[PATCH] e1000: MSI support for PCI-e adapters
[linux-3.10.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 5.3.12       6/7/04
33  * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34  * - if_mii support and associated kcompat for older kernels
35  * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36  * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37  *
38  * 5.7.1        12/16/04
39  * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
40  *   fix was removed as it caused system instability. The suspected cause of 
41  *   this is the called to e1000_irq_disable in e1000_intr. Inlined the 
42  *   required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
43  * 5.7.0        12/10/04
44  * - include fix to the condition that determines when to quit NAPI - Robert Olsson
45  * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
46  * 5.6.5        11/01/04
47  * - Enabling NETIF_F_SG without checksum offload is illegal - 
48      John Mason <jdmason@us.ibm.com>
49  * 5.6.3        10/26/04
50  * - Remove redundant initialization - Jamal Hadi
51  * - Reset buffer_info->dma in tx resource cleanup logic
52  * 5.6.2        10/12/04
53  * - Avoid filling tx_ring completely - shemminger@osdl.org
54  * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
55  *   nacc@us.ibm.com
56  * - Sparse cleanup - shemminger@osdl.org
57  * - Fix tx resource cleanup logic
58  * - LLTX support - ak@suse.de and hadi@cyberus.ca
59  */
60
61 char e1000_driver_name[] = "e1000";
62 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
63 #ifndef CONFIG_E1000_NAPI
64 #define DRIVERNAPI
65 #else
66 #define DRIVERNAPI "-NAPI"
67 #endif
68 #define DRV_VERSION "5.7.6-k2"DRIVERNAPI
69 char e1000_driver_version[] = DRV_VERSION;
70 char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
71
72 /* e1000_pci_tbl - PCI Device ID Table
73  *
74  * Last entry must be all 0s
75  *
76  * Macro expands to...
77  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
78  */
79 static struct pci_device_id e1000_pci_tbl[] = {
80         INTEL_E1000_ETHERNET_DEVICE(0x1000),
81         INTEL_E1000_ETHERNET_DEVICE(0x1001),
82         INTEL_E1000_ETHERNET_DEVICE(0x1004),
83         INTEL_E1000_ETHERNET_DEVICE(0x1008),
84         INTEL_E1000_ETHERNET_DEVICE(0x1009),
85         INTEL_E1000_ETHERNET_DEVICE(0x100C),
86         INTEL_E1000_ETHERNET_DEVICE(0x100D),
87         INTEL_E1000_ETHERNET_DEVICE(0x100E),
88         INTEL_E1000_ETHERNET_DEVICE(0x100F),
89         INTEL_E1000_ETHERNET_DEVICE(0x1010),
90         INTEL_E1000_ETHERNET_DEVICE(0x1011),
91         INTEL_E1000_ETHERNET_DEVICE(0x1012),
92         INTEL_E1000_ETHERNET_DEVICE(0x1013),
93         INTEL_E1000_ETHERNET_DEVICE(0x1014),
94         INTEL_E1000_ETHERNET_DEVICE(0x1015),
95         INTEL_E1000_ETHERNET_DEVICE(0x1016),
96         INTEL_E1000_ETHERNET_DEVICE(0x1017),
97         INTEL_E1000_ETHERNET_DEVICE(0x1018),
98         INTEL_E1000_ETHERNET_DEVICE(0x1019),
99         INTEL_E1000_ETHERNET_DEVICE(0x101D),
100         INTEL_E1000_ETHERNET_DEVICE(0x101E),
101         INTEL_E1000_ETHERNET_DEVICE(0x1026),
102         INTEL_E1000_ETHERNET_DEVICE(0x1027),
103         INTEL_E1000_ETHERNET_DEVICE(0x1028),
104         INTEL_E1000_ETHERNET_DEVICE(0x1075),
105         INTEL_E1000_ETHERNET_DEVICE(0x1076),
106         INTEL_E1000_ETHERNET_DEVICE(0x1077),
107         INTEL_E1000_ETHERNET_DEVICE(0x1078),
108         INTEL_E1000_ETHERNET_DEVICE(0x1079),
109         INTEL_E1000_ETHERNET_DEVICE(0x107A),
110         INTEL_E1000_ETHERNET_DEVICE(0x107B),
111         INTEL_E1000_ETHERNET_DEVICE(0x107C),
112         INTEL_E1000_ETHERNET_DEVICE(0x108A),
113         /* required last entry */
114         {0,}
115 };
116
117 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
118
119 int e1000_up(struct e1000_adapter *adapter);
120 void e1000_down(struct e1000_adapter *adapter);
121 void e1000_reset(struct e1000_adapter *adapter);
122 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
123 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
124 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
125 void e1000_free_tx_resources(struct e1000_adapter *adapter);
126 void e1000_free_rx_resources(struct e1000_adapter *adapter);
127 void e1000_update_stats(struct e1000_adapter *adapter);
128
129 /* Local Function Prototypes */
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
142 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
143 static void e1000_set_multi(struct net_device *netdev);
144 static void e1000_update_phy_info(unsigned long data);
145 static void e1000_watchdog(unsigned long data);
146 static void e1000_watchdog_task(struct e1000_adapter *adapter);
147 static void e1000_82547_tx_fifo_stall(unsigned long data);
148 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
149 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
150 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
151 static int e1000_set_mac(struct net_device *netdev, void *p);
152 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
153 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
154 #ifdef CONFIG_E1000_NAPI
155 static int e1000_clean(struct net_device *netdev, int *budget);
156 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
157                                     int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
160 #endif
161 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
162 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
163 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
164                            int cmd);
165 void e1000_set_ethtool_ops(struct net_device *netdev);
166 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
167 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
168 static void e1000_tx_timeout(struct net_device *dev);
169 static void e1000_tx_timeout_task(struct net_device *dev);
170 static void e1000_smartspeed(struct e1000_adapter *adapter);
171 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
172                                               struct sk_buff *skb);
173
174 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
175 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
176 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
177 static void e1000_restore_vlan(struct e1000_adapter *adapter);
178
179 static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
180 static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
181 #ifdef CONFIG_PM
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void e1000_netpoll (struct net_device *netdev);
188 #endif
189
190 struct notifier_block e1000_notifier_reboot = {
191         .notifier_call  = e1000_notify_reboot,
192         .next           = NULL,
193         .priority       = 0
194 };
195
196 /* Exported from other modules */
197
198 extern void e1000_check_options(struct e1000_adapter *adapter);
199
200 static struct pci_driver e1000_driver = {
201         .name     = e1000_driver_name,
202         .id_table = e1000_pci_tbl,
203         .probe    = e1000_probe,
204         .remove   = __devexit_p(e1000_remove),
205         /* Power Managment Hooks */
206 #ifdef CONFIG_PM
207         .suspend  = e1000_suspend,
208         .resume   = e1000_resume
209 #endif
210 };
211
212 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
213 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
214 MODULE_LICENSE("GPL");
215 MODULE_VERSION(DRV_VERSION);
216
217 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
218 module_param(debug, int, 0);
219 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
220
221 /**
222  * e1000_init_module - Driver Registration Routine
223  *
224  * e1000_init_module is the first routine called when the driver is
225  * loaded. All it does is register with the PCI subsystem.
226  **/
227
228 static int __init
229 e1000_init_module(void)
230 {
231         int ret;
232         printk(KERN_INFO "%s - version %s\n",
233                e1000_driver_string, e1000_driver_version);
234
235         printk(KERN_INFO "%s\n", e1000_copyright);
236
237         ret = pci_module_init(&e1000_driver);
238         if(ret >= 0) {
239                 register_reboot_notifier(&e1000_notifier_reboot);
240         }
241         return ret;
242 }
243
244 module_init(e1000_init_module);
245
246 /**
247  * e1000_exit_module - Driver Exit Cleanup Routine
248  *
249  * e1000_exit_module is called just before the driver is removed
250  * from memory.
251  **/
252
253 static void __exit
254 e1000_exit_module(void)
255 {
256         unregister_reboot_notifier(&e1000_notifier_reboot);
257         pci_unregister_driver(&e1000_driver);
258 }
259
260 module_exit(e1000_exit_module);
261
262 /**
263  * e1000_irq_disable - Mask off interrupt generation on the NIC
264  * @adapter: board private structure
265  **/
266
267 static inline void
268 e1000_irq_disable(struct e1000_adapter *adapter)
269 {
270         atomic_inc(&adapter->irq_sem);
271         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
272         E1000_WRITE_FLUSH(&adapter->hw);
273         synchronize_irq(adapter->pdev->irq);
274 }
275
276 /**
277  * e1000_irq_enable - Enable default interrupt generation settings
278  * @adapter: board private structure
279  **/
280
281 static inline void
282 e1000_irq_enable(struct e1000_adapter *adapter)
283 {
284         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
285                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
286                 E1000_WRITE_FLUSH(&adapter->hw);
287         }
288 }
289
290 int
291 e1000_up(struct e1000_adapter *adapter)
292 {
293         struct net_device *netdev = adapter->netdev;
294         int err;
295
296         /* hardware has been reset, we need to reload some things */
297
298         /* Reset the PHY if it was previously powered down */
299         if(adapter->hw.media_type == e1000_media_type_copper) {
300                 uint16_t mii_reg;
301                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
302                 if(mii_reg & MII_CR_POWER_DOWN)
303                         e1000_phy_reset(&adapter->hw);
304         }
305
306         e1000_set_multi(netdev);
307
308         e1000_restore_vlan(adapter);
309
310         e1000_configure_tx(adapter);
311         e1000_setup_rctl(adapter);
312         e1000_configure_rx(adapter);
313         e1000_alloc_rx_buffers(adapter);
314
315 #ifdef CONFIG_PCI_MSI
316         if(adapter->hw.mac_type > e1000_82547_rev_2) {
317                 adapter->have_msi = TRUE;
318                 if((err = pci_enable_msi(adapter->pdev))) {
319                         DPRINTK(PROBE, ERR,
320                          "Unable to allocate MSI interrupt Error: %d\n", err);
321                         adapter->have_msi = FALSE;
322                 }
323         }
324 #endif
325         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
326                               SA_SHIRQ | SA_SAMPLE_RANDOM,
327                               netdev->name, netdev)))
328                 return err;
329
330         mod_timer(&adapter->watchdog_timer, jiffies);
331         e1000_irq_enable(adapter);
332
333 #ifdef CONFIG_E1000_NAPI
334         netif_poll_enable(netdev);
335 #endif
336         return 0;
337 }
338
339 void
340 e1000_down(struct e1000_adapter *adapter)
341 {
342         struct net_device *netdev = adapter->netdev;
343
344         e1000_irq_disable(adapter);
345         free_irq(adapter->pdev->irq, netdev);
346 #ifdef CONFIG_PCI_MSI
347         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
348            adapter->have_msi == TRUE)
349                 pci_disable_msi(adapter->pdev);
350 #endif
351         del_timer_sync(&adapter->tx_fifo_stall_timer);
352         del_timer_sync(&adapter->watchdog_timer);
353         del_timer_sync(&adapter->phy_info_timer);
354
355 #ifdef CONFIG_E1000_NAPI
356         netif_poll_disable(netdev);
357 #endif
358         adapter->link_speed = 0;
359         adapter->link_duplex = 0;
360         netif_carrier_off(netdev);
361         netif_stop_queue(netdev);
362
363         e1000_reset(adapter);
364         e1000_clean_tx_ring(adapter);
365         e1000_clean_rx_ring(adapter);
366
367         /* If WoL is not enabled
368          * Power down the PHY so no link is implied when interface is down */
369         if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
370                 uint16_t mii_reg;
371                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
372                 mii_reg |= MII_CR_POWER_DOWN;
373                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
374         }
375 }
376
377 void
378 e1000_reset(struct e1000_adapter *adapter)
379 {
380         uint32_t pba;
381
382         /* Repartition Pba for greater than 9k mtu
383          * To take effect CTRL.RST is required.
