[PATCH] e1000: made loopback test robust
[linux-3.10.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79         { "tx_deferred_ok", E1000_STAT(stats.dc) },
80         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82         { "rx_long_length_errors", E1000_STAT(stats.roc) },
83         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
84         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
85         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
86         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
87         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
88         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
89         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
90         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
91         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
92         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
93         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
94 };
95 #define E1000_STATS_LEN \
96         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
97 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
98         "Register test  (offline)", "Eeprom test    (offline)",
99         "Interrupt test (offline)", "Loopback test  (offline)",
100         "Link test   (on/offline)"
101 };
102 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
103
104 static int
105 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
106 {
107         struct e1000_adapter *adapter = netdev->priv;
108         struct e1000_hw *hw = &adapter->hw;
109
110         if(hw->media_type == e1000_media_type_copper) {
111
112                 ecmd->supported = (SUPPORTED_10baseT_Half |
113                                    SUPPORTED_10baseT_Full |
114                                    SUPPORTED_100baseT_Half |
115                                    SUPPORTED_100baseT_Full |
116                                    SUPPORTED_1000baseT_Full|
117                                    SUPPORTED_Autoneg |
118                                    SUPPORTED_TP);
119
120                 ecmd->advertising = ADVERTISED_TP;
121
122                 if(hw->autoneg == 1) {
123                         ecmd->advertising |= ADVERTISED_Autoneg;
124
125                         /* the e1000 autoneg seems to match ethtool nicely */
126
127                         ecmd->advertising |= hw->autoneg_advertised;
128                 }
129
130                 ecmd->port = PORT_TP;
131                 ecmd->phy_address = hw->phy_addr;
132
133                 if(hw->mac_type == e1000_82543)
134                         ecmd->transceiver = XCVR_EXTERNAL;
135                 else
136                         ecmd->transceiver = XCVR_INTERNAL;
137
138         } else {
139                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
140                                      SUPPORTED_FIBRE |
141                                      SUPPORTED_Autoneg);
142
143                 ecmd->advertising = (SUPPORTED_1000baseT_Full |
144                                      SUPPORTED_FIBRE |
145                                      SUPPORTED_Autoneg);
146
147                 ecmd->port = PORT_FIBRE;
148
149                 if(hw->mac_type >= e1000_82545)
150                         ecmd->transceiver = XCVR_INTERNAL;
151                 else
152                         ecmd->transceiver = XCVR_EXTERNAL;
153         }
154
155         if(netif_carrier_ok(adapter->netdev)) {
156
157                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
158                                                    &adapter->link_duplex);
159                 ecmd->speed = adapter->link_speed;
160
161                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
162                  *          and HALF_DUPLEX != DUPLEX_HALF */
163
164                 if(adapter->link_duplex == FULL_DUPLEX)
165                         ecmd->duplex = DUPLEX_FULL;
166                 else
167                         ecmd->duplex = DUPLEX_HALF;
168         } else {
169                 ecmd->speed = -1;
170                 ecmd->duplex = -1;
171         }
172
173         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
174                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
175         return 0;
176 }
177
178 static int
179 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180 {
181         struct e1000_adapter *adapter = netdev->priv;
182         struct e1000_hw *hw = &adapter->hw;
183
184         if(ecmd->autoneg == AUTONEG_ENABLE) {
185                 hw->autoneg = 1;
186                 hw->autoneg_advertised = 0x002F;
187                 ecmd->advertising = 0x002F;
188         } else
189                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
190                         return -EINVAL;
191
192         /* reset the link */
193
194         if(netif_running(adapter->netdev)) {
195                 e1000_down(adapter);
196                 e1000_reset(adapter);
197                 e1000_up(adapter);
198         } else
199                 e1000_reset(adapter);
200
201         return 0;
202 }
203
204 static void
205 e1000_get_pauseparam(struct net_device *netdev,
206                      struct ethtool_pauseparam *pause)
207 {
208         struct e1000_adapter *adapter = netdev->priv;
209         struct e1000_hw *hw = &adapter->hw;
210
211         pause->autoneg = 
212                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
213         
214         if(hw->fc == e1000_fc_rx_pause)
215                 pause->rx_pause = 1;
216         else if(hw->fc == e1000_fc_tx_pause)
217                 pause->tx_pause = 1;
218         else if(hw->fc == e1000_fc_full) {
219                 pause->rx_pause = 1;
220                 pause->tx_pause = 1;
221         }
222 }
223
224 static int
225 e1000_set_pauseparam(struct net_device *netdev,
226                      struct ethtool_pauseparam *pause)
227 {
228         struct e1000_adapter *adapter = netdev->priv;
229         struct e1000_hw *hw = &adapter->hw;
230         
231         adapter->fc_autoneg = pause->autoneg;
232
233         if(pause->rx_pause && pause->tx_pause)
234                 hw->fc = e1000_fc_full;
235         else if(pause->rx_pause && !pause->tx_pause)
236                 hw->fc = e1000_fc_rx_pause;
237         else if(!pause->rx_pause && pause->tx_pause)
238                 hw->fc = e1000_fc_tx_pause;
239         else if(!pause->rx_pause && !pause->tx_pause)
240                 hw->fc = e1000_fc_none;
241
242         hw->original_fc = hw->fc;
243
244         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
245                 if(netif_running(adapter->netdev)) {
246                         e1000_down(adapter);
247                         e1000_up(adapter);
248                 } else
249                         e1000_reset(adapter);
250         }
251         else
252                 return ((hw->media_type == e1000_media_type_fiber) ?
