[PATCH] e1000:82573 specific code & packet split code
[linux-3.10.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 5.3.12       6/7/04
33  * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34  * - if_mii support and associated kcompat for older kernels
35  * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36  * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37  *
38  * 5.7.1        12/16/04
39  * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
40  *   fix was removed as it caused system instability. The suspected cause of 
41  *   this is the called to e1000_irq_disable in e1000_intr. Inlined the 
42  *   required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
43  * 5.7.0        12/10/04
44  * - include fix to the condition that determines when to quit NAPI - Robert Olsson
45  * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
46  * 5.6.5        11/01/04
47  * - Enabling NETIF_F_SG without checksum offload is illegal - 
48      John Mason <jdmason@us.ibm.com>
49  * 5.6.3        10/26/04
50  * - Remove redundant initialization - Jamal Hadi
51  * - Reset buffer_info->dma in tx resource cleanup logic
52  * 5.6.2        10/12/04
53  * - Avoid filling tx_ring completely - shemminger@osdl.org
54  * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
55  *   nacc@us.ibm.com
56  * - Sparse cleanup - shemminger@osdl.org
57  * - Fix tx resource cleanup logic
58  * - LLTX support - ak@suse.de and hadi@cyberus.ca
59  */
60
61 char e1000_driver_name[] = "e1000";
62 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
63 #ifndef CONFIG_E1000_NAPI
64 #define DRIVERNAPI
65 #else
66 #define DRIVERNAPI "-NAPI"
67 #endif
68 #define DRV_VERSION "5.7.6-k2"DRIVERNAPI
69 char e1000_driver_version[] = DRV_VERSION;
70 char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
71
72 /* e1000_pci_tbl - PCI Device ID Table
73  *
74  * Last entry must be all 0s
75  *
76  * Macro expands to...
77  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
78  */
79 static struct pci_device_id e1000_pci_tbl[] = {
80         INTEL_E1000_ETHERNET_DEVICE(0x1000),
81         INTEL_E1000_ETHERNET_DEVICE(0x1001),
82         INTEL_E1000_ETHERNET_DEVICE(0x1004),
83         INTEL_E1000_ETHERNET_DEVICE(0x1008),
84         INTEL_E1000_ETHERNET_DEVICE(0x1009),
85         INTEL_E1000_ETHERNET_DEVICE(0x100C),
86         INTEL_E1000_ETHERNET_DEVICE(0x100D),
87         INTEL_E1000_ETHERNET_DEVICE(0x100E),
88         INTEL_E1000_ETHERNET_DEVICE(0x100F),
89         INTEL_E1000_ETHERNET_DEVICE(0x1010),
90         INTEL_E1000_ETHERNET_DEVICE(0x1011),
91         INTEL_E1000_ETHERNET_DEVICE(0x1012),
92         INTEL_E1000_ETHERNET_DEVICE(0x1013),
93         INTEL_E1000_ETHERNET_DEVICE(0x1014),
94         INTEL_E1000_ETHERNET_DEVICE(0x1015),
95         INTEL_E1000_ETHERNET_DEVICE(0x1016),
96         INTEL_E1000_ETHERNET_DEVICE(0x1017),
97         INTEL_E1000_ETHERNET_DEVICE(0x1018),
98         INTEL_E1000_ETHERNET_DEVICE(0x1019),
99         INTEL_E1000_ETHERNET_DEVICE(0x101D),
100         INTEL_E1000_ETHERNET_DEVICE(0x101E),
101         INTEL_E1000_ETHERNET_DEVICE(0x1026),
102         INTEL_E1000_ETHERNET_DEVICE(0x1027),
103         INTEL_E1000_ETHERNET_DEVICE(0x1028),
104         INTEL_E1000_ETHERNET_DEVICE(0x1075),
105         INTEL_E1000_ETHERNET_DEVICE(0x1076),
106         INTEL_E1000_ETHERNET_DEVICE(0x1077),
107         INTEL_E1000_ETHERNET_DEVICE(0x1078),
108         INTEL_E1000_ETHERNET_DEVICE(0x1079),
109         INTEL_E1000_ETHERNET_DEVICE(0x107A),
110         INTEL_E1000_ETHERNET_DEVICE(0x107B),
111         INTEL_E1000_ETHERNET_DEVICE(0x107C),
112         INTEL_E1000_ETHERNET_DEVICE(0x108A),
113         /* required last entry */
114         {0,}
115 };
116
117 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
118
119 int e1000_up(struct e1000_adapter *adapter);
120 void e1000_down(struct e1000_adapter *adapter);
121 void e1000_reset(struct e1000_adapter *adapter);
122 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
123 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
124 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
125 void e1000_free_tx_resources(struct e1000_adapter *adapter);
126 void e1000_free_rx_resources(struct e1000_adapter *adapter);
127 void e1000_update_stats(struct e1000_adapter *adapter);
128
129 /* Local Function Prototypes */
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
142 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
143 static void e1000_set_multi(struct net_device *netdev);
144 static void e1000_update_phy_info(unsigned long data);
145 static void e1000_watchdog(unsigned long data);
146 static void e1000_watchdog_task(struct e1000_adapter *adapter);
147 static void e1000_82547_tx_fifo_stall(unsigned long data);
148 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
149 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
150 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
151 static int e1000_set_mac(struct net_device *netdev, void *p);
152 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
153 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
154 #ifdef CONFIG_E1000_NAPI
155 static int e1000_clean(struct net_device *netdev, int *budget);
156 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
157                                     int *work_done, int work_to_do);
158 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
159                                        int *work_done, int work_to_do);
160 #else
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
162 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
163 #endif
164 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
165 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
166 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
167 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
168                            int cmd);
169 void e1000_set_ethtool_ops(struct net_device *netdev);
170 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
171 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
172 static void e1000_tx_timeout(struct net_device *dev);
173 static void e1000_tx_timeout_task(struct net_device *dev);
174 static void e1000_smartspeed(struct e1000_adapter *adapter);
175 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
176                                               struct sk_buff *skb);
177
178 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
179 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
180 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
181 static void e1000_restore_vlan(struct e1000_adapter *adapter);
182
183 static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
184 static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
185 #ifdef CONFIG_PM
186 static int e1000_resume(struct pci_dev *pdev);
187 #endif
188
189 #ifdef CONFIG_NET_POLL_CONTROLLER
190 /* for netdump / net console */
191 static void e1000_netpoll (struct net_device *netdev);
192 #endif
193
194 struct notifier_block e1000_notifier_reboot = {
195         .notifier_call  = e1000_notify_reboot,
196         .next           = NULL,
197         .priority       = 0
198 };
199
200 /* Exported from other modules */
201
202 extern void e1000_check_options(struct e1000_adapter *adapter);
203
204 static struct pci_driver e1000_driver = {
205         .name     = e1000_driver_name,
206         .id_table = e1000_pci_tbl,
207         .probe    = e1000_probe,
208         .remove   = __devexit_p(e1000_remove),
209         /* Power Managment Hooks */
210 #ifdef CONFIG_PM
211         .suspend  = e1000_suspend,
212         .resume   = e1000_resume
213 #endif
214 };
215
216 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
217 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
218 MODULE_LICENSE("GPL");
219 MODULE_VERSION(DRV_VERSION);
220
221 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226  * e1000_init_module - Driver Registration Routine
227  *
228  * e1000_init_module is the first routine called when the driver is
229  * loaded. All it does is register with the PCI subsystem.
230  **/
231
232 static int __init
233 e1000_init_module(void)
234 {
235         int ret;
236         printk(KERN_INFO "%s - version %s\n",
237                e1000_driver_string, e1000_driver_version);
238
239         printk(KERN_INFO "%s\n", e1000_copyright);
240
241         ret = pci_module_init(&e1000_driver);
242         if(ret >= 0) {
243                 register_reboot_notifier(&e1000_notifier_reboot);
244         }
245         return ret;
246 }
247
248 module_init(e1000_init_module);
249
250 /**
251  * e1000_exit_module - Driver Exit Cleanup Routine
252  *
253  * e1000_exit_module is called just before the driver is removed
254  * from memory.
255  **/
256
257 static void __exit
258 e1000_exit_module(void)
259 {
260         unregister_reboot_notifier(&e1000_notifier_reboot);
261         pci_unregister_driver(&e1000_driver);
262 }
263
264 module_exit(e1000_exit_module);
265
266 /**
267  * e1000_irq_disable - Mask off interrupt generation on the NIC
268  * @adapter: board private structure
269  **/
270
271 static inline void
272 e1000_irq_disable(struct e1000_adapter *adapter)
273 {
274         atomic_inc(&adapter->irq_sem);
275         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
276         E1000_WRITE_FLUSH(&adapter->hw);
277         synchronize_irq(adapter->pdev->irq);
278 }
279
280 /**
281  * e1000_irq_enable - Enable default interrupt generation settings
282  * @adapter: board private structure
283  **/
284
285 static inline void
286 e1000_irq_enable(struct e1000_adapter *adapter)
287 {
288         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
289                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
290                 E1000_WRITE_FLUSH(&adapter->hw);
291         }
292 }
293 void
294 e1000_update_mng_vlan(struct e1000_adapter *adapter)
295 {
296         struct net_device *netdev = adapter->netdev;
297         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
298         uint16_t old_vid = adapter->mng_vlan_id;
299         if(adapter->vlgrp) {
300                 if(!adapter->vlgrp->vlan_devices[vid]) {
301                         if(adapter->hw.mng_cookie.status &
302                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
303                                 e1000_vlan_rx_add_vid(netdev, vid);
304                                 adapter->mng_vlan_id = vid;
305                         } else
306                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
307                                 
308                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
309                                         (vid != old_vid) && 
310                                         !adapter->vlgrp->vlan_devices[old_vid])
311                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
312                 }
313         }
314 }
315         
316 int
317 e1000_up(struct e1000_adapter *adapter)
318 {
319         struct net_device *netdev = adapter->netdev;
320         int err;
321
322         /* hardware has been reset, we need to reload some things */
323
324         /* Reset the PHY if it was previously powered down */
325         if(adapter->hw.media_type == e1000_media_type_copper) {
326                 uint16_t mii_reg;
327                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
328                 if(mii_reg & MII_CR_POWER_DOWN)
329                         e1000_phy_reset(&adapter->hw);
330         }
331
332         e1000_set_multi(netdev);
333
334         e1000_restore_vlan(adapter);
335
336         e1000_configure_tx(adapter);
337         e1000_setup_rctl(adapter);
338         e1000_configure_rx(adapter);
339         adapter->alloc_rx_buf(adapter);
340
341 #ifdef CONFIG_PCI_MSI
342         if(adapter->hw.mac_type > e1000_82547_rev_2) {
343                 adapter->have_msi = TRUE;
344                 if((err = pci_enable_msi(adapter->pdev))) {
345                         DPRINTK(PROBE, ERR,
346                          "Unable to allocate MSI interrupt Error: %d\n", err);
347                         adapter->have_msi = FALSE;
348                 }
349         }
350 #endif
351         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
352                               SA_SHIRQ | SA_SAMPLE_RANDOM,
353                               netdev->name, netdev)))
354                 return err;
355
356         mod_timer(&adapter->watchdog_timer, jiffies);
357
358 #ifdef CONFIG_E1000_NAPI
359         netif_poll_enable(netdev);
360 #endif
361         e1000_irq_enable(adapter);
362
363         return 0;
364 }
365
366 void
367 e1000_down(struct e1000_adapter *adapter)
368 {
369         struct net_device *netdev = adapter->netdev;
370
371         e1000_irq_disable(adapter);
372         free_irq(adapter->pdev->irq, netdev);
373 #ifdef CONFIG_PCI_MSI
374         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
375            adapter->have_msi == TRUE)
376                 pci_disable_msi(adapter->pdev);
377 #endif
378         del_timer_sync(&adapter->tx_fifo_stall_timer);
379         del_timer_sync(&adapter->watchdog_timer);
380         del_timer_sync(&adapter->phy_info_timer);
381
382 #ifdef CONFIG_E1000_NAPI
383         netif_poll_disable(netdev);
384 #endif
385         adapter->link_speed = 0;
386         adapter->link_duplex = 0;
387         netif_carrier_off(netdev);
388         netif_stop_queue(netdev);
389
390         e1000_reset(adapter);
391         e1000_clean_tx_ring(adapter);
392         e1000_clean_rx_ring(adapter);
393
394         /* If WoL is not enabled
395          * and management mode is not IAMT
396          * Power down the PHY so no link is implied when interface is down */
397         if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
398            adapter->hw.media_type == e1000_media_type_copper &&
399            !e1000_check_mng_mode(&adapter->hw) &&
400            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
401                 uint16_t mii_reg;
402                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
403                 mii_reg |= MII_CR_POWER_DOWN;
404                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
405                 mdelay(1);
406         }
407 }
408
409 void
410 e1000_reset(struct e1000_adapter *adapter)
411 {
412         uint32_t pba, manc;
413
414         /* Repartition Pba for greater than 9k mtu
415          * To take effect CTRL.RST is required.