384          */
385
386         if(adapter->hw.mac_type < e1000_82547) {
387                 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
388                         pba = E1000_PBA_40K;
389                 else
390                         pba = E1000_PBA_48K;
391         } else {
392                 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
393                         pba = E1000_PBA_22K;
394                 else
395                         pba = E1000_PBA_30K;
396                 adapter->tx_fifo_head = 0;
397                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
398                 adapter->tx_fifo_size =
399                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
400                 atomic_set(&adapter->tx_fifo_stall, 0);
401         }
402         E1000_WRITE_REG(&adapter->hw, PBA, pba);
403
404         /* flow control settings */
405         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
406                                     E1000_FC_HIGH_DIFF;
407         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
408                                    E1000_FC_LOW_DIFF;
409         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
410         adapter->hw.fc_send_xon = 1;
411         adapter->hw.fc = adapter->hw.original_fc;
412
413         e1000_reset_hw(&adapter->hw);
414         if(adapter->hw.mac_type >= e1000_82544)
415                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
416         if(e1000_init_hw(&adapter->hw))
417                 DPRINTK(PROBE, ERR, "Hardware Error\n");
418
419         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
420         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
421
422         e1000_reset_adaptive(&adapter->hw);
423         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
424 }
425
426 /**
427  * e1000_probe - Device Initialization Routine
428  * @pdev: PCI device information struct
429  * @ent: entry in e1000_pci_tbl
430  *
431  * Returns 0 on success, negative on failure
432  *
433  * e1000_probe initializes an adapter identified by a pci_dev structure.
434  * The OS initialization, configuring of the adapter private structure,
435  * and a hardware reset occur.
436  **/
437
438 static int __devinit
439 e1000_probe(struct pci_dev *pdev,
440             const struct pci_device_id *ent)
441 {
442         struct net_device *netdev;
443         struct e1000_adapter *adapter;
444         static int cards_found = 0;
445         unsigned long mmio_start;
446         int mmio_len;
447         int pci_using_dac;
448         int i;
449         int err;
450         uint16_t eeprom_data;
451         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
452
453         if((err = pci_enable_device(pdev)))
454                 return err;
455
456         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
457                 pci_using_dac = 1;
458         } else {
459                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
460                         E1000_ERR("No usable DMA configuration, aborting\n");
461                         return err;
462                 }
463                 pci_using_dac = 0;
464         }
465
466         if((err = pci_request_regions(pdev, e1000_driver_name)))
467                 return err;
468
469         pci_set_master(pdev);
470
471         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
472         if(!netdev) {
473                 err = -ENOMEM;
474                 goto err_alloc_etherdev;
475         }
476
477         SET_MODULE_OWNER(netdev);
478         SET_NETDEV_DEV(netdev, &pdev->dev);
479
480         pci_set_drvdata(pdev, netdev);
481         adapter = netdev->priv;
482         adapter->netdev = netdev;
483         adapter->pdev = pdev;
484         adapter->hw.back = adapter;
485         adapter->msg_enable = (1 << debug) - 1;
486
487         mmio_start = pci_resource_start(pdev, BAR_0);
488         mmio_len = pci_resource_len(pdev, BAR_0);
489
490         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
491         if(!adapter->hw.hw_addr) {
492                 err = -EIO;
493                 goto err_ioremap;
494         }
495
496         for(i = BAR_1; i <= BAR_5; i++) {
497                 if(pci_resource_len(pdev, i) == 0)
498                         continue;
499                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
500                         adapter->hw.io_base = pci_resource_start(pdev, i);
501                         break;
502                 }
503         }
504
505         netdev->open = &e1000_open;
506         netdev->stop = &e1000_close;
507         netdev->hard_start_xmit = &e1000_xmit_frame;
508         netdev->get_stats = &e1000_get_stats;
509         netdev->set_multicast_list = &e1000_set_multi;
510         netdev->set_mac_address = &e1000_set_mac;
511         netdev->change_mtu = &e1000_change_mtu;
512         netdev->do_ioctl = &e1000_ioctl;
513         e1000_set_ethtool_ops(netdev);
514         netdev->tx_timeout = &e1000_tx_timeout;
515         netdev->watchdog_timeo = 5 * HZ;
516 #ifdef CONFIG_E1000_NAPI
517         netdev->poll = &e1000_clean;
518         netdev->weight = 64;
519 #endif
520         netdev->vlan_rx_register = e1000_vlan_rx_register;
521         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
522         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
523 #ifdef CONFIG_NET_POLL_CONTROLLER
524         netdev->poll_controller = e1000_netpoll;
525 #endif
526         strcpy(netdev->name, pci_name(pdev));
527
528         netdev->mem_start = mmio_start;
529         netdev->mem_end = mmio_start + mmio_len;
530         netdev->base_addr = adapter->hw.io_base;
531
532         adapter->bd_number = cards_found;
533
534         /* setup the private structure */
535
536         if((err = e1000_sw_init(adapter)))
537                 goto err_sw_init;
538
539         if(adapter->hw.mac_type >= e1000_82543) {
540                 netdev->features = NETIF_F_SG |
541                                    NETIF_F_HW_CSUM |
542                                    NETIF_F_HW_VLAN_TX |
543                                    NETIF_F_HW_VLAN_RX |
544                                    NETIF_F_HW_VLAN_FILTER;
545         }
546
547 #ifdef NETIF_F_TSO
548         if((adapter->hw.mac_type >= e1000_82544) &&
549            (adapter->hw.mac_type != e1000_82547))
550                 netdev->features |= NETIF_F_TSO;
551 #endif
552         if(pci_using_dac)
553                 netdev->features |= NETIF_F_HIGHDMA;
554
555         /* hard_start_xmit is safe against parallel locking */
556         netdev->features |= NETIF_F_LLTX; 
557  
558         /* before reading the EEPROM, reset the controller to 
559          * put the device in a known good starting state */
560         
561         e1000_reset_hw(&adapter->hw);
562
563         /* make sure the EEPROM is good */
564
565         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
566                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
567                 err = -EIO;
568                 goto err_eeprom;
569         }
570
571         /* copy the MAC address out of the EEPROM */
572
573         if (e1000_read_mac_addr(&adapter->hw))
574                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
575         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
576
577         if(!is_valid_ether_addr(netdev->dev_addr)) {
578                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
579                 err = -EIO;
580                 goto err_eeprom;
581         }
582
583         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
584
585         e1000_get_bus_info(&adapter->hw);
586
587         init_timer(&adapter->tx_fifo_stall_timer);
588         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
589         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
590
591         init_timer(&adapter->watchdog_timer);
592         adapter->watchdog_timer.function = &e1000_watchdog;
593         adapter->watchdog_timer.data = (unsigned long) adapter;
594
595         INIT_WORK(&adapter->watchdog_task,
596                 (void (*)(void *))e1000_watchdog_task, adapter);
597
598         init_timer(&adapter->phy_info_timer);
599         adapter->phy_info_timer.function = &e1000_update_phy_info;
600         adapter->phy_info_timer.data = (unsigned long) adapter;
601
602         INIT_WORK(&adapter->tx_timeout_task,
603                 (void (*)(void *))e1000_tx_timeout_task, netdev);
604
605         /* we're going to reset, so assume we have no link for now */
606
607         netif_carrier_off(netdev);
608         netif_stop_queue(netdev);
609
610         e1000_check_options(adapter);
611
612         /* Initial Wake on LAN setting
613          * If APM wake is enabled in the EEPROM,
614          * enable the ACPI Magic Packet filter
615          */
616
617         switch(adapter->hw.mac_type) {
618         case e1000_82542_rev2_0:
619         case e1000_82542_rev2_1:
620         case e1000_82543:
621                 break;
622         case e1000_82544:
623                 e1000_read_eeprom(&adapter->hw,
624                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
625                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
626                 break;
627         case e1000_82546:
628         case e1000_82546_rev_3:
629                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
630                    && (adapter->hw.media_type == e1000_media_type_copper)) {
631                         e1000_read_eeprom(&adapter->hw,
632                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
633                         break;
634                 }
635                 /* Fall Through */
636         default:
637                 e1000_read_eeprom(&adapter->hw,
638                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
639                 break;
640         }
641         if(eeprom_data & eeprom_apme_mask)
642                 adapter->wol |= E1000_WUFC_MAG;
643
644         /* reset the hardware with the new settings */
645         e1000_reset(adapter);
646
647         strcpy(netdev->name, "eth%d");
648         if((err = register_netdev(netdev)))
649                 goto err_register;
650
651         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
652
653         cards_found++;
654         return 0;
655
656 err_register:
657 err_sw_init:
658 err_eeprom:
659         iounmap(adapter->hw.hw_addr);
660 err_ioremap:
661         free_netdev(netdev);
662 err_alloc_etherdev:
663         pci_release_regions(pdev);
664         return err;
665 }
666
667 /**
668  * e1000_remove - Device Removal Routine
669  * @pdev: PCI device information struct
670  *
671  * e1000_remove is called by the PCI subsystem to alert the driver
672  * that it should release a PCI device.  The could be caused by a
673  * Hot-Plug event, or because the driver is going to be removed from
674  * memory.
675  **/
676
677 static void __devexit
678 e1000_remove(struct pci_dev *pdev)
679 {
680         struct net_device *netdev = pci_get_drvdata(pdev);
681         struct e1000_adapter *adapter = netdev->priv;
682         uint32_t manc;
683
684         flush_scheduled_work();
685
686         if(adapter->hw.mac_type >= e1000_82540 &&
687            adapter->hw.media_type == e1000_media_type_copper) {
688                 manc = E1000_READ_REG(&adapter->hw, MANC);
689                 if(manc & E1000_MANC_SMBUS_EN) {
690                         manc |= E1000_MANC_ARP_EN;
691                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
692                 }
693         }
694
695         unregister_netdev(netdev);
696
697         e1000_phy_hw_reset(&adapter->hw);
698
699         iounmap(adapter->hw.hw_addr);
700         pci_release_regions(pdev);
701
702         free_netdev(netdev);
703
704         pci_disable_device(pdev);
705 }
706
707 /**
708  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
709  * @adapter: board private structure to initialize
710  *
711  * e1000_sw_init initializes the Adapter private data structure.
712  * Fields are initialized based on PCI device information and
713  * OS network device settings (MTU size).
714  **/
715
716 static int __devinit
717 e1000_sw_init(struct e1000_adapter *adapter)
718 {
719         struct e1000_hw *hw = &adapter->hw;
720         struct net_device *netdev = adapter->netdev;
721         struct pci_dev *pdev = adapter->pdev;
722
723         /* PCI config space info */
724
725         hw->vendor_id = pdev->vendor;
726         hw->device_id = pdev->device;
727         hw->subsystem_vendor_id = pdev->subsystem_vendor;
728         hw->subsystem_id = pdev->subsystem_device;
729
730         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
731
732         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
733
734         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
735         hw->max_frame_size = netdev->mtu +
736                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
737         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
738
739         /* identify the MAC */
740
741         if(e1000_set_mac_type(hw)) {
742                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
743                 return -EIO;
744         }
745
746         /* initialize eeprom parameters */
747
748         e1000_init_eeprom_params(hw);
749
750         switch(hw->mac_type) {
751         default:
752                 break;
753         case e1000_82541:
754         case e1000_82547:
755         case e1000_82541_rev_2:
756         case e1000_82547_rev_2:
757                 hw->phy_init_script = 1;
758                 break;
759         }
760
761         e1000_set_media_type(hw);
762
763         hw->wait_autoneg_complete = FALSE;
764         hw->tbi_compatibility_en = TRUE;
765         hw->adaptive_ifs = TRUE;
766
767         /* Copper options */
768
769         if(hw->media_type == e1000_media_type_copper) {
770                 hw->mdix = AUTO_ALL_MODES;
771                 hw->disable_polarity_correction = FALSE;
772                 hw->master_slave = E1000_MASTER_SLAVE;
773         }
774
775         atomic_set(&adapter->irq_sem, 1);
776         spin_lock_init(&adapter->stats_lock);
777         spin_lock_init(&adapter->tx_lock);
778
779         return 0;
780 }
781
782 /**
783  * e1000_open - Called when a network interface is made active
784  * @netdev: network interface device structure
785  *
786  * Returns 0 on success, negative value on failure
787  *
788  * The open entry point is called when a network interface is made
789  * active by the system (IFF_UP).  At this point all resources needed
790  * for transmit and receive operations are allocated, the interrupt
791  * handler is registered with the OS, the watchdog timer is started,
792  * and the stack is notified that the interface is ready.