253                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
254         
255         return 0;
256 }
257
258 static uint32_t
259 e1000_get_rx_csum(struct net_device *netdev)
260 {
261         struct e1000_adapter *adapter = netdev->priv;
262         return adapter->rx_csum;
263 }
264
265 static int
266 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
267 {
268         struct e1000_adapter *adapter = netdev->priv;
269         adapter->rx_csum = data;
270
271         if(netif_running(netdev)) {
272                 e1000_down(adapter);
273                 e1000_up(adapter);
274         } else
275                 e1000_reset(adapter);
276         return 0;
277 }
278         
279 static uint32_t
280 e1000_get_tx_csum(struct net_device *netdev)
281 {
282         return (netdev->features & NETIF_F_HW_CSUM) != 0;
283 }
284
285 static int
286 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
287 {
288         struct e1000_adapter *adapter = netdev->priv;
289
290         if(adapter->hw.mac_type < e1000_82543) {
291                 if (!data)
292                         return -EINVAL;
293                 return 0;
294         }
295
296         if (data)
297                 netdev->features |= NETIF_F_HW_CSUM;
298         else
299                 netdev->features &= ~NETIF_F_HW_CSUM;
300
301         return 0;
302 }
303
304 #ifdef NETIF_F_TSO
305 static int
306 e1000_set_tso(struct net_device *netdev, uint32_t data)
307 {
308         struct e1000_adapter *adapter = netdev->priv;
309         if ((adapter->hw.mac_type < e1000_82544) ||
310             (adapter->hw.mac_type == e1000_82547)) 
311                 return data ? -EINVAL : 0;
312
313         if (data)
314                 netdev->features |= NETIF_F_TSO;
315         else
316                 netdev->features &= ~NETIF_F_TSO;
317         return 0;
318
319 #endif /* NETIF_F_TSO */
320
321 static uint32_t
322 e1000_get_msglevel(struct net_device *netdev)
323 {
324         struct e1000_adapter *adapter = netdev->priv;
325         return adapter->msg_enable;
326 }
327
328 static void
329 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
330 {
331         struct e1000_adapter *adapter = netdev->priv;
332         adapter->msg_enable = data;
333 }
334
335 static int 
336 e1000_get_regs_len(struct net_device *netdev)
337 {
338 #define E1000_REGS_LEN 32
339         return E1000_REGS_LEN * sizeof(uint32_t);
340 }
341
342 static void
343 e1000_get_regs(struct net_device *netdev,
344                struct ethtool_regs *regs, void *p)
345 {
346         struct e1000_adapter *adapter = netdev->priv;
347         struct e1000_hw *hw = &adapter->hw;
348         uint32_t *regs_buff = p;
349         uint16_t phy_data;
350
351         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
352
353         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
354
355         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
356         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
357
358         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
359         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
360         regs_buff[4]  = E1000_READ_REG(hw, RDH);
361         regs_buff[5]  = E1000_READ_REG(hw, RDT);
362         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
363
364         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
365         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
366         regs_buff[9]  = E1000_READ_REG(hw, TDH);
367         regs_buff[10] = E1000_READ_REG(hw, TDT);
368         regs_buff[11] = E1000_READ_REG(hw, TIDV);
369
370         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
371         if(hw->phy_type == e1000_phy_igp) {
372                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
373                                     IGP01E1000_PHY_AGC_A);
374                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
375                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
376                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
377                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
378                                     IGP01E1000_PHY_AGC_B);
379                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
380                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
381                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
382                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
383                                     IGP01E1000_PHY_AGC_C);
384                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
385                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
386                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
387                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
388                                     IGP01E1000_PHY_AGC_D);
389                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
390                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
391                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
392                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
393                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
394                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
395                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
396                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
397                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
398                                     IGP01E1000_PHY_PCS_INIT_REG);
399                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
400                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
401                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
402                 regs_buff[20] = 0; /* polarity correction enabled (always) */
403                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
404                 regs_buff[23] = regs_buff[18]; /* mdix mode */
405                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
406         } else {
407                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
408                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
409                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
410                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
413                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
414                 regs_buff[18] = regs_buff[13]; /* cable polarity */
415                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
416                 regs_buff[20] = regs_buff[17]; /* polarity correction */
417                 /* phy receive errors */
418                 regs_buff[22] = adapter->phy_stats.receive_errors;
419                 regs_buff[23] = regs_buff[13]; /* mdix mode */
420         }
421         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
422         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
423         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
424         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
425         if(hw->mac_type >= e1000_82540 &&
426            hw->media_type == e1000_media_type_copper) {
427                 regs_buff[26] = E1000_READ_REG(hw, MANC);
428         }
429 }
430
431 static int
432 e1000_get_eeprom_len(struct net_device *netdev)
433 {
434         struct e1000_adapter *adapter = netdev->priv;
435         return adapter->hw.eeprom.word_size * 2;
436 }
437
438 static int
439 e1000_get_eeprom(struct net_device *netdev,
440                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
441 {
442         struct e1000_adapter *adapter = netdev->priv;
443         struct e1000_hw *hw = &adapter->hw;
444         uint16_t *eeprom_buff;
445         int first_word, last_word;
446         int ret_val = 0;
447         uint16_t i;
448
449         if(eeprom->len == 0)
450                 return -EINVAL;
451
452         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
453
454         first_word = eeprom->offset >> 1;
455         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
456
457         eeprom_buff = kmalloc(sizeof(uint16_t) *
458                         (last_word - first_word + 1), GFP_KERNEL);
459         if(!eeprom_buff)
460                 return -ENOMEM;
461
462         if(hw->eeprom.type == e1000_eeprom_spi)
463                 ret_val = e1000_read_eeprom(hw, first_word,
464                                             last_word - first_word + 1,
465                                             eeprom_buff);
466         else {
467                 for (i = 0; i < last_word - first_word + 1; i++)
468                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
469                                                         &eeprom_buff[i])))
470                                 break;
471         }
472
473         /* Device's eeprom is always little-endian, word addressable */