416          */
417
418         switch (adapter->hw.mac_type) {
419         case e1000_82547:
420                 pba = E1000_PBA_30K;
421                 break;
422         case e1000_82573:
423                 pba = E1000_PBA_12K;
424                 break;
425         default:
426                 pba = E1000_PBA_48K;
427                 break;
428         }
429
430
431
432         if(adapter->hw.mac_type == e1000_82547) {
433                 adapter->tx_fifo_head = 0;
434                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
435                 adapter->tx_fifo_size =
436                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
437                 atomic_set(&adapter->tx_fifo_stall, 0);
438         }
439
440         E1000_WRITE_REG(&adapter->hw, PBA, pba);
441
442         /* flow control settings */
443         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
444                                     E1000_FC_HIGH_DIFF;
445         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
446                                    E1000_FC_LOW_DIFF;
447         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
448         adapter->hw.fc_send_xon = 1;
449         adapter->hw.fc = adapter->hw.original_fc;
450
451         /* Allow time for pending master requests to run */
452         e1000_reset_hw(&adapter->hw);
453         if(adapter->hw.mac_type >= e1000_82544)
454                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
455         if(e1000_init_hw(&adapter->hw))
456                 DPRINTK(PROBE, ERR, "Hardware Error\n");
457         e1000_update_mng_vlan(adapter);
458         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
459         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
460
461         e1000_reset_adaptive(&adapter->hw);
462         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
463         if (adapter->en_mng_pt) {
464                 manc = E1000_READ_REG(&adapter->hw, MANC);
465                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
466                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
467         }
468 }
469
470 /**
471  * e1000_probe - Device Initialization Routine
472  * @pdev: PCI device information struct
473  * @ent: entry in e1000_pci_tbl
474  *
475  * Returns 0 on success, negative on failure
476  *
477  * e1000_probe initializes an adapter identified by a pci_dev structure.
478  * The OS initialization, configuring of the adapter private structure,
479  * and a hardware reset occur.
480  **/
481
482 static int __devinit
483 e1000_probe(struct pci_dev *pdev,
484             const struct pci_device_id *ent)
485 {
486         struct net_device *netdev;
487         struct e1000_adapter *adapter;
488         unsigned long mmio_start, mmio_len;
489         uint32_t swsm;
490
491         static int cards_found = 0;
492         int i, err, pci_using_dac;
493         uint16_t eeprom_data;
494         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
495         if((err = pci_enable_device(pdev)))
496                 return err;
497
498         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
499                 pci_using_dac = 1;
500         } else {
501                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
502                         E1000_ERR("No usable DMA configuration, aborting\n");
503                         return err;
504                 }
505                 pci_using_dac = 0;
506         }
507
508         if((err = pci_request_regions(pdev, e1000_driver_name)))
509                 return err;
510
511         pci_set_master(pdev);
512
513         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
514         if(!netdev) {
515                 err = -ENOMEM;
516                 goto err_alloc_etherdev;
517         }
518
519         SET_MODULE_OWNER(netdev);
520         SET_NETDEV_DEV(netdev, &pdev->dev);
521
522         pci_set_drvdata(pdev, netdev);
523         adapter = netdev->priv;
524         adapter->netdev = netdev;
525         adapter->pdev = pdev;
526         adapter->hw.back = adapter;
527         adapter->msg_enable = (1 << debug) - 1;
528
529         mmio_start = pci_resource_start(pdev, BAR_0);
530         mmio_len = pci_resource_len(pdev, BAR_0);
531
532         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
533         if(!adapter->hw.hw_addr) {
534                 err = -EIO;
535                 goto err_ioremap;
536         }
537
538         for(i = BAR_1; i <= BAR_5; i++) {
539                 if(pci_resource_len(pdev, i) == 0)
540                         continue;
541                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
542                         adapter->hw.io_base = pci_resource_start(pdev, i);
543                         break;
544                 }
545         }
546
547         netdev->open = &e1000_open;
548         netdev->stop = &e1000_close;
549         netdev->hard_start_xmit = &e1000_xmit_frame;
550         netdev->get_stats = &e1000_get_stats;
551         netdev->set_multicast_list = &e1000_set_multi;
552         netdev->set_mac_address = &e1000_set_mac;
553         netdev->change_mtu = &e1000_change_mtu;
554         netdev->do_ioctl = &e1000_ioctl;
555         e1000_set_ethtool_ops(netdev);
556         netdev->tx_timeout = &e1000_tx_timeout;
557         netdev->watchdog_timeo = 5 * HZ;
558 #ifdef CONFIG_E1000_NAPI
559         netdev->poll = &e1000_clean;
560         netdev->weight = 64;
561 #endif
562         netdev->vlan_rx_register = e1000_vlan_rx_register;
563         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
564         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
565 #ifdef CONFIG_NET_POLL_CONTROLLER
566         netdev->poll_controller = e1000_netpoll;
567 #endif
568         strcpy(netdev->name, pci_name(pdev));
569
570         netdev->mem_start = mmio_start;
571         netdev->mem_end = mmio_start + mmio_len;
572         netdev->base_addr = adapter->hw.io_base;
573
574         adapter->bd_number = cards_found;
575
576         /* setup the private structure */
577
578         if((err = e1000_sw_init(adapter)))
579                 goto err_sw_init;
580
581         if((err = e1000_check_phy_reset_block(&adapter->hw)))
582                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
583
584         if(adapter->hw.mac_type >= e1000_82543) {
585                 netdev->features = NETIF_F_SG |
586                                    NETIF_F_HW_CSUM |
587                                    NETIF_F_HW_VLAN_TX |
588                                    NETIF_F_HW_VLAN_RX |
589                                    NETIF_F_HW_VLAN_FILTER;
590         }
591
592 #ifdef NETIF_F_TSO
593         if((adapter->hw.mac_type >= e1000_82544) &&
594            (adapter->hw.mac_type != e1000_82547))
595                 netdev->features |= NETIF_F_TSO;
596
597 #ifdef NETIF_F_TSO_IPV6
598         if(adapter->hw.mac_type > e1000_82547_rev_2)
599                 netdev->features |= NETIF_F_TSO_IPV6;
600 #endif
601 #endif
602         if(pci_using_dac)
603                 netdev->features |= NETIF_F_HIGHDMA;
604
605         /* hard_start_xmit is safe against parallel locking */
606         netdev->features |= NETIF_F_LLTX; 
607  
608         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
609
610         /* before reading the EEPROM, reset the controller to 
611          * put the device in a known good starting state */
612         
613         e1000_reset_hw(&adapter->hw);
614
615         /* make sure the EEPROM is good */
616
617         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
618                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
619                 err = -EIO;
620                 goto err_eeprom;
621         }
622
623         /* copy the MAC address out of the EEPROM */
624
625         if (e1000_read_mac_addr(&adapter->hw))
626                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
627         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
628
629         if(!is_valid_ether_addr(netdev->dev_addr)) {
630                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
631                 err = -EIO;
632                 goto err_eeprom;
633         }
634
635         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
636
637         e1000_get_bus_info(&adapter->hw);
638
639         init_timer(&adapter->tx_fifo_stall_timer);
640         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
641         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
642
643         init_timer(&adapter->watchdog_timer);
644         adapter->watchdog_timer.function = &e1000_watchdog;
645         adapter->watchdog_timer.data = (unsigned long) adapter;
646
647         INIT_WORK(&adapter->watchdog_task,
648                 (void (*)(void *))e1000_watchdog_task, adapter);
649
650         init_timer(&adapter->phy_info_timer);
651         adapter->phy_info_timer.function = &e1000_update_phy_info;
652         adapter->phy_info_timer.data = (unsigned long) adapter;
653
654         INIT_WORK(&adapter->tx_timeout_task,
655                 (void (*)(void *))e1000_tx_timeout_task, netdev);
656
657         /* we're going to reset, so assume we have no link for now */
658
659         netif_carrier_off(netdev);
660         netif_stop_queue(netdev);
661
662         e1000_check_options(adapter);
663
664         /* Initial Wake on LAN setting
665          * If APM wake is enabled in the EEPROM,
666          * enable the ACPI Magic Packet filter
667          */
668
669         switch(adapter->hw.mac_type) {
670         case e1000_82542_rev2_0:
671         case e1000_82542_rev2_1:
672         case e1000_82543:
673                 break;
674         case e1000_82544:
675                 e1000_read_eeprom(&adapter->hw,
676                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
677                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
678                 break;
679         case e1000_82546:
680         case e1000_82546_rev_3:
681                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
682                    && (adapter->hw.media_type == e1000_media_type_copper)) {
683                         e1000_read_eeprom(&adapter->hw,
684                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
685                         break;
686                 }
687                 /* Fall Through */
688         default:
689                 e1000_read_eeprom(&adapter->hw,
690                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
691                 break;
692         }
693         if(eeprom_data & eeprom_apme_mask)
694                 adapter->wol |= E1000_WUFC_MAG;
695
696         /* reset the hardware with the new settings */
697         e1000_reset(adapter);
698
699         /* Let firmware know the driver has taken over */
700         switch(adapter->hw.mac_type) {
701         case e1000_82573:
702                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
703                 E1000_WRITE_REG(&adapter->hw, SWSM,
704                                 swsm | E1000_SWSM_DRV_LOAD);
705                 break;
706         default:
707                 break;
708         }
709
710         strcpy(netdev->name, "eth%d");
711         if((err = register_netdev(netdev)))
712                 goto err_register;
713
714         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
715
716         cards_found++;
717         return 0;
718
719 err_register:
720 err_sw_init:
721 err_eeprom:
722         iounmap(adapter->hw.hw_addr);
723 err_ioremap:
724         free_netdev(netdev);
725 err_alloc_etherdev:
726         pci_release_regions(pdev);
727         return err;
728 }
729
730 /**
731  * e1000_remove - Device Removal Routine
732  * @pdev: PCI device information struct
733  *
734  * e1000_remove is called by the PCI subsystem to alert the driver
735  * that it should release a PCI device.  The could be caused by a
736  * Hot-Plug event, or because the driver is going to be removed from
737  * memory.
738  **/
739
740 static void __devexit
741 e1000_remove(struct pci_dev *pdev)
742 {
743         struct net_device *netdev = pci_get_drvdata(pdev);
744         struct e1000_adapter *adapter = netdev->priv;
745         uint32_t manc, swsm;
746
747         flush_scheduled_work();
748
749         if(adapter->hw.mac_type >= e1000_82540 &&
750            adapter->hw.media_type == e1000_media_type_copper) {
751                 manc = E1000_READ_REG(&adapter->hw, MANC);
752                 if(manc & E1000_MANC_SMBUS_EN) {
753                         manc |= E1000_MANC_ARP_EN;
754                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
755                 }
756         }
757
758         switch(adapter->hw.mac_type) {
759         case e1000_82573:
760                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
761                 E1000_WRITE_REG(&adapter->hw, SWSM,
762                                 swsm & ~E1000_SWSM_DRV_LOAD);
763                 break;
764
765         default:
766                 break;
767         }
768
769         unregister_netdev(netdev);
770
771         if(!e1000_check_phy_reset_block(&adapter->hw))
772                 e1000_phy_hw_reset(&adapter->hw);
773
774         iounmap(adapter->hw.hw_addr);
775         pci_release_regions(pdev);
776
777         free_netdev(netdev);
778
779         pci_disable_device(pdev);
780 }
781
782 /**
783  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
784  * @adapter: board private structure to initialize
785  *
786  * e1000_sw_init initializes the Adapter private data structure.
787  * Fields are initialized based on PCI device information and
788  * OS network device settings (MTU size).