793  **/
794
795 static int
796 e1000_open(struct net_device *netdev)
797 {
798         struct e1000_adapter *adapter = netdev->priv;
799         int err;
800
801         /* allocate transmit descriptors */
802
803         if((err = e1000_setup_tx_resources(adapter)))
804                 goto err_setup_tx;
805
806         /* allocate receive descriptors */
807
808         if((err = e1000_setup_rx_resources(adapter)))
809                 goto err_setup_rx;
810
811         if((err = e1000_up(adapter)))
812                 goto err_up;
813
814         return E1000_SUCCESS;
815
816 err_up:
817         e1000_free_rx_resources(adapter);
818 err_setup_rx:
819         e1000_free_tx_resources(adapter);
820 err_setup_tx:
821         e1000_reset(adapter);
822
823         return err;
824 }
825
826 /**
827  * e1000_close - Disables a network interface
828  * @netdev: network interface device structure
829  *
830  * Returns 0, this is not allowed to fail
831  *
832  * The close entry point is called when an interface is de-activated
833  * by the OS.  The hardware is still under the drivers control, but
834  * needs to be disabled.  A global MAC reset is issued to stop the
835  * hardware, and all transmit and receive resources are freed.
836  **/
837
838 static int
839 e1000_close(struct net_device *netdev)
840 {
841         struct e1000_adapter *adapter = netdev->priv;
842
843         e1000_down(adapter);
844
845         e1000_free_tx_resources(adapter);
846         e1000_free_rx_resources(adapter);
847
848         return 0;
849 }
850
851 /**
852  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
853  * @adapter: address of board private structure
854  * @begin: address of beginning of memory
855  * @end: address of end of memory
856  **/
857 static inline boolean_t
858 e1000_check_64k_bound(struct e1000_adapter *adapter,
859                       void *start, unsigned long len)
860 {
861         unsigned long begin = (unsigned long) start;
862         unsigned long end = begin + len;
863
864         /* first rev 82545 and 82546 need to not allow any memory
865          * write location to cross a 64k boundary due to errata 23 */
866         if (adapter->hw.mac_type == e1000_82545 ||
867             adapter->hw.mac_type == e1000_82546 ) {
868
869                 /* check buffer doesn't cross 64kB */
870                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
871         }
872
873         return TRUE;
874 }
875
876 /**
877  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
878  * @adapter: board private structure
879  *
880  * Return 0 on success, negative on failure
881  **/
882
883 int
884 e1000_setup_tx_resources(struct e1000_adapter *adapter)
885 {
886         struct e1000_desc_ring *txdr = &adapter->tx_ring;
887         struct pci_dev *pdev = adapter->pdev;
888         int size;
889
890         size = sizeof(struct e1000_buffer) * txdr->count;
891         txdr->buffer_info = vmalloc(size);
892         if(!txdr->buffer_info) {
893                 DPRINTK(PROBE, ERR, 
894                 "Unable to Allocate Memory for the Transmit descriptor ring\n");
895                 return -ENOMEM;
896         }
897         memset(txdr->buffer_info, 0, size);
898
899         /* round up to nearest 4K */
900
901         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
902         E1000_ROUNDUP(txdr->size, 4096);
903
904         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
905         if(!txdr->desc) {
906 setup_tx_desc_die:
907                 DPRINTK(PROBE, ERR, 
908                 "Unable to Allocate Memory for the Transmit descriptor ring\n");
909                 vfree(txdr->buffer_info);
910                 return -ENOMEM;
911         }
912
913         /* fix for errata 23, cant cross 64kB boundary */
914         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
915                 void *olddesc = txdr->desc;
916                 dma_addr_t olddma = txdr->dma;
917                 DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
918                         txdr->size, txdr->desc);
919                 /* try again, without freeing the previous */
920                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
921                 /* failed allocation, critial failure */
922                 if(!txdr->desc) {
923                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
924                         goto setup_tx_desc_die;
925                 }
926
927                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
928                         /* give up */
929                         pci_free_consistent(pdev, txdr->size,
930                              txdr->desc, txdr->dma);
931                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
932                         DPRINTK(PROBE, ERR,
933                          "Unable to Allocate aligned Memory for the Transmit"
934                          " descriptor ring\n");
935                         vfree(txdr->buffer_info);
936                         return -ENOMEM;
937                 } else {
938                         /* free old, move on with the new one since its okay */
939                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
940                 }
941         }
942         memset(txdr->desc, 0, txdr->size);
943
944         txdr->next_to_use = 0;
945         txdr->next_to_clean = 0;
946
947         return 0;
948 }
949
950 /**
951  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
952  * @adapter: board private structure
953  *
954  * Configure the Tx unit of the MAC after a reset.
955  **/
956
957 static void
958 e1000_configure_tx(struct e1000_adapter *adapter)
959 {
960         uint64_t tdba = adapter->tx_ring.dma;
961         uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
962         uint32_t tctl, tipg;
963
964         E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
965         E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
966
967         E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
968
969         /* Setup the HW Tx Head and Tail descriptor pointers */
970
971         E1000_WRITE_REG(&adapter->hw, TDH, 0);
972         E1000_WRITE_REG(&adapter->hw, TDT, 0);
973
974         /* Set the default values for the Tx Inter Packet Gap timer */
975
976         switch (adapter->hw.mac_type) {
977         case e1000_82542_rev2_0:
978         case e1000_82542_rev2_1:
979                 tipg = DEFAULT_82542_TIPG_IPGT;
980                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
981                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
982                 break;
983         default:
984                 if(adapter->hw.media_type == e1000_media_type_fiber ||
985                    adapter->hw.media_type == e1000_media_type_internal_serdes)
986                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
987                 else
988                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
989                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
990                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
991         }
992         E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
993
994         /* Set the Tx Interrupt Delay register */
995
996         E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
997         if(adapter->hw.mac_type >= e1000_82540)
998                 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
999
1000         /* Program the Transmit Control Register */
1001
1002         tctl = E1000_READ_REG(&adapter->hw, TCTL);
1003
1004         tctl &= ~E1000_TCTL_CT;
1005         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1006                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1007
1008         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1009
1010         e1000_config_collision_dist(&adapter->hw);
1011
1012         /* Setup Transmit Descriptor Settings for eop descriptor */
1013         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1014                 E1000_TXD_CMD_IFCS;
1015
1016         if(adapter->hw.mac_type < e1000_82543)
1017                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1018         else
1019                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1020
1021         /* Cache if we're 82544 running in PCI-X because we'll
1022          * need this to apply a workaround later in the send path. */
1023         if(adapter->hw.mac_type == e1000_82544 &&
1024            adapter->hw.bus_type == e1000_bus_type_pcix)
1025                 adapter->pcix_82544 = 1;
1026 }
1027
1028 /**
1029  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1030  * @adapter: board private structure
1031  *
1032  * Returns 0 on success, negative on failure
1033  **/
1034
1035 int
1036 e1000_setup_rx_resources(struct e1000_adapter *adapter)
1037 {
1038         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1039         struct pci_dev *pdev = adapter->pdev;
1040         int size;
1041
1042         size = sizeof(struct e1000_buffer) * rxdr->count;
1043         rxdr->buffer_info = vmalloc(size);
1044         if(!rxdr->buffer_info) {
1045                 DPRINTK(PROBE, ERR, 
1046                 "Unable to Allocate Memory for the Recieve descriptor ring\n");
1047                 return -ENOMEM;
1048         }
1049         memset(rxdr->buffer_info, 0, size);
1050
1051         /* Round up to nearest 4K */
1052
1053         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054         E1000_ROUNDUP(rxdr->size, 4096);
1055
1056         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1057
1058         if(!rxdr->desc) {
1059 setup_rx_desc_die:
1060                 DPRINTK(PROBE, ERR, 
1061                 "Unble to Allocate Memory for the Recieve descriptor ring\n");
1062                 vfree(rxdr->buffer_info);
1063                 return -ENOMEM;
1064         }
1065
1066         /* fix for errata 23, cant cross 64kB boundary */
1067         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1068                 void *olddesc = rxdr->desc;
1069                 dma_addr_t olddma = rxdr->dma;
1070                 DPRINTK(RX_ERR,ERR,
1071                         "rxdr align check failed: %u bytes at %p\n",
1072                         rxdr->size, rxdr->desc);
1073                 /* try again, without freeing the previous */
1074                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1075                 /* failed allocation, critial failure */
1076                 if(!rxdr->desc) {
1077                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1078                         goto setup_rx_desc_die;
1079                 }
1080
1081                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1082                         /* give up */
1083                         pci_free_consistent(pdev, rxdr->size,
1084                              rxdr->desc, rxdr->dma);
1085                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1086                         DPRINTK(PROBE, ERR, 
1087                                 "Unable to Allocate aligned Memory for the"
1088                                 " Receive descriptor ring\n");
1089                         vfree(rxdr->buffer_info);
1090                         return -ENOMEM;
1091                 } else {
1092                         /* free old, move on with the new one since its okay */
1093                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1094                 }
1095         }
1096         memset(rxdr->desc, 0, rxdr->size);
1097
1098         rxdr->next_to_clean = 0;
1099         rxdr->next_to_use = 0;
1100
1101         return 0;
1102 }
1103
1104 /**
1105  * e1000_setup_rctl - configure the receive control register
1106  * @adapter: Board private structure
1107  **/
1108
1109 static void
1110 e1000_setup_rctl(struct e1000_adapter *adapter)
1111 {
1112         uint32_t rctl;
1113
1114         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1115
1116         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1117
1118         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1119                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1120                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1121
1122         if(adapter->hw.tbi_compatibility_on == 1)
1123                 rctl |= E1000_RCTL_SBP;
1124         else
1125                 rctl &= ~E1000_RCTL_SBP;
1126
1127         /* Setup buffer sizes */
1128         rctl &= ~(E1000_RCTL_SZ_4096);
1129         rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
1130         switch (adapter->rx_buffer_len) {
1131         case E1000_RXBUFFER_2048:
1132         default:
1133                 rctl |= E1000_RCTL_SZ_2048;
1134                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
1135                 break;
1136         case E1000_RXBUFFER_4096:
1137                 rctl |= E1000_RCTL_SZ_4096;
1138                 break;
1139         case E1000_RXBUFFER_8192:
1140                 rctl |= E1000_RCTL_SZ_8192;
1141                 break;
1142         case E1000_RXBUFFER_16384:
1143                 rctl |= E1000_RCTL_SZ_16384;
1144                 break;
1145         }
1146
1147         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1148 }
1149
1150 /**
1151  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1152  * @adapter: board private structure
1153  *
1154  * Configure the Rx unit of the MAC after a reset.
