1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
37 #define DRIVERNAPI "-NAPI"
39 #define DRV_VERSION "7.3.15-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
43 /* e1000_pci_tbl - PCI Device ID Table
45 * Last entry must be all 0s
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110 /* required last entry */
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130 struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132 struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165 struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring,
170 int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172 struct e1000_rx_ring *rx_ring,
173 int *work_done, int work_to_do);
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176 struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178 struct e1000_rx_ring *rx_ring);
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181 struct e1000_rx_ring *rx_ring,
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184 struct e1000_rx_ring *rx_ring,
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196 struct sk_buff *skb);
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
205 static int e1000_resume(struct pci_dev *pdev);
207 static void e1000_shutdown(struct pci_dev *pdev);
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
214 extern void e1000_check_options(struct e1000_adapter *adapter);
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
218 module_param(copybreak, uint, 0644);
219 MODULE_PARM_DESC(copybreak,
220 "Maximum size of packet that is copied to a new buffer on receive");
222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
223 pci_channel_state_t state);
224 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
225 static void e1000_io_resume(struct pci_dev *pdev);
227 static struct pci_error_handlers e1000_err_handler = {
228 .error_detected = e1000_io_error_detected,
229 .slot_reset = e1000_io_slot_reset,
230 .resume = e1000_io_resume,
233 static struct pci_driver e1000_driver = {
234 .name = e1000_driver_name,
235 .id_table = e1000_pci_tbl,
236 .probe = e1000_probe,
237 .remove = __devexit_p(e1000_remove),
239 /* Power Managment Hooks */
240 .suspend = e1000_suspend,
241 .resume = e1000_resume,
243 .shutdown = e1000_shutdown,
244 .err_handler = &e1000_err_handler
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
252 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257 * e1000_init_module - Driver Registration Routine
259 * e1000_init_module is the first routine called when the driver is
260 * loaded. All it does is register with the PCI subsystem.
264 e1000_init_module(void)
267 printk(KERN_INFO "%s - version %s\n",
268 e1000_driver_string, e1000_driver_version);
270 printk(KERN_INFO "%s\n", e1000_copyright);
272 ret = pci_register_driver(&e1000_driver);
273 if (copybreak != COPYBREAK_DEFAULT) {
275 printk(KERN_INFO "e1000: copybreak disabled\n");
277 printk(KERN_INFO "e1000: copybreak enabled for "
278 "packets <= %u bytes\n", copybreak);
283 module_init(e1000_init_module);
286 * e1000_exit_module - Driver Exit Cleanup Routine
288 * e1000_exit_module is called just before the driver is removed
293 e1000_exit_module(void)
295 pci_unregister_driver(&e1000_driver);
298 module_exit(e1000_exit_module);
300 static int e1000_request_irq(struct e1000_adapter *adapter)
302 struct net_device *netdev = adapter->netdev;
306 #ifdef CONFIG_PCI_MSI
307 if (adapter->hw.mac_type >= e1000_82571) {
308 adapter->have_msi = TRUE;
309 if ((err = pci_enable_msi(adapter->pdev))) {
311 "Unable to allocate MSI interrupt Error: %d\n", err);
312 adapter->have_msi = FALSE;
315 if (adapter->have_msi) {
316 flags &= ~IRQF_SHARED;
317 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
318 netdev->name, netdev);
321 "Unable to allocate interrupt Error: %d\n", err);
324 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
325 netdev->name, netdev)))
327 "Unable to allocate interrupt Error: %d\n", err);
332 static void e1000_free_irq(struct e1000_adapter *adapter)
334 struct net_device *netdev = adapter->netdev;
336 free_irq(adapter->pdev->irq, netdev);
338 #ifdef CONFIG_PCI_MSI
339 if (adapter->have_msi)
340 pci_disable_msi(adapter->pdev);
345 * e1000_irq_disable - Mask off interrupt generation on the NIC
346 * @adapter: board private structure
350 e1000_irq_disable(struct e1000_adapter *adapter)
352 atomic_inc(&adapter->irq_sem);
353 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
354 E1000_WRITE_FLUSH(&adapter->hw);
355 synchronize_irq(adapter->pdev->irq);
359 * e1000_irq_enable - Enable default interrupt generation settings
360 * @adapter: board private structure
364 e1000_irq_enable(struct e1000_adapter *adapter)
366 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
367 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
368 E1000_WRITE_FLUSH(&adapter->hw);
373 e1000_update_mng_vlan(struct e1000_adapter *adapter)
375 struct net_device *netdev = adapter->netdev;
376 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
377 uint16_t old_vid = adapter->mng_vlan_id;
378 if (adapter->vlgrp) {
379 if (!adapter->vlgrp->vlan_devices[vid]) {
380 if (adapter->hw.mng_cookie.status &
381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
382 e1000_vlan_rx_add_vid(netdev, vid);
383 adapter->mng_vlan_id = vid;
385 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
387 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
389 !adapter->vlgrp->vlan_devices[old_vid])
390 e1000_vlan_rx_kill_vid(netdev, old_vid);
392 adapter->mng_vlan_id = vid;
397 * e1000_release_hw_control - release control of the h/w to f/w
398 * @adapter: address of board private structure
400 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401 * For ASF and Pass Through versions of f/w this means that the
402 * driver is no longer loaded. For AMT version (only with 82573) i
403 * of the f/w this means that the network i/f is closed.
408 e1000_release_hw_control(struct e1000_adapter *adapter)
414 /* Let firmware taken over control of h/w */
415 switch (adapter->hw.mac_type) {
418 case e1000_80003es2lan:
419 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
420 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
421 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
424 swsm = E1000_READ_REG(&adapter->hw, SWSM);
425 E1000_WRITE_REG(&adapter->hw, SWSM,
426 swsm & ~E1000_SWSM_DRV_LOAD);
428 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
429 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
430 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
438 * e1000_get_hw_control - get control of the h/w from f/w
439 * @adapter: address of board private structure
441 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
442 * For ASF and Pass Through versions of f/w this means that
443 * the driver is loaded. For AMT version (only with 82573)
444 * of the f/w this means that the network i/f is open.
449 e1000_get_hw_control(struct e1000_adapter *adapter)
455 /* Let firmware know the driver has taken over */
456 switch (adapter->hw.mac_type) {
459 case e1000_80003es2lan:
460 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
461 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
462 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
465 swsm = E1000_READ_REG(&adapter->hw, SWSM);
466 E1000_WRITE_REG(&adapter->hw, SWSM,
467 swsm | E1000_SWSM_DRV_LOAD);
470 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
471 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
472 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
480 e1000_init_manageability(struct e1000_adapter *adapter)
482 if (adapter->en_mng_pt) {
483 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
485 /* disable hardware interception of ARP */
486 manc &= ~(E1000_MANC_ARP_EN);
488 /* enable receiving management packets to the host */
489 /* this will probably generate destination unreachable messages
490 * from the host OS, but the packets will be handled on SMBUS */
491 if (adapter->hw.has_manc2h) {
492 uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
494 manc |= E1000_MANC_EN_MNG2HOST;
495 #define E1000_MNG2HOST_PORT_623 (1 << 5)
496 #define E1000_MNG2HOST_PORT_664 (1 << 6)
497 manc2h |= E1000_MNG2HOST_PORT_623;
498 manc2h |= E1000_MNG2HOST_PORT_664;
499 E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
502 E1000_WRITE_REG(&adapter->hw, MANC, manc);
507 e1000_release_manageability(struct e1000_adapter *adapter)
509 if (adapter->en_mng_pt) {
510 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
512 /* re-enable hardware interception of ARP */
513 manc |= E1000_MANC_ARP_EN;
515 if (adapter->hw.has_manc2h)
516 manc &= ~E1000_MANC_EN_MNG2HOST;
518 /* don't explicitly have to mess with MANC2H since
519 * MANC has an enable disable that gates MANC2H */
521 E1000_WRITE_REG(&adapter->hw, MANC, manc);
526 e1000_up(struct e1000_adapter *adapter)
528 struct net_device *netdev = adapter->netdev;
531 /* hardware has been reset, we need to reload some things */
533 e1000_set_multi(netdev);
535 e1000_restore_vlan(adapter);
536 e1000_init_manageability(adapter);
538 e1000_configure_tx(adapter);
539 e1000_setup_rctl(adapter);
540 e1000_configure_rx(adapter);
541 /* call E1000_DESC_UNUSED which always leaves
542 * at least 1 descriptor unused to make sure
543 * next_to_use != next_to_clean */
544 for (i = 0; i < adapter->num_rx_queues; i++) {
545 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
546 adapter->alloc_rx_buf(adapter, ring,
547 E1000_DESC_UNUSED(ring));
550 adapter->tx_queue_len = netdev->tx_queue_len;
552 #ifdef CONFIG_E1000_NAPI
553 netif_poll_enable(netdev);
555 e1000_irq_enable(adapter);
557 clear_bit(__E1000_DOWN, &adapter->flags);
559 /* fire a link change interrupt to start the watchdog */
560 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
565 * e1000_power_up_phy - restore link in case the phy was powered down
566 * @adapter: address of board private structure
568 * The phy may be powered down to save power and turn off link when the
569 * driver is unloaded and wake on lan is not enabled (among others)
570 * *** this routine MUST be followed by a call to e1000_reset ***
574 void e1000_power_up_phy(struct e1000_adapter *adapter)
576 uint16_t mii_reg = 0;
578 /* Just clear the power down bit to wake the phy back up */
579 if (adapter->hw.media_type == e1000_media_type_copper) {
580 /* according to the manual, the phy will retain its
581 * settings across a power-down/up cycle */
582 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
583 mii_reg &= ~MII_CR_POWER_DOWN;
584 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
588 static void e1000_power_down_phy(struct e1000_adapter *adapter)
590 /* Power down the PHY so no link is implied when interface is down *
591 * The PHY cannot be powered down if any of the following is TRUE *
594 * (c) SoL/IDER session is active */
595 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
596 adapter->hw.media_type == e1000_media_type_copper) {
597 uint16_t mii_reg = 0;
599 switch (adapter->hw.mac_type) {
602 case e1000_82545_rev_3:
604 case e1000_82546_rev_3:
606 case e1000_82541_rev_2:
608 case e1000_82547_rev_2:
609 if (E1000_READ_REG(&adapter->hw, MANC) &
616 case e1000_80003es2lan:
618 if (e1000_check_mng_mode(&adapter->hw) ||
619 e1000_check_phy_reset_block(&adapter->hw))
625 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
626 mii_reg |= MII_CR_POWER_DOWN;
627 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
635 e1000_down(struct e1000_adapter *adapter)
637 struct net_device *netdev = adapter->netdev;
639 /* signal that we're down so the interrupt handler does not
640 * reschedule our watchdog timer */
641 set_bit(__E1000_DOWN, &adapter->flags);
643 e1000_irq_disable(adapter);
645 del_timer_sync(&adapter->tx_fifo_stall_timer);
646 del_timer_sync(&adapter->watchdog_timer);
647 del_timer_sync(&adapter->phy_info_timer);
649 #ifdef CONFIG_E1000_NAPI
650 netif_poll_disable(netdev);
652 netdev->tx_queue_len = adapter->tx_queue_len;
653 adapter->link_speed = 0;
654 adapter->link_duplex = 0;
655 netif_carrier_off(netdev);
656 netif_stop_queue(netdev);
658 e1000_reset(adapter);
659 e1000_clean_all_tx_rings(adapter);
660 e1000_clean_all_rx_rings(adapter);
664 e1000_reinit_locked(struct e1000_adapter *adapter)
666 WARN_ON(in_interrupt());
667 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
671 clear_bit(__E1000_RESETTING, &adapter->flags);
675 e1000_reset(struct e1000_adapter *adapter)
677 uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
678 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
679 boolean_t legacy_pba_adjust = FALSE;
681 /* Repartition Pba for greater than 9k mtu
682 * To take effect CTRL.RST is required.