789  **/
790
791 static int __devinit
792 e1000_sw_init(struct e1000_adapter *adapter)
793 {
794         struct e1000_hw *hw = &adapter->hw;
795         struct net_device *netdev = adapter->netdev;
796         struct pci_dev *pdev = adapter->pdev;
797
798         /* PCI config space info */
799
800         hw->vendor_id = pdev->vendor;
801         hw->device_id = pdev->device;
802         hw->subsystem_vendor_id = pdev->subsystem_vendor;
803         hw->subsystem_id = pdev->subsystem_device;
804
805         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
806
807         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
808
809         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
810         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
811         hw->max_frame_size = netdev->mtu +
812                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
813         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
814
815         /* identify the MAC */
816
817         if(e1000_set_mac_type(hw)) {
818                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
819                 return -EIO;
820         }
821
822         /* initialize eeprom parameters */
823
824         if(e1000_init_eeprom_params(hw)) {
825                 E1000_ERR("EEPROM initialization failed\n");
826                 return -EIO;
827         }
828
829         switch(hw->mac_type) {
830         default:
831                 break;
832         case e1000_82541:
833         case e1000_82547:
834         case e1000_82541_rev_2:
835         case e1000_82547_rev_2:
836                 hw->phy_init_script = 1;
837                 break;
838         }
839
840         e1000_set_media_type(hw);
841
842         hw->wait_autoneg_complete = FALSE;
843         hw->tbi_compatibility_en = TRUE;
844         hw->adaptive_ifs = TRUE;
845
846         /* Copper options */
847
848         if(hw->media_type == e1000_media_type_copper) {
849                 hw->mdix = AUTO_ALL_MODES;
850                 hw->disable_polarity_correction = FALSE;
851                 hw->master_slave = E1000_MASTER_SLAVE;
852         }
853
854         atomic_set(&adapter->irq_sem, 1);
855         spin_lock_init(&adapter->stats_lock);
856         spin_lock_init(&adapter->tx_lock);
857
858         return 0;
859 }
860
861 /**
862  * e1000_open - Called when a network interface is made active
863  * @netdev: network interface device structure
864  *
865  * Returns 0 on success, negative value on failure
866  *
867  * The open entry point is called when a network interface is made
868  * active by the system (IFF_UP).  At this point all resources needed
869  * for transmit and receive operations are allocated, the interrupt
870  * handler is registered with the OS, the watchdog timer is started,
871  * and the stack is notified that the interface is ready.
872  **/
873
874 static int
875 e1000_open(struct net_device *netdev)
876 {
877         struct e1000_adapter *adapter = netdev->priv;
878         int err;
879
880         /* allocate transmit descriptors */
881
882         if((err = e1000_setup_tx_resources(adapter)))
883                 goto err_setup_tx;
884
885         /* allocate receive descriptors */
886
887         if((err = e1000_setup_rx_resources(adapter)))
888                 goto err_setup_rx;
889
890         if((err = e1000_up(adapter)))
891                 goto err_up;
892         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
893         if((adapter->hw.mng_cookie.status &
894                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
895                 e1000_update_mng_vlan(adapter);
896         }
897
898         return E1000_SUCCESS;
899
900 err_up:
901         e1000_free_rx_resources(adapter);
902 err_setup_rx:
903         e1000_free_tx_resources(adapter);
904 err_setup_tx:
905         e1000_reset(adapter);
906
907         return err;
908 }
909
910 /**
911  * e1000_close - Disables a network interface
912  * @netdev: network interface device structure
913  *
914  * Returns 0, this is not allowed to fail
915  *
916  * The close entry point is called when an interface is de-activated
917  * by the OS.  The hardware is still under the drivers control, but
918  * needs to be disabled.  A global MAC reset is issued to stop the
919  * hardware, and all transmit and receive resources are freed.
920  **/
921
922 static int
923 e1000_close(struct net_device *netdev)
924 {
925         struct e1000_adapter *adapter = netdev->priv;
926
927         e1000_down(adapter);
928
929         e1000_free_tx_resources(adapter);
930         e1000_free_rx_resources(adapter);
931
932         if((adapter->hw.mng_cookie.status &
933                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
934                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
935         }
936         return 0;
937 }
938
939 /**
940  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
941  * @adapter: address of board private structure
942  * @start: address of beginning of memory
943  * @len: length of memory
944  **/
945 static inline boolean_t
946 e1000_check_64k_bound(struct e1000_adapter *adapter,
947                       void *start, unsigned long len)
948 {
949         unsigned long begin = (unsigned long) start;
950         unsigned long end = begin + len;
951
952         /* first rev 82545 and 82546 need to not allow any memory
953          * write location to cross a 64k boundary due to errata 23 */
954         if (adapter->hw.mac_type == e1000_82545 ||
955             adapter->hw.mac_type == e1000_82546 ) {
956
957                 /* check buffer doesn't cross 64kB */
958                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
959         }
960
961         return TRUE;
962 }
963
964 /**
965  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
966  * @adapter: board private structure
967  *
968  * Return 0 on success, negative on failure
969  **/
970
971 int
972 e1000_setup_tx_resources(struct e1000_adapter *adapter)
973 {
974         struct e1000_desc_ring *txdr = &adapter->tx_ring;
975         struct pci_dev *pdev = adapter->pdev;
976         int size;
977
978         size = sizeof(struct e1000_buffer) * txdr->count;
979         txdr->buffer_info = vmalloc(size);
980         if(!txdr->buffer_info) {
981                 DPRINTK(PROBE, ERR, 
982                 "Unable to Allocate Memory for the Transmit descriptor ring\n");
983                 return -ENOMEM;
984         }
985         memset(txdr->buffer_info, 0, size);
986
987         /* round up to nearest 4K */
988
989         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
990         E1000_ROUNDUP(txdr->size, 4096);
991
992         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
993         if(!txdr->desc) {
994 setup_tx_desc_die:
995                 DPRINTK(PROBE, ERR, 
996                 "Unable to Allocate Memory for the Transmit descriptor ring\n");
997                 vfree(txdr->buffer_info);
998                 return -ENOMEM;
999         }
1000
1001         /* fix for errata 23, cant cross 64kB boundary */
1002         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1003                 void *olddesc = txdr->desc;
1004                 dma_addr_t olddma = txdr->dma;
1005                 DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
1006                         txdr->size, txdr->desc);
1007                 /* try again, without freeing the previous */
1008                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1009                 /* failed allocation, critial failure */
1010                 if(!txdr->desc) {
1011                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1012                         goto setup_tx_desc_die;
1013                 }
1014
1015                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1016                         /* give up */
1017                         pci_free_consistent(pdev, txdr->size,
1018                              txdr->desc, txdr->dma);
1019                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1020                         DPRINTK(PROBE, ERR,
1021                          "Unable to Allocate aligned Memory for the Transmit"
1022                          " descriptor ring\n");
1023                         vfree(txdr->buffer_info);
1024                         return -ENOMEM;
1025                 } else {
1026                         /* free old, move on with the new one since its okay */
1027                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1028                 }
1029         }
1030         memset(txdr->desc, 0, txdr->size);
1031
1032         txdr->next_to_use = 0;
1033         txdr->next_to_clean = 0;
1034
1035         return 0;
1036 }
1037
1038 /**
1039  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1040  * @adapter: board private structure
1041  *
1042  * Configure the Tx unit of the MAC after a reset.
1043  **/
1044
1045 static void
1046 e1000_configure_tx(struct e1000_adapter *adapter)
1047 {
1048         uint64_t tdba = adapter->tx_ring.dma;
1049         uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
1050         uint32_t tctl, tipg;
1051
1052         E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1053         E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
1054
1055         E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
1056
1057         /* Setup the HW Tx Head and Tail descriptor pointers */
1058
1059         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1060         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1061
1062         /* Set the default values for the Tx Inter Packet Gap timer */
1063
1064         switch (adapter->hw.mac_type) {
1065         case e1000_82542_rev2_0:
1066         case e1000_82542_rev2_1:
1067                 tipg = DEFAULT_82542_TIPG_IPGT;
1068                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1069                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1070                 break;
1071         default:
1072                 if(adapter->hw.media_type == e1000_media_type_fiber ||
1073                    adapter->hw.media_type == e1000_media_type_internal_serdes)
1074                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1075                 else
1076                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1077                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1078                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1079         }
1080         E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
1081
1082         /* Set the Tx Interrupt Delay register */
1083
1084         E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
1085         if(adapter->hw.mac_type >= e1000_82540)
1086                 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
1087
1088         /* Program the Transmit Control Register */
1089
1090         tctl = E1000_READ_REG(&adapter->hw, TCTL);
1091
1092         tctl &= ~E1000_TCTL_CT;
1093         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1094                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1095
1096         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1097
1098         e1000_config_collision_dist(&adapter->hw);
1099
1100         /* Setup Transmit Descriptor Settings for eop descriptor */
1101         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1102                 E1000_TXD_CMD_IFCS;
1103
1104         if(adapter->hw.mac_type < e1000_82543)
1105                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1106         else
1107                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1108
1109         /* Cache if we're 82544 running in PCI-X because we'll
1110          * need this to apply a workaround later in the send path. */
1111         if(adapter->hw.mac_type == e1000_82544 &&
1112            adapter->hw.bus_type == e1000_bus_type_pcix)
1113                 adapter->pcix_82544 = 1;
1114 }
1115
1116 /**
1117  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1118  * @adapter: board private structure
1119  *
1120  * Returns 0 on success, negative on failure
1121  **/
1122
1123 int
1124 e1000_setup_rx_resources(struct e1000_adapter *adapter)
1125 {
1126         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1127         struct pci_dev *pdev = adapter->pdev;
1128         int size, desc_len;
1129
1130         size = sizeof(struct e1000_buffer) * rxdr->count;
1131         rxdr->buffer_info = vmalloc(size);
1132         if(!rxdr->buffer_info) {
1133                 DPRINTK(PROBE, ERR, 
1134                 "Unable to Allocate Memory for the Recieve descriptor ring\n");
1135                 return -ENOMEM;
1136         }
1137         memset(rxdr->buffer_info, 0, size);
1138
1139         size = sizeof(struct e1000_ps_page) * rxdr->count;
1140         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1141         if(!rxdr->ps_page) {
1142                 vfree(rxdr->buffer_info);
1143                 DPRINTK(PROBE, ERR,
1144                 "Unable to allocate memory for the receive descriptor ring\n");
1145                 return -ENOMEM;
1146         }
1147         memset(rxdr->ps_page, 0, size);
1148
1149         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1150         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1151         if(!rxdr->ps_page_dma) {
1152                 vfree(rxdr->buffer_info);
1153                 kfree(rxdr->ps_page);
1154                 DPRINTK(PROBE, ERR,
1155                 "Unable to allocate memory for the receive descriptor ring\n");
1156                 return -ENOMEM;
1157         }
1158         memset(rxdr->ps_page_dma, 0, size);
1159
1160         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1161                 desc_len = sizeof(struct e1000_rx_desc);
1162         else
1163                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1164
1165         /* Round up to nearest 4K */
1166
1167         rxdr->size = rxdr->count * desc_len;
1168         E1000_ROUNDUP(rxdr->size, 4096);
1169
1170         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1171
1172         if(!rxdr->desc) {
1173 setup_rx_desc_die:
1174                 DPRINTK(PROBE, ERR, 
1175                 "Unble to Allocate Memory for the Recieve descriptor ring\n");
1176                 vfree(rxdr->buffer_info);
1177                 kfree(rxdr->ps_page);
1178                 kfree(rxdr->ps_page_dma);
1179                 return -ENOMEM;
1180         }
1181
1182         /* fix for errata 23, cant cross 64kB boundary */
1183         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1184                 void *olddesc = rxdr->desc;
1185                 dma_addr_t olddma = rxdr->dma;
1186                 DPRINTK(RX_ERR,ERR,
1187                         "rxdr align check failed: %u bytes at %p\n",
1188                         rxdr->size, rxdr->desc);
1189                 /* try again, without freeing the previous */
1190                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1191                 /* failed allocation, critial failure */
1192                 if(!rxdr->desc) {
1193                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1194                         goto setup_rx_desc_die;
1195                 }
1196
1197                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1198                         /* give up */
1199                         pci_free_consistent(pdev, rxdr->size,
1200                              rxdr->desc, rxdr->dma);
1201                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1202                         DPRINTK(PROBE, ERR, 
1203                                 "Unable to Allocate aligned Memory for the"
1204                                 " Receive descriptor ring\n");
1205                         vfree(rxdr->buffer_info);
1206                         kfree(rxdr->ps_page);
1207                         kfree(rxdr->ps_page_dma);
1208                         return -ENOMEM;
1209                 } else {
1210                         /* free old, move on with the new one since its okay */
1211                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1212                 }
1213         }
1214         memset(rxdr->desc, 0, rxdr->size);
1215
1216         rxdr->next_to_clean = 0;
1217         rxdr->next_to_use = 0;
1218
1219         return 0;
1220 }
1221
1222 /**
1223  * e1000_setup_rctl - configure the receive control register
1224  * @adapter: Board private structure
1225  **/
1226
1227 static void
1228 e1000_setup_rctl(struct e1000_adapter *adapter)
1229 {
1230         uint32_t rctl, rfctl;
1231         uint32_t psrctl = 0;
1232
1233         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1234
1235         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1236
1237         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1238                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1239                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1240
1241         if(adapter->hw.tbi_compatibility_on == 1)
1242                 rctl |= E1000_RCTL_SBP;
1243         else
1244                 rctl &= ~E1000_RCTL_SBP;
1245
1246         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1247                 rctl &= ~E1000_RCTL_LPE;
1248         else
1249                 rctl |= E1000_RCTL_LPE;
1250
1251         /* Setup buffer sizes */
1252         if(adapter->hw.mac_type == e1000_82573) {
1253                 /* We can now specify buffers in 1K increments.