1155  **/
1156
1157 static void
1158 e1000_configure_rx(struct e1000_adapter *adapter)
1159 {
1160         uint64_t rdba = adapter->rx_ring.dma;
1161         uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1162         uint32_t rctl;
1163         uint32_t rxcsum;
1164
1165         /* disable receives while setting up the descriptors */
1166         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1167         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1168
1169         /* set the Receive Delay Timer Register */
1170         E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1171
1172         if(adapter->hw.mac_type >= e1000_82540) {
1173                 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1174                 if(adapter->itr > 1)
1175                         E1000_WRITE_REG(&adapter->hw, ITR,
1176                                 1000000000 / (adapter->itr * 256));
1177         }
1178
1179         /* Setup the Base and Length of the Rx Descriptor Ring */
1180         E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1181         E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1182
1183         E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1184
1185         /* Setup the HW Rx Head and Tail Descriptor Pointers */
1186         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1187         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1188
1189         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1190         if((adapter->hw.mac_type >= e1000_82543) &&
1191            (adapter->rx_csum == TRUE)) {
1192                 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1193                 rxcsum |= E1000_RXCSUM_TUOFL;
1194                 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1195         }
1196
1197         /* Enable Receives */
1198         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1199 }
1200
1201 /**
1202  * e1000_free_tx_resources - Free Tx Resources
1203  * @adapter: board private structure
1204  *
1205  * Free all transmit software resources
1206  **/
1207
1208 void
1209 e1000_free_tx_resources(struct e1000_adapter *adapter)
1210 {
1211         struct pci_dev *pdev = adapter->pdev;
1212
1213         e1000_clean_tx_ring(adapter);
1214
1215         vfree(adapter->tx_ring.buffer_info);
1216         adapter->tx_ring.buffer_info = NULL;
1217
1218         pci_free_consistent(pdev, adapter->tx_ring.size,
1219                             adapter->tx_ring.desc, adapter->tx_ring.dma);
1220
1221         adapter->tx_ring.desc = NULL;
1222 }
1223
1224 static inline void
1225 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1226                         struct e1000_buffer *buffer_info)
1227 {
1228         struct pci_dev *pdev = adapter->pdev;
1229
1230         if(buffer_info->dma) {
1231                 pci_unmap_page(pdev,
1232                                buffer_info->dma,
1233                                buffer_info->length,
1234                                PCI_DMA_TODEVICE);
1235                 buffer_info->dma = 0;
1236         }
1237         if(buffer_info->skb) {
1238                 dev_kfree_skb_any(buffer_info->skb);
1239                 buffer_info->skb = NULL;
1240         }
1241 }
1242
1243 /**
1244  * e1000_clean_tx_ring - Free Tx Buffers
1245  * @adapter: board private structure
1246  **/
1247
1248 static void
1249 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1250 {
1251         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1252         struct e1000_buffer *buffer_info;
1253         unsigned long size;
1254         unsigned int i;
1255
1256         /* Free all the Tx ring sk_buffs */
1257
1258         if (likely(adapter->previous_buffer_info.skb != NULL)) {
1259                 e1000_unmap_and_free_tx_resource(adapter, 
1260                                 &adapter->previous_buffer_info);
1261         }
1262
1263         for(i = 0; i < tx_ring->count; i++) {
1264                 buffer_info = &tx_ring->buffer_info[i];
1265                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1266         }
1267
1268         size = sizeof(struct e1000_buffer) * tx_ring->count;
1269         memset(tx_ring->buffer_info, 0, size);
1270
1271         /* Zero out the descriptor ring */
1272
1273         memset(tx_ring->desc, 0, tx_ring->size);
1274
1275         tx_ring->next_to_use = 0;
1276         tx_ring->next_to_clean = 0;
1277
1278         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1279         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1280 }
1281
1282 /**
1283  * e1000_free_rx_resources - Free Rx Resources
1284  * @adapter: board private structure
1285  *
1286  * Free all receive software resources
1287  **/
1288
1289 void
1290 e1000_free_rx_resources(struct e1000_adapter *adapter)
1291 {
1292         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1293         struct pci_dev *pdev = adapter->pdev;
1294
1295         e1000_clean_rx_ring(adapter);
1296
1297         vfree(rx_ring->buffer_info);
1298         rx_ring->buffer_info = NULL;
1299
1300         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1301
1302         rx_ring->desc = NULL;
1303 }
1304
1305 /**
1306  * e1000_clean_rx_ring - Free Rx Buffers
1307  * @adapter: board private structure
1308  **/
1309
1310 static void
1311 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1312 {
1313         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1314         struct e1000_buffer *buffer_info;
1315         struct pci_dev *pdev = adapter->pdev;
1316         unsigned long size;
1317         unsigned int i;
1318
1319         /* Free all the Rx ring sk_buffs */
1320
1321         for(i = 0; i < rx_ring->count; i++) {
1322                 buffer_info = &rx_ring->buffer_info[i];
1323                 if(buffer_info->skb) {
1324
1325                         pci_unmap_single(pdev,
1326                                          buffer_info->dma,
1327                                          buffer_info->length,
1328                                          PCI_DMA_FROMDEVICE);
1329
1330                         dev_kfree_skb(buffer_info->skb);
1331                         buffer_info->skb = NULL;
1332                 }
1333         }
1334
1335         size = sizeof(struct e1000_buffer) * rx_ring->count;
1336         memset(rx_ring->buffer_info, 0, size);
1337
1338         /* Zero out the descriptor ring */
1339
1340         memset(rx_ring->desc, 0, rx_ring->size);
1341
1342         rx_ring->next_to_clean = 0;
1343         rx_ring->next_to_use = 0;
1344
1345         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1346         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1347 }
1348
1349 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1350  * and memory write and invalidate disabled for certain operations
1351  */
1352 static void
1353 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1354 {
1355         struct net_device *netdev = adapter->netdev;
1356         uint32_t rctl;
1357
1358         e1000_pci_clear_mwi(&adapter->hw);
1359
1360         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1361         rctl |= E1000_RCTL_RST;
1362         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1363         E1000_WRITE_FLUSH(&adapter->hw);
1364         mdelay(5);
1365
1366         if(netif_running(netdev))
1367                 e1000_clean_rx_ring(adapter);
1368 }
1369
1370 static void
1371 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1372 {
1373         struct net_device *netdev = adapter->netdev;
1374         uint32_t rctl;
1375
1376         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1377         rctl &= ~E1000_RCTL_RST;
1378         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1379         E1000_WRITE_FLUSH(&adapter->hw);
1380         mdelay(5);
1381
1382         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1383                 e1000_pci_set_mwi(&adapter->hw);
1384
1385         if(netif_running(netdev)) {
1386                 e1000_configure_rx(adapter);
1387                 e1000_alloc_rx_buffers(adapter);
1388         }
1389 }
1390
1391 /**
1392  * e1000_set_mac - Change the Ethernet Address of the NIC
1393  * @netdev: network interface device structure
1394  * @p: pointer to an address structure
1395  *
1396  * Returns 0 on success, negative on failure
1397  **/
1398
1399 static int
1400 e1000_set_mac(struct net_device *netdev, void *p)
1401 {
1402         struct e1000_adapter *adapter = netdev->priv;
1403         struct sockaddr *addr = p;
1404
1405         if(!is_valid_ether_addr(addr->sa_data))
1406                 return -EADDRNOTAVAIL;
1407
1408         /* 82542 2.0 needs to be in reset to write receive address registers */
1409
1410         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1411                 e1000_enter_82542_rst(adapter);
1412
1413         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1414         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1415
1416         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1417
1418         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1419                 e1000_leave_82542_rst(adapter);
1420
1421         return 0;
1422 }
1423
1424 /**
1425  * e1000_set_multi - Multicast and Promiscuous mode set
1426  * @netdev: network interface device structure
1427  *
1428  * The set_multi entry point is called whenever the multicast address
1429  * list or the network interface flags are updated.  This routine is
1430  * responsible for configuring the hardware for proper multicast,
1431  * promiscuous mode, and all-multi behavior.
1432  **/
1433
1434 static void
1435 e1000_set_multi(struct net_device *netdev)
1436 {
1437         struct e1000_adapter *adapter = netdev->priv;
1438         struct e1000_hw *hw = &adapter->hw;
1439         struct dev_mc_list *mc_ptr;
1440         uint32_t rctl;
1441         uint32_t hash_value;
1442         int i;
1443         unsigned long flags;
1444
1445         /* Check for Promiscuous and All Multicast modes */
1446
1447         spin_lock_irqsave(&adapter->tx_lock, flags);
1448
1449         rctl = E1000_READ_REG(hw, RCTL);
1450
1451         if(netdev->flags & IFF_PROMISC) {
1452                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1453         } else if(netdev->flags & IFF_ALLMULTI) {
1454                 rctl |= E1000_RCTL_MPE;
1455                 rctl &= ~E1000_RCTL_UPE;
1456         } else {
1457                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1458         }
1459
1460         E1000_WRITE_REG(hw, RCTL, rctl);
1461
1462         /* 82542 2.0 needs to be in reset to write receive address registers */
1463
1464         if(hw->mac_type == e1000_82542_rev2_0)
1465                 e1000_enter_82542_rst(adapter);
1466
1467         /* load the first 14 multicast address into the exact filters 1-14
1468          * RAR 0 is used for the station MAC adddress
1469          * if there are not 14 addresses, go ahead and clear the filters
1470          */
1471         mc_ptr = netdev->mc_list;
1472
1473         for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1474                 if(mc_ptr) {
1475                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1476                         mc_ptr = mc_ptr->next;
1477                 } else {
1478                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1479                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1480                 }
1481         }
1482
1483         /* clear the old settings from the multicast hash table */
1484
1485         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1486                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1487
1488         /* load any remaining addresses into the hash table */
1489
1490         for(; mc_ptr; mc_ptr = mc_ptr->next) {
1491                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1492                 e1000_mta_set(hw, hash_value);
1493         }
1494
1495         if(hw->mac_type == e1000_82542_rev2_0)
1496                 e1000_leave_82542_rst(adapter);
1497
1498         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1499 }
1500
1501 /* Need to wait a few seconds after link up to get diagnostic information from
1502  * the phy */
1503
1504 static void
1505 e1000_update_phy_info(unsigned long data)
1506 {
1507         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1508         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1509 }
1510
1511 /**
1512  * e1000_82547_tx_fifo_stall - Timer Call-back
1513  * @data: pointer to adapter cast into an unsigned long
1514  **/
1515
1516 static void
1517 e1000_82547_tx_fifo_stall(unsigned long data)
1518 {
1519         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1520         struct net_device *netdev = adapter->netdev;
1521         uint32_t tctl;
1522
1523         if(atomic_read(&adapter->tx_fifo_stall)) {
1524                 if((E1000_READ_REG(&adapter->hw, TDT) ==
1525                     E1000_READ_REG(&adapter->hw, TDH)) &&
1526                    (E1000_READ_REG(&adapter->hw, TDFT) ==
1527                     E1000_READ_REG(&adapter->hw, TDFH)) &&
1528                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
1529                     E1000_READ_REG(&adapter->hw, TDFHS))) {
1530                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
1531                         E1000_WRITE_REG(&adapter->hw, TCTL,
1532                                         tctl & ~E1000_TCTL_EN);
1533                         E1000_WRITE_REG(&adapter->hw, TDFT,
1534                                         adapter->tx_head_addr);
1535                         E1000_WRITE_REG(&adapter->hw, TDFH,
1536                                         adapter->tx_head_addr);
1537                         E1000_WRITE_REG(&adapter->hw, TDFTS,
1538                                         adapter->tx_head_addr);
1539                         E1000_WRITE_REG(&adapter->hw, TDFHS,
1540                                         adapter->tx_head_addr);
1541                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1542                         E1000_WRITE_FLUSH(&adapter->hw);
1543
1544                         adapter->tx_fifo_head = 0;
1545                         atomic_set(&adapter->tx_fifo_stall, 0);
1546                         netif_wake_queue(netdev);
1547                 } else {
1548                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1549                 }
1550         }
1551 }
1552
1553 /**
1554  * e1000_watchdog - Timer Call-back
1555  * @data: pointer to adapter cast into an unsigned long
1556  **/
1557 static void
1558 e1000_watchdog(unsigned long data)
1559 {
1560         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1561
1562         /* Do the rest outside of interrupt context */
1563         schedule_work(&adapter->watchdog_task);
1564 }
1565
1566 static void
1567 e1000_watchdog_task(struct e1000_adapter *adapter)
1568 {
1569         struct net_device *netdev = adapter->netdev;
1570         struct e1000_desc_ring *txdr = &adapter->tx_ring;
1571         uint32_t link;
1572
1573         e1000_check_for_link(&adapter->hw);
1574
1575         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1576            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1577                 link = !adapter->hw.serdes_link_down;
1578         else
1579                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1580
1581         if(link) {
1582                 if(!netif_carrier_ok(netdev)) {
1583                         e1000_get_speed_and_duplex(&adapter->hw,
1584                                                    &adapter->link_speed,
1585                                                    &adapter->link_duplex);
1586
1587                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1588                                adapter->link_speed,
1589                                adapter->link_duplex == FULL_DUPLEX ?
