]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/net/chelsio/sge.c
chelsio: misc cleanups in sge
[linux-3.10.git] / drivers / net / chelsio / sge.c
1 /*****************************************************************************
2  *                                                                           *
3  * File: sge.c                                                               *
4  * $Revision: 1.26 $                                                         *
5  * $Date: 2005/06/21 18:29:48 $                                              *
6  * Description:                                                              *
7  *  DMA engine.                                                              *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, write to the Free Software Foundation, Inc.,   *
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
17  *                                                                           *
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
21  *                                                                           *
22  * http://www.chelsio.com                                                    *
23  *                                                                           *
24  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
25  * All rights reserved.                                                      *
26  *                                                                           *
27  * Maintainers: maintainers@chelsio.com                                      *
28  *                                                                           *
29  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
30  *          Tina Yang               <tainay@chelsio.com>                     *
31  *          Felix Marti             <felix@chelsio.com>                      *
32  *          Scott Bardone           <sbardone@chelsio.com>                   *
33  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
34  *          Frank DiMambro          <frank@chelsio.com>                      *
35  *                                                                           *
36  * History:                                                                  *
37  *                                                                           *
38  ****************************************************************************/
39
40 #include "common.h"
41
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
61
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
64
65 #define SGE_CMDQ_N              2
66 #define SGE_FREELQ_N            2
67 #define SGE_CMDQ0_E_N           1024
68 #define SGE_CMDQ1_E_N           128
69 #define SGE_FREEL_SIZE          4096
70 #define SGE_JUMBO_FREEL_SIZE    512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N           1024
73 #define SGE_INTRTIMER_NRES      1000
74 #define SGE_RX_COPY_THRES       256
75 #define SGE_RX_SM_BUF_SIZE      1536
76 #define SGE_TX_DESC_MAX_PLEN    16384
77
78 # define SGE_RX_DROP_THRES 2
79
80 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
81
82 /*
83  * Period of the TX buffer reclaim timer.  This timer does not need to run
84  * frequently as TX buffers are usually reclaimed by new TX packets.
85  */
86 #define TX_RECLAIM_PERIOD (HZ / 4)
87
88 #define M_CMD_LEN       0x7fffffff
89 #define V_CMD_LEN(v)    (v)
90 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
91 #define V_CMD_GEN1(v)   ((v) << 31)
92 #define V_CMD_GEN2(v)   (v)
93 #define F_CMD_DATAVALID (1 << 1)
94 #define F_CMD_SOP       (1 << 2)
95 #define V_CMD_EOP(v)    ((v) << 3)
96
97 /*
98  * Command queue, receive buffer list, and response queue descriptors.
99  */
100 #if defined(__BIG_ENDIAN_BITFIELD)
101 struct cmdQ_e {
102         u32 addr_lo;
103         u32 len_gen;
104         u32 flags;
105         u32 addr_hi;
106 };
107
108 struct freelQ_e {
109         u32 addr_lo;
110         u32 len_gen;
111         u32 gen2;
112         u32 addr_hi;
113 };
114
115 struct respQ_e {
116         u32 Qsleeping           : 4;
117         u32 Cmdq1CreditReturn   : 5;
118         u32 Cmdq1DmaComplete    : 5;
119         u32 Cmdq0CreditReturn   : 5;
120         u32 Cmdq0DmaComplete    : 5;
121         u32 FreelistQid         : 2;
122         u32 CreditValid         : 1;
123         u32 DataValid           : 1;
124         u32 Offload             : 1;
125         u32 Eop                 : 1;
126         u32 Sop                 : 1;
127         u32 GenerationBit       : 1;
128         u32 BufferLength;
129 };
130 #elif defined(__LITTLE_ENDIAN_BITFIELD)
131 struct cmdQ_e {
132         u32 len_gen;
133         u32 addr_lo;
134         u32 addr_hi;
135         u32 flags;
136 };
137
138 struct freelQ_e {
139         u32 len_gen;
140         u32 addr_lo;
141         u32 addr_hi;
142         u32 gen2;