474         for (i = 0; i < last_word - first_word + 1; i++)
475                 le16_to_cpus(&eeprom_buff[i]);
476
477         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
478                         eeprom->len);
479         kfree(eeprom_buff);
480
481         return ret_val;
482 }
483
484 static int
485 e1000_set_eeprom(struct net_device *netdev,
486                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
487 {
488         struct e1000_adapter *adapter = netdev->priv;
489         struct e1000_hw *hw = &adapter->hw;
490         uint16_t *eeprom_buff;
491         void *ptr;
492         int max_len, first_word, last_word, ret_val = 0;
493         uint16_t i;
494
495         if(eeprom->len == 0)
496                 return -EOPNOTSUPP;
497
498         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
499                 return -EFAULT;
500
501         max_len = hw->eeprom.word_size * 2;
502
503         first_word = eeprom->offset >> 1;
504         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
505         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
506         if(!eeprom_buff)
507                 return -ENOMEM;
508
509         ptr = (void *)eeprom_buff;
510
511         if(eeprom->offset & 1) {
512                 /* need read/modify/write of first changed EEPROM word */
513                 /* only the second byte of the word is being modified */
514                 ret_val = e1000_read_eeprom(hw, first_word, 1,
515                                             &eeprom_buff[0]);
516                 ptr++;
517         }
518         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
519                 /* need read/modify/write of last changed EEPROM word */
520                 /* only the first byte of the word is being modified */
521                 ret_val = e1000_read_eeprom(hw, last_word, 1,
522                                   &eeprom_buff[last_word - first_word]);
523         }
524
525         /* Device's eeprom is always little-endian, word addressable */
526         for (i = 0; i < last_word - first_word + 1; i++)
527                 le16_to_cpus(&eeprom_buff[i]);
528
529         memcpy(ptr, bytes, eeprom->len);
530
531         for (i = 0; i < last_word - first_word + 1; i++)
532                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
533
534         ret_val = e1000_write_eeprom(hw, first_word,
535                                      last_word - first_word + 1, eeprom_buff);
536
537         /* Update the checksum over the first part of the EEPROM if needed */
538         if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
539                 e1000_update_eeprom_checksum(hw);
540
541         kfree(eeprom_buff);
542         return ret_val;
543 }
544
545 static void
546 e1000_get_drvinfo(struct net_device *netdev,
547                        struct ethtool_drvinfo *drvinfo)
548 {
549         struct e1000_adapter *adapter = netdev->priv;
550
551         strncpy(drvinfo->driver,  e1000_driver_name, 32);
552         strncpy(drvinfo->version, e1000_driver_version, 32);
553         strncpy(drvinfo->fw_version, "N/A", 32);
554         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
555         drvinfo->n_stats = E1000_STATS_LEN;
556         drvinfo->testinfo_len = E1000_TEST_LEN;
557         drvinfo->regdump_len = e1000_get_regs_len(netdev);
558         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
559 }
560
561 static void
562 e1000_get_ringparam(struct net_device *netdev,
563                     struct ethtool_ringparam *ring)
564 {
565         struct e1000_adapter *adapter = netdev->priv;
566         e1000_mac_type mac_type = adapter->hw.mac_type;
567         struct e1000_desc_ring *txdr = &adapter->tx_ring;
568         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
569
570         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
571                 E1000_MAX_82544_RXD;
572         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
573                 E1000_MAX_82544_TXD;
574         ring->rx_mini_max_pending = 0;
575         ring->rx_jumbo_max_pending = 0;
576         ring->rx_pending = rxdr->count;
577         ring->tx_pending = txdr->count;
578         ring->rx_mini_pending = 0;
579         ring->rx_jumbo_pending = 0;
580 }
581
582 static int 
583 e1000_set_ringparam(struct net_device *netdev,
584                     struct ethtool_ringparam *ring)
585 {
586         struct e1000_adapter *adapter = netdev->priv;
587         e1000_mac_type mac_type = adapter->hw.mac_type;
588         struct e1000_desc_ring *txdr = &adapter->tx_ring;
589         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
590         struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
591         int err;
592
593         tx_old = adapter->tx_ring;
594         rx_old = adapter->rx_ring;
595
596         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 
597                 return -EINVAL;
598
599         if(netif_running(adapter->netdev))
600                 e1000_down(adapter);
601
602         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
603         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
604                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
605         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
606
607         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
608         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
609                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
610         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
611
612         if(netif_running(adapter->netdev)) {
613                 /* Try to get new resources before deleting old */
614                 if((err = e1000_setup_rx_resources(adapter)))
615                         goto err_setup_rx;
616                 if((err = e1000_setup_tx_resources(adapter)))
617                         goto err_setup_tx;
618
619                 /* save the new, restore the old in order to free it,
620                  * then restore the new back again */
621
622                 rx_new = adapter->rx_ring;
623                 tx_new = adapter->tx_ring;
624                 adapter->rx_ring = rx_old;
625                 adapter->tx_ring = tx_old;
626                 e1000_free_rx_resources(adapter);
627                 e1000_free_tx_resources(adapter);
628                 adapter->rx_ring = rx_new;
629                 adapter->tx_ring = tx_new;
630                 if((err = e1000_up(adapter)))
631                         return err;
632         }
633
634         return 0;
635 err_setup_tx:
636         e1000_free_rx_resources(adapter);
637 err_setup_rx:
638         adapter->rx_ring = rx_old;
639         adapter->tx_ring = tx_old;
640         e1000_up(adapter);
641         return err;
642 }
643
644 #define REG_PATTERN_TEST(R, M, W)                                              \
645 {                                                                              \
646         uint32_t pat, value;                                                   \
647         uint32_t test[] =                                                      \
648                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
649         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
650                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
651                 value = E1000_READ_REG(&adapter->hw, R);                       \
652                 if(value != (test[pat] & W & M)) {                             \
653                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
654                                 E1000_82542_##R : E1000_##R;                   \
655                         return 1;                                              \
656                 }                                                              \
657         }                                                                      \
658 }
659
660 #define REG_SET_AND_CHECK(R, M, W)                                             \
661 {                                                                              \
662         uint32_t value;                                                        \
663         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
664         value = E1000_READ_REG(&adapter->hw, R);                               \
665         if ((W & M) != (value & M)) {                                          \
666                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
667                         E1000_82542_##R : E1000_##R;                           \
668                 return 1;                                                      \
669         }                                                                      \
670 }
671
672 static int
673 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
674 {
675         uint32_t value;
676         uint32_t i;
677
678         /* The status register is Read Only, so a write should fail.
679          * Some bits that get toggled are ignored.