1590                                "Full Duplex" : "Half Duplex");
1591
1592                         netif_carrier_on(netdev);
1593                         netif_wake_queue(netdev);
1594                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1595                         adapter->smartspeed = 0;
1596                 }
1597         } else {
1598                 if(netif_carrier_ok(netdev)) {
1599                         adapter->link_speed = 0;
1600                         adapter->link_duplex = 0;
1601                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
1602                         netif_carrier_off(netdev);
1603                         netif_stop_queue(netdev);
1604                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1605                 }
1606
1607                 e1000_smartspeed(adapter);
1608         }
1609
1610         e1000_update_stats(adapter);
1611
1612         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1613         adapter->tpt_old = adapter->stats.tpt;
1614         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1615         adapter->colc_old = adapter->stats.colc;
1616
1617         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1618         adapter->gorcl_old = adapter->stats.gorcl;
1619         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1620         adapter->gotcl_old = adapter->stats.gotcl;
1621
1622         e1000_update_adaptive(&adapter->hw);
1623
1624         if(!netif_carrier_ok(netdev)) {
1625                 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1626                         /* We've lost link, so the controller stops DMA,
1627                          * but we've got queued Tx work that's never going
1628                          * to get done, so reset controller to flush Tx.
1629                          * (Do the reset outside of interrupt context). */
1630                         schedule_work(&adapter->tx_timeout_task);
1631                 }
1632         }
1633
1634         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1635         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1636                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1637                  * asymmetrical Tx or Rx gets ITR=8000; everyone
1638                  * else is between 2000-8000. */
1639                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1640                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
1641                         adapter->gotcl - adapter->gorcl :
1642                         adapter->gorcl - adapter->gotcl) / 10000;
1643                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1644                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1645         }
1646
1647         /* Cause software interrupt to ensure rx ring is cleaned */
1648         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1649
1650         /* Force detection of hung controller every watchdog period*/
1651         adapter->detect_tx_hung = TRUE;
1652
1653         /* Reset the timer */
1654         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1655 }
1656
1657 #define E1000_TX_FLAGS_CSUM             0x00000001
1658 #define E1000_TX_FLAGS_VLAN             0x00000002
1659 #define E1000_TX_FLAGS_TSO              0x00000004
1660 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
1661 #define E1000_TX_FLAGS_VLAN_SHIFT       16
1662
1663 static inline int
1664 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1665 {
1666 #ifdef NETIF_F_TSO
1667         struct e1000_context_desc *context_desc;
1668         unsigned int i;
1669         uint32_t cmd_length = 0;
1670         uint16_t ipcse, tucse, mss;
1671         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1672         int err;
1673
1674         if(skb_shinfo(skb)->tso_size) {
1675                 if (skb_header_cloned(skb)) {
1676                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1677                         if (err)
1678                                 return err;
1679                 }
1680
1681                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1682                 mss = skb_shinfo(skb)->tso_size;
1683                 skb->nh.iph->tot_len = 0;
1684                 skb->nh.iph->check = 0;
1685                 skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
1686                                                       skb->nh.iph->daddr,
1687                                                       0,
1688                                                       IPPROTO_TCP,
1689                                                       0);
1690                 ipcss = skb->nh.raw - skb->data;
1691                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1692                 ipcse = skb->h.raw - skb->data - 1;
1693                 tucss = skb->h.raw - skb->data;
1694                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1695                 tucse = 0;
1696
1697                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1698                                E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
1699                                (skb->len - (hdr_len)));
1700
1701                 i = adapter->tx_ring.next_to_use;
1702                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1703
1704                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
1705                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
1706                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
1707                 context_desc->upper_setup.tcp_fields.tucss = tucss;
1708                 context_desc->upper_setup.tcp_fields.tucso = tucso;
1709                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1710                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
1711                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1712                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1713
1714                 if(++i == adapter->tx_ring.count) i = 0;
1715                 adapter->tx_ring.next_to_use = i;
1716
1717                 return 1;
1718         }
1719 #endif
1720
1721         return 0;
1722 }
1723
1724 static inline boolean_t
1725 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1726 {
1727         struct e1000_context_desc *context_desc;
1728         unsigned int i;
1729         uint8_t css;
1730
1731         if(likely(skb->ip_summed == CHECKSUM_HW)) {
1732                 css = skb->h.raw - skb->data;
1733
1734                 i = adapter->tx_ring.next_to_use;
1735                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1736
1737                 context_desc->upper_setup.tcp_fields.tucss = css;
1738                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1739                 context_desc->upper_setup.tcp_fields.tucse = 0;
1740                 context_desc->tcp_seg_setup.data = 0;
1741                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1742
1743                 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1744                 adapter->tx_ring.next_to_use = i;
1745
1746                 return TRUE;
1747         }
1748
1749         return FALSE;
1750 }
1751
1752 #define E1000_MAX_TXD_PWR       12
1753 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
1754
1755 static inline int
1756 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1757         unsigned int first, unsigned int max_per_txd,
1758         unsigned int nr_frags, unsigned int mss)
1759 {
1760         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1761         struct e1000_buffer *buffer_info;
1762         unsigned int len = skb->len;
1763         unsigned int offset = 0, size, count = 0, i;
1764         unsigned int f;
1765         len -= skb->data_len;
1766
1767         i = tx_ring->next_to_use;
1768
1769         while(len) {
1770                 buffer_info = &tx_ring->buffer_info[i];
1771                 size = min(len, max_per_txd);
1772 #ifdef NETIF_F_TSO
1773                 /* Workaround for premature desc write-backs
1774                  * in TSO mode.  Append 4-byte sentinel desc */
1775                 if(unlikely(mss && !nr_frags && size == len && size > 8))
1776                         size -= 4;
1777 #endif
1778                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
1779                  * terminating buffers within evenly-aligned dwords. */
1780                 if(unlikely(adapter->pcix_82544 &&
1781                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
1782                    size > 4))
1783                         size -= 4;
1784
1785                 buffer_info->length = size;
1786                 buffer_info->dma =
1787                         pci_map_single(adapter->pdev,
1788                                 skb->data + offset,
1789                                 size,
1790                                 PCI_DMA_TODEVICE);
1791                 buffer_info->time_stamp = jiffies;
1792
1793                 len -= size;
1794                 offset += size;
1795                 count++;
1796                 if(unlikely(++i == tx_ring->count)) i = 0;
1797         }
1798
1799         for(f = 0; f < nr_frags; f++) {
1800                 struct skb_frag_struct *frag;
1801
1802                 frag = &skb_shinfo(skb)->frags[f];
1803                 len = frag->size;
1804                 offset = frag->page_offset;
1805
1806                 while(len) {
1807                         buffer_info = &tx_ring->buffer_info[i];
1808                         size = min(len, max_per_txd);
1809 #ifdef NETIF_F_TSO
1810                         /* Workaround for premature desc write-backs
1811                          * in TSO mode.  Append 4-byte sentinel desc */
1812                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
1813                                 size -= 4;
1814 #endif
1815                         /* Workaround for potential 82544 hang in PCI-X.
1816                          * Avoid terminating buffers within evenly-aligned
1817                          * dwords. */
1818                         if(unlikely(adapter->pcix_82544 &&
1819                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
1820                            size > 4))
1821                                 size -= 4;
1822
1823                         buffer_info->length = size;
1824                         buffer_info->dma =
1825                                 pci_map_page(adapter->pdev,
1826                                         frag->page,
1827                                         offset,
1828                                         size,
1829                                         PCI_DMA_TODEVICE);
1830                         buffer_info->time_stamp = jiffies;
1831
1832                         len -= size;
1833                         offset += size;
1834                         count++;
1835                         if(unlikely(++i == tx_ring->count)) i = 0;
1836                 }
1837         }
1838
1839         i = (i == 0) ? tx_ring->count - 1 : i - 1;
1840         tx_ring->buffer_info[i].skb = skb;
1841         tx_ring->buffer_info[first].next_to_watch = i;
1842
1843         return count;
1844 }
1845
1846 static inline void
1847 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
1848 {
1849         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1850         struct e1000_tx_desc *tx_desc = NULL;
1851         struct e1000_buffer *buffer_info;
1852         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1853         unsigned int i;
1854
1855         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1856                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
1857                              E1000_TXD_CMD_TSE;
1858                 txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
1859         }
1860
1861         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1862                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
1863                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
1864         }
1865
1866         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1867                 txd_lower |= E1000_TXD_CMD_VLE;
1868                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
1869         }
1870
1871         i = tx_ring->next_to_use;
1872
1873         while(count--) {
1874                 buffer_info = &tx_ring->buffer_info[i];
1875                 tx_desc = E1000_TX_DESC(*tx_ring, i);
1876                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1877                 tx_desc->lower.data =
1878                         cpu_to_le32(txd_lower | buffer_info->length);
1879                 tx_desc->upper.data = cpu_to_le32(txd_upper);
1880                 if(unlikely(++i == tx_ring->count)) i = 0;
1881         }
1882
1883         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
1884
1885         /* Force memory writes to complete before letting h/w
1886          * know there are new descriptors to fetch.  (Only
1887          * applicable for weak-ordered memory model archs,
1888          * such as IA-64). */
1889         wmb();
1890
1891         tx_ring->next_to_use = i;
1892         E1000_WRITE_REG(&adapter->hw, TDT, i);
1893 }
1894
1895 /**
1896  * 82547 workaround to avoid controller hang in half-duplex environment.
1897  * The workaround is to avoid queuing a large packet that would span
1898  * the internal Tx FIFO ring boundary by notifying the stack to resend
1899  * the packet at a later time.  This gives the Tx FIFO an opportunity to
1900  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
1901  * to the beginning of the Tx FIFO.
1902  **/
1903
1904 #define E1000_FIFO_HDR                  0x10
1905 #define E1000_82547_PAD_LEN             0x3E0
1906
1907 static inline int
1908 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
1909 {
1910         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1911         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
1912
1913         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
1914
1915         if(adapter->link_duplex != HALF_DUPLEX)
1916                 goto no_fifo_stall_required;
1917
1918         if(atomic_read(&adapter->tx_fifo_stall))
1919                 return 1;
1920
1921         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1922                 atomic_set(&adapter->tx_fifo_stall, 1);
1923                 return 1;
1924         }
1925
1926 no_fifo_stall_required:
1927         adapter->tx_fifo_head += skb_fifo_len;
1928         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
1929                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1930         return 0;
1931 }
1932
1933 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
1934 static int
1935 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1936 {
1937         struct e1000_adapter *adapter = netdev->priv;
1938         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
1939         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
1940         unsigned int tx_flags = 0;
1941         unsigned int len = skb->len;
1942         unsigned long flags;
1943         unsigned int nr_frags = 0;
1944         unsigned int mss = 0;
1945         int count = 0;
1946         int tso;
1947         unsigned int f;
1948         len -= skb->data_len;
1949
1950         if(unlikely(skb->len <= 0)) {
1951                 dev_kfree_skb_any(skb);
1952                 return NETDEV_TX_OK;
1953         }
1954
1955 #ifdef NETIF_F_TSO
1956         mss = skb_shinfo(skb)->tso_size;
1957         /* The controller does a simple calculation to
1958          * make sure there is enough room in the FIFO before
1959          * initiating the DMA for each buffer.  The calc is:
1960          * 4 = ceil(buffer len/mss).  To make sure we don't
1961          * overrun the FIFO, adjust the max buffer len if mss
1962          * drops. */
1963         if(mss) {
1964                 max_per_txd = min(mss << 2, max_per_txd);
1965                 max_txd_pwr = fls(max_per_txd) - 1;
1966         }
1967
1968         if((mss) || (skb->ip_summed == CHECKSUM_HW))
1969                 count++;
1970         count++;        /* for sentinel desc */
1971 #else
1972         if(skb->ip_summed == CHECKSUM_HW)
1973                 count++;
1974 #endif
1975         count += TXD_USE_COUNT(len, max_txd_pwr);
1976
1977         if(adapter->pcix_82544)
1978                 count++;
1979
1980         nr_frags = skb_shinfo(skb)->nr_frags;
1981         for(f = 0; f < nr_frags; f++)
1982                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
1983                                        max_txd_pwr);
1984         if(adapter->pcix_82544)
1985                 count += nr_frags;
1986
1987         local_irq_save(flags); 
1988         if (!spin_trylock(&adapter->tx_lock)) { 
1989                 /* Collision - tell upper layer to requeue */ 
1990                 local_irq_restore(flags); 
1991                 return NETDEV_TX_LOCKED; 
1992         } 
1993
1994         /* need: count + 2 desc gap to keep tail from touching
1995          * head, otherwise try next time */
1996         if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
1997                 netif_stop_queue(netdev);
1998                 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1999                 return NETDEV_TX_BUSY;
2000         }
2001
2002         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2003                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2004                         netif_stop_queue(netdev);
2005                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2006                         spin_unlock_irqrestore(&adapter->tx_lock, flags);
2007                         return NETDEV_TX_BUSY;
2008                 }
2009         }
2010
2011         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2012                 tx_flags |= E1000_TX_FLAGS_VLAN;
2013                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2014         }
2015
2016         first = adapter->tx_ring.next_to_use;
2017         
2018         tso = e1000_tso(adapter, skb);
2019         if (tso < 0) {
2020                 dev_kfree_skb_any(skb);
2021                 return NETDEV_TX_OK;
2022         }
2023
2024         if (likely(tso))
2025                 tx_flags |= E1000_TX_FLAGS_TSO;
2026         else if(likely(e1000_tx_csum(adapter, skb)))
2027                 tx_flags |= E1000_TX_FLAGS_CSUM;
2028
2029         e1000_tx_queue(adapter,
2030                 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2031                 tx_flags);
2032
2033         netdev->trans_start = jiffies;
2034
2035         /* Make sure there is space in the ring for the next send. */
2036         if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2037                 netif_stop_queue(netdev);
2038
2039         spin_unlock_irqrestore(&adapter->tx_lock, flags);
2040         return NETDEV_TX_OK;
2041 }
2042
2043 /**
2044  * e1000_tx_timeout - Respond to a Tx Hang
2045  * @netdev: network interface device structure
2046  **/
2047
2048 static void
2049 e1000_tx_timeout(struct net_device *netdev)
2050 {
2051         struct e1000_adapter *adapter = netdev->priv;
2052
2053         /* Do the reset outside of interrupt context */
2054         schedule_work(&adapter->tx_timeout_task);
2055 }
2056
2057 static void
2058 e1000_tx_timeout_task(struct net_device *netdev)
2059 {
2060         struct e1000_adapter *adapter = netdev->priv;
2061
2062         e1000_down(adapter);
2063         e1000_up(adapter);
2064 }
2065
2066 /**
2067  * e1000_get_stats - Get System Network Statistics
2068  * @netdev: network interface device structure
2069  *
2070  * Returns the address of the device statistics structure.
