
2750                                         offset,
2751                                         size,
2752                                         PCI_DMA_TODEVICE);
2753                         buffer_info->time_stamp = jiffies;
2754
2755                         len -= size;
2756                         offset += size;
2757                         count++;
2758                         if (unlikely(++i == tx_ring->count)) i = 0;
2759                 }
2760         }
2761
2762         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2763         tx_ring->buffer_info[i].skb = skb;
2764         tx_ring->buffer_info[first].next_to_watch = i;
2765
2766         return count;
2767 }
2768
2769 static void
2770 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2771                int tx_flags, int count)
2772 {
2773         struct e1000_tx_desc *tx_desc = NULL;
2774         struct e1000_buffer *buffer_info;
2775         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2776         unsigned int i;
2777
2778         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2779                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2780                              E1000_TXD_CMD_TSE;
2781                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2782
2783                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2784                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2785         }
2786
2787         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2788                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2789                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2790         }
2791
2792         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2793                 txd_lower |= E1000_TXD_CMD_VLE;
2794                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2795         }
2796
2797         i = tx_ring->next_to_use;
2798
2799         while (count--) {
2800                 buffer_info = &tx_ring->buffer_info[i];
2801                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2802                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2803                 tx_desc->lower.data =
2804                         cpu_to_le32(txd_lower | buffer_info->length);
2805                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2806                 if (unlikely(++i == tx_ring->count)) i = 0;
2807         }
2808
2809         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2810
2811         /* Force memory writes to complete before letting h/w
2812          * know there are new descriptors to fetch.  (Only
2813          * applicable for weak-ordered memory model archs,
2814          * such as IA-64). */
2815         wmb();
2816
2817         tx_ring->next_to_use = i;
2818         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2819 }
2820
2821 /**
2822  * 82547 workaround to avoid controller hang in half-duplex environment.
2823  * The workaround is to avoid queuing a large packet that would span
2824  * the internal Tx FIFO ring boundary by notifying the stack to resend
2825  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2826  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2827  * to the beginning of the Tx FIFO.
2828  **/
2829
2830 #define E1000_FIFO_HDR                  0x10
2831 #define E1000_82547_PAD_LEN             0x3E0
2832
2833 static int
2834 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2835 {
2836         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2837         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2838
2839         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2840
2841         if (adapter->link_duplex != HALF_DUPLEX)
2842                 goto no_fifo_stall_required;
2843
2844         if (atomic_read(&adapter->tx_fifo_stall))
2845                 return 1;
2846
2847         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2848                 atomic_set(&adapter->tx_fifo_stall, 1);
2849                 return 1;
2850         }
2851
2852 no_fifo_stall_required:
2853         adapter->tx_fifo_head += skb_fifo_len;
2854         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2855                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2856         return 0;
2857 }
2858
2859 #define MINIMUM_DHCP_PACKET_SIZE 282
2860 static int
2861 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2862 {
2863         struct e1000_hw *hw =  &adapter->hw;
2864         uint16_t length, offset;
2865         if (vlan_tx_tag_present(skb)) {
2866                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2867                         ( adapter->hw.mng_cookie.status &
2868                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2869                         return 0;
2870         }
2871         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2872                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2873                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2874                         const struct iphdr *ip =
2875                                 (struct iphdr *)((uint8_t *)skb->data+14);
2876                         if (IPPROTO_UDP == ip->protocol) {
2877                                 struct udphdr *udp =
2878                                         (struct udphdr *)((uint8_t *)ip +
2879                                                 (ip->ihl << 2));
2880                                 if (ntohs(udp->dest) == 67) {
2881                                         offset = (uint8_t *)udp + 8 - skb->data;
2882                                         length = skb->len - offset;
2883
2884                                         return e1000_mng_write_dhcp_info(hw,
2885                                                         (uint8_t *)udp + 8,
2886                                                         length);
2887                                 }
2888                         }
2889                 }
2890         }
2891         return 0;
2892 }
2893
2894 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2895 static int
2896 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2897 {
2898         struct e1000_adapter *adapter = netdev_priv(netdev);
2899         struct e1000_tx_ring *tx_ring;
2900         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2901         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2902         unsigned int tx_flags = 0;
2903         unsigned int len = skb->len;
2904         unsigned long flags;
2905         unsigned int nr_frags = 0;
2906         unsigned int mss = 0;
2907         int count = 0;
2908         int tso;
2909         unsigned int f;
2910         len -= skb->data_len;
2911
2912         tx_ring = adapter->tx_ring;
2913
2914         if (unlikely(skb->len <= 0)) {
2915                 dev_kfree_skb_any(skb);
2916                 return NETDEV_TX_OK;
2917         }
2918
2919 #ifdef NETIF_F_TSO
2920         mss = skb_shinfo(skb)->gso_size;
2921         /* The controller does a simple calculation to
2922          * make sure there is enough room in the FIFO before
2923          * initiating the DMA for each buffer.  The calc is:
2924          * 4 = ceil(buffer len/mss).  To make sure we don't
2925          * overrun the FIFO, adjust the max buffer len if mss
2926          * drops. */
2927         if (mss) {
2928                 uint8_t hdr_len;
2929                 max_per_txd = min(mss << 2, max_per_txd);
2930                 max_txd_pwr = fls(max_per_txd) - 1;
2931
2932         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2933          * points to just header, pull a few bytes of payload from
2934          * frags into skb->data */
2935                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2936                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2937                         switch (adapter->hw.mac_type) {
2938                                 unsigned int pull_size;
2939                         case e1000_82571:
2940                         case e1000_82572:
2941                         case e1000_82573:
2942                         case e1000_ich8lan:
2943                                 pull_size = min((unsigned int)4, skb->data_len);
2944                                 if (!__pskb_pull_tail(skb, pull_size)) {
2945                                         DPRINTK(DRV, ERR,
2946                                                 "__pskb_pull_tail failed.\n");
2947                                         dev_kfree_skb_any(skb);
2948                                         return NETDEV_TX_OK;
2949                                 }
2950                                 len = skb->len - skb->data_len;
2951                                 break;
2952                         default:
2953                                 /* do nothing */
2954                                 break;
2955                         }
2956                 }
2957         }
2958
2959         /* reserve a descriptor for the offload context */
2960         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2961                 count++;
2962         count++;
2963 #else
2964         if (skb->ip_summed == CHECKSUM_HW)
2965                 count++;
2966 #endif
2967
2968 #ifdef NETIF_F_TSO
2969         /* Controller Erratum workaround */
2970         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2971                 count++;
2972 #endif
2973
2974         count += TXD_USE_COUNT(len, max_txd_pwr);
2975
2976         if (adapter->pcix_82544)
2977                 count++;
2978
2979         /* work-around for errata 10 and it applies to all controllers
2980          * in PCI-X mode, so add one more descriptor to the count
2981          */
2982         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2983                         (len > 2015)))
2984                 count++;
2985
2986         nr_frags = skb_shinfo(skb)->nr_frags;
2987         for (f = 0; f < nr_frags; f++)
2988                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2989                                        max_txd_pwr);
2990         if (adapter->pcix_82544)
2991                 count += nr_frags;
2992
2993
2994         if (adapter->hw.tx_pkt_filtering &&
2995             (adapter->hw.mac_type == e1000_82573))
2996                 e1000_transfer_dhcp_info(adapter, skb);
2997
2998         local_irq_save(flags);
2999         if (!spin_trylock(&tx_ring->tx_lock)) {
3000                 /* Collision - tell upper layer to requeue */
3001                 local_irq_restore(flags);
3002                 return NETDEV_TX_LOCKED;
3003         }
3004
3005         /* need: count + 2 desc gap to keep tail from touching
3006          * head, otherwise try next time */
3007         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
3008                 netif_stop_queue(netdev);
3009                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3010                 return NETDEV_TX_BUSY;
3011         }
3012
3013         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3014                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3015                         netif_stop_queue(netdev);
3016                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
3017                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3018                         return NETDEV_TX_BUSY;
3019                 }
3020         }
3021
3022         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3023                 tx_flags |= E1000_TX_FLAGS_VLAN;
3024                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3025         }
3026
3027         first = tx_ring->next_to_use;
3028
3029         tso = e1000_tso(adapter, tx_ring, skb);
3030         if (tso < 0) {
3031                 dev_kfree_skb_any(skb);
3032                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3033                 return NETDEV_TX_OK;
3034         }
3035
3036         if (likely(tso)) {
3037                 tx_ring->last_tx_tso = 1;
3038                 tx_flags |= E1000_TX_FLAGS_TSO;
3039         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3040                 tx_flags |= E1000_TX_FLAGS_CSUM;
3041
3042         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3043          * 82571 hardware supports TSO capabilities for IPv6 as well...