680          */
681         value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
682         E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
683         if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
684                 *data = 1;
685                 return 1;
686         }
687
688         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
689         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
690         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
691         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
692         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
693         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
694         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
695         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
696         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
697         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
698         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
699         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
700         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
701         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
702
703         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
704         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
705         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
706
707         if(adapter->hw.mac_type >= e1000_82543) {
708
709                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
710                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
711                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
712                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
713                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
714
715                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
716                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
717                                          0xFFFFFFFF);
718                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
719                                          0xFFFFFFFF);
720                 }
721
722         } else {
723
724                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
725                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
726                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
727                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
728
729         }
730
731         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
732                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
733
734         *data = 0;
735         return 0;
736 }
737
738 static int
739 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
740 {
741         uint16_t temp;
742         uint16_t checksum = 0;
743         uint16_t i;
744
745         *data = 0;
746         /* Read and add up the contents of the EEPROM */
747         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
748                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
749                         *data = 1;
750                         break;
751                 }
752                 checksum += temp;
753         }
754
755         /* If Checksum is not Correct return error else test passed */
756         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
757                 *data = 2;
758
759         return *data;
760 }
761
762 static irqreturn_t
763 e1000_test_intr(int irq,
764                 void *data,
765                 struct pt_regs *regs)
766 {
767         struct net_device *netdev = (struct net_device *) data;
768         struct e1000_adapter *adapter = netdev->priv;
769
770         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
771
772         return IRQ_HANDLED;
773 }
774
775 static int
776 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
777 {
778         struct net_device *netdev = adapter->netdev;
779         uint32_t mask, i=0, shared_int = TRUE;
780         uint32_t irq = adapter->pdev->irq;
781
782         *data = 0;
783
784         /* Hook up test interrupt handler just for this test */
785         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
786                 shared_int = FALSE;
787         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, 
788                         netdev->name, netdev)){
789                 *data = 1;
790                 return -1;
791         }
792
793         /* Disable all the interrupts */
794         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
795         msec_delay(10);
796
797         /* Test each interrupt */
798         for(; i < 10; i++) {
799
800                 /* Interrupt to test */
801                 mask = 1 << i;
802
803                 if(!shared_int) {
804                         /* Disable the interrupt to be reported in
805                          * the cause register and then force the same
806                          * interrupt and see if one gets posted.  If
807                          * an interrupt was posted to the bus, the
808                          * test failed.
809                          */
810                         adapter->test_icr = 0;
811                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
812                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
813                         msec_delay(10);
814  
815                         if(adapter->test_icr & mask) {
816                                 *data = 3;
817                                 break;
818                         }
819                 }
820
821                 /* Enable the interrupt to be reported in
822                  * the cause register and then force the same
823                  * interrupt and see if one gets posted.  If
824                  * an interrupt was not posted to the bus, the
825                  * test failed.
826                  */
827                 adapter->test_icr = 0;
828                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
829                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
830                 msec_delay(10);
831
832                 if(!(adapter->test_icr & mask)) {
833                         *data = 4;
834                         break;
835                 }
836
837                 if(!shared_int) {
838                         /* Disable the other interrupts to be reported in
839                          * the cause register and then force the other
840                          * interrupts and see if any get posted.  If
841                          * an interrupt was posted to the bus, the
842                          * test failed.
843                          */
844                         adapter->test_icr = 0;
845                         E1000_WRITE_REG(&adapter->hw, IMC, 
846                                         (~mask & 0x00007FFF));
847                         E1000_WRITE_REG(&adapter->hw, ICS, 
848                                         (~mask & 0x00007FFF));
849                         msec_delay(10);
850
851                         if(adapter->test_icr) {
852                                 *data = 5;
853                                 break;
854                         }
855                 }
856         }
857
858         /* Disable all the interrupts */
859         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
860         msec_delay(10);
861
862         /* Unhook test interrupt handler */
863         free_irq(irq, netdev);
864
865         return *data;
866 }
867
868 static void
869 e1000_free_desc_rings(struct e1000_adapter *adapter)
870 {
871         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
872         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
873         struct pci_dev *pdev = adapter->pdev;
874         int i;
875
876         if(txdr->desc && txdr->buffer_info) {
877                 for(i = 0; i < txdr->count; i++) {
878                         if(txdr->buffer_info[i].dma)
879                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
880                                                  txdr->buffer_info[i].length,
881                                                  PCI_DMA_TODEVICE);
882                         if(txdr->buffer_info[i].skb)
883                                 dev_kfree_skb(txdr->buffer_info[i].skb);
884                 }
885         }
886
887         if(rxdr->desc && rxdr->buffer_info) {
888                 for(i = 0; i < rxdr->count; i++) {
889                         if(rxdr->buffer_info[i].dma)
890                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
891                                                  rxdr->buffer_info[i].length,
892                                                  PCI_DMA_FROMDEVICE);
893                         if(rxdr->buffer_info[i].skb)
894                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
895                 }
896         }
897
898         if(txdr->desc)
899                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
900         if(rxdr->desc)
901                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
902
903         if(txdr->buffer_info)
904                 kfree(txdr->buffer_info);
905         if(rxdr->buffer_info)
906                 kfree(rxdr->buffer_info);
907
908         return;
909 }
910
911 static int
912 e1000_setup_desc_rings(struct e1000_adapter *adapter)
913 {
914         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
915         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
916         struct pci_dev *pdev = adapter->pdev;
917         uint32_t rctl;
918         int size, i, ret_val;
919
920         /* Setup Tx descriptor ring and Tx buffers */
921
922         if(!txdr->count)
923                 txdr->count = E1000_DEFAULT_TXD;   
924
925         size = txdr->count * sizeof(struct e1000_buffer);
926         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
927                 ret_val = 1;
928                 goto err_nomem;
929         }
930         memset(txdr->buffer_info, 0, size);
931
932         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
933         E1000_ROUNDUP(txdr->size, 4096);
934         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
935                 ret_val = 2;
936                 goto err_nomem;
937         }
938         memset(txdr->desc, 0, txdr->size);
939         txdr->next_to_use = txdr->next_to_clean = 0;
940
941         E1000_WRITE_REG(&adapter->hw, TDBAL,
942                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
943         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
944         E1000_WRITE_REG(&adapter->hw, TDLEN,
945                         txdr->count * sizeof(struct e1000_tx_desc));
946         E1000_WRITE_REG(&adapter->hw, TDH, 0);