2071  * The statistics are actually updated from the timer callback.
2072  **/
2073
2074 static struct net_device_stats *
2075 e1000_get_stats(struct net_device *netdev)
2076 {
2077         struct e1000_adapter *adapter = netdev->priv;
2078
2079         e1000_update_stats(adapter);
2080         return &adapter->net_stats;
2081 }
2082
2083 /**
2084  * e1000_change_mtu - Change the Maximum Transfer Unit
2085  * @netdev: network interface device structure
2086  * @new_mtu: new value for maximum frame size
2087  *
2088  * Returns 0 on success, negative on failure
2089  **/
2090
2091 static int
2092 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2093 {
2094         struct e1000_adapter *adapter = netdev->priv;
2095         int old_mtu = adapter->rx_buffer_len;
2096         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2097
2098         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2099                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2100                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2101                         return -EINVAL;
2102         }
2103
2104         if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
2105                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2106
2107         } else if(adapter->hw.mac_type < e1000_82543) {
2108                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
2109                 return -EINVAL;
2110
2111         } else if(max_frame <= E1000_RXBUFFER_4096) {
2112                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2113
2114         } else if(max_frame <= E1000_RXBUFFER_8192) {
2115                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2116
2117         } else {
2118                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2119         }
2120
2121         if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
2122                 e1000_down(adapter);
2123                 e1000_up(adapter);
2124         }
2125
2126         netdev->mtu = new_mtu;
2127         adapter->hw.max_frame_size = max_frame;
2128
2129         return 0;
2130 }
2131
2132 /**
2133  * e1000_update_stats - Update the board statistics counters
2134  * @adapter: board private structure
2135  **/
2136
2137 void
2138 e1000_update_stats(struct e1000_adapter *adapter)
2139 {
2140         struct e1000_hw *hw = &adapter->hw;
2141         unsigned long flags;
2142         uint16_t phy_tmp;
2143
2144 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2145
2146         spin_lock_irqsave(&adapter->stats_lock, flags);
2147
2148         /* these counters are modified from e1000_adjust_tbi_stats,
2149          * called from the interrupt context, so they must only
2150          * be written while holding adapter->stats_lock
2151          */
2152
2153         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2154         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2155         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2156         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2157         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2158         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2159         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2160         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2161         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2162         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2163         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2164         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2165         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2166
2167         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2168         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2169         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2170         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2171         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2172         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2173         adapter->stats.dc += E1000_READ_REG(hw, DC);
2174         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2175         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2176         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2177         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2178         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2179         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2180         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2181         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2182         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2183         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2184         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2185         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2186         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2187         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2188         adapter->stats.torl += E1000_READ_REG(hw, TORL);
2189         adapter->stats.torh += E1000_READ_REG(hw, TORH);
2190         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2191         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2192         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2193         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2194         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2195         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2196         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2197         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2198         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2199         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2200         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2201
2202         /* used for adaptive IFS */
2203
2204         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2205         adapter->stats.tpt += hw->tx_packet_delta;
2206         hw->collision_delta = E1000_READ_REG(hw, COLC);
2207         adapter->stats.colc += hw->collision_delta;
2208
2209         if(hw->mac_type >= e1000_82543) {
2210                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2211                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2212                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2213                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2214                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2215                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2216         }
2217
2218         /* Fill out the OS statistics structure */
2219
2220         adapter->net_stats.rx_packets = adapter->stats.gprc;
2221         adapter->net_stats.tx_packets = adapter->stats.gptc;
2222         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2223         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2224         adapter->net_stats.multicast = adapter->stats.mprc;
2225         adapter->net_stats.collisions = adapter->stats.colc;
2226
2227         /* Rx Errors */
2228
2229         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2230                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2231                 adapter->stats.rlec + adapter->stats.rnbc +
2232                 adapter->stats.mpc + adapter->stats.cexterr;
2233         adapter->net_stats.rx_dropped = adapter->stats.rnbc;
2234         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2235         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2236         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2237         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2238         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2239
2240         /* Tx Errors */
2241
2242         adapter->net_stats.tx_errors = adapter->stats.ecol +
2243                                        adapter->stats.latecol;
2244         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2245         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2246         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2247
2248         /* Tx Dropped needs to be maintained elsewhere */
2249
2250         /* Phy Stats */
2251
2252         if(hw->media_type == e1000_media_type_copper) {
2253                 if((adapter->link_speed == SPEED_1000) &&
2254                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2255                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2256                         adapter->phy_stats.idle_errors += phy_tmp;
2257                 }
2258
2259                 if((hw->mac_type <= e1000_82546) &&
2260                    (hw->phy_type == e1000_phy_m88) &&
2261                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2262                         adapter->phy_stats.receive_errors += phy_tmp;
2263         }
2264
2265         spin_unlock_irqrestore(&adapter->stats_lock, flags);
2266 }
2267
2268 /**
2269  * e1000_intr - Interrupt Handler
2270  * @irq: interrupt number
2271  * @data: pointer to a network interface device structure
2272  * @pt_regs: CPU registers structure
2273  **/
2274
2275 static irqreturn_t
2276 e1000_intr(int irq, void *data, struct pt_regs *regs)
2277 {
2278         struct net_device *netdev = data;
2279         struct e1000_adapter *adapter = netdev->priv;
2280         struct e1000_hw *hw = &adapter->hw;
2281         uint32_t icr = E1000_READ_REG(hw, ICR);
2282 #ifndef CONFIG_E1000_NAPI
2283         unsigned int i;
2284 #endif
2285
2286         if(unlikely(!icr))
2287                 return IRQ_NONE;  /* Not our interrupt */
2288
2289         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2290                 hw->get_link_status = 1;
2291                 mod_timer(&adapter->watchdog_timer, jiffies);
2292         }
2293
2294 #ifdef CONFIG_E1000_NAPI
2295         if(likely(netif_rx_schedule_prep(netdev))) {
2296
2297                 /* Disable interrupts and register for poll. The flush 
2298                   of the posted write is intentionally left out.
2299                 */
2300
2301                 atomic_inc(&adapter->irq_sem);
2302                 E1000_WRITE_REG(hw, IMC, ~0);
2303                 __netif_rx_schedule(netdev);
2304         }
2305 #else
2306         /* Writing IMC and IMS is needed for 82547.
2307            Due to Hub Link bus being occupied, an interrupt
2308            de-assertion message is not able to be sent.
2309            When an interrupt assertion message is generated later,
2310            two messages are re-ordered and sent out.
2311            That causes APIC to think 82547 is in de-assertion
2312            state, while 82547 is in assertion state, resulting
2313            in dead lock. Writing IMC forces 82547 into
2314            de-assertion state.