3044          * no longer assume, we must. */
3045         if (likely(skb->protocol == htons(ETH_P_IP)))
3046                 tx_flags |= E1000_TX_FLAGS_IPV4;
3047
3048         e1000_tx_queue(adapter, tx_ring, tx_flags,
3049                        e1000_tx_map(adapter, tx_ring, skb, first,
3050                                     max_per_txd, nr_frags, mss));
3051
3052         netdev->trans_start = jiffies;
3053
3054         /* Make sure there is space in the ring for the next send. */
3055         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3056                 netif_stop_queue(netdev);
3057
3058         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3059         return NETDEV_TX_OK;
3060 }
3061
3062 /**
3063  * e1000_tx_timeout - Respond to a Tx Hang
3064  * @netdev: network interface device structure
3065  **/
3066
3067 static void
3068 e1000_tx_timeout(struct net_device *netdev)
3069 {
3070         struct e1000_adapter *adapter = netdev_priv(netdev);
3071
3072         /* Do the reset outside of interrupt context */
3073         adapter->tx_timeout_count++;
3074         schedule_work(&adapter->reset_task);
3075 }
3076
3077 static void
3078 e1000_reset_task(struct net_device *netdev)
3079 {
3080         struct e1000_adapter *adapter = netdev_priv(netdev);
3081
3082         e1000_reinit_locked(adapter);
3083 }
3084
3085 /**
3086  * e1000_get_stats - Get System Network Statistics
3087  * @netdev: network interface device structure
3088  *
3089  * Returns the address of the device statistics structure.
3090  * The statistics are actually updated from the timer callback.
3091  **/
3092
3093 static struct net_device_stats *
3094 e1000_get_stats(struct net_device *netdev)
3095 {
3096         struct e1000_adapter *adapter = netdev_priv(netdev);
3097
3098         /* only return the current stats */
3099         return &adapter->net_stats;
3100 }
3101
3102 /**
3103  * e1000_change_mtu - Change the Maximum Transfer Unit
3104  * @netdev: network interface device structure
3105  * @new_mtu: new value for maximum frame size
3106  *
3107  * Returns 0 on success, negative on failure
3108  **/
3109
3110 static int
3111 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3112 {
3113         struct e1000_adapter *adapter = netdev_priv(netdev);
3114         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3115         uint16_t eeprom_data = 0;
3116
3117         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3118             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3119                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3120                 return -EINVAL;
3121         }
3122
3123         /* Adapter-specific max frame size limits. */
3124         switch (adapter->hw.mac_type) {
3125         case e1000_undefined ... e1000_82542_rev2_1:
3126         case e1000_ich8lan:
3127                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3128                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3129                         return -EINVAL;
3130                 }
3131                 break;
3132         case e1000_82573:
3133                 /* only enable jumbo frames if ASPM is disabled completely
3134                  * this means both bits must be zero in 0x1A bits 3:2 */
3135                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3136                                   &eeprom_data);
3137                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3138                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3139                                 DPRINTK(PROBE, ERR,
3140                                         "Jumbo Frames not supported.\n");
3141                                 return -EINVAL;
3142                         }
3143                         break;
3144                 }
3145                 /* fall through to get support */
3146         case e1000_82571:
3147         case e1000_82572:
3148         case e1000_80003es2lan:
3149 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3150                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3151                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3152                         return -EINVAL;
3153                 }
3154                 break;
3155         default:
3156                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3157                 break;
3158         }
3159
3160         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3161          * means we reserve 2 more, this pushes us to allocate from the next
3162          * larger slab size
3163          * i.e. RXBUFFER_2048 --> size-4096 slab */
3164
3165         if (max_frame <= E1000_RXBUFFER_256)
3166                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3167         else if (max_frame <= E1000_RXBUFFER_512)
3168                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3169         else if (max_frame <= E1000_RXBUFFER_1024)
3170                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3171         else if (max_frame <= E1000_RXBUFFER_2048)
3172                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3173         else if (max_frame <= E1000_RXBUFFER_4096)
3174                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3175         else if (max_frame <= E1000_RXBUFFER_8192)
3176                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3177         else if (max_frame <= E1000_RXBUFFER_16384)
3178                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3179
3180         /* adjust allocation if LPE protects us, and we aren't using SBP */
3181         if (!adapter->hw.tbi_compatibility_on &&
3182             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3183              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3184                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3185
3186         netdev->mtu = new_mtu;
3187
3188         if (netif_running(netdev))
3189                 e1000_reinit_locked(adapter);
3190
3191         adapter->hw.max_frame_size = max_frame;
3192
3193         return 0;
3194 }
3195
3196 /**
3197  * e1000_update_stats - Update the board statistics counters
3198  * @adapter: board private structure
3199  **/
3200
3201 void
3202 e1000_update_stats(struct e1000_adapter *adapter)
3203 {
3204         struct e1000_hw *hw = &adapter->hw;
3205         struct pci_dev *pdev = adapter->pdev;
3206         unsigned long flags;
3207         uint16_t phy_tmp;
3208
3209 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3210
3211         /*
3212          * Prevent stats update while adapter is being reset, or if the pci
3213          * connection is down.
3214          */
3215         if (adapter->link_speed == 0)
3216                 return;
3217         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3218                 return;
3219
3220         spin_lock_irqsave(&adapter->stats_lock, flags);
3221
3222         /* these counters are modified from e1000_adjust_tbi_stats,
3223          * called from the interrupt context, so they must only
3224          * be written while holding adapter->stats_lock
3225          */
3226
3227         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3228         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3229         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3230         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3231         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3232         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3233         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3234
3235         if (adapter->hw.mac_type != e1000_ich8lan) {
3236         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3237         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3238         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3239         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3240         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3241         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3242         }
3243
3244         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3245         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3246         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3247         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3248         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3249         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3250         adapter->stats.dc += E1000_READ_REG(hw, DC);
3251         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3252         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3253         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3254         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3255         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3256         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3257         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3258         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3259         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3260         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3261         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3262         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3263         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3264         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3265         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3266         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3267         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3268         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3269         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3270
3271         if (adapter->hw.mac_type != e1000_ich8lan) {
3272         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3273         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3274         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3275         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3276         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3277         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3278         }
3279
3280         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3281         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3282
3283         /* used for adaptive IFS */
3284
3285         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3286         adapter->stats.tpt += hw->tx_packet_delta;
3287         hw->collision_delta = E1000_READ_REG(hw, COLC);
3288         adapter->stats.colc += hw->collision_delta;
3289
3290         if (hw->mac_type >= e1000_82543) {
3291                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3292                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3293                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3294                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3295                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3296                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3297         }
3298         if (hw->mac_type > e1000_82547_rev_2) {
3299                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3300                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3301
3302                 if (adapter->hw.mac_type != e1000_ich8lan) {
3303                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3304                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3305                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3306                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3307                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3308                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3309                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3310                 }
3311         }
3312
3313         /* Fill out the OS statistics structure */
3314
3315         adapter->net_stats.rx_packets = adapter->stats.gprc;
3316         adapter->net_stats.tx_packets = adapter->stats.gptc;
3317         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3318         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3319         adapter->net_stats.multicast = adapter->stats.mprc;
3320         adapter->net_stats.collisions = adapter->stats.colc;
3321
3322         /* Rx Errors */
3323
3324         /* RLEC on some newer hardware can be incorrect so build
3325         * our own version based on RUC and ROC */
3326         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3327                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3328                 adapter->stats.ruc + adapter->stats.roc +
3329                 adapter->stats.cexterr;
3330         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3331                                               adapter->stats.roc;
3332         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3333         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3334         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3335
3336         /* Tx Errors */
3337
3338         adapter->net_stats.tx_errors = adapter->stats.ecol +
3339                                        adapter->stats.latecol;
3340         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3341         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3342         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3343
3344         /* Tx Dropped needs to be maintained elsewhere */
3345
3346         /* Phy Stats */
3347
3348         if (hw->media_type == e1000_media_type_copper) {
3349                 if ((adapter->link_speed == SPEED_1000) &&
3350                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3351                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3352                         adapter->phy_stats.idle_errors += phy_tmp;
3353                 }
3354
3355                 if ((hw->mac_type <= e1000_82546) &&
3356                    (hw->phy_type == e1000_phy_m88) &&
3357                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3358                         adapter->phy_stats.receive_errors += phy_tmp;
3359         }
3360
3361         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3362 }
3363
3364 /**
3365  * e1000_intr - Interrupt Handler
3366  * @irq: interrupt number
3367  * @data: pointer to a network interface device structure
3368  * @pt_regs: CPU registers structure
3369  **/
3370
3371 static irqreturn_t
3372 e1000_intr(int irq, void *data, struct pt_regs *regs)
3373 {
3374         struct net_device *netdev = data;
3375         struct e1000_adapter *adapter = netdev_priv(netdev);
3376         struct e1000_hw *hw = &adapter->hw;
3377         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3378 #ifndef CONFIG_E1000_NAPI
3379         int i;
3380 #else
3381         /* Interrupt Auto-Mask...upon reading ICR,
3382          * interrupts are masked.  No need for the
3383          * IMC write, but it does mean we should
3384          * account for it ASAP. */
3385         if (likely(hw->mac_type >= e1000_82571))
3386                 atomic_inc(&adapter->irq_sem);
3387 #endif
3388
3389         if (unlikely(!icr)) {
3390 #ifdef CONFIG_E1000_NAPI
3391                 if (hw->mac_type >= e1000_82571)
3392                         e1000_irq_enable(adapter);
3393 #endif
3394                 return IRQ_NONE;  /* Not our interrupt */
3395         }
3396
3397         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3398                 hw->get_link_status = 1;
3399                 /* 80003ES2LAN workaround--
3400                  * For packet buffer work-around on link down event;
3401                  * disable receives here in the ISR and
3402                  * reset adapter in watchdog
3403                  */
3404                 if (netif_carrier_ok(netdev) &&
3405                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3406                         /* disable receives */
3407                         rctl = E1000_READ_REG(hw, RCTL);
3408                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3409                 }
3410                 mod_timer(&adapter->watchdog_timer, jiffies);
3411         }
3412
3413 #ifdef CONFIG_E1000_NAPI
3414         if (unlikely(hw->mac_type < e1000_82571)) {
3415                 atomic_inc(&adapter->irq_sem);
3416                 E1000_WRITE_REG(hw, IMC, ~0);
3417                 E1000_WRITE_FLUSH(hw);
3418         }
3419         if (likely(netif_rx_schedule_prep(netdev)))
3420                 __netif_rx_schedule(netdev);
3421         else
3422                 e1000_irq_enable(adapter);
3423 #else
3424         /* Writing IMC and IMS is needed for 82547.