685 switch (adapter->hw.mac_type) {
686 case e1000_82542_rev2_0:
687 case e1000_82542_rev2_1:
692 case e1000_82541_rev_2:
693 legacy_pba_adjust = TRUE;
697 case e1000_82545_rev_3:
699 case e1000_82546_rev_3:
703 case e1000_82547_rev_2:
704 legacy_pba_adjust = TRUE;
709 case e1000_80003es2lan:
717 case e1000_undefined:
722 if (legacy_pba_adjust == TRUE) {
723 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
724 pba -= 8; /* allocate more FIFO for Tx */
726 if (adapter->hw.mac_type == e1000_82547) {
727 adapter->tx_fifo_head = 0;
728 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
729 adapter->tx_fifo_size =
730 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
731 atomic_set(&adapter->tx_fifo_stall, 0);
733 } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
734 /* adjust PBA for jumbo frames */
735 E1000_WRITE_REG(&adapter->hw, PBA, pba);
737 /* To maintain wire speed transmits, the Tx FIFO should be
738 * large enough to accomodate two full transmit packets,
739 * rounded up to the next 1KB and expressed in KB. Likewise,
740 * the Rx FIFO should be large enough to accomodate at least
741 * one full receive packet and is similarly rounded up and
742 * expressed in KB. */
743 pba = E1000_READ_REG(&adapter->hw, PBA);
744 /* upper 16 bits has Tx packet buffer allocation size in KB */
745 tx_space = pba >> 16;
746 /* lower 16 bits has Rx packet buffer allocation size in KB */
748 /* don't include ethernet FCS because hardware appends/strips */
749 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
751 min_tx_space = min_rx_space;
753 E1000_ROUNDUP(min_tx_space, 1024);
755 E1000_ROUNDUP(min_rx_space, 1024);
758 /* If current Tx allocation is less than the min Tx FIFO size,
759 * and the min Tx FIFO size is less than the current Rx FIFO
760 * allocation, take space away from current Rx allocation */
761 if (tx_space < min_tx_space &&
762 ((min_tx_space - tx_space) < pba)) {
763 pba = pba - (min_tx_space - tx_space);
765 /* PCI/PCIx hardware has PBA alignment constraints */
766 switch (adapter->hw.mac_type) {
767 case e1000_82545 ... e1000_82546_rev_3:
768 pba &= ~(E1000_PBA_8K - 1);
774 /* if short on rx space, rx wins and must trump tx
775 * adjustment or use Early Receive if available */
776 if (pba < min_rx_space) {
777 switch (adapter->hw.mac_type) {
779 /* ERT enabled in e1000_configure_rx */
789 E1000_WRITE_REG(&adapter->hw, PBA, pba);
791 /* flow control settings */
792 /* Set the FC high water mark to 90% of the FIFO size.
793 * Required to clear last 3 LSB */
794 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
795 /* We can't use 90% on small FIFOs because the remainder
796 * would be less than 1 full frame. In this case, we size
797 * it to allow at least a full frame above the high water
799 if (pba < E1000_PBA_16K)
800 fc_high_water_mark = (pba * 1024) - 1600;
802 adapter->hw.fc_high_water = fc_high_water_mark;
803 adapter->hw.fc_low_water = fc_high_water_mark - 8;
804 if (adapter->hw.mac_type == e1000_80003es2lan)
805 adapter->hw.fc_pause_time = 0xFFFF;
807 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
808 adapter->hw.fc_send_xon = 1;
809 adapter->hw.fc = adapter->hw.original_fc;
811 /* Allow time for pending master requests to run */
812 e1000_reset_hw(&adapter->hw);
813 if (adapter->hw.mac_type >= e1000_82544)
814 E1000_WRITE_REG(&adapter->hw, WUC, 0);
816 if (e1000_init_hw(&adapter->hw))
817 DPRINTK(PROBE, ERR, "Hardware Error\n");
818 e1000_update_mng_vlan(adapter);
820 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
821 if (adapter->hw.mac_type >= e1000_82544 &&
822 adapter->hw.mac_type <= e1000_82547_rev_2 &&
823 adapter->hw.autoneg == 1 &&
824 adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
825 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
826 /* clear phy power management bit if we are in gig only mode,
827 * which if enabled will attempt negotiation to 100Mb, which
828 * can cause a loss of link at power off or driver unload */
829 ctrl &= ~E1000_CTRL_SWDPIN3;
830 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
833 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
834 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
836 e1000_reset_adaptive(&adapter->hw);
837 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
839 if (!adapter->smart_power_down &&
840 (adapter->hw.mac_type == e1000_82571 ||
841 adapter->hw.mac_type == e1000_82572)) {
842 uint16_t phy_data = 0;
843 /* speed up time to link by disabling smart power down, ignore
844 * the return value of this function because there is nothing
845 * different we would do if it failed */
846 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
848 phy_data &= ~IGP02E1000_PM_SPD;
849 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
853 e1000_release_manageability(adapter);
857 * e1000_probe - Device Initialization Routine
858 * @pdev: PCI device information struct
859 * @ent: entry in e1000_pci_tbl
861 * Returns 0 on success, negative on failure
863 * e1000_probe initializes an adapter identified by a pci_dev structure.
864 * The OS initialization, configuring of the adapter private structure,
865 * and a hardware reset occur.