2315         */
2316         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2317                 atomic_inc(&adapter->irq_sem);
2318                 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2319         }
2320
2321         for(i = 0; i < E1000_MAX_INTR; i++)
2322                 if(unlikely(!e1000_clean_rx_irq(adapter) &
2323                    !e1000_clean_tx_irq(adapter)))
2324                         break;
2325
2326         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2327                 e1000_irq_enable(adapter);
2328 #endif
2329
2330         return IRQ_HANDLED;
2331 }
2332
2333 #ifdef CONFIG_E1000_NAPI
2334 /**
2335  * e1000_clean - NAPI Rx polling callback
2336  * @adapter: board private structure
2337  **/
2338
2339 static int
2340 e1000_clean(struct net_device *netdev, int *budget)
2341 {
2342         struct e1000_adapter *adapter = netdev->priv;
2343         int work_to_do = min(*budget, netdev->quota);
2344         int tx_cleaned;
2345         int work_done = 0;
2346         
2347         tx_cleaned = e1000_clean_tx_irq(adapter);
2348         e1000_clean_rx_irq(adapter, &work_done, work_to_do);
2349
2350         *budget -= work_done;
2351         netdev->quota -= work_done;
2352         
2353         /* if no Tx and not enough Rx work done, exit the polling mode */
2354         if((!tx_cleaned && (work_done < work_to_do)) || 
2355                                 !netif_running(netdev)) {
2356                 netif_rx_complete(netdev);
2357                 e1000_irq_enable(adapter);
2358                 return 0;
2359         }
2360
2361         return 1;
2362 }
2363
2364 #endif
2365 /**
2366  * e1000_clean_tx_irq - Reclaim resources after transmit completes
2367  * @adapter: board private structure
2368  **/
2369
2370 static boolean_t
2371 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2372 {
2373         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2374         struct net_device *netdev = adapter->netdev;
2375         struct e1000_tx_desc *tx_desc, *eop_desc;
2376         struct e1000_buffer *buffer_info;
2377         unsigned int i, eop;
2378         boolean_t cleaned = FALSE;
2379
2380         i = tx_ring->next_to_clean;
2381         eop = tx_ring->buffer_info[i].next_to_watch;
2382         eop_desc = E1000_TX_DESC(*tx_ring, eop);
2383
2384         while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2385                 /* pre-mature writeback of Tx descriptors     */
2386                 /* clear (free buffers and unmap pci_mapping) */
2387                 /* previous_buffer_info                       */
2388                 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2389                         e1000_unmap_and_free_tx_resource(adapter, 
2390                                         &adapter->previous_buffer_info);
2391                 }
2392
2393                 for(cleaned = FALSE; !cleaned; ) {
2394                         tx_desc = E1000_TX_DESC(*tx_ring, i);
2395                         buffer_info = &tx_ring->buffer_info[i];
2396                         cleaned = (i == eop);
2397
2398                         /* pre-mature writeback of Tx descriptors */
2399                         /* save the cleaning of the this for the  */
2400                         /* next iteration                         */
2401                         if (cleaned) {
2402                                 memcpy(&adapter->previous_buffer_info,
2403                                         buffer_info,
2404                                         sizeof(struct e1000_buffer));
2405                                 memset(buffer_info,
2406                                         0,
2407                                         sizeof(struct e1000_buffer));
2408                         } else {
2409                                 e1000_unmap_and_free_tx_resource(adapter, 
2410                                                         buffer_info);
2411                         }
2412
2413                         tx_desc->buffer_addr = 0;
2414                         tx_desc->lower.data = 0;
2415                         tx_desc->upper.data = 0;
2416
2417                         cleaned = (i == eop);
2418                         if(unlikely(++i == tx_ring->count)) i = 0;
2419                 }
2420                 
2421                 eop = tx_ring->buffer_info[i].next_to_watch;
2422                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2423         }
2424
2425         tx_ring->next_to_clean = i;
2426
2427         spin_lock(&adapter->tx_lock);
2428
2429         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2430                     netif_carrier_ok(netdev)))
2431                 netif_wake_queue(netdev);
2432
2433         spin_unlock(&adapter->tx_lock);
2434  
2435         if(adapter->detect_tx_hung) {
2436                 /* detect a transmit hang in hardware, this serializes the
2437                  * check with the clearing of time_stamp and movement of i */
2438                 adapter->detect_tx_hung = FALSE;
2439                 if(tx_ring->buffer_info[i].dma &&
2440                    time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
2441                    !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
2442                         netif_stop_queue(netdev);
2443         }
2444
2445         return cleaned;
2446 }
2447
2448 /**
2449  * e1000_rx_checksum - Receive Checksum Offload for 82543
2450  * @adapter: board private structure
2451  * @rx_desc: receive descriptor
2452  * @sk_buff: socket buffer with received data
2453  **/
2454
2455 static inline void
2456 e1000_rx_checksum(struct e1000_adapter *adapter,
2457                   struct e1000_rx_desc *rx_desc,
2458                   struct sk_buff *skb)
2459 {
2460         /* 82543 or newer only */
2461         if(unlikely((adapter->hw.mac_type < e1000_82543) ||
2462         /* Ignore Checksum bit is set */
2463         (rx_desc->status & E1000_RXD_STAT_IXSM) ||
2464         /* TCP Checksum has not been calculated */
2465         (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
2466                 skb->ip_summed = CHECKSUM_NONE;
2467                 return;
2468         }
2469
2470         /* At this point we know the hardware did the TCP checksum */
2471         /* now look at the TCP checksum error bit */
2472         if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
2473                 /* let the stack verify checksum errors */
2474                 skb->ip_summed = CHECKSUM_NONE;
2475                 adapter->hw_csum_err++;
2476         } else {
2477                 /* TCP checksum is good */
2478                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2479                 adapter->hw_csum_good++;
2480         }
2481 }
2482
2483 /**
2484  * e1000_clean_rx_irq - Send received data up the network stack
2485  * @adapter: board private structure
2486  **/
2487
2488 static boolean_t
2489 #ifdef CONFIG_E1000_NAPI
2490 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2491                    int work_to_do)
2492 #else
2493 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2494 #endif
2495 {
2496         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2497         struct net_device *netdev = adapter->netdev;
2498         struct pci_dev *pdev = adapter->pdev;
2499         struct e1000_rx_desc *rx_desc;
2500         struct e1000_buffer *buffer_info;
2501         struct sk_buff *skb;
2502         unsigned long flags;
2503         uint32_t length;
2504         uint8_t last_byte;
2505         unsigned int i;
2506         boolean_t cleaned = FALSE;
2507
2508         i = rx_ring->next_to_clean;
2509         rx_desc = E1000_RX_DESC(*rx_ring, i);
2510
2511         while(rx_desc->status & E1000_RXD_STAT_DD) {
2512                 buffer_info = &rx_ring->buffer_info[i];
2513 #ifdef CONFIG_E1000_NAPI
2514                 if(*work_done >= work_to_do)
2515                         break;
2516                 (*work_done)++;
2517 #endif
2518                 cleaned = TRUE;
2519
2520                 pci_unmap_single(pdev,
2521                                  buffer_info->dma,
2522                                  buffer_info->length,
2523                                  PCI_DMA_FROMDEVICE);
2524
2525                 skb = buffer_info->skb;
2526                 length = le16_to_cpu(rx_desc->length);
2527
2528                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2529                         /* All receives must fit into a single buffer */
2530                         E1000_DBG("%s: Receive packet consumed multiple"
2531                                         " buffers\n", netdev->name);
2532                         dev_kfree_skb_irq(skb);
2533                         goto next_desc;
2534                 }
2535
2536                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2537                         last_byte = *(skb->data + length - 1);
2538                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2539                                       rx_desc->errors, length, last_byte)) {
2540                                 spin_lock_irqsave(&adapter->stats_lock, flags);
2541                                 e1000_tbi_adjust_stats(&adapter->hw,
2542                                                        &adapter->stats,
2543                                                        length, skb->data);
2544                                 spin_unlock_irqrestore(&adapter->stats_lock,
2545                                                        flags);
2546                                 length--;
2547                         } else {
2548                                 dev_kfree_skb_irq(skb);
2549                                 goto next_desc;
2550                         }
2551                 }
2552
2553                 /* Good Receive */
2554                 skb_put(skb, length - ETHERNET_FCS_SIZE);
2555
2556                 /* Receive Checksum Offload */
2557                 e1000_rx_checksum(adapter, rx_desc, skb);
2558
2559                 skb->protocol = eth_type_trans(skb, netdev);
2560 #ifdef CONFIG_E1000_NAPI
2561                 if(unlikely(adapter->vlgrp &&
2562                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2563                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2564                                         le16_to_cpu(rx_desc->special) &
2565                                         E1000_RXD_SPC_VLAN_MASK);
2566                 } else {
2567                         netif_receive_skb(skb);
2568                 }
2569 #else /* CONFIG_E1000_NAPI */
2570                 if(unlikely(adapter->vlgrp &&
2571                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2572                         vlan_hwaccel_rx(skb, adapter->vlgrp,
2573                                         le16_to_cpu(rx_desc->special) &
2574                                         E1000_RXD_SPC_VLAN_MASK);
2575                 } else {
2576                         netif_rx(skb);
2577                 }
2578 #endif /* CONFIG_E1000_NAPI */
2579                 netdev->last_rx = jiffies;
2580
2581 next_desc:
2582                 rx_desc->status = 0;
2583                 buffer_info->skb = NULL;
2584                 if(unlikely(++i == rx_ring->count)) i = 0;
2585
2586                 rx_desc = E1000_RX_DESC(*rx_ring, i);
2587         }
2588
2589         rx_ring->next_to_clean = i;
2590
2591         e1000_alloc_rx_buffers(adapter);
2592
2593         return cleaned;
2594 }
2595
2596 /**
2597  * e1000_alloc_rx_buffers - Replace used receive buffers
2598  * @adapter: address of board private structure
2599  **/
2600
2601 static void
2602 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
2603 {
2604         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2605         struct net_device *netdev = adapter->netdev;
2606         struct pci_dev *pdev = adapter->pdev;
2607         struct e1000_rx_desc *rx_desc;
2608         struct e1000_buffer *buffer_info;
2609         struct sk_buff *skb;
2610         unsigned int i, bufsz;
2611
2612         i = rx_ring->next_to_use;
2613         buffer_info = &rx_ring->buffer_info[i];
2614
2615         while(!buffer_info->skb) {
2616                 bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
2617
2618                 skb = dev_alloc_skb(bufsz);
2619                 if(unlikely(!skb)) {
2620                         /* Better luck next round */
2621                         break;
2622                 }
2623
2624                 /* fix for errata 23, cant cross 64kB boundary */
2625                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2626                         struct sk_buff *oldskb = skb;
2627                         DPRINTK(RX_ERR,ERR,
2628                                 "skb align check failed: %u bytes at %p\n",
2629                                 bufsz, skb->data);
2630                         /* try again, without freeing the previous */
2631                         skb = dev_alloc_skb(bufsz);
2632                         if (!skb) {
2633                                 dev_kfree_skb(oldskb);
2634                                 break;
2635                         }
2636                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2637                                 /* give up */
2638                                 dev_kfree_skb(skb);
2639                                 dev_kfree_skb(oldskb);
2640                                 break; /* while !buffer_info->skb */
2641                         } else {
2642                                 /* move on with the new one */
2643                                 dev_kfree_skb(oldskb);
2644                         }
2645                 }
2646
2647                 /* Make buffer alignment 2 beyond a 16 byte boundary
2648                  * this will result in a 16 byte aligned IP header after
2649                  * the 14 byte MAC header is removed
2650                  */
2651                 skb_reserve(skb, NET_IP_ALIGN);
2652
2653                 skb->dev = netdev;
2654
2655                 buffer_info->skb = skb;
2656                 buffer_info->length = adapter->rx_buffer_len;
2657                 buffer_info->dma = pci_map_single(pdev,
2658                                                   skb->data,
2659                                                   adapter->rx_buffer_len,
2660                                                   PCI_DMA_FROMDEVICE);
2661
2662                 /* fix for errata 23, cant cross 64kB boundary */
2663                 if(!e1000_check_64k_bound(adapter,
2664                                                (void *)(unsigned long)buffer_info->dma,
2665                                                adapter->rx_buffer_len)) {
2666                         DPRINTK(RX_ERR,ERR,
2667                                 "dma align check failed: %u bytes at %ld\n",
2668                                 adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
2669
2670                         dev_kfree_skb(skb);
2671                         buffer_info->skb = NULL;
2672
2673                         pci_unmap_single(pdev,
2674                                          buffer_info->dma,
2675                                          adapter->rx_buffer_len,
2676                                          PCI_DMA_FROMDEVICE);
2677
2678                         break; /* while !buffer_info->skb */
2679                 }
2680
2681                 rx_desc = E1000_RX_DESC(*rx_ring, i);
2682                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2683
2684                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
2685                         /* Force memory writes to complete before letting h/w
2686                          * know there are new descriptors to fetch.  (Only
2687                          * applicable for weak-ordered memory model archs,
2688                          * such as IA-64). */
2689                         wmb();
2690
2691                         E1000_WRITE_REG(&adapter->hw, RDT, i);
2692                 }
2693
2694                 if(unlikely(++i == rx_ring->count)) i = 0;
2695                 buffer_info = &rx_ring->buffer_info[i];
2696         }
2697
2698         rx_ring->next_to_use = i;
2699 }
2700
2701 /**
2702  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
2703  * @adapter:
2704  **/
2705
2706 static void
2707 e1000_smartspeed(struct e1000_adapter *adapter)
2708 {
2709         uint16_t phy_status;
2710         uint16_t phy_ctrl;
2711
2712         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
2713            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2714                 return;
2715
2716         if(adapter->smartspeed == 0) {
2717                 /* If Master/Slave config fault is asserted twice,
2718                  * we assume back-to-back */
2719                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2720                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2721                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2722                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2723                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2724                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
2725                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
2726                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