143 };
144
145 struct respQ_e {
146         u32 BufferLength;
147         u32 GenerationBit       : 1;
148         u32 Sop                 : 1;
149         u32 Eop                 : 1;
150         u32 Offload             : 1;
151         u32 DataValid           : 1;
152         u32 CreditValid         : 1;
153         u32 FreelistQid         : 2;
154         u32 Cmdq0DmaComplete    : 5;
155         u32 Cmdq0CreditReturn   : 5;
156         u32 Cmdq1DmaComplete    : 5;
157         u32 Cmdq1CreditReturn   : 5;
158         u32 Qsleeping           : 4;
159 } ;
160 #endif
161
162 /*
163  * SW Context Command and Freelist Queue Descriptors
164  */
165 struct cmdQ_ce {
166         struct sk_buff *skb;
167         DECLARE_PCI_UNMAP_ADDR(dma_addr);
168         DECLARE_PCI_UNMAP_LEN(dma_len);
169 };
170
171 struct freelQ_ce {
172         struct sk_buff *skb;
173         DECLARE_PCI_UNMAP_ADDR(dma_addr);
174         DECLARE_PCI_UNMAP_LEN(dma_len);
175 };
176
177 /*
178  * SW command, freelist and response rings
179  */
180 struct cmdQ {
181         unsigned long   status;         /* HW DMA fetch status */
182         unsigned int    in_use;         /* # of in-use command descriptors */
183         unsigned int    size;           /* # of descriptors */
184         unsigned int    processed;      /* total # of descs HW has processed */
185         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
186         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
187         u16             pidx;           /* producer index (SW) */
188         u16             cidx;           /* consumer index (HW) */
189         u8              genbit;         /* current generation (=valid) bit */
190         u8              sop;            /* is next entry start of packet? */
191         struct cmdQ_e  *entries;        /* HW command descriptor Q */
192         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
193         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
194         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
195 };
196
197 struct freelQ {
198         unsigned int    credits;        /* # of available RX buffers */
199         unsigned int    size;           /* free list capacity */
200         u16             pidx;           /* producer index (SW) */
201         u16             cidx;           /* consumer index (HW) */
202         u16             rx_buffer_size; /* Buffer size on this free list */
203         u16             dma_offset;     /* DMA offset to align IP headers */
204         u16             recycleq_idx;   /* skb recycle q to use */
205         u8              genbit;         /* current generation (=valid) bit */
206         struct freelQ_e *entries;       /* HW freelist descriptor Q */
207         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
208         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
209 };
210
211 struct respQ {
212         unsigned int    credits;        /* credits to be returned to SGE */
213         unsigned int    size;           /* # of response Q descriptors */
214         u16             cidx;           /* consumer index (SW) */
215         u8              genbit;         /* current generation(=valid) bit */
216         struct respQ_e *entries;        /* HW response descriptor Q */
217         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
218 };
219
220 /* Bit flags for cmdQ.status */
221 enum {
222         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
223         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
224 };
225
226 /* T204 TX SW scheduler */
227
228 /* Per T204 TX port */
229 struct sched_port {
230         unsigned int    avail;          /* available bits - quota */
231         unsigned int    drain_bits_per_1024ns; /* drain rate */
232         unsigned int    speed;          /* drain rate, mbps */
233         unsigned int    mtu;            /* mtu size */
234         struct sk_buff_head skbq;       /* pending skbs */
235 };
236
237 /* Per T204 device */
238 struct sched {
239         ktime_t         last_updated;   /* last time quotas were computed */
240         unsigned int    max_avail;      /* max bits to be sent to any port */
241         unsigned int    port;           /* port index (round robin ports) */
242         unsigned int    num;            /* num skbs in per port queues */
243         struct sched_port p[MAX_NPORTS];
244         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
245 };
246 static void restart_sched(unsigned long);
247
248
249 /*
250  * Main SGE data structure
251  *
252  * Interrupts are handled by a single CPU and it is likely that on a MP system
253  * the application is migrated to another CPU. In that scenario, we try to
254  * seperate the RX(in irq context) and TX state in order to decrease memory
255  * contention.