947         E1000_WRITE_REG(&adapter->hw, TDT, 0);
948         E1000_WRITE_REG(&adapter->hw, TCTL,
949                         E1000_TCTL_PSP | E1000_TCTL_EN |
950                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
951                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
952
953         for(i = 0; i < txdr->count; i++) {
954                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
955                 struct sk_buff *skb;
956                 unsigned int size = 1024;
957
958                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
959                         ret_val = 3;
960                         goto err_nomem;
961                 }
962                 skb_put(skb, size);
963                 txdr->buffer_info[i].skb = skb;
964                 txdr->buffer_info[i].length = skb->len;
965                 txdr->buffer_info[i].dma =
966                         pci_map_single(pdev, skb->data, skb->len,
967                                        PCI_DMA_TODEVICE);
968                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
969                 tx_desc->lower.data = cpu_to_le32(skb->len);
970                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
971                                                    E1000_TXD_CMD_IFCS |
972                                                    E1000_TXD_CMD_RPS);
973                 tx_desc->upper.data = 0;
974         }
975
976         /* Setup Rx descriptor ring and Rx buffers */
977
978         if(!rxdr->count)
979                 rxdr->count = E1000_DEFAULT_RXD;   
980
981         size = rxdr->count * sizeof(struct e1000_buffer);
982         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
983                 ret_val = 4;
984                 goto err_nomem;
985         }
986         memset(rxdr->buffer_info, 0, size);
987
988         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
989         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
990                 ret_val = 5;
991                 goto err_nomem;
992         }
993         memset(rxdr->desc, 0, rxdr->size);
994         rxdr->next_to_use = rxdr->next_to_clean = 0;
995
996         rctl = E1000_READ_REG(&adapter->hw, RCTL);
997         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
998         E1000_WRITE_REG(&adapter->hw, RDBAL,
999                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1000         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1001         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1002         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1003         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1004         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1005                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1006                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1007         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1008
1009         for(i = 0; i < rxdr->count; i++) {
1010                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1011                 struct sk_buff *skb;
1012
1013                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, 
1014                                 GFP_KERNEL))) {
1015                         ret_val = 6;
1016                         goto err_nomem;
1017                 }
1018                 skb_reserve(skb, NET_IP_ALIGN);
1019                 rxdr->buffer_info[i].skb = skb;
1020                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1021                 rxdr->buffer_info[i].dma =
1022                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1023                                        PCI_DMA_FROMDEVICE);
1024                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1025                 memset(skb->data, 0x00, skb->len);
1026         }
1027
1028         return 0;
1029
1030 err_nomem:
1031         e1000_free_desc_rings(adapter);
1032         return ret_val;
1033 }
1034
1035 static void
1036 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1037 {
1038         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1039         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1040         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1041         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1042         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1043 }
1044
1045 static void
1046 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1047 {
1048         uint16_t phy_reg;
1049
1050         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1051          * Extended PHY Specific Control Register to 25MHz clock.  This
1052          * value defaults back to a 2.5MHz clock when the PHY is reset.
1053          */
1054         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1055         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1056         e1000_write_phy_reg(&adapter->hw,
1057                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1058
1059         /* In addition, because of the s/w reset above, we need to enable
1060          * CRS on TX.  This must be set for both full and half duplex
1061          * operation.
1062          */
1063         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1064         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1065         e1000_write_phy_reg(&adapter->hw,
1066                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1067 }
1068
1069 static int
1070 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1071 {
1072         uint32_t ctrl_reg;
1073         uint16_t phy_reg;
1074
1075         /* Setup the Device Control Register for PHY loopback test. */
1076
1077         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1078         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1079                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1080                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1081                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1082                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1083
1084         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1085
1086         /* Read the PHY Specific Control Register (0x10) */
1087         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1088
1089         /* Clear Auto-Crossover bits in PHY Specific Control Register
1090          * (bits 6:5).
1091          */
1092         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1093         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1094
1095         /* Perform software reset on the PHY */
1096         e1000_phy_reset(&adapter->hw);
1097
1098         /* Have to setup TX_CLK and TX_CRS after software reset */
1099         e1000_phy_reset_clk_and_crs(adapter);
1100
1101         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1102
1103         /* Wait for reset to complete. */
1104         udelay(500);
1105
1106         /* Have to setup TX_CLK and TX_CRS after software reset */
1107         e1000_phy_reset_clk_and_crs(adapter);
1108
1109         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1110         e1000_phy_disable_receiver(adapter);
1111
1112         /* Set the loopback bit in the PHY control register. */
1113         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1114         phy_reg |= MII_CR_LOOPBACK;
1115         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1116
1117         /* Setup TX_CLK and TX_CRS one more time. */
1118         e1000_phy_reset_clk_and_crs(adapter);
1119
1120         /* Check Phy Configuration */
1121         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1122         if(phy_reg != 0x4100)
1123                  return 9;
1124
1125         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1126         if(phy_reg != 0x0070)
1127                 return 10;
1128
1129         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1130         if(phy_reg != 0x001A)
1131                 return 11;
1132
1133         return 0;
1134 }
1135
1136 static int
1137 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1138 {
1139         uint32_t ctrl_reg = 0;
1140         uint32_t stat_reg = 0;
1141
1142         adapter->hw.autoneg = FALSE;
1143
1144         if(adapter->hw.phy_type == e1000_phy_m88) {
1145                 /* Auto-MDI/MDIX Off */
1146                 e1000_write_phy_reg(&adapter->hw,
1147                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1148                 /* reset to update Auto-MDI/MDIX */
1149                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1150                 /* autoneg off */
1151                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1152         }
1153         /* force 1000, set loopback */
1154         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1155
1156         /* Now set up the MAC to the same speed/duplex as the PHY. */
1157         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1158         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1159         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1160                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1161                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1162                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1163
1164         if(adapter->hw.media_type == e1000_media_type_copper &&
1165            adapter->hw.phy_type == e1000_phy_m88) {
1166                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1167         } else {
1168                 /* Set the ILOS bit on the fiber Nic is half
1169                  * duplex link is detected. */
1170                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1171                 if((stat_reg & E1000_STATUS_FD) == 0)
1172                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1173         }
1174
1175         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1176
1177         /* Disable the receiver on the PHY so when a cable is plugged in, the
1178          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1179          */
1180         if(adapter->hw.phy_type == e1000_phy_m88)
1181                 e1000_phy_disable_receiver(adapter);
1182
1183         udelay(500);
1184
1185         return 0;
1186 }
1187
1188 static int
1189 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1190 {
1191         uint16_t phy_reg = 0;
1192         uint16_t count = 0;
1193
1194         switch (adapter->hw.mac_type) {
1195         case e1000_82543:
1196                 if(adapter->hw.media_type == e1000_media_type_copper) {
1197                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1198                          * Some PHY registers get corrupted at random, so
1199                          * attempt this 10 times.