2727                                             phy_ctrl);
2728                         adapter->smartspeed++;
2729                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2730                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
2731                                                &phy_ctrl)) {
2732                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2733                                              MII_CR_RESTART_AUTO_NEG);
2734                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
2735                                                     phy_ctrl);
2736                         }
2737                 }
2738                 return;
2739         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
2740                 /* If still no link, perhaps using 2/3 pair cable */
2741                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2742                 phy_ctrl |= CR_1000T_MS_ENABLE;
2743                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
2744                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2745                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
2746                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2747                                      MII_CR_RESTART_AUTO_NEG);
2748                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
2749                 }
2750         }
2751         /* Restart process after E1000_SMARTSPEED_MAX iterations */
2752         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
2753                 adapter->smartspeed = 0;
2754 }
2755
2756 /**
2757  * e1000_ioctl -
2758  * @netdev:
2759  * @ifreq:
2760  * @cmd:
2761  **/
2762
2763 static int
2764 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2765 {
2766         switch (cmd) {
2767         case SIOCGMIIPHY:
2768         case SIOCGMIIREG:
2769         case SIOCSMIIREG:
2770                 return e1000_mii_ioctl(netdev, ifr, cmd);
2771         default:
2772                 return -EOPNOTSUPP;
2773         }
2774 }
2775
2776 /**
2777  * e1000_mii_ioctl -
2778  * @netdev:
2779  * @ifreq:
2780  * @cmd:
2781  **/
2782
2783 static int
2784 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2785 {
2786         struct e1000_adapter *adapter = netdev->priv;
2787         struct mii_ioctl_data *data = if_mii(ifr);
2788         int retval;
2789         uint16_t mii_reg;
2790         uint16_t spddplx;
2791
2792         if(adapter->hw.media_type != e1000_media_type_copper)
2793                 return -EOPNOTSUPP;
2794
2795         switch (cmd) {
2796         case SIOCGMIIPHY:
2797                 data->phy_id = adapter->hw.phy_addr;
2798                 break;
2799         case SIOCGMIIREG:
2800                 if (!capable(CAP_NET_ADMIN))
2801                         return -EPERM;
2802                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
2803                                    &data->val_out))
2804                         return -EIO;
2805                 break;
2806         case SIOCSMIIREG:
2807                 if (!capable(CAP_NET_ADMIN))
2808                         return -EPERM;
2809                 if (data->reg_num & ~(0x1F))
2810                         return -EFAULT;
2811                 mii_reg = data->val_in;
2812                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
2813                                         mii_reg))
2814                         return -EIO;
2815                 if (adapter->hw.phy_type == e1000_phy_m88) {
2816                         switch (data->reg_num) {
2817                         case PHY_CTRL:
2818                                 if(mii_reg & MII_CR_POWER_DOWN)
2819                                         break;
2820                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
2821                                         adapter->hw.autoneg = 1;
2822                                         adapter->hw.autoneg_advertised = 0x2F;
2823                                 } else {
2824                                         if (mii_reg & 0x40)
2825                                                 spddplx = SPEED_1000;
2826                                         else if (mii_reg & 0x2000)
2827                                                 spddplx = SPEED_100;
2828                                         else
2829                                                 spddplx = SPEED_10;
2830                                         spddplx += (mii_reg & 0x100)
2831                                                    ? FULL_DUPLEX :
2832                                                    HALF_DUPLEX;
2833                                         retval = e1000_set_spd_dplx(adapter,
2834                                                                     spddplx);
2835                                         if(retval)
2836                                                 return retval;
2837                                 }
2838                                 if(netif_running(adapter->netdev)) {
2839                                         e1000_down(adapter);
2840                                         e1000_up(adapter);
2841                                 } else
2842                                         e1000_reset(adapter);
2843                                 break;
2844                         case M88E1000_PHY_SPEC_CTRL:
2845                         case M88E1000_EXT_PHY_SPEC_CTRL:
2846                                 if (e1000_phy_reset(&adapter->hw))
2847                                         return -EIO;
2848                                 break;
2849                         }
2850                 } else {
2851                         switch (data->reg_num) {
2852                         case PHY_CTRL:
2853                                 if(mii_reg & MII_CR_POWER_DOWN)
2854                                         break;
2855                                 if(netif_running(adapter->netdev)) {
2856                                         e1000_down(adapter);
2857                                         e1000_up(adapter);
2858                                 } else
2859                                         e1000_reset(adapter);
2860                                 break;
2861                         }
2862                 }
2863                 break;
2864         default:
2865                 return -EOPNOTSUPP;
2866         }
2867         return E1000_SUCCESS;
2868 }
2869
2870 void
2871 e1000_pci_set_mwi(struct e1000_hw *hw)
2872 {
2873         struct e1000_adapter *adapter = hw->back;
2874
2875         int ret;
2876         ret = pci_set_mwi(adapter->pdev);
2877 }
2878
2879 void
2880 e1000_pci_clear_mwi(struct e1000_hw *hw)
2881 {
2882         struct e1000_adapter *adapter = hw->back;
2883
2884         pci_clear_mwi(adapter->pdev);
2885 }
2886
2887 void
2888 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2889 {
2890         struct e1000_adapter *adapter = hw->back;
2891
2892         pci_read_config_word(adapter->pdev, reg, value);
2893 }
2894
2895 void
2896 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2897 {
2898         struct e1000_adapter *adapter = hw->back;
2899
2900         pci_write_config_word(adapter->pdev, reg, *value);
2901 }
2902
2903 uint32_t
2904 e1000_io_read(struct e1000_hw *hw, unsigned long port)
2905 {
2906         return inl(port);
2907 }
2908
2909 void
2910 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
2911 {
2912         outl(value, port);
2913 }
2914
2915 static void
2916 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
2917 {
2918         struct e1000_adapter *adapter = netdev->priv;
2919         uint32_t ctrl, rctl;
2920
2921         e1000_irq_disable(adapter);
2922         adapter->vlgrp = grp;
2923
2924         if(grp) {
2925                 /* enable VLAN tag insert/strip */
2926                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2927                 ctrl |= E1000_CTRL_VME;
2928                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2929
2930                 /* enable VLAN receive filtering */
2931                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2932                 rctl |= E1000_RCTL_VFE;
2933                 rctl &= ~E1000_RCTL_CFIEN;
2934                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2935         } else {
2936                 /* disable VLAN tag insert/strip */
2937                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2938                 ctrl &= ~E1000_CTRL_VME;
2939                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2940
2941                 /* disable VLAN filtering */
2942                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2943                 rctl &= ~E1000_RCTL_VFE;
2944                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2945         }
2946
2947         e1000_irq_enable(adapter);
2948 }
2949
2950 static void
2951 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
2952 {
2953         struct e1000_adapter *adapter = netdev->priv;
2954         uint32_t vfta, index;
2955
2956         /* add VID to filter table */
2957         index = (vid >> 5) & 0x7F;
2958         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2959         vfta |= (1 << (vid & 0x1F));
2960         e1000_write_vfta(&adapter->hw, index, vfta);
2961 }
2962
2963 static void
2964 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
2965 {
2966         struct e1000_adapter *adapter = netdev->priv;
2967         uint32_t vfta, index;
2968
2969         e1000_irq_disable(adapter);
2970
2971         if(adapter->vlgrp)
2972                 adapter->vlgrp->vlan_devices[vid] = NULL;
2973
2974         e1000_irq_enable(adapter);
2975
2976         /* remove VID from filter table */
2977         index = (vid >> 5) & 0x7F;
2978         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2979         vfta &= ~(1 << (vid & 0x1F));
2980         e1000_write_vfta(&adapter->hw, index, vfta);
2981 }
2982
2983 static void
2984 e1000_restore_vlan(struct e1000_adapter *adapter)
2985 {
2986         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2987
2988         if(adapter->vlgrp) {
2989                 uint16_t vid;
2990                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2991                         if(!adapter->vlgrp->vlan_devices[vid])
2992                                 continue;
2993                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
2994                 }
2995         }
2996 }
2997
2998 int
2999 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3000 {
3001         adapter->hw.autoneg = 0;
3002
3003         switch(spddplx) {
3004         case SPEED_10 + DUPLEX_HALF:
3005                 adapter->hw.forced_speed_duplex = e1000_10_half;
3006                 break;
3007         case SPEED_10 + DUPLEX_FULL:
3008                 adapter->hw.forced_speed_duplex = e1000_10_full;
3009                 break;
3010         case SPEED_100 + DUPLEX_HALF:
3011                 adapter->hw.forced_speed_duplex = e1000_100_half;
3012                 break;
3013         case SPEED_100 + DUPLEX_FULL:
3014                 adapter->hw.forced_speed_duplex = e1000_100_full;
3015                 break;
3016         case SPEED_1000 + DUPLEX_FULL:
3017                 adapter->hw.autoneg = 1;
3018                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3019                 break;
3020         case SPEED_1000 + DUPLEX_HALF: /* not supported */
3021         default:
3022                 DPRINTK(PROBE, ERR, 
3023                         "Unsupported Speed/Duplexity configuration\n");
3024                 return -EINVAL;
3025         }
3026         return 0;
3027 }
3028
3029 static int
3030 e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
3031 {
3032         struct pci_dev *pdev = NULL;
3033
3034         switch(event) {
3035         case SYS_DOWN:
3036         case SYS_HALT:
3037         case SYS_POWER_OFF:
3038                 while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
3039                         if(pci_dev_driver(pdev) == &e1000_driver)
3040                                 e1000_suspend(pdev, 3);
3041                 }
3042         }
3043         return NOTIFY_DONE;
3044 }
3045
3046 static int
3047 e1000_suspend(struct pci_dev *pdev, uint32_t state)
3048 {
3049         struct net_device *netdev = pci_get_drvdata(pdev);
3050         struct e1000_adapter *adapter = netdev->priv;
3051         uint32_t ctrl, ctrl_ext, rctl, manc, status;
3052         uint32_t wufc = adapter->wol;
3053
3054         netif_device_detach(netdev);
3055
3056         if(netif_running(netdev))
3057                 e1000_down(adapter);
3058
3059         status = E1000_READ_REG(&adapter->hw, STATUS);
3060         if(status & E1000_STATUS_LU)
3061                 wufc &= ~E1000_WUFC_LNKC;
3062
3063         if(wufc) {
3064                 e1000_setup_rctl(adapter);
3065                 e1000_set_multi(netdev);
3066
3067                 /* turn on all-multi mode if wake on multicast is enabled */
3068                 if(adapter->wol & E1000_WUFC_MC) {
3069                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
3070                         rctl |= E1000_RCTL_MPE;
3071                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3072                 }
3073
3074                 if(adapter->hw.mac_type >= e1000_82540) {
3075                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3076                         /* advertise wake from D3Cold */
3077                         #define E1000_CTRL_ADVD3WUC 0x00100000
3078                         /* phy power management enable */
3079                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3080                         ctrl |= E1000_CTRL_ADVD3WUC |
3081                                 E1000_CTRL_EN_PHY_PWR_MGMT;
3082                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3083                 }
3084
3085                 if(adapter->hw.media_type == e1000_media_type_fiber ||
3086                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
3087                         /* keep the laser running in D3 */
3088                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3089                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3090                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3091                 }
3092
3093                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3094                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3095                 pci_enable_wake(pdev, 3, 1);
3096                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3097         } else {
3098                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3099                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3100                 pci_enable_wake(pdev, 3, 0);
3101                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3102         }
3103
3104         pci_save_state(pdev);
3105
3106         if(adapter->hw.mac_type >= e1000_82540 &&
3107            adapter->hw.media_type == e1000_media_type_copper) {
3108                 manc = E1000_READ_REG(&adapter->hw, MANC);
3109                 if(manc & E1000_MANC_SMBUS_EN) {
3110                         manc |= E1000_MANC_ARP_EN;
3111                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
3112                         pci_enable_wake(pdev, 3, 1);
3113                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3114                 }
3115         }
3116
3117         pci_disable_device(pdev);
3118
3119         state = (state > 0) ? 3 : 0;
3120         pci_set_power_state(pdev, state);
3121
3122         return 0;
3123 }
3124
3125 #ifdef CONFIG_PM
3126 static int
3127 e1000_resume(struct pci_dev *pdev)
3128 {
3129         struct net_device *netdev = pci_get_drvdata(pdev);
3130         struct e1000_adapter *adapter = netdev->priv;
3131         uint32_t manc, ret;
3132
3133         pci_set_power_state(pdev, 0);
3134         pci_restore_state(pdev);
3135         ret = pci_enable_device(pdev);
3136         if (pdev->is_busmaster)
3137                 pci_set_master(pdev);
3138
3139         pci_enable_wake(pdev, 3, 0);
3140         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3141
3142         e1000_reset(adapter);
3143         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3144
3145         if(netif_running(netdev))
3146                 e1000_up(adapter);
3147
3148         netif_device_attach(netdev);
3149
3150         if(adapter->hw.mac_type >= e1000_82540 &&
3151            adapter->hw.media_type == e1000_media_type_copper) {
3152                 manc = E1000_READ_REG(&adapter->hw, MANC);
3153                 manc &= ~(E1000_MANC_ARP_EN);
3154                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3155         }
3156
3157         return 0;
3158 }
3159 #endif
3160
3161 #ifdef CONFIG_NET_POLL_CONTROLLER
3162 /*
3163  * Polling 'interrupt' - used by things like netconsole to send skbs
3164  * without having to re-enable interrupts. It's not called while
3165  * the interrupt routine is executing.
3166  */
3167 static void
3168 e1000_netpoll (struct net_device *netdev)
3169 {
3170         struct e1000_adapter *adapter = netdev->priv;
3171         disable_irq(adapter->pdev->irq);
3172         e1000_intr(adapter->pdev->irq, netdev, NULL);
3173         enable_irq(adapter->pdev->irq);
3174 }
3175 #endif
3176
3177 /* e1000_main.c */