1254                  * BSIZE and BSEX are ignored in this case. */
1255                 rctl |= adapter->rx_buffer_len << 0x11;
1256         } else {
1257                 rctl &= ~E1000_RCTL_SZ_4096;
1258                 rctl |= E1000_RCTL_BSEX; 
1259                 switch (adapter->rx_buffer_len) {
1260                 case E1000_RXBUFFER_2048:
1261                 default:
1262                         rctl |= E1000_RCTL_SZ_2048;
1263                         rctl &= ~E1000_RCTL_BSEX;
1264                         break;
1265                 case E1000_RXBUFFER_4096:
1266                         rctl |= E1000_RCTL_SZ_4096;
1267                         break;
1268                 case E1000_RXBUFFER_8192:
1269                         rctl |= E1000_RCTL_SZ_8192;
1270                         break;
1271                 case E1000_RXBUFFER_16384:
1272                         rctl |= E1000_RCTL_SZ_16384;
1273                         break;
1274                 }
1275         }
1276
1277 #ifdef CONFIG_E1000_PACKET_SPLIT
1278         /* 82571 and greater support packet-split where the protocol
1279          * header is placed in skb->data and the packet data is
1280          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1281          * In the case of a non-split, skb->data is linearly filled,
1282          * followed by the page buffers.  Therefore, skb->data is
1283          * sized to hold the largest protocol header.
1284          */
1285         adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2) 
1286                           && (adapter->netdev->mtu 
1287                               < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
1288 #endif
1289         if(adapter->rx_ps) {
1290                 /* Configure extra packet-split registers */
1291                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1292                 rfctl |= E1000_RFCTL_EXTEN;
1293                 /* disable IPv6 packet split support */
1294                 rfctl |= E1000_RFCTL_IPV6_DIS;
1295                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1296
1297                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1298                 
1299                 psrctl |= adapter->rx_ps_bsize0 >>
1300                         E1000_PSRCTL_BSIZE0_SHIFT;
1301                 psrctl |= PAGE_SIZE >>
1302                         E1000_PSRCTL_BSIZE1_SHIFT;
1303                 psrctl |= PAGE_SIZE <<
1304                         E1000_PSRCTL_BSIZE2_SHIFT;
1305                 psrctl |= PAGE_SIZE <<
1306                         E1000_PSRCTL_BSIZE3_SHIFT;
1307
1308                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1309         }
1310
1311         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1312 }
1313
1314 /**
1315  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1316  * @adapter: board private structure
1317  *
1318  * Configure the Rx unit of the MAC after a reset.
1319  **/
1320
1321 static void
1322 e1000_configure_rx(struct e1000_adapter *adapter)
1323 {
1324         uint64_t rdba = adapter->rx_ring.dma;
1325         uint32_t rdlen, rctl, rxcsum;
1326
1327         if(adapter->rx_ps) {
1328                 rdlen = adapter->rx_ring.count *
1329                         sizeof(union e1000_rx_desc_packet_split);
1330                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1331                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1332         } else {
1333                 rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1334                 adapter->clean_rx = e1000_clean_rx_irq;
1335                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1336         }
1337
1338         /* disable receives while setting up the descriptors */
1339         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1340         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1341
1342         /* set the Receive Delay Timer Register */
1343         E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1344
1345         if(adapter->hw.mac_type >= e1000_82540) {
1346                 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1347                 if(adapter->itr > 1)
1348                         E1000_WRITE_REG(&adapter->hw, ITR,
1349                                 1000000000 / (adapter->itr * 256));
1350         }
1351
1352         /* Setup the Base and Length of the Rx Descriptor Ring */
1353         E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1354         E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1355
1356         E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1357
1358         /* Setup the HW Rx Head and Tail Descriptor Pointers */
1359         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1360         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1361
1362         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1363         if(adapter->hw.mac_type >= e1000_82543) {
1364                 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1365                 if(adapter->rx_csum == TRUE) {
1366                         rxcsum |= E1000_RXCSUM_TUOFL;
1367
1368                         /* Enable 82573 IPv4 payload checksum for UDP fragments
1369                          * Must be used in conjunction with packet-split. */
1370                         if((adapter->hw.mac_type > e1000_82547_rev_2) && 
1371                            (adapter->rx_ps)) {
1372                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1373                         }
1374                 } else {
1375                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1376                         /* don't need to clear IPPCSE as it defaults to 0 */
1377                 }
1378                 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1379         }
1380
1381         if (adapter->hw.mac_type == e1000_82573)
1382                 E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
1383
1384         /* Enable Receives */
1385         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1386 }
1387
1388 /**
1389  * e1000_free_tx_resources - Free Tx Resources
1390  * @adapter: board private structure
1391  *
1392  * Free all transmit software resources
1393  **/
1394
1395 void
1396 e1000_free_tx_resources(struct e1000_adapter *adapter)
1397 {
1398         struct pci_dev *pdev = adapter->pdev;
1399
1400         e1000_clean_tx_ring(adapter);
1401
1402         vfree(adapter->tx_ring.buffer_info);
1403         adapter->tx_ring.buffer_info = NULL;
1404
1405         pci_free_consistent(pdev, adapter->tx_ring.size,
1406                             adapter->tx_ring.desc, adapter->tx_ring.dma);
1407
1408         adapter->tx_ring.desc = NULL;
1409 }
1410
1411 static inline void
1412 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1413                         struct e1000_buffer *buffer_info)
1414 {
1415         struct pci_dev *pdev = adapter->pdev;
1416
1417         if(buffer_info->dma) {
1418                 pci_unmap_page(pdev,
1419                                buffer_info->dma,
1420                                buffer_info->length,
1421                                PCI_DMA_TODEVICE);
1422                 buffer_info->dma = 0;
1423         }
1424         if(buffer_info->skb) {
1425                 dev_kfree_skb_any(buffer_info->skb);
1426                 buffer_info->skb = NULL;
1427         }
1428 }
1429
1430 /**
1431  * e1000_clean_tx_ring - Free Tx Buffers
1432  * @adapter: board private structure
1433  **/
1434
1435 static void
1436 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1437 {
1438         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1439         struct e1000_buffer *buffer_info;
1440         unsigned long size;
1441         unsigned int i;
1442
1443         /* Free all the Tx ring sk_buffs */
1444
1445         if (likely(adapter->previous_buffer_info.skb != NULL)) {
1446                 e1000_unmap_and_free_tx_resource(adapter, 
1447                                 &adapter->previous_buffer_info);
1448         }
1449
1450         for(i = 0; i < tx_ring->count; i++) {
1451                 buffer_info = &tx_ring->buffer_info[i];
1452                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1453         }
1454
1455         size = sizeof(struct e1000_buffer) * tx_ring->count;
1456         memset(tx_ring->buffer_info, 0, size);
1457
1458         /* Zero out the descriptor ring */
1459
1460         memset(tx_ring->desc, 0, tx_ring->size);
1461
1462         tx_ring->next_to_use = 0;
1463         tx_ring->next_to_clean = 0;
1464
1465         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1466         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1467 }
1468
1469 /**
1470  * e1000_free_rx_resources - Free Rx Resources
1471  * @adapter: board private structure
1472  *
1473  * Free all receive software resources
1474  **/
1475
1476 void
1477 e1000_free_rx_resources(struct e1000_adapter *adapter)
1478 {
1479         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1480         struct pci_dev *pdev = adapter->pdev;
1481
1482         e1000_clean_rx_ring(adapter);
1483
1484         vfree(rx_ring->buffer_info);
1485         rx_ring->buffer_info = NULL;
1486         kfree(rx_ring->ps_page);
1487         rx_ring->ps_page = NULL;
1488         kfree(rx_ring->ps_page_dma);
1489         rx_ring->ps_page_dma = NULL;
1490
1491         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1492
1493         rx_ring->desc = NULL;
1494 }
1495
1496 /**
1497  * e1000_clean_rx_ring - Free Rx Buffers
1498  * @adapter: board private structure
1499  **/
1500
1501 static void
1502 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1503 {
1504         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1505         struct e1000_buffer *buffer_info;
1506         struct e1000_ps_page *ps_page;
1507         struct e1000_ps_page_dma *ps_page_dma;
1508         struct pci_dev *pdev = adapter->pdev;
1509         unsigned long size;
1510         unsigned int i, j;
1511
1512         /* Free all the Rx ring sk_buffs */
1513
1514         for(i = 0; i < rx_ring->count; i++) {
1515                 buffer_info = &rx_ring->buffer_info[i];
1516                 if(buffer_info->skb) {
1517                         ps_page = &rx_ring->ps_page[i];
1518                         ps_page_dma = &rx_ring->ps_page_dma[i];
1519                         pci_unmap_single(pdev,
1520                                          buffer_info->dma,
1521                                          buffer_info->length,
1522                                          PCI_DMA_FROMDEVICE);
1523
1524                         dev_kfree_skb(buffer_info->skb);
1525                         buffer_info->skb = NULL;
1526
1527                         for(j = 0; j < PS_PAGE_BUFFERS; j++) {
1528                                 if(!ps_page->ps_page[j]) break;
1529                                 pci_unmap_single(pdev,
1530                                                  ps_page_dma->ps_page_dma[j],
1531                                                  PAGE_SIZE, PCI_DMA_FROMDEVICE);
1532                                 ps_page_dma->ps_page_dma[j] = 0;
1533                                 put_page(ps_page->ps_page[j]);
1534                                 ps_page->ps_page[j] = NULL;
1535                         }
1536                 }
1537         }
1538
1539         size = sizeof(struct e1000_buffer) * rx_ring->count;
1540         memset(rx_ring->buffer_info, 0, size);
1541         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1542         memset(rx_ring->ps_page, 0, size);
1543         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1544         memset(rx_ring->ps_page_dma, 0, size);
1545
1546         /* Zero out the descriptor ring */
1547
1548         memset(rx_ring->desc, 0, rx_ring->size);
1549
1550         rx_ring->next_to_clean = 0;
1551         rx_ring->next_to_use = 0;
1552
1553         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1554         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1555 }
1556
1557 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1558  * and memory write and invalidate disabled for certain operations
1559  */
1560 static void
1561 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1562 {
1563         struct net_device *netdev = adapter->netdev;
1564         uint32_t rctl;
1565
1566         e1000_pci_clear_mwi(&adapter->hw);
1567
1568         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1569         rctl |= E1000_RCTL_RST;
1570         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1571         E1000_WRITE_FLUSH(&adapter->hw);
1572         mdelay(5);
1573
1574         if(netif_running(netdev))
1575                 e1000_clean_rx_ring(adapter);
1576 }
1577
1578 static void
1579 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1580 {
1581         struct net_device *netdev = adapter->netdev;
1582         uint32_t rctl;
1583
1584         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1585         rctl &= ~E1000_RCTL_RST;
1586         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1587         E1000_WRITE_FLUSH(&adapter->hw);
1588         mdelay(5);
1589
1590         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1591                 e1000_pci_set_mwi(&adapter->hw);
1592
1593         if(netif_running(netdev)) {
1594                 e1000_configure_rx(adapter);
1595                 e1000_alloc_rx_buffers(adapter);
1596         }
1597 }
1598
1599 /**
1600  * e1000_set_mac - Change the Ethernet Address of the NIC
1601  * @netdev: network interface device structure
1602  * @p: pointer to an address structure
1603  *
1604  * Returns 0 on success, negative on failure
1605  **/
1606
1607 static int
1608 e1000_set_mac(struct net_device *netdev, void *p)
1609 {
1610         struct e1000_adapter *adapter = netdev->priv;
1611         struct sockaddr *addr = p;
1612
1613         if(!is_valid_ether_addr(addr->sa_data))
1614                 return -EADDRNOTAVAIL;
1615
1616         /* 82542 2.0 needs to be in reset to write receive address registers */
1617
1618         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1619                 e1000_enter_82542_rst(adapter);
1620
1621         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1622         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1623
1624         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1625
1626         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1627                 e1000_leave_82542_rst(adapter);
1628
1629         return 0;
1630 }
1631
1632 /**
1633  * e1000_set_multi - Multicast and Promiscuous mode set
1634  * @netdev: network interface device structure
1635  *
1636  * The set_multi entry point is called whenever the multicast address
1637  * list or the network interface flags are updated.  This routine is
1638  * responsible for configuring the hardware for proper multicast,
1639  * promiscuous mode, and all-multi behavior.