256  */
257 struct sge {
258         struct adapter *adapter;        /* adapter backpointer */
259         struct net_device *netdev;      /* netdevice backpointer */
260         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
261         struct respQ    respQ;          /* response Q */
262         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
263         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
264         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
265         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
266         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
267         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
268         struct timer_list espibug_timer;
269         unsigned long   espibug_timeout;
270         struct sk_buff  *espibug_skb[MAX_NPORTS];
271         u32             sge_control;    /* shadow value of sge control reg */
272         struct sge_intr_counts stats;
273         struct sge_port_stats *port_stats[MAX_NPORTS];
274         struct sched    *tx_sched;
275         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
276 };
277
278 /*
279  * stop tasklet and free all pending skb's
280  */
281 static void tx_sched_stop(struct sge *sge)
282 {
283         struct sched *s = sge->tx_sched;
284         int i;
285
286         tasklet_kill(&s->sched_tsk);
287
288         for (i = 0; i < MAX_NPORTS; i++)
289                 __skb_queue_purge(&s->p[s->port].skbq);
290 }
291
292 /*
293  * t1_sched_update_parms() is called when the MTU or link speed changes. It
294  * re-computes scheduler parameters to scope with the change.
295  */
296 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
297                                    unsigned int mtu, unsigned int speed)
298 {
299         struct sched *s = sge->tx_sched;
300         struct sched_port *p = &s->p[port];
301         unsigned int max_avail_segs;
302
303         pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
304         if (speed)
305                 p->speed = speed;
306         if (mtu)
307                 p->mtu = mtu;
308
309         if (speed || mtu) {
310                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
311                 do_div(drain, (p->mtu + 50) * 1000);
312                 p->drain_bits_per_1024ns = (unsigned int) drain;
313
314                 if (p->speed < 1000)
315                         p->drain_bits_per_1024ns =
316                                 90 * p->drain_bits_per_1024ns / 100;
317         }
318
319         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
320                 p->drain_bits_per_1024ns -= 16;
321                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
322                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
323         } else {
324                 s->max_avail = 16384;
325                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
326         }
327
328         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
329                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
330                  p->speed, s->max_avail, max_avail_segs,
331                  p->drain_bits_per_1024ns);
332
333         return max_avail_segs * (p->mtu - 40);
334 }
335
336 /*
337  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
338  * data that can be pushed per port.
339  */
340 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
341 {
342         struct sched *s = sge->tx_sched;
343         unsigned int i;
344
345         s->max_avail = val;
346         for (i = 0; i < MAX_NPORTS; i++)
347                 t1_sched_update_parms(sge, i, 0, 0);
348 }
349
350 /*
351  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
352  * is draining.
353  */
354 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
355                                          unsigned int val)
356 {
357         struct sched *s = sge->tx_sched;
358         struct sched_port *p = &s->p[port];
359         p->drain_bits_per_1024ns = val * 1024 / 1000;
360         t1_sched_update_parms(sge, port, 0, 0);
361 }
362
363
364 /*
365  * get_clock() implements a ns clock (see ktime_get)
366  */
367 static inline ktime_t get_clock(void)
368 {
369         struct timespec ts;
370
371         ktime_get_ts(&ts);
372         return timespec_to_ktime(ts);
373 }
374
375 /*
376  * tx_sched_init() allocates resources and does basic initialization.
377  */
378 static int tx_sched_init(struct sge *sge)
379 {
380         struct sched *s;
381         int i;
382
383         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
384         if (!s)
385                 return -ENOMEM;
386
387         pr_debug("tx_sched_init\n");
388         tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
389         sge->tx_sched = s;
390
391         for (i = 0; i < MAX_NPORTS; i++) {
392                 skb_queue_head_init(&s->p[i].skbq);
393                 t1_sched_update_parms(sge, i, 1500, 1000);
394         }
395
396         return 0;
397 }
398
399 /*
400  * sched_update_avail() computes the delta since the last time it was called
401  * and updates the per port quota (number of bits that can be sent to the any
402  * port).
403  */
404 static inline int sched_update_avail(struct sge *sge)
405 {
406         struct sched *s = sge->tx_sched;
407         ktime_t now = get_clock();
408         unsigned int i;
409         long long delta_time_ns;
410
411         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
412
413         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
414         if (delta_time_ns < 15000)
415                 return 0;
416
417         for (i = 0; i < MAX_NPORTS; i++) {
418                 struct sched_port *p = &s->p[i];
419                 unsigned int delta_avail;
420
421                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
422                 p->avail = min(p->avail + delta_avail, s->max_avail);
423         }
424
425         s->last_updated = now;
426
427         return 1;
428 }
429
430 /*
431  * sched_skb() is called from two different places. In the tx path, any
432  * packet generating load on an output port will call sched_skb()
433  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
434  * context (skb == NULL).