3425          * Due to Hub Link bus being occupied, an interrupt
3426          * de-assertion message is not able to be sent.
3427          * When an interrupt assertion message is generated later,
3428          * two messages are re-ordered and sent out.
3429          * That causes APIC to think 82547 is in de-assertion
3430          * state, while 82547 is in assertion state, resulting
3431          * in dead lock. Writing IMC forces 82547 into
3432          * de-assertion state.
3433          */
3434         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3435                 atomic_inc(&adapter->irq_sem);
3436                 E1000_WRITE_REG(hw, IMC, ~0);
3437         }
3438
3439         for (i = 0; i < E1000_MAX_INTR; i++)
3440                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3441                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3442                         break;
3443
3444         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3445                 e1000_irq_enable(adapter);
3446
3447 #endif
3448
3449         return IRQ_HANDLED;
3450 }
3451
3452 #ifdef CONFIG_E1000_NAPI
3453 /**
3454  * e1000_clean - NAPI Rx polling callback
3455  * @adapter: board private structure
3456  **/
3457
3458 static int
3459 e1000_clean(struct net_device *poll_dev, int *budget)
3460 {
3461         struct e1000_adapter *adapter;
3462         int work_to_do = min(*budget, poll_dev->quota);
3463         int tx_cleaned = 0, work_done = 0;
3464
3465         /* Must NOT use netdev_priv macro here. */
3466         adapter = poll_dev->priv;
3467
3468         /* Keep link state information with original netdev */
3469         if (!netif_carrier_ok(poll_dev))
3470                 goto quit_polling;
3471
3472         /* e1000_clean is called per-cpu.  This lock protects
3473          * tx_ring[0] from being cleaned by multiple cpus
3474          * simultaneously.  A failure obtaining the lock means
3475          * tx_ring[0] is currently being cleaned anyway. */
3476         if (spin_trylock(&adapter->tx_queue_lock)) {
3477                 tx_cleaned = e1000_clean_tx_irq(adapter,
3478                                                 &adapter->tx_ring[0]);
3479                 spin_unlock(&adapter->tx_queue_lock);
3480         }
3481
3482         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3483                           &work_done, work_to_do);
3484
3485         *budget -= work_done;
3486         poll_dev->quota -= work_done;
3487
3488         /* If no Tx and not enough Rx work done, exit the polling mode */
3489         if ((!tx_cleaned && (work_done == 0)) ||
3490            !netif_running(poll_dev)) {
3491 quit_polling:
3492                 netif_rx_complete(poll_dev);
3493                 e1000_irq_enable(adapter);
3494                 return 0;
3495         }
3496
3497         return 1;
3498 }
3499
3500 #endif
3501 /**
3502  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3503  * @adapter: board private structure
3504  **/
3505
3506 static boolean_t
3507 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3508                    struct e1000_tx_ring *tx_ring)
3509 {
3510         struct net_device *netdev = adapter->netdev;
3511         struct e1000_tx_desc *tx_desc, *eop_desc;
3512         struct e1000_buffer *buffer_info;
3513         unsigned int i, eop;
3514 #ifdef CONFIG_E1000_NAPI
3515         unsigned int count = 0;
3516 #endif
3517         boolean_t cleaned = FALSE;
3518
3519         i = tx_ring->next_to_clean;
3520         eop = tx_ring->buffer_info[i].next_to_watch;
3521         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3522
3523         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3524                 for (cleaned = FALSE; !cleaned; ) {
3525                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3526                         buffer_info = &tx_ring->buffer_info[i];
3527                         cleaned = (i == eop);
3528
3529                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3530                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3531
3532                         if (unlikely(++i == tx_ring->count)) i = 0;
3533                 }
3534
3535
3536                 eop = tx_ring->buffer_info[i].next_to_watch;
3537                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3538 #ifdef CONFIG_E1000_NAPI
3539 #define E1000_TX_WEIGHT 64
3540                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3541                 if (count++ == E1000_TX_WEIGHT) break;
3542 #endif
3543         }
3544
3545         tx_ring->next_to_clean = i;
3546
3547 #define TX_WAKE_THRESHOLD 32
3548         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3549                      netif_carrier_ok(netdev))) {
3550                 spin_lock(&tx_ring->tx_lock);
3551                 if (netif_queue_stopped(netdev) &&
3552                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3553                         netif_wake_queue(netdev);
3554                 spin_unlock(&tx_ring->tx_lock);
3555         }
3556
3557         if (adapter->detect_tx_hung) {
3558                 /* Detect a transmit hang in hardware, this serializes the
3559                  * check with the clearing of time_stamp and movement of i */
3560                 adapter->detect_tx_hung = FALSE;
3561                 if (tx_ring->buffer_info[eop].dma &&
3562                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3563                                (adapter->tx_timeout_factor * HZ))
3564                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3565                          E1000_STATUS_TXOFF)) {
3566
3567                         /* detected Tx unit hang */
3568                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3569                                         "  Tx Queue             <%lu>\n"
3570                                         "  TDH                  <%x>\n"
3571                                         "  TDT                  <%x>\n"
3572                                         "  next_to_use          <%x>\n"
3573                                         "  next_to_clean        <%x>\n"
3574                                         "buffer_info[next_to_clean]\n"
3575                                         "  time_stamp           <%lx>\n"
3576                                         "  next_to_watch        <%x>\n"
3577                                         "  jiffies              <%lx>\n"
3578                                         "  next_to_watch.status <%x>\n",
3579                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3580                                         sizeof(struct e1000_tx_ring)),
3581                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3582                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3583                                 tx_ring->next_to_use,
3584                                 tx_ring->next_to_clean,
3585                                 tx_ring->buffer_info[eop].time_stamp,
3586                                 eop,
3587                                 jiffies,
3588                                 eop_desc->upper.fields.status);
3589                         netif_stop_queue(netdev);
3590                 }
3591         }
3592         return cleaned;
3593 }
3594
3595 /**
3596  * e1000_rx_checksum - Receive Checksum Offload for 82543
3597  * @adapter:     board private structure
3598  * @status_err:  receive descriptor status and error fields
3599  * @csum:        receive descriptor csum field
3600  * @sk_buff:     socket buffer with received data
3601  **/
3602
3603 static void
3604 e1000_rx_checksum(struct e1000_adapter *adapter,
3605                   uint32_t status_err, uint32_t csum,
3606                   struct sk_buff *skb)
3607 {
3608         uint16_t status = (uint16_t)status_err;
3609         uint8_t errors = (uint8_t)(status_err >> 24);
3610         skb->ip_summed = CHECKSUM_NONE;
3611
3612         /* 82543 or newer only */
3613         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3614         /* Ignore Checksum bit is set */
3615         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3616         /* TCP/UDP checksum error bit is set */
3617         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3618                 /* let the stack verify checksum errors */
3619                 adapter->hw_csum_err++;
3620                 return;
3621         }
3622         /* TCP/UDP Checksum has not been calculated */
3623         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3624                 if (!(status & E1000_RXD_STAT_TCPCS))
3625                         return;
3626         } else {
3627                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3628                         return;
3629         }
3630         /* It must be a TCP or UDP packet with a valid checksum */
3631         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3632                 /* TCP checksum is good */
3633                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3634         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3635                 /* IP fragment with UDP payload */
3636                 /* Hardware complements the payload checksum, so we undo it
3637                  * and then put the value in host order for further stack use.