869 e1000_probe(struct pci_dev *pdev,
870 const struct pci_device_id *ent)
872 struct net_device *netdev;
873 struct e1000_adapter *adapter;
874 unsigned long mmio_start, mmio_len;
875 unsigned long flash_start, flash_len;
877 static int cards_found = 0;
878 static int global_quad_port_a = 0; /* global ksp3 port a indication */
879 int i, err, pci_using_dac;
880 uint16_t eeprom_data = 0;
881 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
882 if ((err = pci_enable_device(pdev)))
885 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
886 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
889 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
890 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
891 E1000_ERR("No usable DMA configuration, aborting\n");
897 if ((err = pci_request_regions(pdev, e1000_driver_name)))
900 pci_set_master(pdev);
903 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
905 goto err_alloc_etherdev;
907 SET_MODULE_OWNER(netdev);
908 SET_NETDEV_DEV(netdev, &pdev->dev);
910 pci_set_drvdata(pdev, netdev);
911 adapter = netdev_priv(netdev);
912 adapter->netdev = netdev;
913 adapter->pdev = pdev;
914 adapter->hw.back = adapter;
915 adapter->msg_enable = (1 << debug) - 1;
917 mmio_start = pci_resource_start(pdev, BAR_0);
918 mmio_len = pci_resource_len(pdev, BAR_0);
921 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
922 if (!adapter->hw.hw_addr)
925 for (i = BAR_1; i <= BAR_5; i++) {
926 if (pci_resource_len(pdev, i) == 0)
928 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
929 adapter->hw.io_base = pci_resource_start(pdev, i);
934 netdev->open = &e1000_open;
935 netdev->stop = &e1000_close;
936 netdev->hard_start_xmit = &e1000_xmit_frame;
937 netdev->get_stats = &e1000_get_stats;
938 netdev->set_multicast_list = &e1000_set_multi;
939 netdev->set_mac_address = &e1000_set_mac;
940 netdev->change_mtu = &e1000_change_mtu;
941 netdev->do_ioctl = &e1000_ioctl;
942 e1000_set_ethtool_ops(netdev);
943 netdev->tx_timeout = &e1000_tx_timeout;
944 netdev->watchdog_timeo = 5 * HZ;
945 #ifdef CONFIG_E1000_NAPI
946 netdev->poll = &e1000_clean;
949 netdev->vlan_rx_register = e1000_vlan_rx_register;
950 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
951 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953 netdev->poll_controller = e1000_netpoll;
955 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
957 netdev->mem_start = mmio_start;
958 netdev->mem_end = mmio_start + mmio_len;
959 netdev->base_addr = adapter->hw.io_base;
961 adapter->bd_number = cards_found;
963 /* setup the private structure */
965 if ((err = e1000_sw_init(adapter)))
969 /* Flash BAR mapping must happen after e1000_sw_init
970 * because it depends on mac_type */
971 if ((adapter->hw.mac_type == e1000_ich8lan) &&
972 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
973 flash_start = pci_resource_start(pdev, 1);
974 flash_len = pci_resource_len(pdev, 1);
975 adapter->hw.flash_address = ioremap(flash_start, flash_len);
976 if (!adapter->hw.flash_address)
980 if (e1000_check_phy_reset_block(&adapter->hw))
981 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
983 if (adapter->hw.mac_type >= e1000_82543) {
984 netdev->features = NETIF_F_SG |
988 NETIF_F_HW_VLAN_FILTER;
989 if (adapter->hw.mac_type == e1000_ich8lan)
990 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
994 if ((adapter->hw.mac_type >= e1000_82544) &&
995 (adapter->hw.mac_type != e1000_82547))
996 netdev->features |= NETIF_F_TSO;
999 if (adapter->hw.mac_type > e1000_82547_rev_2)
1000 netdev->features |= NETIF_F_TSO6;
1004 netdev->features |= NETIF_F_HIGHDMA;
1006 netdev->features |= NETIF_F_LLTX;
1008 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1010 /* initialize eeprom parameters */
1012 if (e1000_init_eeprom_params(&adapter->hw)) {
1013 E1000_ERR("EEPROM initialization failed\n");
1017 /* before reading the EEPROM, reset the controller to
1018 * put the device in a known good starting state */
1020 e1000_reset_hw(&adapter->hw);
1022 /* make sure the EEPROM is good */
1024 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1025 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1029 /* copy the MAC address out of the EEPROM */
1031 if (e1000_read_mac_addr(&adapter->hw))
1032 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1033 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1034 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1036 if (!is_valid_ether_addr(netdev->perm_addr)) {
1037 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1041 e1000_get_bus_info(&adapter->hw);
1043 init_timer(&adapter->tx_fifo_stall_timer);
1044 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1045 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1047 init_timer(&adapter->watchdog_timer);
1048 adapter->watchdog_timer.function = &e1000_watchdog;
1049 adapter->watchdog_timer.data = (unsigned long) adapter;
1051 init_timer(&adapter->phy_info_timer);
1052 adapter->phy_info_timer.function = &e1000_update_phy_info;
1053 adapter->phy_info_timer.data = (unsigned long) adapter;
1055 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1057 e1000_check_options(adapter);
1059 /* Initial Wake on LAN setting
1060 * If APM wake is enabled in the EEPROM,
1061 * enable the ACPI Magic Packet filter
1064 switch (adapter->hw.mac_type) {
1065 case e1000_82542_rev2_0:
1066 case e1000_82542_rev2_1:
1070 e1000_read_eeprom(&adapter->hw,
1071 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1072 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1075 e1000_read_eeprom(&adapter->hw,
1076 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1077 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1080 case e1000_82546_rev_3:
1082 case e1000_80003es2lan:
1083 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1084 e1000_read_eeprom(&adapter->hw,
1085 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1090 e1000_read_eeprom(&adapter->hw,
1091 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1094 if (eeprom_data & eeprom_apme_mask)
1095 adapter->eeprom_wol |= E1000_WUFC_MAG;
1097 /* now that we have the eeprom settings, apply the special cases
1098 * where the eeprom may be wrong or the board simply won't support
1099 * wake on lan on a particular port */
1100 switch (pdev->device) {
1101 case E1000_DEV_ID_82546GB_PCIE:
1102 adapter->eeprom_wol = 0;
1104 case E1000_DEV_ID_82546EB_FIBER:
1105 case E1000_DEV_ID_82546GB_FIBER:
1106 case E1000_DEV_ID_82571EB_FIBER:
1107 /* Wake events only supported on port A for dual fiber
1108 * regardless of eeprom setting */
1109 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1110 adapter->eeprom_wol = 0;
1112 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1113 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1114 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1115 /* if quad port adapter, disable WoL on all but port A */
1116 if (global_quad_port_a != 0)
1117 adapter->eeprom_wol = 0;
1119 adapter->quad_port_a = 1;
1120 /* Reset for multiple quad port adapters */
1121 if (++global_quad_port_a == 4)
1122 global_quad_port_a = 0;
1126 /* initialize the wol settings based on the eeprom settings */
1127 adapter->wol = adapter->eeprom_wol;
1129 /* print bus type/speed/width info */
1131 struct e1000_hw *hw = &adapter->hw;
1132 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1133 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1134 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1135 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1136 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1137 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1138 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1139 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1140 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1141 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1142 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1146 for (i = 0; i < 6; i++)
1147 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1149 /* reset the hardware with the new settings */
1150 e1000_reset(adapter);
1152 /* If the controller is 82573 and f/w is AMT, do not set
1153 * DRV_LOAD until the interface is up. For all other cases,
1154 * let the f/w know that the h/w is now under the control
1156 if (adapter->hw.mac_type != e1000_82573 ||
1157 !e1000_check_mng_mode(&adapter->hw))
1158 e1000_get_hw_control(adapter);
1160 strcpy(netdev->name, "eth%d");
1161 if ((err = register_netdev(netdev)))
1164 /* tell the stack to leave us alone until e1000_open() is called */
1165 netif_carrier_off(netdev);
1166 netif_stop_queue(netdev);
1168 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1174 e1000_release_hw_control(adapter);
1176 if (!e1000_check_phy_reset_block(&adapter->hw))
1177 e1000_phy_hw_reset(&adapter->hw);
1179 if (adapter->hw.flash_address)
1180 iounmap(adapter->hw.flash_address);
1182 #ifdef CONFIG_E1000_NAPI
1183 for (i = 0; i < adapter->num_rx_queues; i++)
1184 dev_put(&adapter->polling_netdev[i]);
1187 kfree(adapter->tx_ring);
1188 kfree(adapter->rx_ring);
1189 #ifdef CONFIG_E1000_NAPI
1190 kfree(adapter->polling_netdev);
1193 iounmap(adapter->hw.hw_addr);
1195 free_netdev(netdev);
1197 pci_release_regions(pdev);
1200 pci_disable_device(pdev);
1205 * e1000_remove - Device Removal Routine
1206 * @pdev: PCI device information struct
1208 * e1000_remove is called by the PCI subsystem to alert the driver
1209 * that it should release a PCI device. The could be caused by a
1210 * Hot-Plug event, or because the driver is going to be removed from
1214 static void __devexit
1215 e1000_remove(struct pci_dev *pdev)
1217 struct net_device *netdev = pci_get_drvdata(pdev);
1218 struct e1000_adapter *adapter = netdev_priv(netdev);
1219 #ifdef CONFIG_E1000_NAPI
1223 flush_scheduled_work();
1225 e1000_release_manageability(adapter);
1227 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1228 * would have already happened in close and is redundant. */
1229 e1000_release_hw_control(adapter);
1231 unregister_netdev(netdev);
1232 #ifdef CONFIG_E1000_NAPI
1233 for (i = 0; i < adapter->num_rx_queues; i++)
1234 dev_put(&adapter->polling_netdev[i]);
1237 if (!e1000_check_phy_reset_block(&adapter->hw))
1238 e1000_phy_hw_reset(&adapter->hw);
1240 kfree(adapter->tx_ring);
1241 kfree(adapter->rx_ring);
1242 #ifdef CONFIG_E1000_NAPI
1243 kfree(adapter->polling_netdev);
1246 iounmap(adapter->hw.hw_addr);
1247 if (adapter->hw.flash_address)
1248 iounmap(adapter->hw.flash_address);
1249 pci_release_regions(pdev);
1251 free_netdev(netdev);
1253 pci_disable_device(pdev);
1257 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1258 * @adapter: board private structure to initialize
1260 * e1000_sw_init initializes the Adapter private data structure.
1261 * Fields are initialized based on PCI device information and
1262 * OS network device settings (MTU size).