1200                          */
1201                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1202                               count++ < 10);
1203                         if(count < 11)
1204                                 return 0;
1205                 }
1206                 break;
1207
1208         case e1000_82544:
1209         case e1000_82540:
1210         case e1000_82545:
1211         case e1000_82545_rev_3:
1212         case e1000_82546:
1213         case e1000_82546_rev_3:
1214         case e1000_82541:
1215         case e1000_82541_rev_2:
1216         case e1000_82547:
1217         case e1000_82547_rev_2:
1218                 return e1000_integrated_phy_loopback(adapter);
1219                 break;
1220
1221         default:
1222                 /* Default PHY loopback work is to read the MII
1223                  * control register and assert bit 14 (loopback mode).
1224                  */
1225                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1226                 phy_reg |= MII_CR_LOOPBACK;
1227                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1228                 return 0;
1229                 break;
1230         }
1231
1232         return 8;
1233 }
1234
1235 static int
1236 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1237 {
1238         uint32_t rctl;
1239
1240         if(adapter->hw.media_type == e1000_media_type_fiber ||
1241            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1242                 if(adapter->hw.mac_type == e1000_82545 ||
1243                    adapter->hw.mac_type == e1000_82546 ||
1244                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1245                    adapter->hw.mac_type == e1000_82546_rev_3)
1246                         return e1000_set_phy_loopback(adapter);
1247                 else {
1248                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1249                         rctl |= E1000_RCTL_LBM_TCVR;
1250                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1251                         return 0;
1252                 }
1253         } else if(adapter->hw.media_type == e1000_media_type_copper)
1254                 return e1000_set_phy_loopback(adapter);
1255
1256         return 7;
1257 }
1258
1259 static void
1260 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1261 {
1262         uint32_t rctl;
1263         uint16_t phy_reg;
1264
1265         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1266         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1267         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1268
1269         if(adapter->hw.media_type == e1000_media_type_copper ||
1270            ((adapter->hw.media_type == e1000_media_type_fiber ||
1271              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1272             (adapter->hw.mac_type == e1000_82545 ||
1273              adapter->hw.mac_type == e1000_82546 ||
1274              adapter->hw.mac_type == e1000_82545_rev_3 ||
1275              adapter->hw.mac_type == e1000_82546_rev_3))) {
1276                 adapter->hw.autoneg = TRUE;
1277                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1278                 if(phy_reg & MII_CR_LOOPBACK) {
1279                         phy_reg &= ~MII_CR_LOOPBACK;
1280                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1281                         e1000_phy_reset(&adapter->hw);
1282                 }
1283         }
1284 }
1285
1286 static void
1287 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1288 {
1289         memset(skb->data, 0xFF, frame_size);
1290         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1291         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1292         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1293         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1294 }
1295
1296 static int
1297 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1298 {
1299         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1300         if(*(skb->data + 3) == 0xFF) {
1301                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1302                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1303                         return 0;
1304                 }
1305         }
1306         return 13;
1307 }
1308
1309 static int
1310 e1000_run_loopback_test(struct e1000_adapter *adapter)
1311 {
1312         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1313         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1314         struct pci_dev *pdev = adapter->pdev;
1315         int i, j, k, l, lc, good_cnt, ret_val=0;
1316         unsigned long time;
1317
1318         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1319
1320         /* Calculate the loop count based on the largest descriptor ring 
1321          * The idea is to wrap the largest ring a number of times using 64
1322          * send/receive pairs during each loop
1323          */
1324
1325         if(rxdr->count <= txdr->count)
1326                 lc = ((txdr->count / 64) * 2) + 1;
1327         else
1328                 lc = ((rxdr->count / 64) * 2) + 1;
1329
1330         k = l = 0;
1331         for(j = 0; j <= lc; j++) { /* loop count loop */
1332                 for(i = 0; i < 64; i++) { /* send the packets */
1333                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1334                                         1024);
1335                         pci_dma_sync_single_for_device(pdev, 
1336                                         txdr->buffer_info[k].dma,
1337                                         txdr->buffer_info[k].length,
1338                                         PCI_DMA_TODEVICE);
1339                         if(unlikely(++k == txdr->count)) k = 0;
1340                 }
1341                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1342                 msec_delay(200);
1343                 time = jiffies; /* set the start time for the receive */
1344                 good_cnt = 0;
1345                 do { /* receive the sent packets */
1346                         pci_dma_sync_single_for_cpu(pdev, 
1347                                         rxdr->buffer_info[l].dma,
1348                                         rxdr->buffer_info[l].length,
1349                                         PCI_DMA_FROMDEVICE);
1350         
1351                         ret_val = e1000_check_lbtest_frame(
1352                                         rxdr->buffer_info[l].skb,
1353                                         1024);
1354                         if(!ret_val)
1355                                 good_cnt++;
1356                         if(unlikely(++l == rxdr->count)) l = 0;
1357                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1358                          * enough time to complete the receives, if it's 