3638                  */
3639                 csum = ntohl(csum ^ 0xFFFF);
3640                 skb->csum = csum;
3641                 skb->ip_summed = CHECKSUM_HW;
3642         }
3643         adapter->hw_csum_good++;
3644 }
3645
3646 /**
3647  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3648  * @adapter: board private structure
3649  **/
3650
3651 static boolean_t
3652 #ifdef CONFIG_E1000_NAPI
3653 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3654                    struct e1000_rx_ring *rx_ring,
3655                    int *work_done, int work_to_do)
3656 #else
3657 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3658                    struct e1000_rx_ring *rx_ring)
3659 #endif
3660 {
3661         struct net_device *netdev = adapter->netdev;
3662         struct pci_dev *pdev = adapter->pdev;
3663         struct e1000_rx_desc *rx_desc, *next_rxd;
3664         struct e1000_buffer *buffer_info, *next_buffer;
3665         unsigned long flags;
3666         uint32_t length;
3667         uint8_t last_byte;
3668         unsigned int i;
3669         int cleaned_count = 0;
3670         boolean_t cleaned = FALSE;
3671
3672         i = rx_ring->next_to_clean;
3673         rx_desc = E1000_RX_DESC(*rx_ring, i);
3674         buffer_info = &rx_ring->buffer_info[i];
3675
3676         while (rx_desc->status & E1000_RXD_STAT_DD) {
3677                 struct sk_buff *skb;
3678                 u8 status;
3679 #ifdef CONFIG_E1000_NAPI
3680                 if (*work_done >= work_to_do)
3681                         break;
3682                 (*work_done)++;
3683 #endif
3684                 status = rx_desc->status;
3685                 skb = buffer_info->skb;
3686                 buffer_info->skb = NULL;
3687
3688                 prefetch(skb->data - NET_IP_ALIGN);
3689
3690                 if (++i == rx_ring->count) i = 0;
3691                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3692                 prefetch(next_rxd);
3693
3694                 next_buffer = &rx_ring->buffer_info[i];
3695
3696                 cleaned = TRUE;
3697                 cleaned_count++;
3698                 pci_unmap_single(pdev,
3699                                  buffer_info->dma,
3700                                  buffer_info->length,
3701                                  PCI_DMA_FROMDEVICE);
3702
3703                 length = le16_to_cpu(rx_desc->length);
3704
3705                 /* adjust length to remove Ethernet CRC */
3706                 length -= 4;
3707
3708                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3709                         /* All receives must fit into a single buffer */
3710                         E1000_DBG("%s: Receive packet consumed multiple"
3711                                   " buffers\n", netdev->name);
3712                         /* recycle */
3713                         buffer_info->skb = skb;
3714                         goto next_desc;
3715                 }
3716
3717                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3718                         last_byte = *(skb->data + length - 1);
3719                         if (TBI_ACCEPT(&adapter->hw, status,
3720                                       rx_desc->errors, length, last_byte)) {
3721                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3722                                 e1000_tbi_adjust_stats(&adapter->hw,
3723                                                        &adapter->stats,
3724                                                        length, skb->data);
3725                                 spin_unlock_irqrestore(&adapter->stats_lock,
3726                                                        flags);
3727                                 length--;
3728                         } else {
3729                                 /* recycle */
3730                                 buffer_info->skb = skb;
3731                                 goto next_desc;
3732                         }
3733                 }
3734
3735                 /* code added for copybreak, this should improve
3736                  * performance for small packets with large amounts
3737                  * of reassembly being done in the stack */
3738 #define E1000_CB_LENGTH 256
3739                 if (length < E1000_CB_LENGTH) {
3740                         struct sk_buff *new_skb =
3741                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3742                         if (new_skb) {
3743                                 skb_reserve(new_skb, NET_IP_ALIGN);
3744                                 memcpy(new_skb->data - NET_IP_ALIGN,
3745                                        skb->data - NET_IP_ALIGN,
3746                                        length + NET_IP_ALIGN);
3747                                 /* save the skb in buffer_info as good */
3748                                 buffer_info->skb = skb;
3749                                 skb = new_skb;
3750                                 skb_put(skb, length);
3751                         }
3752                 } else
3753                         skb_put(skb, length);
3754
3755                 /* end copybreak code */
3756
3757                 /* Receive Checksum Offload */
3758                 e1000_rx_checksum(adapter,
3759                                   (uint32_t)(status) |
3760                                   ((uint32_t)(rx_desc->errors) << 24),
3761                                   le16_to_cpu(rx_desc->csum), skb);
3762
3763                 skb->protocol = eth_type_trans(skb, netdev);
3764 #ifdef CONFIG_E1000_NAPI
3765                 if (unlikely(adapter->vlgrp &&
3766                             (status & E1000_RXD_STAT_VP))) {
3767                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3768                                                  le16_to_cpu(rx_desc->special) &
3769                                                  E1000_RXD_SPC_VLAN_MASK);
3770                 } else {
3771                         netif_receive_skb(skb);
3772                 }
3773 #else /* CONFIG_E1000_NAPI */
3774                 if (unlikely(adapter->vlgrp &&
3775                             (status & E1000_RXD_STAT_VP))) {
3776                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3777                                         le16_to_cpu(rx_desc->special) &
3778                                         E1000_RXD_SPC_VLAN_MASK);
3779                 } else {
3780                         netif_rx(skb);
3781                 }
3782 #endif /* CONFIG_E1000_NAPI */
3783                 netdev->last_rx = jiffies;
3784
3785 next_desc:
3786                 rx_desc->status = 0;
3787
3788                 /* return some buffers to hardware, one at a time is too slow */
3789                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3790                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3791                         cleaned_count = 0;
3792                 }
3793
3794                 /* use prefetched values */
3795                 rx_desc = next_rxd;
3796                 buffer_info = next_buffer;
3797         }
3798         rx_ring->next_to_clean = i;
3799
3800         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3801         if (cleaned_count)
3802                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3803
3804         return cleaned;
3805 }
3806
3807 /**
3808  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3809  * @adapter: board private structure
3810  **/
3811
3812 static boolean_t
3813 #ifdef CONFIG_E1000_NAPI
3814 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3815                       struct e1000_rx_ring *rx_ring,
3816                       int *work_done, int work_to_do)
3817 #else
3818 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3819                       struct e1000_rx_ring *rx_ring)
3820 #endif
3821 {
3822         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3823         struct net_device *netdev = adapter->netdev;
3824         struct pci_dev *pdev = adapter->pdev;
3825         struct e1000_buffer *buffer_info, *next_buffer;
3826         struct e1000_ps_page *ps_page;
3827         struct e1000_ps_page_dma *ps_page_dma;
3828         struct sk_buff *skb;
3829         unsigned int i, j;
3830         uint32_t length, staterr;
3831         int cleaned_count = 0;
3832         boolean_t cleaned = FALSE;
3833
3834         i = rx_ring->next_to_clean;
3835         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3836         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3837         buffer_info = &rx_ring->buffer_info[i];
3838
3839         while (staterr & E1000_RXD_STAT_DD) {
3840                 ps_page = &rx_ring->ps_page[i];
3841                 ps_page_dma = &rx_ring->ps_page_dma[i];
3842 #ifdef CONFIG_E1000_NAPI
3843                 if (unlikely(*work_done >= work_to_do))
3844                         break;
3845                 (*work_done)++;
3846 #endif
3847                 skb = buffer_info->skb;
3848
3849                 /* in the packet split case this is header only */
3850                 prefetch(skb->data - NET_IP_ALIGN);
3851
3852                 if (++i == rx_ring->count) i = 0;
3853                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3854                 prefetch(next_rxd);
3855
3856                 next_buffer = &rx_ring->buffer_info[i];
3857
3858                 cleaned = TRUE;
3859                 cleaned_count++;
3860                 pci_unmap_single(pdev, buffer_info->dma,
3861                                  buffer_info->length,
3862                                  PCI_DMA_FROMDEVICE);
3863
3864                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3865                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3866                                   " the full packet\n", netdev->name);
3867                         dev_kfree_skb_irq(skb);
3868                         goto next_desc;
3869                 }
3870
3871                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3872                         dev_kfree_skb_irq(skb);
3873                         goto next_desc;
3874                 }
3875
3876                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3877
3878                 if (unlikely(!length)) {
3879                         E1000_DBG("%s: Last part of the packet spanning"
3880                                   " multiple descriptors\n", netdev->name);
3881                         dev_kfree_skb_irq(skb);
3882                         goto next_desc;
3883                 }
3884
3885                 /* Good Receive */
3886                 skb_put(skb, length);
3887
3888                 {
3889                 /* this looks ugly, but it seems compiler issues make it
3890                    more efficient than reusing j */
3891                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3892
3893                 /* page alloc/put takes too long and effects small packet
3894                  * throughput, so unsplit small packets and save the alloc/put*/
3895                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3896                         u8 *vaddr;
3897                         /* there is no documentation about how to call
3898                          * kmap_atomic, so we can't hold the mapping
3899                          * very long */
3900                         pci_dma_sync_single_for_cpu(pdev,
3901                                 ps_page_dma->ps_page_dma[0],