1265 static int __devinit
1266 e1000_sw_init(struct e1000_adapter *adapter)
1268 struct e1000_hw *hw = &adapter->hw;
1269 struct net_device *netdev = adapter->netdev;
1270 struct pci_dev *pdev = adapter->pdev;
1271 #ifdef CONFIG_E1000_NAPI
1275 /* PCI config space info */
1277 hw->vendor_id = pdev->vendor;
1278 hw->device_id = pdev->device;
1279 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1280 hw->subsystem_id = pdev->subsystem_device;
1282 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1284 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1286 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1287 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1288 hw->max_frame_size = netdev->mtu +
1289 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1290 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1292 /* identify the MAC */
1294 if (e1000_set_mac_type(hw)) {
1295 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1299 switch (hw->mac_type) {
1304 case e1000_82541_rev_2:
1305 case e1000_82547_rev_2:
1306 hw->phy_init_script = 1;
1310 e1000_set_media_type(hw);
1312 hw->wait_autoneg_complete = FALSE;
1313 hw->tbi_compatibility_en = TRUE;
1314 hw->adaptive_ifs = TRUE;
1316 /* Copper options */
1318 if (hw->media_type == e1000_media_type_copper) {
1319 hw->mdix = AUTO_ALL_MODES;
1320 hw->disable_polarity_correction = FALSE;
1321 hw->master_slave = E1000_MASTER_SLAVE;
1324 adapter->num_tx_queues = 1;
1325 adapter->num_rx_queues = 1;
1327 if (e1000_alloc_queues(adapter)) {
1328 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1332 #ifdef CONFIG_E1000_NAPI
1333 for (i = 0; i < adapter->num_rx_queues; i++) {
1334 adapter->polling_netdev[i].priv = adapter;
1335 adapter->polling_netdev[i].poll = &e1000_clean;
1336 adapter->polling_netdev[i].weight = 64;
1337 dev_hold(&adapter->polling_netdev[i]);
1338 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1340 spin_lock_init(&adapter->tx_queue_lock);
1343 atomic_set(&adapter->irq_sem, 1);
1344 spin_lock_init(&adapter->stats_lock);
1346 set_bit(__E1000_DOWN, &adapter->flags);
1352 * e1000_alloc_queues - Allocate memory for all rings
1353 * @adapter: board private structure to initialize
1355 * We allocate one ring per queue at run-time since we don't know the
1356 * number of queues at compile-time. The polling_netdev array is
1357 * intended for Multiqueue, but should work fine with a single queue.
1360 static int __devinit
1361 e1000_alloc_queues(struct e1000_adapter *adapter)
1365 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1366 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1367 if (!adapter->tx_ring)
1369 memset(adapter->tx_ring, 0, size);
1371 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1372 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1373 if (!adapter->rx_ring) {
1374 kfree(adapter->tx_ring);
1377 memset(adapter->rx_ring, 0, size);
1379 #ifdef CONFIG_E1000_NAPI
1380 size = sizeof(struct net_device) * adapter->num_rx_queues;
1381 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1382 if (!adapter->polling_netdev) {
1383 kfree(adapter->tx_ring);
1384 kfree(adapter->rx_ring);
1387 memset(adapter->polling_netdev, 0, size);
1390 return E1000_SUCCESS;
1394 * e1000_open - Called when a network interface is made active
1395 * @netdev: network interface device structure
1397 * Returns 0 on success, negative value on failure
1399 * The open entry point is called when a network interface is made
1400 * active by the system (IFF_UP). At this point all resources needed
1401 * for transmit and receive operations are allocated, the interrupt
1402 * handler is registered with the OS, the watchdog timer is started,
1403 * and the stack is notified that the interface is ready.
1407 e1000_open(struct net_device *netdev)
1409 struct e1000_adapter *adapter = netdev_priv(netdev);
1412 /* disallow open during test */
1413 if (test_bit(__E1000_TESTING, &adapter->flags))
1416 /* allocate transmit descriptors */
1417 if ((err = e1000_setup_all_tx_resources(adapter)))
1420 /* allocate receive descriptors */
1421 if ((err = e1000_setup_all_rx_resources(adapter)))
1424 err = e1000_request_irq(adapter);
1428 e1000_power_up_phy(adapter);
1430 if ((err = e1000_up(adapter)))
1432 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1433 if ((adapter->hw.mng_cookie.status &
1434 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1435 e1000_update_mng_vlan(adapter);
1438 /* If AMT is enabled, let the firmware know that the network
1439 * interface is now open */
1440 if (adapter->hw.mac_type == e1000_82573 &&
1441 e1000_check_mng_mode(&adapter->hw))
1442 e1000_get_hw_control(adapter);
1444 return E1000_SUCCESS;
1447 e1000_power_down_phy(adapter);
1448 e1000_free_irq(adapter);
1450 e1000_free_all_rx_resources(adapter);
1452 e1000_free_all_tx_resources(adapter);
1454 e1000_reset(adapter);
1460 * e1000_close - Disables a network interface
1461 * @netdev: network interface device structure
1463 * Returns 0, this is not allowed to fail
1465 * The close entry point is called when an interface is de-activated
1466 * by the OS. The hardware is still under the drivers control, but
1467 * needs to be disabled. A global MAC reset is issued to stop the
1468 * hardware, and all transmit and receive resources are freed.
1472 e1000_close(struct net_device *netdev)
1474 struct e1000_adapter *adapter = netdev_priv(netdev);
1476 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1477 e1000_down(adapter);
1478 e1000_power_down_phy(adapter);
1479 e1000_free_irq(adapter);
1481 e1000_free_all_tx_resources(adapter);
1482 e1000_free_all_rx_resources(adapter);
1484 /* kill manageability vlan ID if supported, but not if a vlan with
1485 * the same ID is registered on the host OS (let 8021q kill it) */
1486 if ((adapter->hw.mng_cookie.status &
1487 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1489 adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1490 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1493 /* If AMT is enabled, let the firmware know that the network
1494 * interface is now closed */
1495 if (adapter->hw.mac_type == e1000_82573 &&
1496 e1000_check_mng_mode(&adapter->hw))
1497 e1000_release_hw_control(adapter);
1503 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1504 * @adapter: address of board private structure
1505 * @start: address of beginning of memory
1506 * @len: length of memory
1509 e1000_check_64k_bound(struct e1000_adapter *adapter,
1510 void *start, unsigned long len)
1512 unsigned long begin = (unsigned long) start;
1513 unsigned long end = begin + len;
1515 /* First rev 82545 and 82546 need to not allow any memory
1516 * write location to cross 64k boundary due to errata 23 */
1517 if (adapter->hw.mac_type == e1000_82545 ||
1518 adapter->hw.mac_type == e1000_82546) {
1519 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1526 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1527 * @adapter: board private structure
1528 * @txdr: tx descriptor ring (for a specific queue) to setup
1530 * Return 0 on success, negative on failure
1534 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1535 struct e1000_tx_ring *txdr)
1537 struct pci_dev *pdev = adapter->pdev;
1540 size = sizeof(struct e1000_buffer) * txdr->count;
1541 txdr->buffer_info = vmalloc(size);
1542 if (!txdr->buffer_info) {
1544 "Unable to allocate memory for the transmit descriptor ring\n");
1547 memset(txdr->buffer_info, 0, size);
1549 /* round up to nearest 4K */
1551 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1552 E1000_ROUNDUP(txdr->size, 4096);
1554 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1557 vfree(txdr->buffer_info);
1559 "Unable to allocate memory for the transmit descriptor ring\n");
1563 /* Fix for errata 23, can't cross 64kB boundary */
1564 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1565 void *olddesc = txdr->desc;
1566 dma_addr_t olddma = txdr->dma;
1567 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1568 "at %p\n", txdr->size, txdr->desc);
1569 /* Try again, without freeing the previous */
1570 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1571 /* Failed allocation, critical failure */
1573 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1574 goto setup_tx_desc_die;
1577 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1579 pci_free_consistent(pdev, txdr->size, txdr->desc,
1581 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1583 "Unable to allocate aligned memory "
1584 "for the transmit descriptor ring\n");
1585 vfree(txdr->buffer_info);
1588 /* Free old allocation, new allocation was successful */
1589 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1592 memset(txdr->desc, 0, txdr->size);
1594 txdr->next_to_use = 0;
1595 txdr->next_to_clean = 0;
1596 spin_lock_init(&txdr->tx_lock);
1602 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1603 * (Descriptors) for all queues
1604 * @adapter: board private structure
1606 * Return 0 on success, negative on failure
1610 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1614 for (i = 0; i < adapter->num_tx_queues; i++) {
1615 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1618 "Allocation for Tx Queue %u failed\n", i);
1619 for (i-- ; i >= 0; i--)
1620 e1000_free_tx_resources(adapter,
1621 &adapter->tx_ring[i]);
1630 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1631 * @adapter: board private structure
1633 * Configure the Tx unit of the MAC after a reset.