1359                          * exceeded, break and error off
1360                          */
1361                 } while (good_cnt < 64 && jiffies < (time + 20));
1362                 if(good_cnt != 64) {
1363                         ret_val = 13; /* ret_val is the same as mis-compare */
1364                         break; 
1365                 }
1366                 if(jiffies >= (time + 2)) {
1367                         ret_val = 14; /* error code for time out error */
1368                         break;
1369                 }
1370         } /* end loop count loop */
1371         return ret_val;
1372 }
1373
1374 static int
1375 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1376 {
1377         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1378         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1379         *data = e1000_run_loopback_test(adapter);
1380         e1000_loopback_cleanup(adapter);
1381         e1000_free_desc_rings(adapter);
1382 err_loopback:
1383         return *data;
1384 }
1385
1386 static int
1387 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1388 {
1389         *data = 0;
1390
1391         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1392                 int i = 0;
1393                 adapter->hw.serdes_link_down = TRUE;
1394
1395                 /* on some blade server designs link establishment */
1396                 /* could take as long as 2-3 minutes.              */
1397                 do {
1398                         e1000_check_for_link(&adapter->hw);
1399                         if (adapter->hw.serdes_link_down == FALSE)
1400                                 return *data;
1401                         msec_delay(20);
1402                 } while (i++ < 3750);
1403
1404                 *data = 1; 
1405         } else {
1406                 e1000_check_for_link(&adapter->hw);
1407                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1408                         msec_delay(4000);
1409
1410                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1411                         *data = 1;
1412                 }
1413         }
1414         return *data;
1415 }
1416
1417 static int 
1418 e1000_diag_test_count(struct net_device *netdev)
1419 {
1420         return E1000_TEST_LEN;
1421 }
1422
1423 static void
1424 e1000_diag_test(struct net_device *netdev,
1425                    struct ethtool_test *eth_test, uint64_t *data)
1426 {
1427         struct e1000_adapter *adapter = netdev->priv;
1428         boolean_t if_running = netif_running(netdev);
1429
1430         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1431                 /* Offline tests */
1432
1433                 /* save speed, duplex, autoneg settings */
1434                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1435                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1436                 uint8_t autoneg = adapter->hw.autoneg;
1437
1438                 /* Link test performed before hardware reset so autoneg doesn't
1439                  * interfere with test result */
1440                 if(e1000_link_test(adapter, &data[4]))
1441                         eth_test->flags |= ETH_TEST_FL_FAILED;
1442
1443                 if(if_running)
1444                         e1000_down(adapter);
1445                 else
1446                         e1000_reset(adapter);
1447
1448                 if(e1000_reg_test(adapter, &data[0]))
1449                         eth_test->flags |= ETH_TEST_FL_FAILED;
1450
1451                 e1000_reset(adapter);
1452                 if(e1000_eeprom_test(adapter, &data[1]))
1453                         eth_test->flags |= ETH_TEST_FL_FAILED;
1454
1455                 e1000_reset(adapter);
1456                 if(e1000_intr_test(adapter, &data[2]))
1457                         eth_test->flags |= ETH_TEST_FL_FAILED;
1458
1459                 e1000_reset(adapter);
1460                 if(e1000_loopback_test(adapter, &data[3]))
1461                         eth_test->flags |= ETH_TEST_FL_FAILED;
1462
1463                 /* restore speed, duplex, autoneg settings */
1464                 adapter->hw.autoneg_advertised = autoneg_advertised;
1465                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1466                 adapter->hw.autoneg = autoneg;
1467
1468                 e1000_reset(adapter);
1469                 if(if_running)
1470                         e1000_up(adapter);
1471         } else {
1472                 /* Online tests */
1473                 if(e1000_link_test(adapter, &data[4]))
1474                         eth_test->flags |= ETH_TEST_FL_FAILED;
1475
1476                 /* Offline tests aren't run; pass by default */
1477                 data[0] = 0;
1478                 data[1] = 0;
1479                 data[2] = 0;
1480                 data[3] = 0;
1481         }
1482 }
1483
1484 static void
1485 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1486 {
1487         struct e1000_adapter *adapter = netdev->priv;
1488         struct e1000_hw *hw = &adapter->hw;
1489
1490         switch(adapter->hw.device_id) {
1491         case E1000_DEV_ID_82542:
1492         case E1000_DEV_ID_82543GC_FIBER:
1493         case E1000_DEV_ID_82543GC_COPPER:
1494         case E1000_DEV_ID_82544EI_FIBER:
1495         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1496         case E1000_DEV_ID_82545EM_FIBER:
1497         case E1000_DEV_ID_82545EM_COPPER:
1498                 wol->supported = 0;
1499                 wol->wolopts   = 0;
1500                 return;
1501
1502         case E1000_DEV_ID_82546EB_FIBER:
1503         case E1000_DEV_ID_82546GB_FIBER:
1504                 /* Wake events only supported on port A for dual fiber */
1505                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1506                         wol->supported = 0;
1507                         wol->wolopts   = 0;
1508                         return;
1509                 }
1510                 /* Fall Through */
1511
1512         default:
1513                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1514                                  WAKE_BCAST | WAKE_MAGIC;
1515
1516                 wol->wolopts = 0;
1517                 if(adapter->wol & E1000_WUFC_EX)
1518                         wol->wolopts |= WAKE_UCAST;
1519                 if(adapter->wol & E1000_WUFC_MC)
1520                         wol->wolopts |= WAKE_MCAST;
1521                 if(adapter->wol & E1000_WUFC_BC)
1522                         wol->wolopts |= WAKE_BCAST;
1523                 if(adapter->wol & E1000_WUFC_MAG)
1524                         wol->wolopts |= WAKE_MAGIC;
1525                 return;
1526         }
1527 }
1528
1529 static int
1530 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1531 {
1532         struct e1000_adapter *adapter = netdev->priv;