3902                                 PAGE_SIZE,
3903                                 PCI_DMA_FROMDEVICE);
3904                         vaddr = kmap_atomic(ps_page->ps_page[0],
3905                                             KM_SKB_DATA_SOFTIRQ);
3906                         memcpy(skb->tail, vaddr, l1);
3907                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3908                         pci_dma_sync_single_for_device(pdev,
3909                                 ps_page_dma->ps_page_dma[0],
3910                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3911                         /* remove the CRC */
3912                         l1 -= 4;
3913                         skb_put(skb, l1);
3914                         goto copydone;
3915                 } /* if */
3916                 }
3917                 
3918                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3919                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3920                                 break;
3921                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3922                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3923                         ps_page_dma->ps_page_dma[j] = 0;
3924                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3925                                            length);
3926                         ps_page->ps_page[j] = NULL;
3927                         skb->len += length;
3928                         skb->data_len += length;
3929                         skb->truesize += length;
3930                 }
3931
3932                 /* strip the ethernet crc, problem is we're using pages now so
3933                  * this whole operation can get a little cpu intensive */
3934                 pskb_trim(skb, skb->len - 4);
3935
3936 copydone:
3937                 e1000_rx_checksum(adapter, staterr,
3938                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3939                 skb->protocol = eth_type_trans(skb, netdev);
3940
3941                 if (likely(rx_desc->wb.upper.header_status &
3942                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3943                         adapter->rx_hdr_split++;
3944 #ifdef CONFIG_E1000_NAPI
3945                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3946                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3947                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3948                                 E1000_RXD_SPC_VLAN_MASK);
3949                 } else {
3950                         netif_receive_skb(skb);
3951                 }
3952 #else /* CONFIG_E1000_NAPI */
3953                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3954                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3955                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3956                                 E1000_RXD_SPC_VLAN_MASK);
3957                 } else {
3958                         netif_rx(skb);
3959                 }
3960 #endif /* CONFIG_E1000_NAPI */
3961                 netdev->last_rx = jiffies;
3962
3963 next_desc:
3964                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3965                 buffer_info->skb = NULL;
3966
3967                 /* return some buffers to hardware, one at a time is too slow */
3968                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3969                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3970                         cleaned_count = 0;
3971                 }
3972
3973                 /* use prefetched values */
3974                 rx_desc = next_rxd;
3975                 buffer_info = next_buffer;
3976
3977                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3978         }
3979         rx_ring->next_to_clean = i;
3980
3981         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3982         if (cleaned_count)
3983                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3984
3985         return cleaned;
3986 }
3987
3988 /**
3989  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3990  * @adapter: address of board private structure
3991  **/
3992
3993 static void
3994 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3995                        struct e1000_rx_ring *rx_ring,
3996                        int cleaned_count)
3997 {
3998         struct net_device *netdev = adapter->netdev;
3999         struct pci_dev *pdev = adapter->pdev;
4000         struct e1000_rx_desc *rx_desc;
4001         struct e1000_buffer *buffer_info;
4002         struct sk_buff *skb;
4003         unsigned int i;
4004         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4005
4006         i = rx_ring->next_to_use;
4007         buffer_info = &rx_ring->buffer_info[i];
4008
4009         while (cleaned_count--) {
4010                 skb = buffer_info->skb;
4011                 if (skb) {
4012                         skb_trim(skb, 0);
4013                         goto map_skb;
4014                 }
4015
4016                 skb = netdev_alloc_skb(netdev, bufsz);
4017                 if (unlikely(!skb)) {
4018                         /* Better luck next round */
4019                         adapter->alloc_rx_buff_failed++;
4020                         break;
4021                 }
4022
4023                 /* Fix for errata 23, can't cross 64kB boundary */
4024                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4025                         struct sk_buff *oldskb = skb;
4026                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4027                                              "at %p\n", bufsz, skb->data);
4028                         /* Try again, without freeing the previous */
4029                         skb = netdev_alloc_skb(netdev, bufsz);
4030                         /* Failed allocation, critical failure */
4031                         if (!skb) {
4032                                 dev_kfree_skb(oldskb);
4033                                 break;
4034                         }
4035
4036                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4037                                 /* give up */
4038                                 dev_kfree_skb(skb);
4039                                 dev_kfree_skb(oldskb);
4040                                 break; /* while !buffer_info->skb */
4041                         }
4042
4043                         /* Use new allocation */
4044                         dev_kfree_skb(oldskb);
4045                 }
4046                 /* Make buffer alignment 2 beyond a 16 byte boundary
4047                  * this will result in a 16 byte aligned IP header after
4048                  * the 14 byte MAC header is removed
4049                  */
4050                 skb_reserve(skb, NET_IP_ALIGN);
4051
4052                 buffer_info->skb = skb;
4053                 buffer_info->length = adapter->rx_buffer_len;
4054 map_skb:
4055                 buffer_info->dma = pci_map_single(pdev,
4056                                                   skb->data,
4057                                                   adapter->rx_buffer_len,
4058                                                   PCI_DMA_FROMDEVICE);
4059
4060                 /* Fix for errata 23, can't cross 64kB boundary */
4061                 if (!e1000_check_64k_bound(adapter,
4062                                         (void *)(unsigned long)buffer_info->dma,
4063                                         adapter->rx_buffer_len)) {
4064                         DPRINTK(RX_ERR, ERR,
4065                                 "dma align check failed: %u bytes at %p\n",
4066                                 adapter->rx_buffer_len,
4067                                 (void *)(unsigned long)buffer_info->dma);
4068                         dev_kfree_skb(skb);
4069                         buffer_info->skb = NULL;
4070
4071                         pci_unmap_single(pdev, buffer_info->dma,
4072                                          adapter->rx_buffer_len,
4073                                          PCI_DMA_FROMDEVICE);
4074
4075                         break; /* while !buffer_info->skb */
4076                 }
4077                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4078                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4079
4080                 if (unlikely(++i == rx_ring->count))
4081                         i = 0;
4082                 buffer_info = &rx_ring->buffer_info[i];
4083         }
4084
4085         if (likely(rx_ring->next_to_use != i)) {
4086                 rx_ring->next_to_use = i;
4087                 if (unlikely(i-- == 0))
4088                         i = (rx_ring->count - 1);
4089
4090                 /* Force memory writes to complete before letting h/w
4091                  * know there are new descriptors to fetch.  (Only
4092                  * applicable for weak-ordered memory model archs,
4093                  * such as IA-64). */
4094                 wmb();
4095                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4096         }
4097 }
4098
4099 /**
4100  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4101  * @adapter: address of board private structure
4102  **/
4103
4104 static void
4105 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4106                           struct e1000_rx_ring *rx_ring,
4107                           int cleaned_count)
4108 {
4109         struct net_device *netdev = adapter->netdev;
4110         struct pci_dev *pdev = adapter->pdev;
4111         union e1000_rx_desc_packet_split *rx_desc;
4112         struct e1000_buffer *buffer_info;
4113         struct e1000_ps_page *ps_page;
4114         struct e1000_ps_page_dma *ps_page_dma;
4115         struct sk_buff *skb;
4116         unsigned int i, j;
4117
4118         i = rx_ring->next_to_use;
4119         buffer_info = &rx_ring->buffer_info[i];
4120         ps_page = &rx_ring->ps_page[i];
4121         ps_page_dma = &rx_ring->ps_page_dma[i];
4122
4123         while (cleaned_count--) {
4124                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4125
4126                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4127                         if (j < adapter->rx_ps_pages) {
4128                                 if (likely(!ps_page->ps_page[j])) {
4129                                         ps_page->ps_page[j] =
4130                                                 alloc_page(GFP_ATOMIC);
4131                                         if (unlikely(!ps_page->ps_page[j])) {
4132                                                 adapter->alloc_rx_buff_failed++;
4133                                                 goto no_buffers;
4134                                         }
4135                                         ps_page_dma->ps_page_dma[j] =
4136                                                 pci_map_page(pdev,
4137                                                             ps_page->ps_page[j],
4138                                                             0, PAGE_SIZE,
4139                                                             PCI_DMA_FROMDEVICE);
4140                                 }
4141                                 /* Refresh the desc even if buffer_addrs didn't
4142                                  * change because each write-back erases
4143                                  * this info.