1637 e1000_configure_tx(struct e1000_adapter *adapter)
1640 struct e1000_hw *hw = &adapter->hw;
1641 uint32_t tdlen, tctl, tipg, tarc;
1642 uint32_t ipgr1, ipgr2;
1644 /* Setup the HW Tx Head and Tail descriptor pointers */
1646 switch (adapter->num_tx_queues) {
1649 tdba = adapter->tx_ring[0].dma;
1650 tdlen = adapter->tx_ring[0].count *
1651 sizeof(struct e1000_tx_desc);
1652 E1000_WRITE_REG(hw, TDLEN, tdlen);
1653 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1654 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1655 E1000_WRITE_REG(hw, TDT, 0);
1656 E1000_WRITE_REG(hw, TDH, 0);
1657 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1658 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1662 /* Set the default values for the Tx Inter Packet Gap timer */
1663 if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1664 (hw->media_type == e1000_media_type_fiber ||
1665 hw->media_type == e1000_media_type_internal_serdes))
1666 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1668 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1670 switch (hw->mac_type) {
1671 case e1000_82542_rev2_0:
1672 case e1000_82542_rev2_1:
1673 tipg = DEFAULT_82542_TIPG_IPGT;
1674 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1675 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1677 case e1000_80003es2lan:
1678 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1679 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1682 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1683 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1686 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1687 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1688 E1000_WRITE_REG(hw, TIPG, tipg);
1690 /* Set the Tx Interrupt Delay register */
1692 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1693 if (hw->mac_type >= e1000_82540)
1694 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1696 /* Program the Transmit Control Register */
1698 tctl = E1000_READ_REG(hw, TCTL);
1699 tctl &= ~E1000_TCTL_CT;
1700 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1701 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1703 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1704 tarc = E1000_READ_REG(hw, TARC0);
1705 /* set the speed mode bit, we'll clear it if we're not at
1706 * gigabit link later */
1708 E1000_WRITE_REG(hw, TARC0, tarc);
1709 } else if (hw->mac_type == e1000_80003es2lan) {
1710 tarc = E1000_READ_REG(hw, TARC0);
1712 E1000_WRITE_REG(hw, TARC0, tarc);
1713 tarc = E1000_READ_REG(hw, TARC1);
1715 E1000_WRITE_REG(hw, TARC1, tarc);
1718 e1000_config_collision_dist(hw);
1720 /* Setup Transmit Descriptor Settings for eop descriptor */
1721 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1723 /* only set IDE if we are delaying interrupts using the timers */
1724 if (adapter->tx_int_delay)
1725 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1727 if (hw->mac_type < e1000_82543)
1728 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1730 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1732 /* Cache if we're 82544 running in PCI-X because we'll
1733 * need this to apply a workaround later in the send path. */
1734 if (hw->mac_type == e1000_82544 &&
1735 hw->bus_type == e1000_bus_type_pcix)
1736 adapter->pcix_82544 = 1;
1738 E1000_WRITE_REG(hw, TCTL, tctl);
1743 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1744 * @adapter: board private structure
1745 * @rxdr: rx descriptor ring (for a specific queue) to setup
1747 * Returns 0 on success, negative on failure
1751 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1752 struct e1000_rx_ring *rxdr)
1754 struct pci_dev *pdev = adapter->pdev;
1757 size = sizeof(struct e1000_buffer) * rxdr->count;
1758 rxdr->buffer_info = vmalloc(size);
1759 if (!rxdr->buffer_info) {
1761 "Unable to allocate memory for the receive descriptor ring\n");
1764 memset(rxdr->buffer_info, 0, size);
1766 size = sizeof(struct e1000_ps_page) * rxdr->count;
1767 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1768 if (!rxdr->ps_page) {
1769 vfree(rxdr->buffer_info);
1771 "Unable to allocate memory for the receive descriptor ring\n");
1774 memset(rxdr->ps_page, 0, size);
1776 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1777 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1778 if (!rxdr->ps_page_dma) {
1779 vfree(rxdr->buffer_info);
1780 kfree(rxdr->ps_page);
1782 "Unable to allocate memory for the receive descriptor ring\n");
1785 memset(rxdr->ps_page_dma, 0, size);
1787 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1788 desc_len = sizeof(struct e1000_rx_desc);
1790 desc_len = sizeof(union e1000_rx_desc_packet_split);
1792 /* Round up to nearest 4K */
1794 rxdr->size = rxdr->count * desc_len;
1795 E1000_ROUNDUP(rxdr->size, 4096);
1797 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1801 "Unable to allocate memory for the receive descriptor ring\n");
1803 vfree(rxdr->buffer_info);
1804 kfree(rxdr->ps_page);
1805 kfree(rxdr->ps_page_dma);
1809 /* Fix for errata 23, can't cross 64kB boundary */
1810 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1811 void *olddesc = rxdr->desc;
1812 dma_addr_t olddma = rxdr->dma;
1813 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1814 "at %p\n", rxdr->size, rxdr->desc);
1815 /* Try again, without freeing the previous */
1816 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1817 /* Failed allocation, critical failure */
1819 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1821 "Unable to allocate memory "
1822 "for the receive descriptor ring\n");
1823 goto setup_rx_desc_die;
1826 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1828 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1830 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1832 "Unable to allocate aligned memory "
1833 "for the receive descriptor ring\n");
1834 goto setup_rx_desc_die;
1836 /* Free old allocation, new allocation was successful */
1837 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1840 memset(rxdr->desc, 0, rxdr->size);
1842 rxdr->next_to_clean = 0;
1843 rxdr->next_to_use = 0;
1849 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1850 * (Descriptors) for all queues
1851 * @adapter: board private structure
1853 * Return 0 on success, negative on failure
1857 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1861 for (i = 0; i < adapter->num_rx_queues; i++) {
1862 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1865 "Allocation for Rx Queue %u failed\n", i);
1866 for (i-- ; i >= 0; i--)
1867 e1000_free_rx_resources(adapter,
1868 &adapter->rx_ring[i]);
1877 * e1000_setup_rctl - configure the receive control registers
1878 * @adapter: Board private structure
1880 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1881 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1883 e1000_setup_rctl(struct e1000_adapter *adapter)
1885 uint32_t rctl, rfctl;
1886 uint32_t psrctl = 0;
1887 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1891 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1893 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1895 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1896 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1897 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1899 if (adapter->hw.tbi_compatibility_on == 1)
1900 rctl |= E1000_RCTL_SBP;
1902 rctl &= ~E1000_RCTL_SBP;
1904 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1905 rctl &= ~E1000_RCTL_LPE;
1907 rctl |= E1000_RCTL_LPE;
1909 /* Setup buffer sizes */
1910 rctl &= ~E1000_RCTL_SZ_4096;
1911 rctl |= E1000_RCTL_BSEX;
1912 switch (adapter->rx_buffer_len) {
1913 case E1000_RXBUFFER_256:
1914 rctl |= E1000_RCTL_SZ_256;
1915 rctl &= ~E1000_RCTL_BSEX;
1917 case E1000_RXBUFFER_512:
1918 rctl |= E1000_RCTL_SZ_512;
1919 rctl &= ~E1000_RCTL_BSEX;
1921 case E1000_RXBUFFER_1024:
1922 rctl |= E1000_RCTL_SZ_1024;
1923 rctl &= ~E1000_RCTL_BSEX;
1925 case E1000_RXBUFFER_2048:
1927 rctl |= E1000_RCTL_SZ_2048;
1928 rctl &= ~E1000_RCTL_BSEX;
1930 case E1000_RXBUFFER_4096:
1931 rctl |= E1000_RCTL_SZ_4096;
1933 case E1000_RXBUFFER_8192:
1934 rctl |= E1000_RCTL_SZ_8192;
1936 case E1000_RXBUFFER_16384:
1937 rctl |= E1000_RCTL_SZ_16384;
1941 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1942 /* 82571 and greater support packet-split where the protocol
1943 * header is placed in skb->data and the packet data is
1944 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1945 * In the case of a non-split, skb->data is linearly filled,
1946 * followed by the page buffers. Therefore, skb->data is
1947 * sized to hold the largest protocol header.
1949 /* allocations using alloc_page take too long for regular MTU
1950 * so only enable packet split for jumbo frames */
1951 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1952 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1953 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1954 adapter->rx_ps_pages = pages;
1956 adapter->rx_ps_pages = 0;
1958 if (adapter->rx_ps_pages) {
1959 /* Configure extra packet-split registers */
1960 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1961 rfctl |= E1000_RFCTL_EXTEN;
1962 /* disable packet split support for IPv6 extension headers,
1963 * because some malformed IPv6 headers can hang the RX */
1964 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1965 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1967 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1969 rctl |= E1000_RCTL_DTYP_PS;
1971 psrctl |= adapter->rx_ps_bsize0 >>
1972 E1000_PSRCTL_BSIZE0_SHIFT;
1974 switch (adapter->rx_ps_pages) {
1976 psrctl |= PAGE_SIZE <<
1977 E1000_PSRCTL_BSIZE3_SHIFT;
1979 psrctl |= PAGE_SIZE <<
1980 E1000_PSRCTL_BSIZE2_SHIFT;
1982 psrctl |= PAGE_SIZE >>
1983 E1000_PSRCTL_BSIZE1_SHIFT;
1987 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1990 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1994 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1995 * @adapter: board private structure
1997 * Configure the Rx unit of the MAC after a reset.