1533         struct e1000_hw *hw = &adapter->hw;
1534
1535         switch(adapter->hw.device_id) {
1536         case E1000_DEV_ID_82542:
1537         case E1000_DEV_ID_82543GC_FIBER:
1538         case E1000_DEV_ID_82543GC_COPPER:
1539         case E1000_DEV_ID_82544EI_FIBER:
1540         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1541         case E1000_DEV_ID_82545EM_FIBER:
1542         case E1000_DEV_ID_82545EM_COPPER:
1543                 return wol->wolopts ? -EOPNOTSUPP : 0;
1544
1545         case E1000_DEV_ID_82546EB_FIBER:
1546         case E1000_DEV_ID_82546GB_FIBER:
1547                 /* Wake events only supported on port A for dual fiber */
1548                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1549                         return wol->wolopts ? -EOPNOTSUPP : 0;
1550                 /* Fall Through */
1551
1552         default:
1553                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1554                         return -EOPNOTSUPP;
1555
1556                 adapter->wol = 0;
1557
1558                 if(wol->wolopts & WAKE_UCAST)
1559                         adapter->wol |= E1000_WUFC_EX;
1560                 if(wol->wolopts & WAKE_MCAST)
1561                         adapter->wol |= E1000_WUFC_MC;
1562                 if(wol->wolopts & WAKE_BCAST)
1563                         adapter->wol |= E1000_WUFC_BC;
1564                 if(wol->wolopts & WAKE_MAGIC)
1565                         adapter->wol |= E1000_WUFC_MAG;
1566         }
1567
1568         return 0;
1569 }
1570
1571 /* toggle LED 4 times per second = 2 "blinks" per second */
1572 #define E1000_ID_INTERVAL       (HZ/4)
1573
1574 /* bit defines for adapter->led_status */
1575 #define E1000_LED_ON            0
1576
1577 static void
1578 e1000_led_blink_callback(unsigned long data)
1579 {
1580         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1581
1582         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1583                 e1000_led_off(&adapter->hw);
1584         else
1585                 e1000_led_on(&adapter->hw);
1586
1587         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1588 }
1589
1590 static int
1591 e1000_phys_id(struct net_device *netdev, uint32_t data)
1592 {
1593         struct e1000_adapter *adapter = netdev->priv;
1594
1595         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1596                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1597
1598         if(!adapter->blink_timer.function) {
1599                 init_timer(&adapter->blink_timer);
1600                 adapter->blink_timer.function = e1000_led_blink_callback;
1601                 adapter->blink_timer.data = (unsigned long) adapter;
1602         }
1603
1604         e1000_setup_led(&adapter->hw);
1605         mod_timer(&adapter->blink_timer, jiffies);
1606
1607         msleep_interruptible(data * 1000);
1608         del_timer_sync(&adapter->blink_timer);
1609         e1000_led_off(&adapter->hw);
1610         clear_bit(E1000_LED_ON, &adapter->led_status);
1611         e1000_cleanup_led(&adapter->hw);
1612
1613         return 0;
1614 }
1615
1616 static int
1617 e1000_nway_reset(struct net_device *netdev)
1618 {
1619         struct e1000_adapter *adapter = netdev->priv;
1620         if(netif_running(netdev)) {
1621                 e1000_down(adapter);
1622                 e1000_up(adapter);
1623         }
1624         return 0;
1625 }
1626
1627 static int 
1628 e1000_get_stats_count(struct net_device *netdev)
1629 {
1630         return E1000_STATS_LEN;
1631 }
1632
1633 static void 
1634 e1000_get_ethtool_stats(struct net_device *netdev, 
1635                 struct ethtool_stats *stats, uint64_t *data)
1636 {
1637         struct e1000_adapter *adapter = netdev->priv;
1638         int i;
1639
1640         e1000_update_stats(adapter);
1641         for(i = 0; i < E1000_STATS_LEN; i++) {
1642                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1643                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1644                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1645         }
1646 }
1647
1648 static void 
1649 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1650 {
1651         int i;
1652
1653         switch(stringset) {
1654         case ETH_SS_TEST:
1655                 memcpy(data, *e1000_gstrings_test, 
1656                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1657                 break;
1658         case ETH_SS_STATS:
1659                 for (i=0; i < E1000_STATS_LEN; i++) {
1660                         memcpy(data + i * ETH_GSTRING_LEN, 
1661                         e1000_gstrings_stats[i].stat_string,
1662                         ETH_GSTRING_LEN);
1663                 }
1664                 break;
1665         }
1666 }
1667
1668 struct ethtool_ops e1000_ethtool_ops = {
1669         .get_settings           = e1000_get_settings,
1670         .set_settings           = e1000_set_settings,
1671         .get_drvinfo            = e1000_get_drvinfo,
1672         .get_regs_len           = e1000_get_regs_len,
1673         .get_regs               = e1000_get_regs,
1674         .get_wol                = e1000_get_wol,
1675         .set_wol                = e1000_set_wol,
1676         .get_msglevel           = e1000_get_msglevel,
1677         .set_msglevel           = e1000_set_msglevel,
1678         .nway_reset             = e1000_nway_reset,
1679         .get_link               = ethtool_op_get_link,
1680         .get_eeprom_len         = e1000_get_eeprom_len,
1681         .get_eeprom             = e1000_get_eeprom,
1682         .set_eeprom             = e1000_set_eeprom,
1683         .get_ringparam          = e1000_get_ringparam,
1684         .set_ringparam          = e1000_set_ringparam,
1685         .get_pauseparam         = e1000_get_pauseparam,
1686         .set_pauseparam         = e1000_set_pauseparam,
1687         .get_rx_csum            = e1000_get_rx_csum,
1688         .set_rx_csum            = e1000_set_rx_csum,
1689         .get_tx_csum            = e1000_get_tx_csum,
1690         .set_tx_csum            = e1000_set_tx_csum,
1691         .get_sg                 = ethtool_op_get_sg,
1692         .set_sg                 = ethtool_op_set_sg,
1693 #ifdef NETIF_F_TSO
1694         .get_tso                = ethtool_op_get_tso,
1695         .set_tso                = e1000_set_tso,
1696 #endif
1697         .self_test_count        = e1000_diag_test_count,
1698         .self_test              = e1000_diag_test,
1699         .get_strings            = e1000_get_strings,
1700         .phys_id                = e1000_phys_id,
1701         .get_stats_count        = e1000_get_stats_count,
1702         .get_ethtool_stats      = e1000_get_ethtool_stats,
1703 };
1704
1705 void e1000_set_ethtool_ops(struct net_device *netdev)
1706 {
1707         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1708 }