4144                                  */
4145                                 rx_desc->read.buffer_addr[j+1] =
4146                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4147                         } else
4148                                 rx_desc->read.buffer_addr[j+1] = ~0;
4149                 }
4150
4151                 skb = netdev_alloc_skb(netdev,
4152                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4153
4154                 if (unlikely(!skb)) {
4155                         adapter->alloc_rx_buff_failed++;
4156                         break;
4157                 }
4158
4159                 /* Make buffer alignment 2 beyond a 16 byte boundary
4160                  * this will result in a 16 byte aligned IP header after
4161                  * the 14 byte MAC header is removed
4162                  */
4163                 skb_reserve(skb, NET_IP_ALIGN);
4164
4165                 buffer_info->skb = skb;
4166                 buffer_info->length = adapter->rx_ps_bsize0;
4167                 buffer_info->dma = pci_map_single(pdev, skb->data,
4168                                                   adapter->rx_ps_bsize0,
4169                                                   PCI_DMA_FROMDEVICE);
4170
4171                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4172
4173                 if (unlikely(++i == rx_ring->count)) i = 0;
4174                 buffer_info = &rx_ring->buffer_info[i];
4175                 ps_page = &rx_ring->ps_page[i];
4176                 ps_page_dma = &rx_ring->ps_page_dma[i];
4177         }
4178
4179 no_buffers:
4180         if (likely(rx_ring->next_to_use != i)) {
4181                 rx_ring->next_to_use = i;
4182                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4183
4184                 /* Force memory writes to complete before letting h/w
4185                  * know there are new descriptors to fetch.  (Only
4186                  * applicable for weak-ordered memory model archs,
4187                  * such as IA-64). */
4188                 wmb();
4189                 /* Hardware increments by 16 bytes, but packet split
4190                  * descriptors are 32 bytes...so we increment tail
4191                  * twice as much.
4192                  */
4193                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4194         }
4195 }
4196
4197 /**
4198  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4199  * @adapter:
4200  **/
4201
4202 static void
4203 e1000_smartspeed(struct e1000_adapter *adapter)
4204 {
4205         uint16_t phy_status;
4206         uint16_t phy_ctrl;
4207
4208         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4209            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4210                 return;
4211
4212         if (adapter->smartspeed == 0) {
4213                 /* If Master/Slave config fault is asserted twice,
4214                  * we assume back-to-back */
4215                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4216                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4217                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4218                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4219                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4220                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4221                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4222                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4223                                             phy_ctrl);
4224                         adapter->smartspeed++;
4225                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4226                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4227                                                &phy_ctrl)) {
4228                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4229                                              MII_CR_RESTART_AUTO_NEG);
4230                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4231                                                     phy_ctrl);
4232                         }
4233                 }
4234                 return;
4235         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4236                 /* If still no link, perhaps using 2/3 pair cable */
4237                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4238                 phy_ctrl |= CR_1000T_MS_ENABLE;
4239                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4240                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4241                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4242                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4243                                      MII_CR_RESTART_AUTO_NEG);
4244                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4245                 }
4246         }
4247         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4248         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4249                 adapter->smartspeed = 0;
4250 }
4251
4252 /**
4253  * e1000_ioctl -
4254  * @netdev:
4255  * @ifreq:
4256  * @cmd:
4257  **/
4258
4259 static int
4260 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4261 {
4262         switch (cmd) {
4263         case SIOCGMIIPHY:
4264         case SIOCGMIIREG:
4265         case SIOCSMIIREG:
4266                 return e1000_mii_ioctl(netdev, ifr, cmd);
4267         default:
4268                 return -EOPNOTSUPP;
4269         }
4270 }
4271
4272 /**
4273  * e1000_mii_ioctl -
4274  * @netdev:
4275  * @ifreq:
4276  * @cmd:
4277  **/
4278
4279 static int
4280 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4281 {
4282         struct e1000_adapter *adapter = netdev_priv(netdev);
4283         struct mii_ioctl_data *data = if_mii(ifr);
4284         int retval;
4285         uint16_t mii_reg;
4286         uint16_t spddplx;
4287         unsigned long flags;
4288
4289         if (adapter->hw.media_type != e1000_media_type_copper)
4290                 return -EOPNOTSUPP;
4291
4292         switch (cmd) {
4293         case SIOCGMIIPHY:
4294                 data->phy_id = adapter->hw.phy_addr;
4295                 break;
4296         case SIOCGMIIREG:
4297                 if (!capable(CAP_NET_ADMIN))
4298                         return -EPERM;
4299                 spin_lock_irqsave(&adapter->stats_lock, flags);
4300                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4301                                    &data->val_out)) {
4302                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4303                         return -EIO;
4304                 }
4305                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4306                 break;
4307         case SIOCSMIIREG:
4308                 if (!capable(CAP_NET_ADMIN))
4309                         return -EPERM;
4310                 if (data->reg_num & ~(0x1F))
4311                         return -EFAULT;
4312                 mii_reg = data->val_in;
4313                 spin_lock_irqsave(&adapter->stats_lock, flags);
4314                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4315                                         mii_reg)) {
4316                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4317                         return -EIO;
4318                 }
4319                 if (adapter->hw.media_type == e1000_media_type_copper) {
4320                         switch (data->reg_num) {
4321                         case PHY_CTRL:
4322                                 if (mii_reg & MII_CR_POWER_DOWN)
4323                                         break;
4324                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4325                                         adapter->hw.autoneg = 1;
4326                                         adapter->hw.autoneg_advertised = 0x2F;
4327                                 } else {
4328                                         if (mii_reg & 0x40)
4329                                                 spddplx = SPEED_1000;
4330                                         else if (mii_reg & 0x2000)
4331                                                 spddplx = SPEED_100;
4332                                         else
4333                                                 spddplx = SPEED_10;
4334                                         spddplx += (mii_reg & 0x100)
4335                                                    ? DUPLEX_FULL :
4336                                                    DUPLEX_HALF;
4337                                         retval = e1000_set_spd_dplx(adapter,
4338                                                                     spddplx);
4339                                         if (retval) {
4340                                                 spin_unlock_irqrestore(
4341                                                         &adapter->stats_lock,
4342                                                         flags);
4343                                                 return retval;
4344                                         }
4345                                 }
4346                                 if (netif_running(adapter->netdev))
4347                                         e1000_reinit_locked(adapter);
4348                                 else
4349                                         e1000_reset(adapter);
4350                                 break;
4351                         case M88E1000_PHY_SPEC_CTRL:
4352                         case M88E1000_EXT_PHY_SPEC_CTRL:
4353                                 if (e1000_phy_reset(&adapter->hw)) {
4354                                         spin_unlock_irqrestore(
4355                                                 &adapter->stats_lock, flags);
4356                                         return -EIO;
4357                                 }