1640  **/
1641
1642 static void
1643 e1000_set_multi(struct net_device *netdev)
1644 {
1645         struct e1000_adapter *adapter = netdev->priv;
1646         struct e1000_hw *hw = &adapter->hw;
1647         struct dev_mc_list *mc_ptr;
1648         uint32_t rctl;
1649         uint32_t hash_value;
1650         int i;
1651         unsigned long flags;
1652
1653         /* Check for Promiscuous and All Multicast modes */
1654
1655         spin_lock_irqsave(&adapter->tx_lock, flags);
1656
1657         rctl = E1000_READ_REG(hw, RCTL);
1658
1659         if(netdev->flags & IFF_PROMISC) {
1660                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1661         } else if(netdev->flags & IFF_ALLMULTI) {
1662                 rctl |= E1000_RCTL_MPE;
1663                 rctl &= ~E1000_RCTL_UPE;
1664         } else {
1665                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1666         }
1667
1668         E1000_WRITE_REG(hw, RCTL, rctl);
1669
1670         /* 82542 2.0 needs to be in reset to write receive address registers */
1671
1672         if(hw->mac_type == e1000_82542_rev2_0)
1673                 e1000_enter_82542_rst(adapter);
1674
1675         /* load the first 14 multicast address into the exact filters 1-14
1676          * RAR 0 is used for the station MAC adddress
1677          * if there are not 14 addresses, go ahead and clear the filters
1678          */
1679         mc_ptr = netdev->mc_list;
1680
1681         for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1682                 if(mc_ptr) {
1683                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1684                         mc_ptr = mc_ptr->next;
1685                 } else {
1686                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1687                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1688                 }
1689         }
1690
1691         /* clear the old settings from the multicast hash table */
1692
1693         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1694                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1695
1696         /* load any remaining addresses into the hash table */
1697
1698         for(; mc_ptr; mc_ptr = mc_ptr->next) {
1699                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1700                 e1000_mta_set(hw, hash_value);
1701         }
1702
1703         if(hw->mac_type == e1000_82542_rev2_0)
1704                 e1000_leave_82542_rst(adapter);
1705
1706         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1707 }
1708
1709 /* Need to wait a few seconds after link up to get diagnostic information from
1710  * the phy */
1711
1712 static void
1713 e1000_update_phy_info(unsigned long data)
1714 {
1715         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1716         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1717 }
1718
1719 /**
1720  * e1000_82547_tx_fifo_stall - Timer Call-back
1721  * @data: pointer to adapter cast into an unsigned long
1722  **/
1723
1724 static void
1725 e1000_82547_tx_fifo_stall(unsigned long data)
1726 {
1727         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1728         struct net_device *netdev = adapter->netdev;
1729         uint32_t tctl;
1730
1731         if(atomic_read(&adapter->tx_fifo_stall)) {
1732                 if((E1000_READ_REG(&adapter->hw, TDT) ==
1733                     E1000_READ_REG(&adapter->hw, TDH)) &&
1734                    (E1000_READ_REG(&adapter->hw, TDFT) ==
1735                     E1000_READ_REG(&adapter->hw, TDFH)) &&
1736                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
1737                     E1000_READ_REG(&adapter->hw, TDFHS))) {
1738                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
1739                         E1000_WRITE_REG(&adapter->hw, TCTL,
1740                                         tctl & ~E1000_TCTL_EN);
1741                         E1000_WRITE_REG(&adapter->hw, TDFT,
1742                                         adapter->tx_head_addr);
1743                         E1000_WRITE_REG(&adapter->hw, TDFH,
1744                                         adapter->tx_head_addr);
1745                         E1000_WRITE_REG(&adapter->hw, TDFTS,
1746                                         adapter->tx_head_addr);
1747                         E1000_WRITE_REG(&adapter->hw, TDFHS,
1748                                         adapter->tx_head_addr);
1749                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1750                         E1000_WRITE_FLUSH(&adapter->hw);
1751
1752                         adapter->tx_fifo_head = 0;
1753                         atomic_set(&adapter->tx_fifo_stall, 0);
1754                         netif_wake_queue(netdev);
1755                 } else {
1756                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1757                 }
1758         }
1759 }
1760
1761 /**
1762  * e1000_watchdog - Timer Call-back
1763  * @data: pointer to adapter cast into an unsigned long
1764  **/
1765 static void
1766 e1000_watchdog(unsigned long data)
1767 {
1768         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1769
1770         /* Do the rest outside of interrupt context */
1771         schedule_work(&adapter->watchdog_task);
1772 }
1773
1774 static void
1775 e1000_watchdog_task(struct e1000_adapter *adapter)
1776 {
1777         struct net_device *netdev = adapter->netdev;
1778         struct e1000_desc_ring *txdr = &adapter->tx_ring;
1779         uint32_t link;
1780
1781         e1000_check_for_link(&adapter->hw);
1782         if (adapter->hw.mac_type == e1000_82573) {
1783                 e1000_enable_tx_pkt_filtering(&adapter->hw);
1784                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
1785                         e1000_update_mng_vlan(adapter);
1786         }       
1787
1788         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1789            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1790                 link = !adapter->hw.serdes_link_down;
1791         else
1792                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1793
1794         if(link) {
1795                 if(!netif_carrier_ok(netdev)) {
1796                         e1000_get_speed_and_duplex(&adapter->hw,
1797                                                    &adapter->link_speed,
1798                                                    &adapter->link_duplex);
1799
1800                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1801                                adapter->link_speed,
1802                                adapter->link_duplex == FULL_DUPLEX ?
1803                                "Full Duplex" : "Half Duplex");
1804
1805                         netif_carrier_on(netdev);
1806                         netif_wake_queue(netdev);
1807                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1808                         adapter->smartspeed = 0;
1809                 }
1810         } else {
1811                 if(netif_carrier_ok(netdev)) {
1812                         adapter->link_speed = 0;
1813                         adapter->link_duplex = 0;
1814                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
1815                         netif_carrier_off(netdev);
1816                         netif_stop_queue(netdev);
1817                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1818                 }
1819
1820                 e1000_smartspeed(adapter);
1821         }
1822
1823         e1000_update_stats(adapter);
1824
1825         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1826         adapter->tpt_old = adapter->stats.tpt;
1827         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1828         adapter->colc_old = adapter->stats.colc;
1829
1830         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1831         adapter->gorcl_old = adapter->stats.gorcl;
1832         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1833         adapter->gotcl_old = adapter->stats.gotcl;
1834
1835         e1000_update_adaptive(&adapter->hw);
1836
1837         if(!netif_carrier_ok(netdev)) {
1838                 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1839                         /* We've lost link, so the controller stops DMA,
1840                          * but we've got queued Tx work that's never going
1841                          * to get done, so reset controller to flush Tx.
1842                          * (Do the reset outside of interrupt context). */
1843                         schedule_work(&adapter->tx_timeout_task);
1844                 }
1845         }
1846
1847         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1848         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1849                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1850                  * asymmetrical Tx or Rx gets ITR=8000; everyone
1851                  * else is between 2000-8000. */
1852                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1853                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
1854                         adapter->gotcl - adapter->gorcl :
1855                         adapter->gorcl - adapter->gotcl) / 10000;
1856                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1857                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1858         }
1859
1860         /* Cause software interrupt to ensure rx ring is cleaned */
1861         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1862
1863         /* Force detection of hung controller every watchdog period*/
1864         adapter->detect_tx_hung = TRUE;
1865
1866         /* Reset the timer */
1867         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1868 }
1869
1870 #define E1000_TX_FLAGS_CSUM             0x00000001
1871 #define E1000_TX_FLAGS_VLAN             0x00000002
1872 #define E1000_TX_FLAGS_TSO              0x00000004
1873 #define E1000_TX_FLAGS_IPV4             0x00000008
1874 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
1875 #define E1000_TX_FLAGS_VLAN_SHIFT       16
1876
1877 static inline int
1878 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1879 {
1880 #ifdef NETIF_F_TSO
1881         struct e1000_context_desc *context_desc;
1882         unsigned int i;
1883         uint32_t cmd_length = 0;
1884         uint16_t ipcse = 0, tucse, mss;
1885         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1886         int err;
1887
1888         if(skb_shinfo(skb)->tso_size) {
1889                 if (skb_header_cloned(skb)) {
1890                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1891                         if (err)
1892                                 return err;
1893                 }
1894
1895                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1896                 mss = skb_shinfo(skb)->tso_size;
1897                 if(skb->protocol == ntohs(ETH_P_IP)) {
1898                         skb->nh.iph->tot_len = 0;
1899                         skb->nh.iph->check = 0;
1900                         skb->h.th->check =
1901                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
1902                                                    skb->nh.iph->daddr,
1903                                                    0,
1904                                                    IPPROTO_TCP,
1905                                                    0);
1906                         cmd_length = E1000_TXD_CMD_IP;
1907                         ipcse = skb->h.raw - skb->data - 1;
1908 #ifdef NETIF_F_TSO_IPV6
1909                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
1910                         skb->nh.ipv6h->payload_len = 0;
1911                         skb->h.th->check =
1912                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
1913                                                  &skb->nh.ipv6h->daddr,
1914                                                  0,
1915                                                  IPPROTO_TCP,
1916                                                  0);
1917                         ipcse = 0;
1918 #endif
1919                 }
1920                 ipcss = skb->nh.raw - skb->data;
1921                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1922                 tucss = skb->h.raw - skb->data;
1923                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1924                 tucse = 0;
1925
1926                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1927                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1928
1929                 i = adapter->tx_ring.next_to_use;
1930                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1931
1932                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
1933                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
1934                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
1935                 context_desc->upper_setup.tcp_fields.tucss = tucss;
1936                 context_desc->upper_setup.tcp_fields.tucso = tucso;
1937                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1938                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
1939                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1940                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1941
1942                 if(++i == adapter->tx_ring.count) i = 0;
1943                 adapter->tx_ring.next_to_use = i;
1944
1945                 return 1;
1946         }
1947 #endif
1948
1949         return 0;
1950 }
1951
1952 static inline boolean_t
1953 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1954 {
1955         struct e1000_context_desc *context_desc;
1956         unsigned int i;
1957         uint8_t css;
1958
1959         if(likely(skb->ip_summed == CHECKSUM_HW)) {
1960                 css = skb->h.raw - skb->data;
1961
1962                 i = adapter->tx_ring.next_to_use;
1963                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1964
1965                 context_desc->upper_setup.tcp_fields.tucss = css;
1966                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1967                 context_desc->upper_setup.tcp_fields.tucse = 0;
1968                 context_desc->tcp_seg_setup.data = 0;
1969                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1970
1971                 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1972                 adapter->tx_ring.next_to_use = i;
1973
1974                 return TRUE;
1975         }
1976
1977         return FALSE;
1978 }
1979
1980 #define E1000_MAX_TXD_PWR       12
1981 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
1982
1983 static inline int
1984 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1985         unsigned int first, unsigned int max_per_txd,
1986         unsigned int nr_frags, unsigned int mss)
1987 {
1988         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1989         struct e1000_buffer *buffer_info;
1990         unsigned int len = skb->len;
1991         unsigned int offset = 0, size, count = 0, i;
1992         unsigned int f;
1993         len -= skb->data_len;
1994
1995         i = tx_ring->next_to_use;
1996
1997         while(len) {
1998                 buffer_info = &tx_ring->buffer_info[i];
1999                 size = min(len, max_per_txd);
2000 #ifdef NETIF_F_TSO
2001                 /* Workaround for premature desc write-backs
2002                  * in TSO mode.  Append 4-byte sentinel desc */
2003                 if(unlikely(mss && !nr_frags && size == len && size > 8))
2004                         size -= 4;
2005 #endif
2006                 /* work-around for errata 10 and it applies
2007                  * to all controllers in PCI-X mode
2008                  * The fix is to make sure that the first descriptor of a
2009                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2010                  */
2011                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2012                                 (size > 2015) && count == 0))
2013                         size = 2015;
2014                                                                                 
2015                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2016                  * terminating buffers within evenly-aligned dwords. */
2017                 if(unlikely(adapter->pcix_82544 &&
2018                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2019                    size > 4))
2020                         size -= 4;
2021
2022                 buffer_info->length = size;
2023                 buffer_info->dma =
2024                         pci_map_single(adapter->pdev,
2025                                 skb->data + offset,
2026                                 size,
2027                                 PCI_DMA_TODEVICE);
2028                 buffer_info->time_stamp = jiffies;
2029
2030                 len -= size;
2031                 offset += size;
2032                 count++;
2033                 if(unlikely(++i == tx_ring->count)) i = 0;
2034         }
2035
2036         for(f = 0; f < nr_frags; f++) {
2037                 struct skb_frag_struct *frag;
2038
2039                 frag = &skb_shinfo(skb)->frags[f];
2040                 len = frag->size;
2041                 offset = frag->page_offset;
2042
2043                 while(len) {
2044                         buffer_info = &tx_ring->buffer_info[i];
2045                         size = min(len, max_per_txd);
2046 #ifdef NETIF_F_TSO
2047                         /* Workaround for premature desc write-backs
2048                          * in TSO mode.  Append 4-byte sentinel desc */
2049                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2050                                 size -= 4;
2051 #endif
2052                         /* Workaround for potential 82544 hang in PCI-X.