2001 e1000_configure_rx(struct e1000_adapter *adapter)
2004 struct e1000_hw *hw = &adapter->hw;
2005 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2007 if (adapter->rx_ps_pages) {
2008 /* this is a 32 byte descriptor */
2009 rdlen = adapter->rx_ring[0].count *
2010 sizeof(union e1000_rx_desc_packet_split);
2011 adapter->clean_rx = e1000_clean_rx_irq_ps;
2012 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2014 rdlen = adapter->rx_ring[0].count *
2015 sizeof(struct e1000_rx_desc);
2016 adapter->clean_rx = e1000_clean_rx_irq;
2017 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2020 /* disable receives while setting up the descriptors */
2021 rctl = E1000_READ_REG(hw, RCTL);
2022 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2024 /* set the Receive Delay Timer Register */
2025 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2027 if (hw->mac_type >= e1000_82540) {
2028 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2029 if (adapter->itr_setting != 0)
2030 E1000_WRITE_REG(hw, ITR,
2031 1000000000 / (adapter->itr * 256));
2034 if (hw->mac_type >= e1000_82571) {
2035 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2036 /* Reset delay timers after every interrupt */
2037 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2038 #ifdef CONFIG_E1000_NAPI
2039 /* Auto-Mask interrupts upon ICR access */
2040 ctrl_ext |= E1000_CTRL_EXT_IAME;
2041 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2043 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2044 E1000_WRITE_FLUSH(hw);
2047 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2048 * the Base and Length of the Rx Descriptor Ring */
2049 switch (adapter->num_rx_queues) {
2052 rdba = adapter->rx_ring[0].dma;
2053 E1000_WRITE_REG(hw, RDLEN, rdlen);
2054 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2055 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2056 E1000_WRITE_REG(hw, RDT, 0);
2057 E1000_WRITE_REG(hw, RDH, 0);
2058 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2059 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2063 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2064 if (hw->mac_type >= e1000_82543) {
2065 rxcsum = E1000_READ_REG(hw, RXCSUM);
2066 if (adapter->rx_csum == TRUE) {
2067 rxcsum |= E1000_RXCSUM_TUOFL;
2069 /* Enable 82571 IPv4 payload checksum for UDP fragments
2070 * Must be used in conjunction with packet-split. */
2071 if ((hw->mac_type >= e1000_82571) &&
2072 (adapter->rx_ps_pages)) {
2073 rxcsum |= E1000_RXCSUM_IPPCSE;
2076 rxcsum &= ~E1000_RXCSUM_TUOFL;
2077 /* don't need to clear IPPCSE as it defaults to 0 */
2079 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2082 /* enable early receives on 82573, only takes effect if using > 2048
2083 * byte total frame size. for example only for jumbo frames */
2084 #define E1000_ERT_2048 0x100
2085 if (hw->mac_type == e1000_82573)
2086 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2088 /* Enable Receives */
2089 E1000_WRITE_REG(hw, RCTL, rctl);
2093 * e1000_free_tx_resources - Free Tx Resources per Queue
2094 * @adapter: board private structure
2095 * @tx_ring: Tx descriptor ring for a specific queue
2097 * Free all transmit software resources
2101 e1000_free_tx_resources(struct e1000_adapter *adapter,
2102 struct e1000_tx_ring *tx_ring)
2104 struct pci_dev *pdev = adapter->pdev;
2106 e1000_clean_tx_ring(adapter, tx_ring);
2108 vfree(tx_ring->buffer_info);
2109 tx_ring->buffer_info = NULL;
2111 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2113 tx_ring->desc = NULL;
2117 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2118 * @adapter: board private structure
2120 * Free all transmit software resources
2124 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2128 for (i = 0; i < adapter->num_tx_queues; i++)
2129 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2133 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2134 struct e1000_buffer *buffer_info)
2136 if (buffer_info->dma) {
2137 pci_unmap_page(adapter->pdev,
2139 buffer_info->length,
2141 buffer_info->dma = 0;
2143 if (buffer_info->skb) {
2144 dev_kfree_skb_any(buffer_info->skb);
2145 buffer_info->skb = NULL;
2147 /* buffer_info must be completely set up in the transmit path */
2151 * e1000_clean_tx_ring - Free Tx Buffers
2152 * @adapter: board private structure
2153 * @tx_ring: ring to be cleaned
2157 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2158 struct e1000_tx_ring *tx_ring)
2160 struct e1000_buffer *buffer_info;
2164 /* Free all the Tx ring sk_buffs */
2166 for (i = 0; i < tx_ring->count; i++) {
2167 buffer_info = &tx_ring->buffer_info[i];
2168 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2171 size = sizeof(struct e1000_buffer) * tx_ring->count;
2172 memset(tx_ring->buffer_info, 0, size);
2174 /* Zero out the descriptor ring */
2176 memset(tx_ring->desc, 0, tx_ring->size);
2178 tx_ring->next_to_use = 0;
2179 tx_ring->next_to_clean = 0;
2180 tx_ring->last_tx_tso = 0;
2182 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2183 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2187 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2188 * @adapter: board private structure
2192 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2196 for (i = 0; i < adapter->num_tx_queues; i++)
2197 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2201 * e1000_free_rx_resources - Free Rx Resources
2202 * @adapter: board private structure
2203 * @rx_ring: ring to clean the resources from
2205 * Free all receive software resources
2209 e1000_free_rx_resources(struct e1000_adapter *adapter,
2210 struct e1000_rx_ring *rx_ring)
2212 struct pci_dev *pdev = adapter->pdev;
2214 e1000_clean_rx_ring(adapter, rx_ring);
2216 vfree(rx_ring->buffer_info);
2217 rx_ring->buffer_info = NULL;
2218 kfree(rx_ring->ps_page);
2219 rx_ring->ps_page = NULL;
2220 kfree(rx_ring->ps_page_dma);
2221 rx_ring->ps_page_dma = NULL;
2223 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2225 rx_ring->desc = NULL;
2229 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2230 * @adapter: board private structure
2232 * Free all receive software resources
2236 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2240 for (i = 0; i < adapter->num_rx_queues; i++)
2241 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2245 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2246 * @adapter: board private structure
2247 * @rx_ring: ring to free buffers from
2251 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2252 struct e1000_rx_ring *rx_ring)
2254 struct e1000_buffer *buffer_info;
2255 struct e1000_ps_page *ps_page;
2256 struct e1000_ps_page_dma *ps_page_dma;
2257 struct pci_dev *pdev = adapter->pdev;
2261 /* Free all the Rx ring sk_buffs */
2262 for (i = 0; i < rx_ring->count; i++) {
2263 buffer_info = &rx_ring->buffer_info[i];
2264 if (buffer_info->skb) {
2265 pci_unmap_single(pdev,
2267 buffer_info->length,
2268 PCI_DMA_FROMDEVICE);
2270 dev_kfree_skb(buffer_info->skb);
2271 buffer_info->skb = NULL;
2273 ps_page = &rx_ring->ps_page[i];
2274 ps_page_dma = &rx_ring->ps_page_dma[i];
2275 for (j = 0; j < adapter->rx_ps_pages; j++) {
2276 if (!ps_page->ps_page[j]) break;
2277 pci_unmap_page(pdev,
2278 ps_page_dma->ps_page_dma[j],
2279 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2280 ps_page_dma->ps_page_dma[j] = 0;
2281 put_page(ps_page->ps_page[j]);
2282 ps_page->ps_page[j] = NULL;
2286 size = sizeof(struct e1000_buffer) * rx_ring->count;
2287 memset(rx_ring->buffer_info, 0, size);
2288 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2289 memset(rx_ring->ps_page, 0, size);
2290 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2291 memset(rx_ring->ps_page_dma, 0, size);
2293 /* Zero out the descriptor ring */
2295 memset(rx_ring->desc, 0, rx_ring->size);
2297 rx_ring->next_to_clean = 0;
2298 rx_ring->next_to_use = 0;
2300 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2301 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2305 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2306 * @adapter: board private structure
2310 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2314 for (i = 0; i < adapter->num_rx_queues; i++)
2315 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2318 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2319 * and memory write and invalidate disabled for certain operations
2322 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2324 struct net_device *netdev = adapter->netdev;
2327 e1000_pci_clear_mwi(&adapter->hw);
2329 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2330 rctl |= E1000_RCTL_RST;
2331 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2332 E1000_WRITE_FLUSH(&adapter->hw);
2335 if (netif_running(netdev))
2336 e1000_clean_all_rx_rings(adapter);
2340 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2342 struct net_device *netdev = adapter->netdev;
2345 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2346 rctl &= ~E1000_RCTL_RST;
2347 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2348 E1000_WRITE_FLUSH(&adapter->hw);
2351 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2352 e1000_pci_set_mwi(&adapter->hw);
2354 if (netif_running(netdev)) {
2355 /* No need to loop, because 82542 supports only 1 queue */
2356 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2357 e1000_configure_rx(adapter);
2358 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2363 * e1000_set_mac - Change the Ethernet Address of the NIC
2364 * @netdev: network interface device structure
2365 * @p: pointer to an address structure
2367 * Returns 0 on success, negative on failure
2371 e1000_set_mac(struct net_device *netdev, void *p)
2373 struct e1000_adapter *adapter = netdev_priv(netdev);
2374 struct sockaddr *addr = p;
2376 if (!is_valid_ether_addr(addr->sa_data))
2377 return -EADDRNOTAVAIL;
2379 /* 82542 2.0 needs to be in reset to write receive address registers */
2381 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2382 e1000_enter_82542_rst(adapter);
2384 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2385 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2387 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2389 /* With 82571 controllers, LAA may be overwritten (with the default)
2390 * due to controller reset from the other port. */
2391 if (adapter->hw.mac_type == e1000_82571) {
2392 /* activate the work around */
2393 adapter->hw.laa_is_present = 1;
2395 /* Hold a copy of the LAA in RAR[14] This is done so that
2396 * between the time RAR[0] gets clobbered and the time it
2397 * gets fixed (in e1000_watchdog), the actual LAA is in one
2398 * of the RARs and no incoming packets directed to this port
2399 * are dropped. Eventaully the LAA will be in RAR[0] and
2401 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2402 E1000_RAR_ENTRIES - 1);
2405 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2406 e1000_leave_82542_rst(adapter);
2412 * e1000_set_multi - Multicast and Promiscuous mode set
2413 * @netdev: network interface device structure
2415 * The set_multi entry point is called whenever the multicast address
2416 * list or the network interface flags are updated. This routine is
2417 * responsible for configuring the hardware for proper multicast,
2418 * promiscuous mode, and all-multi behavior.