4358                                 break;
4359                         }
4360                 } else {
4361                         switch (data->reg_num) {
4362                         case PHY_CTRL:
4363                                 if (mii_reg & MII_CR_POWER_DOWN)
4364                                         break;
4365                                 if (netif_running(adapter->netdev))
4366                                         e1000_reinit_locked(adapter);
4367                                 else
4368                                         e1000_reset(adapter);
4369                                 break;
4370                         }
4371                 }
4372                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4373                 break;
4374         default:
4375                 return -EOPNOTSUPP;
4376         }
4377         return E1000_SUCCESS;
4378 }
4379
4380 void
4381 e1000_pci_set_mwi(struct e1000_hw *hw)
4382 {
4383         struct e1000_adapter *adapter = hw->back;
4384         int ret_val = pci_set_mwi(adapter->pdev);
4385
4386         if (ret_val)
4387                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4388 }
4389
4390 void
4391 e1000_pci_clear_mwi(struct e1000_hw *hw)
4392 {
4393         struct e1000_adapter *adapter = hw->back;
4394
4395         pci_clear_mwi(adapter->pdev);
4396 }
4397
4398 void
4399 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4400 {
4401         struct e1000_adapter *adapter = hw->back;
4402
4403         pci_read_config_word(adapter->pdev, reg, value);
4404 }
4405
4406 void
4407 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4408 {
4409         struct e1000_adapter *adapter = hw->back;
4410
4411         pci_write_config_word(adapter->pdev, reg, *value);
4412 }
4413
4414 #if 0
4415 uint32_t
4416 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4417 {
4418         return inl(port);
4419 }
4420 #endif  /*  0  */
4421
4422 void
4423 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4424 {
4425         outl(value, port);
4426 }
4427
4428 static void
4429 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4430 {
4431         struct e1000_adapter *adapter = netdev_priv(netdev);
4432         uint32_t ctrl, rctl;
4433
4434         e1000_irq_disable(adapter);
4435         adapter->vlgrp = grp;
4436
4437         if (grp) {
4438                 /* enable VLAN tag insert/strip */
4439                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4440                 ctrl |= E1000_CTRL_VME;
4441                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4442
4443                 if (adapter->hw.mac_type != e1000_ich8lan) {
4444                 /* enable VLAN receive filtering */
4445                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4446                 rctl |= E1000_RCTL_VFE;
4447                 rctl &= ~E1000_RCTL_CFIEN;
4448                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4449                 e1000_update_mng_vlan(adapter);
4450                 }
4451         } else {
4452                 /* disable VLAN tag insert/strip */
4453                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4454                 ctrl &= ~E1000_CTRL_VME;
4455                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4456
4457                 if (adapter->hw.mac_type != e1000_ich8lan) {
4458                 /* disable VLAN filtering */
4459                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4460                 rctl &= ~E1000_RCTL_VFE;
4461                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4462                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4463                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4464                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4465                 }
4466                 }
4467         }
4468
4469         e1000_irq_enable(adapter);
4470 }
4471
4472 static void
4473 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4474 {
4475         struct e1000_adapter *adapter = netdev_priv(netdev);
4476         uint32_t vfta, index;
4477
4478         if ((adapter->hw.mng_cookie.status &
4479              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4480             (vid == adapter->mng_vlan_id))
4481                 return;
4482         /* add VID to filter table */
4483         index = (vid >> 5) & 0x7F;
4484         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4485         vfta |= (1 << (vid & 0x1F));
4486         e1000_write_vfta(&adapter->hw, index, vfta);
4487 }
4488
4489 static void
4490 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4491 {
4492         struct e1000_adapter *adapter = netdev_priv(netdev);
4493         uint32_t vfta, index;
4494
4495         e1000_irq_disable(adapter);
4496
4497         if (adapter->vlgrp)
4498                 adapter->vlgrp->vlan_devices[vid] = NULL;
4499
4500         e1000_irq_enable(adapter);
4501
4502         if ((adapter->hw.mng_cookie.status &
4503              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4504             (vid == adapter->mng_vlan_id)) {
4505                 /* release control to f/w */
4506                 e1000_release_hw_control(adapter);
4507                 return;
4508         }
4509
4510         /* remove VID from filter table */
4511         index = (vid >> 5) & 0x7F;
4512         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4513         vfta &= ~(1 << (vid & 0x1F));
4514         e1000_write_vfta(&adapter->hw, index, vfta);
4515 }
4516
4517 static void
4518 e1000_restore_vlan(struct e1000_adapter *adapter)
4519 {
4520         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4521
4522         if (adapter->vlgrp) {
4523                 uint16_t vid;
4524                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4525                         if (!adapter->vlgrp->vlan_devices[vid])
4526                                 continue;
4527                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4528                 }
4529         }
4530 }
4531
4532 int
4533 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4534 {
4535         adapter->hw.autoneg = 0;
4536
4537         /* Fiber NICs only allow 1000 gbps Full duplex */
4538         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4539                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4540                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4541                 return -EINVAL;
4542         }
4543
4544         switch (spddplx) {
4545         case SPEED_10 + DUPLEX_HALF:
4546                 adapter->hw.forced_speed_duplex = e1000_10_half;
4547                 break;
4548         case SPEED_10 + DUPLEX_FULL:
4549                 adapter->hw.forced_speed_duplex = e1000_10_full;
4550                 break;
4551         case SPEED_100 + DUPLEX_HALF:
4552                 adapter->hw.forced_speed_duplex = e1000_100_half;
4553                 break;
4554         case SPEED_100 + DUPLEX_FULL:
4555                 adapter->hw.forced_speed_duplex = e1000_100_full;
4556                 break;
4557         case SPEED_1000 + DUPLEX_FULL:
4558                 adapter->hw.autoneg = 1;
4559                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4560                 break;
4561         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4562         default:
4563                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4564                 return -EINVAL;
4565         }
4566         return 0;
4567 }
4568
4569 #ifdef CONFIG_PM
4570 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4571  * bus we're on (PCI(X) vs. PCI-E)
4572  */
4573 #define PCIE_CONFIG_SPACE_LEN 256
4574 #define PCI_CONFIG_SPACE_LEN 64
4575 static int
4576 e1000_pci_save_state(struct e1000_adapter *adapter)
4577 {
4578         struct pci_dev *dev = adapter->pdev;
4579         int size;
4580         int i;
4581
4582         if (adapter->hw.mac_type >= e1000_82571)
4583                 size = PCIE_CONFIG_SPACE_LEN;
4584         else
4585                 size = PCI_CONFIG_SPACE_LEN;
4586
4587         WARN_ON(adapter->config_space != NULL);
4588
4589         adapter->config_space = kmalloc(size, GFP_KERNEL);
4590         if (!adapter->config_space) {
4591                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4592                 return -ENOMEM;
4593         }
4594         for (i = 0; i < (size / 4); i++)
4595                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4596         return 0;
4597 }
4598
4599 static void
4600 e1000_pci_restore_state(struct e1000_adapter *adapter)
4601 {
4602         struct pci_dev *dev = adapter->pdev;
4603         int size;
4604         int i;
4605
4606         if (adapter->config_space == NULL)
4607                 return;
4608
4609         if (adapter->hw.mac_type >= e1000_82571)
4610                 size = PCIE_CONFIG_SPACE_LEN;
4611         else
4612                 size = PCI_CONFIG_SPACE_LEN;
4613         for (i = 0; i < (size / 4); i++)
4614                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4615         kfree(adapter->config_space);
4616         adapter->config_space = NULL;
4617         return;
4618 }
4619 #endif /* CONFIG_PM */
4620
4621 static int
4622 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4623 {
4624         struct net_device *netdev = pci_get_drvdata(pdev);
4625         struct e1000_adapter *adapter = netdev_priv(netdev);
4626         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4627         uint32_t wufc = adapter->wol;
4628 #ifdef CONFIG_PM
4629         int retval = 0;
4630 #endif
4631
4632         netif_device_detach(netdev);
4633
4634         if (netif_running(netdev)) {
4635                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4636                 e1000_down(adapter);
4637         }
4638
4639 #ifdef CONFIG_PM
4640         /* Implement our own version of pci_save_state(pdev) because pci-