2053                          * Avoid terminating buffers within evenly-aligned
2054                          * dwords. */
2055                         if(unlikely(adapter->pcix_82544 &&
2056                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2057                            size > 4))
2058                                 size -= 4;
2059
2060                         buffer_info->length = size;
2061                         buffer_info->dma =
2062                                 pci_map_page(adapter->pdev,
2063                                         frag->page,
2064                                         offset,
2065                                         size,
2066                                         PCI_DMA_TODEVICE);
2067                         buffer_info->time_stamp = jiffies;
2068
2069                         len -= size;
2070                         offset += size;
2071                         count++;
2072                         if(unlikely(++i == tx_ring->count)) i = 0;
2073                 }
2074         }
2075
2076         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2077         tx_ring->buffer_info[i].skb = skb;
2078         tx_ring->buffer_info[first].next_to_watch = i;
2079
2080         return count;
2081 }
2082
2083 static inline void
2084 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
2085 {
2086         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2087         struct e1000_tx_desc *tx_desc = NULL;
2088         struct e1000_buffer *buffer_info;
2089         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2090         unsigned int i;
2091
2092         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2093                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2094                              E1000_TXD_CMD_TSE;
2095                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2096
2097                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2098                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2099         }
2100
2101         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2102                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2103                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2104         }
2105
2106         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2107                 txd_lower |= E1000_TXD_CMD_VLE;
2108                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2109         }
2110
2111         i = tx_ring->next_to_use;
2112
2113         while(count--) {
2114                 buffer_info = &tx_ring->buffer_info[i];
2115                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2116                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2117                 tx_desc->lower.data =
2118                         cpu_to_le32(txd_lower | buffer_info->length);
2119                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2120                 if(unlikely(++i == tx_ring->count)) i = 0;
2121         }
2122
2123         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2124
2125         /* Force memory writes to complete before letting h/w
2126          * know there are new descriptors to fetch.  (Only
2127          * applicable for weak-ordered memory model archs,
2128          * such as IA-64). */
2129         wmb();
2130
2131         tx_ring->next_to_use = i;
2132         E1000_WRITE_REG(&adapter->hw, TDT, i);
2133 }
2134
2135 /**
2136  * 82547 workaround to avoid controller hang in half-duplex environment.
2137  * The workaround is to avoid queuing a large packet that would span
2138  * the internal Tx FIFO ring boundary by notifying the stack to resend
2139  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2140  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2141  * to the beginning of the Tx FIFO.
2142  **/
2143
2144 #define E1000_FIFO_HDR                  0x10
2145 #define E1000_82547_PAD_LEN             0x3E0
2146
2147 static inline int
2148 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2149 {
2150         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2151         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2152
2153         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2154
2155         if(adapter->link_duplex != HALF_DUPLEX)
2156                 goto no_fifo_stall_required;
2157
2158         if(atomic_read(&adapter->tx_fifo_stall))
2159                 return 1;
2160
2161         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2162                 atomic_set(&adapter->tx_fifo_stall, 1);
2163                 return 1;
2164         }
2165
2166 no_fifo_stall_required:
2167         adapter->tx_fifo_head += skb_fifo_len;
2168         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2169                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2170         return 0;
2171 }
2172
2173 #define MINIMUM_DHCP_PACKET_SIZE 282
2174 static inline int
2175 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2176 {
2177         struct e1000_hw *hw =  &adapter->hw;
2178         uint16_t length, offset;
2179         if(vlan_tx_tag_present(skb)) {
2180                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2181                         ( adapter->hw.mng_cookie.status &
2182                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2183                         return 0;
2184         }
2185         if(htons(ETH_P_IP) == skb->protocol) {
2186                 const struct iphdr *ip = skb->nh.iph;
2187                 if(IPPROTO_UDP == ip->protocol) {
2188                         struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2189                         if(ntohs(udp->dest) == 67) {
2190                                 offset = (uint8_t *)udp + 8 - skb->data;
2191                                 length = skb->len - offset;
2192
2193                                 return e1000_mng_write_dhcp_info(hw,
2194                                                 (uint8_t *)udp + 8, length);
2195                         }
2196                 }
2197         } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2198                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2199                 if((htons(ETH_P_IP) == eth->h_proto)) {
2200                         const struct iphdr *ip = 
2201                                 (struct iphdr *)((uint8_t *)skb->data+14);
2202                         if(IPPROTO_UDP == ip->protocol) {
2203                                 struct udphdr *udp = 
2204                                         (struct udphdr *)((uint8_t *)ip + 
2205                                                 (ip->ihl << 2));
2206                                 if(ntohs(udp->dest) == 67) {
2207                                         offset = (uint8_t *)udp + 8 - skb->data;
2208                                         length = skb->len - offset;
2209
2210                                         return e1000_mng_write_dhcp_info(hw,
2211                                                         (uint8_t *)udp + 8, 
2212                                                         length);
2213                                 }
2214                         }
2215                 }
2216         }
2217         return 0;
2218 }
2219
2220 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2221 static int
2222 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2223 {
2224         struct e1000_adapter *adapter = netdev->priv;
2225         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2226         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2227         unsigned int tx_flags = 0;
2228         unsigned int len = skb->len;
2229         unsigned long flags;
2230         unsigned int nr_frags = 0;
2231         unsigned int mss = 0;
2232         int count = 0;
2233         int tso;
2234         unsigned int f;
2235         len -= skb->data_len;
2236
2237         if(unlikely(skb->len <= 0)) {
2238                 dev_kfree_skb_any(skb);
2239                 return NETDEV_TX_OK;
2240         }
2241
2242 #ifdef NETIF_F_TSO
2243         mss = skb_shinfo(skb)->tso_size;
2244         /* The controller does a simple calculation to
2245          * make sure there is enough room in the FIFO before
2246          * initiating the DMA for each buffer.  The calc is:
2247          * 4 = ceil(buffer len/mss).  To make sure we don't
2248          * overrun the FIFO, adjust the max buffer len if mss
2249          * drops. */
2250         if(mss) {
2251                 max_per_txd = min(mss << 2, max_per_txd);
2252                 max_txd_pwr = fls(max_per_txd) - 1;
2253         }
2254
2255         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2256                 count++;
2257         count++;        /* for sentinel desc */
2258 #else
2259         if(skb->ip_summed == CHECKSUM_HW)
2260                 count++;
2261 #endif
2262         count += TXD_USE_COUNT(len, max_txd_pwr);
2263
2264         if(adapter->pcix_82544)
2265                 count++;
2266
2267         /* work-around for errata 10 and it applies to all controllers 
2268          * in PCI-X mode, so add one more descriptor to the count
2269          */
2270         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2271                         (len > 2015)))
2272                 count++;
2273
2274         nr_frags = skb_shinfo(skb)->nr_frags;
2275         for(f = 0; f < nr_frags; f++)
2276                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2277                                        max_txd_pwr);
2278         if(adapter->pcix_82544)
2279                 count += nr_frags;
2280
2281         local_irq_save(flags); 
2282         if (!spin_trylock(&adapter->tx_lock)) { 
2283                 /* Collision - tell upper layer to requeue */ 
2284                 local_irq_restore(flags); 
2285                 return NETDEV_TX_LOCKED; 
2286         } 
2287         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2288                 e1000_transfer_dhcp_info(adapter, skb);
2289
2290
2291         /* need: count + 2 desc gap to keep tail from touching
2292          * head, otherwise try next time */
2293         if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
2294                 netif_stop_queue(netdev);
2295                 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2296                 return NETDEV_TX_BUSY;
2297         }
2298
2299         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2300                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2301                         netif_stop_queue(netdev);
2302                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2303                         spin_unlock_irqrestore(&adapter->tx_lock, flags);
2304                         return NETDEV_TX_BUSY;
2305                 }
2306         }
2307
2308         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2309                 tx_flags |= E1000_TX_FLAGS_VLAN;
2310                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2311         }
2312
2313         first = adapter->tx_ring.next_to_use;
2314         
2315         tso = e1000_tso(adapter, skb);
2316         if (tso < 0) {
2317                 dev_kfree_skb_any(skb);
2318                 return NETDEV_TX_OK;
2319         }
2320
2321         if (likely(tso))
2322                 tx_flags |= E1000_TX_FLAGS_TSO;
2323         else if(likely(e1000_tx_csum(adapter, skb)))
2324                 tx_flags |= E1000_TX_FLAGS_CSUM;
2325
2326         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2327          * 82573 hardware supports TSO capabilities for IPv6 as well...
2328          * no longer assume, we must. */
2329         if(likely(skb->protocol == ntohs(ETH_P_IP)))
2330                 tx_flags |= E1000_TX_FLAGS_IPV4;
2331
2332         e1000_tx_queue(adapter,
2333                 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2334                 tx_flags);
2335
2336         netdev->trans_start = jiffies;
2337
2338         /* Make sure there is space in the ring for the next send. */
2339         if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2340                 netif_stop_queue(netdev);
2341
2342         spin_unlock_irqrestore(&adapter->tx_lock, flags);
2343         return NETDEV_TX_OK;
2344 }
2345
2346 /**
2347  * e1000_tx_timeout - Respond to a Tx Hang
2348  * @netdev: network interface device structure
2349  **/
2350
2351 static void
2352 e1000_tx_timeout(struct net_device *netdev)
2353 {
2354         struct e1000_adapter *adapter = netdev->priv;
2355
2356         /* Do the reset outside of interrupt context */
2357         schedule_work(&adapter->tx_timeout_task);
2358 }
2359
2360 static void
2361 e1000_tx_timeout_task(struct net_device *netdev)
2362 {
2363         struct e1000_adapter *adapter = netdev->priv;
2364
2365         e1000_down(adapter);
2366         e1000_up(adapter);
2367 }
2368
2369 /**
2370  * e1000_get_stats - Get System Network Statistics
2371  * @netdev: network interface device structure
2372  *
2373  * Returns the address of the device statistics structure.
2374  * The statistics are actually updated from the timer callback.