2422 e1000_set_multi(struct net_device *netdev)
2424 struct e1000_adapter *adapter = netdev_priv(netdev);
2425 struct e1000_hw *hw = &adapter->hw;
2426 struct dev_mc_list *mc_ptr;
2428 uint32_t hash_value;
2429 int i, rar_entries = E1000_RAR_ENTRIES;
2430 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2431 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2432 E1000_NUM_MTA_REGISTERS;
2434 if (adapter->hw.mac_type == e1000_ich8lan)
2435 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2437 /* reserve RAR[14] for LAA over-write work-around */
2438 if (adapter->hw.mac_type == e1000_82571)
2441 /* Check for Promiscuous and All Multicast modes */
2443 rctl = E1000_READ_REG(hw, RCTL);
2445 if (netdev->flags & IFF_PROMISC) {
2446 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2447 } else if (netdev->flags & IFF_ALLMULTI) {
2448 rctl |= E1000_RCTL_MPE;
2449 rctl &= ~E1000_RCTL_UPE;
2451 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2454 E1000_WRITE_REG(hw, RCTL, rctl);
2456 /* 82542 2.0 needs to be in reset to write receive address registers */
2458 if (hw->mac_type == e1000_82542_rev2_0)
2459 e1000_enter_82542_rst(adapter);
2461 /* load the first 14 multicast address into the exact filters 1-14
2462 * RAR 0 is used for the station MAC adddress
2463 * if there are not 14 addresses, go ahead and clear the filters
2464 * -- with 82571 controllers only 0-13 entries are filled here
2466 mc_ptr = netdev->mc_list;
2468 for (i = 1; i < rar_entries; i++) {
2470 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2471 mc_ptr = mc_ptr->next;
2473 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2474 E1000_WRITE_FLUSH(hw);
2475 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2476 E1000_WRITE_FLUSH(hw);
2480 /* clear the old settings from the multicast hash table */
2482 for (i = 0; i < mta_reg_count; i++) {
2483 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2484 E1000_WRITE_FLUSH(hw);
2487 /* load any remaining addresses into the hash table */
2489 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2490 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2491 e1000_mta_set(hw, hash_value);
2494 if (hw->mac_type == e1000_82542_rev2_0)
2495 e1000_leave_82542_rst(adapter);
2498 /* Need to wait a few seconds after link up to get diagnostic information from
2502 e1000_update_phy_info(unsigned long data)
2504 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2505 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2509 * e1000_82547_tx_fifo_stall - Timer Call-back
2510 * @data: pointer to adapter cast into an unsigned long
2514 e1000_82547_tx_fifo_stall(unsigned long data)
2516 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2517 struct net_device *netdev = adapter->netdev;
2520 if (atomic_read(&adapter->tx_fifo_stall)) {
2521 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2522 E1000_READ_REG(&adapter->hw, TDH)) &&
2523 (E1000_READ_REG(&adapter->hw, TDFT) ==
2524 E1000_READ_REG(&adapter->hw, TDFH)) &&
2525 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2526 E1000_READ_REG(&adapter->hw, TDFHS))) {
2527 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2528 E1000_WRITE_REG(&adapter->hw, TCTL,
2529 tctl & ~E1000_TCTL_EN);
2530 E1000_WRITE_REG(&adapter->hw, TDFT,
2531 adapter->tx_head_addr);
2532 E1000_WRITE_REG(&adapter->hw, TDFH,
2533 adapter->tx_head_addr);
2534 E1000_WRITE_REG(&adapter->hw, TDFTS,
2535 adapter->tx_head_addr);
2536 E1000_WRITE_REG(&adapter->hw, TDFHS,
2537 adapter->tx_head_addr);
2538 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2539 E1000_WRITE_FLUSH(&adapter->hw);
2541 adapter->tx_fifo_head = 0;
2542 atomic_set(&adapter->tx_fifo_stall, 0);
2543 netif_wake_queue(netdev);
2545 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2551 * e1000_watchdog - Timer Call-back
2552 * @data: pointer to adapter cast into an unsigned long
2555 e1000_watchdog(unsigned long data)
2557 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2558 struct net_device *netdev = adapter->netdev;
2559 struct e1000_tx_ring *txdr = adapter->tx_ring;
2560 uint32_t link, tctl;
2563 ret_val = e1000_check_for_link(&adapter->hw);
2564 if ((ret_val == E1000_ERR_PHY) &&
2565 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2566 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2567 /* See e1000_kumeran_lock_loss_workaround() */
2569 "Gigabit has been disabled, downgrading speed\n");
2572 if (adapter->hw.mac_type == e1000_82573) {
2573 e1000_enable_tx_pkt_filtering(&adapter->hw);
2574 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2575 e1000_update_mng_vlan(adapter);
2578 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2579 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2580 link = !adapter->hw.serdes_link_down;
2582 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2585 if (!netif_carrier_ok(netdev)) {
2587 boolean_t txb2b = 1;
2588 e1000_get_speed_and_duplex(&adapter->hw,
2589 &adapter->link_speed,
2590 &adapter->link_duplex);
2592 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2593 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2594 "Flow Control: %s\n",
2595 adapter->link_speed,
2596 adapter->link_duplex == FULL_DUPLEX ?
2597 "Full Duplex" : "Half Duplex",
2598 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2599 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2600 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2601 E1000_CTRL_TFCE) ? "TX" : "None" )));
2603 /* tweak tx_queue_len according to speed/duplex
2604 * and adjust the timeout factor */
2605 netdev->tx_queue_len = adapter->tx_queue_len;
2606 adapter->tx_timeout_factor = 1;
2607 switch (adapter->link_speed) {
2610 netdev->tx_queue_len = 10;
2611 adapter->tx_timeout_factor = 8;
2615 netdev->tx_queue_len = 100;
2616 /* maybe add some timeout factor ? */
2620 if ((adapter->hw.mac_type == e1000_82571 ||
2621 adapter->hw.mac_type == e1000_82572) &&
2624 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2625 tarc0 &= ~(1 << 21);
2626 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2630 /* disable TSO for pcie and 10/100 speeds, to avoid
2631 * some hardware issues */
2632 if (!adapter->tso_force &&
2633 adapter->hw.bus_type == e1000_bus_type_pci_express){
2634 switch (adapter->link_speed) {
2638 "10/100 speed: disabling TSO\n");
2639 netdev->features &= ~NETIF_F_TSO;
2641 netdev->features &= ~NETIF_F_TSO6;
2645 netdev->features |= NETIF_F_TSO;
2647 netdev->features |= NETIF_F_TSO6;
2657 /* enable transmits in the hardware, need to do this
2658 * after setting TARC0 */
2659 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2660 tctl |= E1000_TCTL_EN;
2661 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2663 netif_carrier_on(netdev);
2664 netif_wake_queue(netdev);
2665 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2666 adapter->smartspeed = 0;
2668 /* make sure the receive unit is started */
2669 if (adapter->hw.rx_needs_kicking) {
2670 struct e1000_hw *hw = &adapter->hw;
2671 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2672 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2676 if (netif_carrier_ok(netdev)) {
2677 adapter->link_speed = 0;
2678 adapter->link_duplex = 0;
2679 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2680 netif_carrier_off(netdev);
2681 netif_stop_queue(netdev);
2682 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2684 /* 80003ES2LAN workaround--
2685 * For packet buffer work-around on link down event;
2686 * disable receives in the ISR and
2687 * reset device here in the watchdog
2689 if (adapter->hw.mac_type == e1000_80003es2lan)
2691 schedule_work(&adapter->reset_task);
2694 e1000_smartspeed(adapter);
2697 e1000_update_stats(adapter);
2699 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2700 adapter->tpt_old = adapter->stats.tpt;
2701 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2702 adapter->colc_old = adapter->stats.colc;
2704 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2705 adapter->gorcl_old = adapter->stats.gorcl;
2706 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2707 adapter->gotcl_old = adapter->stats.gotcl;
2709 e1000_update_adaptive(&adapter->hw);
2711 if (!netif_carrier_ok(netdev)) {
2712 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2713 /* We've lost link, so the controller stops DMA,
2714 * but we've got queued Tx work that's never going
2715 * to get done, so reset controller to flush Tx.
2716 * (Do the reset outside of interrupt context). */
2717 adapter->tx_timeout_count++;
2718 schedule_work(&adapter->reset_task);
2722 /* Cause software interrupt to ensure rx ring is cleaned */
2723 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2725 /* Force detection of hung controller every watchdog period */
2726 adapter->detect_tx_hung = TRUE;
2728 /* With 82571 controllers, LAA may be overwritten due to controller
2729 * reset from the other port. Set the appropriate LAA in RAR[0] */
2730 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2731 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2733 /* Reset the timer */
2734 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2737 enum latency_range {
2741 latency_invalid = 255
2745 * e1000_update_itr - update the dynamic ITR value based on statistics
2746 * Stores a new ITR value based on packets and byte
2747 * counts during the last interrupt. The advantage of per interrupt
2748 * computation is faster updates and more accurate ITR for the current
2749 * traffic pattern. Constants in this function were computed
2750 * based on theoretical maximum wire speed and thresholds were set based
2751 * on testing data as well as attempting to minimize response time
2752 * while increasing bulk throughput.