4641          * express adapters have 256-byte config spaces. */
4642         retval = e1000_pci_save_state(adapter);
4643         if (retval)
4644                 return retval;
4645 #endif
4646
4647         status = E1000_READ_REG(&adapter->hw, STATUS);
4648         if (status & E1000_STATUS_LU)
4649                 wufc &= ~E1000_WUFC_LNKC;
4650
4651         if (wufc) {
4652                 e1000_setup_rctl(adapter);
4653                 e1000_set_multi(netdev);
4654
4655                 /* turn on all-multi mode if wake on multicast is enabled */
4656                 if (wufc & E1000_WUFC_MC) {
4657                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4658                         rctl |= E1000_RCTL_MPE;
4659                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4660                 }
4661
4662                 if (adapter->hw.mac_type >= e1000_82540) {
4663                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4664                         /* advertise wake from D3Cold */
4665                         #define E1000_CTRL_ADVD3WUC 0x00100000
4666                         /* phy power management enable */
4667                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4668                         ctrl |= E1000_CTRL_ADVD3WUC |
4669                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4670                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4671                 }
4672
4673                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4674                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4675                         /* keep the laser running in D3 */
4676                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4677                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4678                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4679                 }
4680
4681                 /* Allow time for pending master requests to run */
4682                 e1000_disable_pciex_master(&adapter->hw);
4683
4684                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4685                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4686                 pci_enable_wake(pdev, PCI_D3hot, 1);
4687                 pci_enable_wake(pdev, PCI_D3cold, 1);
4688         } else {
4689                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4690                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4691                 pci_enable_wake(pdev, PCI_D3hot, 0);
4692                 pci_enable_wake(pdev, PCI_D3cold, 0);
4693         }
4694
4695         /* FIXME: this code is incorrect for PCI Express */
4696         if (adapter->hw.mac_type >= e1000_82540 &&
4697            adapter->hw.mac_type != e1000_ich8lan &&
4698            adapter->hw.media_type == e1000_media_type_copper) {
4699                 manc = E1000_READ_REG(&adapter->hw, MANC);
4700                 if (manc & E1000_MANC_SMBUS_EN) {
4701                         manc |= E1000_MANC_ARP_EN;
4702                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4703                         pci_enable_wake(pdev, PCI_D3hot, 1);
4704                         pci_enable_wake(pdev, PCI_D3cold, 1);
4705                 }
4706         }
4707
4708         if (adapter->hw.phy_type == e1000_phy_igp_3)
4709                 e1000_phy_powerdown_workaround(&adapter->hw);
4710
4711         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4712          * would have already happened in close and is redundant. */
4713         e1000_release_hw_control(adapter);
4714
4715         pci_disable_device(pdev);
4716
4717         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4718
4719         return 0;
4720 }
4721
4722 #ifdef CONFIG_PM
4723 static int
4724 e1000_resume(struct pci_dev *pdev)
4725 {
4726         struct net_device *netdev = pci_get_drvdata(pdev);
4727         struct e1000_adapter *adapter = netdev_priv(netdev);
4728         uint32_t manc, err;
4729
4730         pci_set_power_state(pdev, PCI_D0);
4731         e1000_pci_restore_state(adapter);
4732         if ((err = pci_enable_device(pdev))) {
4733                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4734                 return err;
4735         }
4736         pci_set_master(pdev);
4737
4738         pci_enable_wake(pdev, PCI_D3hot, 0);
4739         pci_enable_wake(pdev, PCI_D3cold, 0);
4740
4741         e1000_reset(adapter);
4742         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4743
4744         if (netif_running(netdev))
4745                 e1000_up(adapter);
4746
4747         netif_device_attach(netdev);
4748
4749         /* FIXME: this code is incorrect for PCI Express */
4750         if (adapter->hw.mac_type >= e1000_82540 &&
4751            adapter->hw.mac_type != e1000_ich8lan &&
4752            adapter->hw.media_type == e1000_media_type_copper) {
4753                 manc = E1000_READ_REG(&adapter->hw, MANC);
4754                 manc &= ~(E1000_MANC_ARP_EN);
4755                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4756         }
4757
4758         /* If the controller is 82573 and f/w is AMT, do not set
4759          * DRV_LOAD until the interface is up.  For all other cases,
4760          * let the f/w know that the h/w is now under the control
4761          * of the driver. */
4762         if (adapter->hw.mac_type != e1000_82573 ||
4763             !e1000_check_mng_mode(&adapter->hw))
4764                 e1000_get_hw_control(adapter);
4765
4766         return 0;
4767 }
4768 #endif
4769
4770 static void e1000_shutdown(struct pci_dev *pdev)
4771 {
4772         e1000_suspend(pdev, PMSG_SUSPEND);
4773 }
4774
4775 #ifdef CONFIG_NET_POLL_CONTROLLER
4776 /*
4777  * Polling 'interrupt' - used by things like netconsole to send skbs
4778  * without having to re-enable interrupts. It's not called while
4779  * the interrupt routine is executing.
4780  */
4781 static void
4782 e1000_netpoll(struct net_device *netdev)
4783 {
4784         struct e1000_adapter *adapter = netdev_priv(netdev);
4785
4786         disable_irq(adapter->pdev->irq);
4787         e1000_intr(adapter->pdev->irq, netdev, NULL);
4788         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4789 #ifndef CONFIG_E1000_NAPI
4790         adapter->clean_rx(adapter, adapter->rx_ring);
4791 #endif
4792         enable_irq(adapter->pdev->irq);
4793 }
4794 #endif
4795
4796 /**
4797  * e1000_io_error_detected - called when PCI error is detected
4798  * @pdev: Pointer to PCI device
4799  * @state: The current pci conneection state
4800  *
4801  * This function is called after a PCI bus error affecting
4802  * this device has been detected.
4803  */
4804 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4805 {
4806         struct net_device *netdev = pci_get_drvdata(pdev);
4807         struct e1000_adapter *adapter = netdev->priv;
4808
4809         netif_device_detach(netdev);
4810
4811         if (netif_running(netdev))
4812                 e1000_down(adapter);
4813
4814         /* Request a slot slot reset. */
4815         return PCI_ERS_RESULT_NEED_RESET;
4816 }
4817
4818 /**
4819  * e1000_io_slot_reset - called after the pci bus has been reset.
4820  * @pdev: Pointer to PCI device
4821  *
4822  * Restart the card from scratch, as if from a cold-boot. Implementation
4823  * resembles the first-half of the e1000_resume routine.
4824  */
4825 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4826 {
4827         struct net_device *netdev = pci_get_drvdata(pdev);
4828         struct e1000_adapter *adapter = netdev->priv;
4829
4830         if (pci_enable_device(pdev)) {
4831                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4832                 return PCI_ERS_RESULT_DISCONNECT;
4833         }
4834         pci_set_master(pdev);
4835
4836         pci_enable_wake(pdev, 3, 0);
4837         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4838
4839         /* Perform card reset only on one instance of the card */
4840         if (PCI_FUNC (pdev->devfn) != 0)
4841                 return PCI_ERS_RESULT_RECOVERED;
4842
4843         e1000_reset(adapter);
4844         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4845
4846         return PCI_ERS_RESULT_RECOVERED;
4847 }
4848
4849 /**
4850  * e1000_io_resume - called when traffic can start flowing again.
4851  * @pdev: Pointer to PCI device
4852  *
4853  * This callback is called when the error recovery driver tells us that
4854  * its OK to resume normal operation. Implementation resembles the
4855  * second-half of the e1000_resume routine.
4856  */
4857 static void e1000_io_resume(struct pci_dev *pdev)
4858 {
4859         struct net_device *netdev = pci_get_drvdata(pdev);
4860         struct e1000_adapter *adapter = netdev->priv;
4861         uint32_t manc, swsm;
4862
4863         if (netif_running(netdev)) {
4864                 if (e1000_up(adapter)) {
4865                         printk("e1000: can't bring device back up after reset\n");
4866                         return;
4867                 }
4868         }
4869
4870         netif_device_attach(netdev);
4871
4872         if (adapter->hw.mac_type >= e1000_82540 &&
4873             adapter->hw.media_type == e1000_media_type_copper) {
4874                 manc = E1000_READ_REG(&adapter->hw, MANC);
4875                 manc &= ~(E1000_MANC_ARP_EN);
4876                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4877         }
4878
4879         switch (adapter->hw.mac_type) {
4880         case e1000_82573:
4881                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4882                 E1000_WRITE_REG(&adapter->hw, SWSM,
4883                                 swsm | E1000_SWSM_DRV_LOAD);
4884                 break;
4885         default:
4886                 break;
4887         }
4888
4889         if (netif_running(netdev))
4890                 mod_timer(&adapter->watchdog_timer, jiffies);
4891 }
4892
4893 /* e1000_main.c */