2375  **/
2376
2377 static struct net_device_stats *
2378 e1000_get_stats(struct net_device *netdev)
2379 {
2380         struct e1000_adapter *adapter = netdev->priv;
2381
2382         e1000_update_stats(adapter);
2383         return &adapter->net_stats;
2384 }
2385
2386 /**
2387  * e1000_change_mtu - Change the Maximum Transfer Unit
2388  * @netdev: network interface device structure
2389  * @new_mtu: new value for maximum frame size
2390  *
2391  * Returns 0 on success, negative on failure
2392  **/
2393
2394 static int
2395 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2396 {
2397         struct e1000_adapter *adapter = netdev->priv;
2398         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2399
2400         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2401                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2402                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2403                         return -EINVAL;
2404         }
2405
2406 #define MAX_STD_JUMBO_FRAME_SIZE 9216
2407         /* might want this to be bigger enum check... */
2408         if (adapter->hw.mac_type == e1000_82573 &&
2409             max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2410                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2411                                     "on 82573\n");
2412                 return -EINVAL;
2413         }
2414
2415         if(adapter->hw.mac_type > e1000_82547_rev_2) {
2416                 adapter->rx_buffer_len = max_frame;
2417                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2418         } else {
2419                 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2420                    (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2421                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2422                                             "on 82542\n");
2423                         return -EINVAL;
2424
2425                 } else {
2426                         if(max_frame <= E1000_RXBUFFER_2048) {
2427                                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2428                         } else if(max_frame <= E1000_RXBUFFER_4096) {
2429                                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2430                         } else if(max_frame <= E1000_RXBUFFER_8192) {
2431                                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2432                         } else if(max_frame <= E1000_RXBUFFER_16384) {
2433                                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2434                         }
2435                 }
2436         }
2437
2438         netdev->mtu = new_mtu;
2439
2440         if(netif_running(netdev)) {
2441                 e1000_down(adapter);
2442                 e1000_up(adapter);
2443         }
2444
2445         adapter->hw.max_frame_size = max_frame;
2446
2447         return 0;
2448 }
2449
2450 /**
2451  * e1000_update_stats - Update the board statistics counters
2452  * @adapter: board private structure
2453  **/
2454
2455 void
2456 e1000_update_stats(struct e1000_adapter *adapter)
2457 {
2458         struct e1000_hw *hw = &adapter->hw;
2459         unsigned long flags;
2460         uint16_t phy_tmp;
2461
2462 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2463
2464         spin_lock_irqsave(&adapter->stats_lock, flags);
2465
2466         /* these counters are modified from e1000_adjust_tbi_stats,
2467          * called from the interrupt context, so they must only
2468          * be written while holding adapter->stats_lock
2469          */
2470
2471         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2472         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2473         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2474         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2475         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2476         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2477         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2478         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2479         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2480         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2481         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2482         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2483         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2484
2485         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2486         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2487         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2488         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2489         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2490         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2491         adapter->stats.dc += E1000_READ_REG(hw, DC);
2492         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2493         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2494         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2495         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2496         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2497         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2498         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2499         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2500         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2501         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2502         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2503         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2504         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2505         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2506         adapter->stats.torl += E1000_READ_REG(hw, TORL);
2507         adapter->stats.torh += E1000_READ_REG(hw, TORH);
2508         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2509         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2510         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2511         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2512         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2513         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2514         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2515         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2516         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2517         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2518         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2519
2520         /* used for adaptive IFS */
2521
2522         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2523         adapter->stats.tpt += hw->tx_packet_delta;
2524         hw->collision_delta = E1000_READ_REG(hw, COLC);
2525         adapter->stats.colc += hw->collision_delta;
2526
2527         if(hw->mac_type >= e1000_82543) {
2528                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2529                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2530                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2531                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2532                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2533                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2534         }
2535         if(hw->mac_type > e1000_82547_rev_2) {
2536                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
2537                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
2538                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
2539                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
2540                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
2541                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
2542                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
2543                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
2544                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
2545         }
2546
2547         /* Fill out the OS statistics structure */
2548
2549         adapter->net_stats.rx_packets = adapter->stats.gprc;
2550         adapter->net_stats.tx_packets = adapter->stats.gptc;
2551         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2552         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2553         adapter->net_stats.multicast = adapter->stats.mprc;
2554         adapter->net_stats.collisions = adapter->stats.colc;
2555
2556         /* Rx Errors */
2557
2558         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2559                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2560                 adapter->stats.rlec + adapter->stats.mpc + 
2561                 adapter->stats.cexterr;
2562         adapter->net_stats.rx_dropped = adapter->stats.mpc;
2563         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2564         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2565         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2566         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2567         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2568
2569         /* Tx Errors */
2570
2571         adapter->net_stats.tx_errors = adapter->stats.ecol +
2572                                        adapter->stats.latecol;
2573         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2574         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2575         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2576
2577         /* Tx Dropped needs to be maintained elsewhere */
2578
2579         /* Phy Stats */
2580
2581         if(hw->media_type == e1000_media_type_copper) {
2582                 if((adapter->link_speed == SPEED_1000) &&
2583                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2584                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2585                         adapter->phy_stats.idle_errors += phy_tmp;
2586                 }
2587
2588                 if((hw->mac_type <= e1000_82546) &&
2589                    (hw->phy_type == e1000_phy_m88) &&
2590                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2591                         adapter->phy_stats.receive_errors += phy_tmp;
2592         }
2593
2594         spin_unlock_irqrestore(&adapter->stats_lock, flags);
2595 }
2596
2597 /**
2598  * e1000_intr - Interrupt Handler
2599  * @irq: interrupt number
2600  * @data: pointer to a network interface device structure
2601  * @pt_regs: CPU registers structure
2602  **/
2603
2604 static irqreturn_t
2605 e1000_intr(int irq, void *data, struct pt_regs *regs)
2606 {
2607         struct net_device *netdev = data;
2608         struct e1000_adapter *adapter = netdev->priv;
2609         struct e1000_hw *hw = &adapter->hw;
2610         uint32_t icr = E1000_READ_REG(hw, ICR);
2611 #ifndef CONFIG_E1000_NAPI
2612         unsigned int i;
2613 #endif
2614
2615         if(unlikely(!icr))
2616                 return IRQ_NONE;  /* Not our interrupt */
2617
2618         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2619                 hw->get_link_status = 1;
2620                 mod_timer(&adapter->watchdog_timer, jiffies);
2621         }
2622
2623 #ifdef CONFIG_E1000_NAPI
2624         if(likely(netif_rx_schedule_prep(netdev))) {
2625
2626                 /* Disable interrupts and register for poll. The flush 
2627                   of the posted write is intentionally left out.
2628                 */
2629
2630                 atomic_inc(&adapter->irq_sem);
2631                 E1000_WRITE_REG(hw, IMC, ~0);
2632                 __netif_rx_schedule(netdev);
2633         }
2634 #else
2635         /* Writing IMC and IMS is needed for 82547.
2636            Due to Hub Link bus being occupied, an interrupt
2637            de-assertion message is not able to be sent.
2638            When an interrupt assertion message is generated later,
2639            two messages are re-ordered and sent out.
2640            That causes APIC to think 82547 is in de-assertion
2641            state, while 82547 is in assertion state, resulting
2642            in dead lock. Writing IMC forces 82547 into
2643            de-assertion state.
2644         */
2645         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2646                 atomic_inc(&adapter->irq_sem);
2647                 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2648         }
2649
2650         for(i = 0; i < E1000_MAX_INTR; i++)
2651                 if(unlikely(!adapter->clean_rx(adapter) &
2652                    !e1000_clean_tx_irq(adapter)))
2653                         break;
2654
2655         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2656                 e1000_irq_enable(adapter);
2657 #endif
2658
2659         return IRQ_HANDLED;
2660 }
2661
2662 #ifdef CONFIG_E1000_NAPI
2663 /**
2664  * e1000_clean - NAPI Rx polling callback
2665  * @adapter: board private structure
2666  **/
2667
2668 static int
2669 e1000_clean(struct net_device *netdev, int *budget)
2670 {
2671         struct e1000_adapter *adapter = netdev->priv;
2672         int work_to_do = min(*budget, netdev->quota);
2673         int tx_cleaned;
2674         int work_done = 0;
2675         
2676         tx_cleaned = e1000_clean_tx_irq(adapter);
2677         adapter->clean_rx(adapter, &work_done, work_to_do);
2678
2679         *budget -= work_done;
2680         netdev->quota -= work_done;
2681         
2682         /* If no Tx and no Rx work done, exit the polling mode */
2683         if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
2684                 netif_rx_complete(netdev);
2685                 e1000_irq_enable(adapter);
2686                 return 0;
2687         }
2688
2689         return 1;
2690 }
2691
2692 #endif
2693 /**
2694  * e1000_clean_tx_irq - Reclaim resources after transmit completes
2695  * @adapter: board private structure
2696  **/
2697
2698 static boolean_t
2699 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2700 {
2701         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2702         struct net_device *netdev = adapter->netdev;
2703         struct e1000_tx_desc *tx_desc, *eop_desc;
2704         struct e1000_buffer *buffer_info;
2705         unsigned int i, eop;
2706         boolean_t cleaned = FALSE;
2707
2708         i = tx_ring->next_to_clean;
2709         eop = tx_ring->buffer_info[i].next_to_watch;
2710         eop_desc = E1000_TX_DESC(*tx_ring, eop);
2711
2712         while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2713                 /* Premature writeback of Tx descriptors clear (free buffers
2714                  * and unmap pci_mapping) previous_buffer_info */
2715                 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2716                         e1000_unmap_and_free_tx_resource(adapter,
2717                                         &adapter->previous_buffer_info);
2718                 }
2719
2720                 for(cleaned = FALSE; !cleaned; ) {
2721                         tx_desc = E1000_TX_DESC(*tx_ring, i);
2722                         buffer_info = &tx_ring->buffer_info[i];
2723                         cleaned = (i == eop);
2724
2725 #ifdef NETIF_F_TSO
2726                         if (!(netdev->features & NETIF_F_TSO)) {
2727 #endif
2728                                 e1000_unmap_and_free_tx_resource(adapter,
2729                                                                  buffer_info);
2730 #ifdef NETIF_F_TSO
2731                         } else {
2732                                 if (cleaned) {
2733                                         memcpy(&adapter->previous_buffer_info,
2734                                                buffer_info,
2735                                                sizeof(struct e1000_buffer));
2736                                         memset(buffer_info, 0,
2737                                                sizeof(struct e1000_buffer));
2738                                 } else {
2739                                         e1000_unmap_and_free_tx_resource(
2740                                             adapter, buffer_info);
2741                                 }
2742                         }
2743 #endif
2744
2745                         tx_desc->buffer_addr = 0;
2746                         tx_desc->lower.data = 0;
2747                         tx_desc->upper.data = 0;
2748
2749                         if(unlikely(++i == tx_ring->count)) i = 0;
2750                 }
2751                 
2752                 eop = tx_ring->buffer_info[i].next_to_watch;
2753                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2754         }
2755
2756         tx_ring->next_to_clean = i;
2757
2758         spin_lock(&adapter->tx_lock);
2759
2760         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2761                     netif_carrier_ok(netdev)))
2762                 netif_wake_queue(netdev);
2763
2764         spin_unlock(&adapter->tx_lock);
2765  
2766         if(adapter->detect_tx_hung) {
2767                 /* detect a transmit hang in hardware, this serializes the
2768                  * check with the clearing of time_stamp and movement of i */
2769                 adapter->detect_tx_hung = FALSE;
2770                 if (tx_ring->buffer_info[i].dma &&
2771                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
2772                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
2773                         E1000_STATUS_TXOFF)) {
2774
2775                         /* detected Tx unit hang */
2776                         i = tx_ring->next_to_clean;
2777                         eop = tx_ring->buffer_info[i].next_to_watch;
2778                         eop_desc = E1000_TX_DESC(*tx_ring, eop);
2779                         DPRINTK(TX_ERR, ERR, "Detected Tx Unit Hang\n"
2780                                         "  TDH                  <%x>\n"
2781                                         "  TDT                  <%x>\n"
2782                                         "  next_to_use          <%x>\n"
2783                                         "  next_to_clean        <%x>\n"
2784                                         "buffer_info[next_to_clean]\n"
2785                                         "  dma                  <%llx>\n"
2786                                         "  time_stamp           <%lx>\n"
2787                                         "  next_to_watch        <%x>\n"
2788                                         "  jiffies              <%lx>\n"
2789                                         "  next_to_watch.status <%x>\n",
2790                                 E1000_READ_REG(&adapter->hw, TDH),
2791                                 E1000_READ_REG(&adapter->hw, TDT),
2792                                 tx_ring->next_to_use,
2793                                 i,
2794                                 tx_ring->buffer_info[i].dma,
2795                                 tx_ring->buffer_info[i].time_stamp,
2796                                 eop,
2797                                 jiffies,
2798                                 eop_desc->upper.fields.status);
2799                         netif_stop_queue(netdev);
2800                 }
2801         }
2802 #ifdef NETIF_F_TSO
2803
2804         if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
2805             time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
2806                 e1000_unmap_and_free_tx_resource(
2807                     adapter, &adapter->previous_buffer_info);
2808
2809 #endif
2810         return cleaned;
2811 }
2812
2813 /**
2814  * e1000_rx_checksum - Receive Checksum Offload for 82543
2815  * @adapter:     board private structure
2816  * @status_err:  receive descriptor status and error fields
2817  * @csum:        receive descriptor csum field
2818  * @sk_buff:     socket buffer with received data
2819  **/
2820
2821 static inline void
2822 e1000_rx_checksum(struct e1000_adapter *adapter,
2823                   uint32_t status_err, uint32_t csum,
2824                   struct sk_buff *skb)
2825 {
2826         uint16_t status = (uint16_t)status_err;
2827         uint8_t errors = (uint8_t)(status_err >> 24);
2828         skb->ip_summed = CHECKSUM_NONE;
2829
2830         /* 82543 or newer only */
2831         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
2832         /* Ignore Checksum bit is set */
2833         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
2834         /* TCP/UDP checksum error bit is set */
2835         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
2836                 /* let the stack verify checksum errors */
2837                 adapter->hw_csum_err++;
2838                 return;
2839         }
2840         /* TCP/UDP Checksum has not been calculated */
2841         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
2842                 if(!(status & E1000_RXD_STAT_TCPCS))
2843                         return;
2844         } else {
2845                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
2846                         return;
2847         }
2848         /* It must be a TCP or UDP packet with a valid checksum */
2849         if (likely(status & E1000_RXD_STAT_TCPCS)) {
2850                 /* TCP checksum is good */
2851                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2852         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
2853                 /* IP fragment with UDP payload */
2854                 /* Hardware complements the payload checksum, so we undo it
2855                  * and then put the value in host order for further stack use.