2753 * this functionality is controlled by the InterruptThrottleRate module
2754 * parameter (see e1000_param.c)
2755 * @adapter: pointer to adapter
2756 * @itr_setting: current adapter->itr
2757 * @packets: the number of packets during this measurement interval
2758 * @bytes: the number of bytes during this measurement interval
2760 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2761 uint16_t itr_setting,
2765 unsigned int retval = itr_setting;
2766 struct e1000_hw *hw = &adapter->hw;
2768 if (unlikely(hw->mac_type < e1000_82540))
2769 goto update_itr_done;
2772 goto update_itr_done;
2774 switch (itr_setting) {
2775 case lowest_latency:
2776 /* jumbo frames get bulk treatment*/
2777 if (bytes/packets > 8000)
2778 retval = bulk_latency;
2779 else if ((packets < 5) && (bytes > 512))
2780 retval = low_latency;
2782 case low_latency: /* 50 usec aka 20000 ints/s */
2783 if (bytes > 10000) {
2784 /* jumbo frames need bulk latency setting */
2785 if (bytes/packets > 8000)
2786 retval = bulk_latency;
2787 else if ((packets < 10) || ((bytes/packets) > 1200))
2788 retval = bulk_latency;
2789 else if ((packets > 35))
2790 retval = lowest_latency;
2791 } else if (bytes/packets > 2000)
2792 retval = bulk_latency;
2793 else if (packets <= 2 && bytes < 512)
2794 retval = lowest_latency;
2796 case bulk_latency: /* 250 usec aka 4000 ints/s */
2797 if (bytes > 25000) {
2799 retval = low_latency;
2800 } else if (bytes < 6000) {
2801 retval = low_latency;
2810 static void e1000_set_itr(struct e1000_adapter *adapter)
2812 struct e1000_hw *hw = &adapter->hw;
2813 uint16_t current_itr;
2814 uint32_t new_itr = adapter->itr;
2816 if (unlikely(hw->mac_type < e1000_82540))
2819 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2820 if (unlikely(adapter->link_speed != SPEED_1000)) {
2826 adapter->tx_itr = e1000_update_itr(adapter,
2828 adapter->total_tx_packets,
2829 adapter->total_tx_bytes);
2830 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2831 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2832 adapter->tx_itr = low_latency;
2834 adapter->rx_itr = e1000_update_itr(adapter,
2836 adapter->total_rx_packets,
2837 adapter->total_rx_bytes);
2838 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2839 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2840 adapter->rx_itr = low_latency;
2842 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2844 switch (current_itr) {
2845 /* counts and packets in update_itr are dependent on these numbers */
2846 case lowest_latency:
2850 new_itr = 20000; /* aka hwitr = ~200 */
2860 if (new_itr != adapter->itr) {
2861 /* this attempts to bias the interrupt rate towards Bulk
2862 * by adding intermediate steps when interrupt rate is
2864 new_itr = new_itr > adapter->itr ?
2865 min(adapter->itr + (new_itr >> 2), new_itr) :
2867 adapter->itr = new_itr;
2868 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2874 #define E1000_TX_FLAGS_CSUM 0x00000001
2875 #define E1000_TX_FLAGS_VLAN 0x00000002
2876 #define E1000_TX_FLAGS_TSO 0x00000004
2877 #define E1000_TX_FLAGS_IPV4 0x00000008
2878 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2879 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2882 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2883 struct sk_buff *skb)
2886 struct e1000_context_desc *context_desc;
2887 struct e1000_buffer *buffer_info;
2889 uint32_t cmd_length = 0;
2890 uint16_t ipcse = 0, tucse, mss;
2891 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2894 if (skb_is_gso(skb)) {
2895 if (skb_header_cloned(skb)) {
2896 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2901 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2902 mss = skb_shinfo(skb)->gso_size;
2903 if (skb->protocol == htons(ETH_P_IP)) {
2904 skb->nh.iph->tot_len = 0;
2905 skb->nh.iph->check = 0;
2907 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2912 cmd_length = E1000_TXD_CMD_IP;
2913 ipcse = skb->h.raw - skb->data - 1;
2915 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2916 skb->nh.ipv6h->payload_len = 0;
2918 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2919 &skb->nh.ipv6h->daddr,
2926 ipcss = skb->nh.raw - skb->data;
2927 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2928 tucss = skb->h.raw - skb->data;
2929 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2932 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2933 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2935 i = tx_ring->next_to_use;
2936 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2937 buffer_info = &tx_ring->buffer_info[i];
2939 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2940 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2941 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2942 context_desc->upper_setup.tcp_fields.tucss = tucss;
2943 context_desc->upper_setup.tcp_fields.tucso = tucso;
2944 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2945 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2946 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2947 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2949 buffer_info->time_stamp = jiffies;
2950 buffer_info->next_to_watch = i;
2952 if (++i == tx_ring->count) i = 0;
2953 tx_ring->next_to_use = i;
2963 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2964 struct sk_buff *skb)
2966 struct e1000_context_desc *context_desc;
2967 struct e1000_buffer *buffer_info;
2971 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2972 css = skb->h.raw - skb->data;
2974 i = tx_ring->next_to_use;
2975 buffer_info = &tx_ring->buffer_info[i];
2976 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2978 context_desc->lower_setup.ip_config = 0;
2979 context_desc->upper_setup.tcp_fields.tucss = css;
2980 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2981 context_desc->upper_setup.tcp_fields.tucse = 0;
2982 context_desc->tcp_seg_setup.data = 0;
2983 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2985 buffer_info->time_stamp = jiffies;
2986 buffer_info->next_to_watch = i;
2988 if (unlikely(++i == tx_ring->count)) i = 0;
2989 tx_ring->next_to_use = i;
2997 #define E1000_MAX_TXD_PWR 12
2998 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
3001 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3002 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3003 unsigned int nr_frags, unsigned int mss)
3005 struct e1000_buffer *buffer_info;
3006 unsigned int len = skb->len;
3007 unsigned int offset = 0, size, count = 0, i;
3009 len -= skb->data_len;
3011 i = tx_ring->next_to_use;
3014 buffer_info = &tx_ring->buffer_info[i];
3015 size = min(len, max_per_txd);
3017 /* Workaround for Controller erratum --
3018 * descriptor for non-tso packet in a linear SKB that follows a
3019 * tso gets written back prematurely before the data is fully
3020 * DMA'd to the controller */
3021 if (!skb->data_len && tx_ring->last_tx_tso &&
3023 tx_ring->last_tx_tso = 0;
3027 /* Workaround for premature desc write-backs
3028 * in TSO mode. Append 4-byte sentinel desc */
3029 if (unlikely(mss && !nr_frags && size == len && size > 8))
3032 /* work-around for errata 10 and it applies
3033 * to all controllers in PCI-X mode
3034 * The fix is to make sure that the first descriptor of a
3035 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3037 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3038 (size > 2015) && count == 0))
3041 /* Workaround for potential 82544 hang in PCI-X. Avoid
3042 * terminating buffers within evenly-aligned dwords. */
3043 if (unlikely(adapter->pcix_82544 &&
3044 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3048 buffer_info->length = size;
3050 pci_map_single(adapter->pdev,
3054 buffer_info->time_stamp = jiffies;
3055 buffer_info->next_to_watch = i;
3060 if (unlikely(++i == tx_ring->count)) i = 0;
3063 for (f = 0; f < nr_frags; f++) {
3064 struct skb_frag_struct *frag;
3066 frag = &skb_shinfo(skb)->frags[f];
3068 offset = frag->page_offset;
3071 buffer_info = &tx_ring->buffer_info[i];
3072 size = min(len, max_per_txd);
3074 /* Workaround for premature desc write-backs
3075 * in TSO mode. Append 4-byte sentinel desc */
3076 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3079 /* Workaround for potential 82544 hang in PCI-X.
3080 * Avoid terminating buffers within evenly-aligned
3082 if (unlikely(adapter->pcix_82544 &&
3083 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3087 buffer_info->length = size;
3089 pci_map_page(adapter->pdev,
3094 buffer_info->time_stamp = jiffies;
3095 buffer_info->next_to_watch = i;
3100 if (unlikely(++i == tx_ring->count)) i = 0;
3104 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3105 tx_ring->buffer_info[i].skb = skb;
3106 tx_ring->buffer_info[first].next_to_watch = i;
3112 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3113 int tx_flags, int count)
3115 struct e1000_tx_desc *tx_desc = NULL;
3116 struct e1000_buffer *buffer_info;
3117 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3120 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3121 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3123 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3125 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3126 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3129 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3130 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3131 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3134 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3135 txd_lower |= E1000_TXD_CMD_VLE;
3136 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3139 i = tx_ring->next_to_use;
3142 buffer_info = &tx_ring->buffer_info[i];
3143 tx_desc = E1000_TX_DESC(*tx_ring, i);
3144 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3145 tx_desc->lower.data =
3146 cpu_to_le32(txd_lower | buffer_info->length);
3147 tx_desc->upper.data = cpu_to_le32(txd_upper);
3148 if (unlikely(++i == tx_ring->count)) i = 0;
3151 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3153 /* Force memory writes to complete before letting h/w
3154 * know there are new descriptors to fetch. (Only
3155 * applicable for weak-ordered memory model archs,
3156 * such as IA-64). */
3159 tx_ring->next_to_use = i;
3160 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3161 /* we need this if more than one processor can write to our tail
3162 * at a time, it syncronizes IO on IA64/Altix systems */
3167 * 82547 workaround to avoid controller hang in half-duplex environment.
3168 * The workaround is to avoid queuing a large packet that would span
3169 * the internal Tx FIFO ring boundary by notifying the stack to resend
3170 * the packet at a later time. This gives the Tx FIFO an opportunity to
3171 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3172 * to the beginning of the Tx FIFO.
3175 #define E1000_FIFO_HDR 0x10
3176 #define E1000_82547_PAD_LEN 0x3E0
3179 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3181 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3182 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3184 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3186 if (adapter->link_duplex != HALF_DUPLEX)
3187 goto no_fifo_stall_required;
3189 if (atomic_read(&adapter->tx_fifo_stall))
3192 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3193 atomic_set(&adapter->tx_fifo_stall, 1);
3197 no_fifo_stall_required:
3198 adapter->tx_fifo_head += skb_fifo_len;
3199 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3200 adapter->tx_fifo_head -= adapter->tx_fifo_size;