2856                  */
2857                 csum = ntohl(csum ^ 0xFFFF);
2858                 skb->csum = csum;
2859                 skb->ip_summed = CHECKSUM_HW;
2860         }
2861         adapter->hw_csum_good++;
2862 }
2863
2864 /**
2865  * e1000_clean_rx_irq - Send received data up the network stack; legacy
2866  * @adapter: board private structure
2867  **/
2868
2869 static boolean_t
2870 #ifdef CONFIG_E1000_NAPI
2871 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2872                    int work_to_do)
2873 #else
2874 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2875 #endif
2876 {
2877         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2878         struct net_device *netdev = adapter->netdev;
2879         struct pci_dev *pdev = adapter->pdev;
2880         struct e1000_rx_desc *rx_desc;
2881         struct e1000_buffer *buffer_info;
2882         struct sk_buff *skb;
2883         unsigned long flags;
2884         uint32_t length;
2885         uint8_t last_byte;
2886         unsigned int i;
2887         boolean_t cleaned = FALSE;
2888
2889         i = rx_ring->next_to_clean;
2890         rx_desc = E1000_RX_DESC(*rx_ring, i);
2891
2892         while(rx_desc->status & E1000_RXD_STAT_DD) {
2893                 buffer_info = &rx_ring->buffer_info[i];
2894 #ifdef CONFIG_E1000_NAPI
2895                 if(*work_done >= work_to_do)
2896                         break;
2897                 (*work_done)++;
2898 #endif
2899                 cleaned = TRUE;
2900
2901                 pci_unmap_single(pdev,
2902                                  buffer_info->dma,
2903                                  buffer_info->length,
2904                                  PCI_DMA_FROMDEVICE);
2905
2906                 skb = buffer_info->skb;
2907                 length = le16_to_cpu(rx_desc->length);
2908
2909                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2910                         /* All receives must fit into a single buffer */
2911                         E1000_DBG("%s: Receive packet consumed multiple"
2912                                         " buffers\n", netdev->name);
2913                         dev_kfree_skb_irq(skb);
2914                         goto next_desc;
2915                 }
2916
2917                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2918                         last_byte = *(skb->data + length - 1);
2919                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2920                                       rx_desc->errors, length, last_byte)) {
2921                                 spin_lock_irqsave(&adapter->stats_lock, flags);
2922                                 e1000_tbi_adjust_stats(&adapter->hw,
2923                                                        &adapter->stats,
2924                                                        length, skb->data);
2925                                 spin_unlock_irqrestore(&adapter->stats_lock,
2926                                                        flags);
2927                                 length--;
2928                         } else {
2929                                 dev_kfree_skb_irq(skb);
2930                                 goto next_desc;
2931                         }
2932                 }
2933
2934                 /* Good Receive */
2935                 skb_put(skb, length - ETHERNET_FCS_SIZE);
2936
2937                 /* Receive Checksum Offload */
2938                 e1000_rx_checksum(adapter,
2939                                   (uint32_t)(rx_desc->status) |
2940                                   ((uint32_t)(rx_desc->errors) << 24),
2941                                   rx_desc->csum, skb);
2942                 skb->protocol = eth_type_trans(skb, netdev);
2943 #ifdef CONFIG_E1000_NAPI
2944                 if(unlikely(adapter->vlgrp &&
2945                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2946                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2947                                                  le16_to_cpu(rx_desc->special) &
2948                                                  E1000_RXD_SPC_VLAN_MASK);
2949                 } else {
2950                         netif_receive_skb(skb);
2951                 }
2952 #else /* CONFIG_E1000_NAPI */
2953                 if(unlikely(adapter->vlgrp &&
2954                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2955                         vlan_hwaccel_rx(skb, adapter->vlgrp,
2956                                         le16_to_cpu(rx_desc->special) &
2957                                         E1000_RXD_SPC_VLAN_MASK);
2958                 } else {
2959                         netif_rx(skb);
2960                 }
2961 #endif /* CONFIG_E1000_NAPI */
2962                 netdev->last_rx = jiffies;
2963
2964 next_desc:
2965                 rx_desc->status = 0;
2966                 buffer_info->skb = NULL;
2967                 if(unlikely(++i == rx_ring->count)) i = 0;
2968
2969                 rx_desc = E1000_RX_DESC(*rx_ring, i);
2970         }
2971         rx_ring->next_to_clean = i;
2972         adapter->alloc_rx_buf(adapter);
2973
2974         return cleaned;
2975 }
2976
2977 /**
2978  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
2979  * @adapter: board private structure
2980  **/
2981
2982 static boolean_t
2983 #ifdef CONFIG_E1000_NAPI
2984 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
2985                       int work_to_do)
2986 #else
2987 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
2988 #endif
2989 {
2990         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2991         union e1000_rx_desc_packet_split *rx_desc;
2992         struct net_device *netdev = adapter->netdev;
2993         struct pci_dev *pdev = adapter->pdev;
2994         struct e1000_buffer *buffer_info;
2995         struct e1000_ps_page *ps_page;
2996         struct e1000_ps_page_dma *ps_page_dma;
2997         struct sk_buff *skb;
2998         unsigned int i, j;
2999         uint32_t length, staterr;
3000         boolean_t cleaned = FALSE;
3001
3002         i = rx_ring->next_to_clean;
3003         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3004         staterr = rx_desc->wb.middle.status_error;
3005
3006         while(staterr & E1000_RXD_STAT_DD) {
3007                 buffer_info = &rx_ring->buffer_info[i];
3008                 ps_page = &rx_ring->ps_page[i];
3009                 ps_page_dma = &rx_ring->ps_page_dma[i];
3010 #ifdef CONFIG_E1000_NAPI
3011                 if(unlikely(*work_done >= work_to_do))
3012                         break;
3013                 (*work_done)++;
3014 #endif
3015                 cleaned = TRUE;
3016                 pci_unmap_single(pdev, buffer_info->dma,
3017                                  buffer_info->length,
3018                                  PCI_DMA_FROMDEVICE);
3019
3020                 skb = buffer_info->skb;
3021
3022                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3023                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3024                                   " the full packet\n", netdev->name);
3025                         dev_kfree_skb_irq(skb);
3026                         goto next_desc;
3027                 }
3028
3029                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3030                         dev_kfree_skb_irq(skb);
3031                         goto next_desc;
3032                 }
3033
3034                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3035
3036                 if(unlikely(!length)) {
3037                         E1000_DBG("%s: Last part of the packet spanning"
3038                                   " multiple descriptors\n", netdev->name);
3039                         dev_kfree_skb_irq(skb);
3040                         goto next_desc;
3041                 }
3042
3043                 /* Good Receive */
3044                 skb_put(skb, length);
3045
3046                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3047                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3048                                 break;
3049
3050                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3051                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3052                         ps_page_dma->ps_page_dma[j] = 0;
3053                         skb_shinfo(skb)->frags[j].page =
3054                                 ps_page->ps_page[j];
3055                         ps_page->ps_page[j] = NULL;
3056                         skb_shinfo(skb)->frags[j].page_offset = 0;
3057                         skb_shinfo(skb)->frags[j].size = length;
3058                         skb_shinfo(skb)->nr_frags++;
3059                         skb->len += length;
3060                         skb->data_len += length;
3061                 }
3062
3063                 e1000_rx_checksum(adapter, staterr,
3064                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3065                 skb->protocol = eth_type_trans(skb, netdev);
3066
3067 #ifdef HAVE_RX_ZERO_COPY
3068                 if(likely(rx_desc->wb.upper.header_status &
3069                           E1000_RXDPS_HDRSTAT_HDRSP))
3070                         skb_shinfo(skb)->zero_copy = TRUE;
3071 #endif
3072 #ifdef CONFIG_E1000_NAPI
3073                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3074                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3075                                 le16_to_cpu(rx_desc->wb.middle.vlan &
3076                                         E1000_RXD_SPC_VLAN_MASK));
3077                 } else {
3078                         netif_receive_skb(skb);
3079                 }
3080 #else /* CONFIG_E1000_NAPI */
3081                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3082                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3083                                 le16_to_cpu(rx_desc->wb.middle.vlan &
3084                                         E1000_RXD_SPC_VLAN_MASK));
3085                 } else {
3086                         netif_rx(skb);
3087                 }
3088 #endif /* CONFIG_E1000_NAPI */
3089                 netdev->last_rx = jiffies;
3090
3091 next_desc:
3092                 rx_desc->wb.middle.status_error &= ~0xFF;
3093                 buffer_info->skb = NULL;
3094                 if(unlikely(++i == rx_ring->count)) i = 0;
3095
3096                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3097                 staterr = rx_desc->wb.middle.status_error;
3098         }
3099         rx_ring->next_to_clean = i;
3100         adapter->alloc_rx_buf(adapter);
3101
3102         return cleaned;
3103 }
3104
3105 /**
3106  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3107  * @adapter: address of board private structure
3108  **/
3109
3110 static void
3111 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
3112 {
3113         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3114         struct net_device *netdev = adapter->netdev;
3115         struct pci_dev *pdev = adapter->pdev;
3116         struct e1000_rx_desc *rx_desc;
3117         struct e1000_buffer *buffer_info;
3118         struct sk_buff *skb;
3119         unsigned int i, bufsz;
3120
3121         i = rx_ring->next_to_use;
3122         buffer_info = &rx_ring->buffer_info[i];
3123
3124         while(!buffer_info->skb) {
3125                 bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3126
3127                 skb = dev_alloc_skb(bufsz);
3128                 if(unlikely(!skb)) {
3129                         /* Better luck next round */
3130                         break;
3131                 }
3132
3133                 /* fix for errata 23, cant cross 64kB boundary */
3134                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3135                         struct sk_buff *oldskb = skb;
3136                         DPRINTK(RX_ERR,ERR,
3137                                 "skb align check failed: %u bytes at %p\n",
3138                                 bufsz, skb->data);
3139                         /* try again, without freeing the previous */
3140                         skb = dev_alloc_skb(bufsz);
3141                         if (!skb) {
3142                                 dev_kfree_skb(oldskb);
3143                                 break;
3144                         }
3145                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3146                                 /* give up */
3147                                 dev_kfree_skb(skb);
3148                                 dev_kfree_skb(oldskb);
3149                                 break; /* while !buffer_info->skb */
3150                         } else {
3151                                 /* move on with the new one */
3152                                 dev_kfree_skb(oldskb);
3153                         }
3154                 }
3155
3156                 /* Make buffer alignment 2 beyond a 16 byte boundary
3157                  * this will result in a 16 byte aligned IP header after
3158                  * the 14 byte MAC header is removed
3159                  */
3160                 skb_reserve(skb, NET_IP_ALIGN);
3161
3162                 skb->dev = netdev;
3163
3164                 buffer_info->skb = skb;
3165                 buffer_info->length = adapter->rx_buffer_len;
3166                 buffer_info->dma = pci_map_single(pdev,
3167                                                   skb->data,
3168                                                   adapter->rx_buffer_len,
3169                                                   PCI_DMA_FROMDEVICE);
3170
3171                 /* fix for errata 23, cant cross 64kB boundary */
3172                 if(!e1000_check_64k_bound(adapter,
3173                                                (void *)(unsigned long)buffer_info->dma,
3174                                                adapter->rx_buffer_len)) {
3175                         DPRINTK(RX_ERR,ERR,
3176                                 "dma align check failed: %u bytes at %ld\n",
3177                                 adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
3178
3179                         dev_kfree_skb(skb);
3180                         buffer_info->skb = NULL;
3181
3182                         pci_unmap_single(pdev,
3183                                          buffer_info->dma,
3184                                          adapter->rx_buffer_len,
3185                                          PCI_DMA_FROMDEVICE);
3186
3187                         break; /* while !buffer_info->skb */
3188                 }
3189
3190                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3191                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3192
3193                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3194                         /* Force memory writes to complete before letting h/w
3195                          * know there are new descriptors to fetch.  (Only
3196                          * applicable for weak-ordered memory model archs,
3197                          * such as IA-64). */
3198                         wmb();
3199
3200                         E1000_WRITE_REG(&adapter->hw, RDT, i);
3201                 }
3202
3203                 if(unlikely(++i == rx_ring->count)) i = 0;
3204                 buffer_info = &rx_ring->buffer_info[i];
3205         }