435  * The scheduler only returns a skb (which will then be sent) if the
436  * length of the skb is <= the current quota of the output port.
437  */
438 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
439                                 unsigned int credits)
440 {
441         struct sched *s = sge->tx_sched;
442         struct sk_buff_head *skbq;
443         unsigned int i, len, update = 1;
444
445         pr_debug("sched_skb %p\n", skb);
446         if (!skb) {
447                 if (!s->num)
448                         return NULL;
449         } else {
450                 skbq = &s->p[skb->dev->if_port].skbq;
451                 __skb_queue_tail(skbq, skb);
452                 s->num++;
453                 skb = NULL;
454         }
455
456         if (credits < MAX_SKB_FRAGS + 1)
457                 goto out;
458
459 again:
460         for (i = 0; i < MAX_NPORTS; i++) {
461                 s->port = ++s->port & (MAX_NPORTS - 1);
462                 skbq = &s->p[s->port].skbq;
463
464                 skb = skb_peek(skbq);
465
466                 if (!skb)
467                         continue;
468
469                 len = skb->len;
470                 if (len <= s->p[s->port].avail) {
471                         s->p[s->port].avail -= len;
472                         s->num--;
473                         __skb_unlink(skb, skbq);
474                         goto out;
475                 }
476                 skb = NULL;
477         }
478
479         if (update-- && sched_update_avail(sge))
480                 goto again;
481
482 out:
483         /* If there are more pending skbs, we use the hardware to schedule us
484          * again.
485          */
486         if (s->num && !skb) {
487                 struct cmdQ *q = &sge->cmdQ[0];
488                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
489                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
490                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
491                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
492                 }
493         }
494         pr_debug("sched_skb ret %p\n", skb);
495
496         return skb;
497 }
498
499 /*
500  * PIO to indicate that memory mapped Q contains valid descriptor(s).
501  */
502 static inline void doorbell_pio(struct adapter *adapter, u32 val)
503 {
504         wmb();
505         writel(val, adapter->regs + A_SG_DOORBELL);
506 }
507
508 /*
509  * Frees all RX buffers on the freelist Q. The caller must make sure that
510  * the SGE is turned off before calling this function.
511  */
512 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
513 {
514         unsigned int cidx = q->cidx;
515
516         while (q->credits--) {
517                 struct freelQ_ce *ce = &q->centries[cidx];
518
519                 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
520                                  pci_unmap_len(ce, dma_len),
521                                  PCI_DMA_FROMDEVICE);
522                 dev_kfree_skb(ce->skb);
523                 ce->skb = NULL;
524                 if (++cidx == q->size)
525                         cidx = 0;
526         }
527 }
528
529 /*
530  * Free RX free list and response queue resources.
531  */
532 static void free_rx_resources(struct sge *sge)
533 {
534         struct pci_dev *pdev = sge->adapter->pdev;
535         unsigned int size, i;
536
537         if (sge->respQ.entries) {
538                 size = sizeof(struct respQ_e) * sge->respQ.size;
539                 pci_free_consistent(pdev, size, sge->respQ.entries,
540                                     sge->respQ.dma_addr);
541         }
542
543         for (i = 0; i < SGE_FREELQ_N; i++) {
544                 struct freelQ *q = &sge->freelQ[i];
545
546                 if (q->centries) {
547                         free_freelQ_buffers(pdev, q);
548                         kfree(q->centries);
549                 }
550                 if (q->entries) {
551                         size = sizeof(struct freelQ_e) * q->size;
552                         pci_free_consistent(pdev, size, q->entries,
553                                             q->dma_addr);
554                 }
555         }
556 }
557
558 /*
559  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
560  * response queue.
561  */
562 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
563 {
564         struct pci_dev *pdev = sge->adapter->pdev;
565         unsigned int size, i;
566
567         for (i = 0; i < SGE_FREELQ_N; i++) {
568                 struct freelQ *q = &sge->freelQ[i];
569
570                 q->genbit = 1;
571                 q->size = p->freelQ_size[i];
572                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
573                 size = sizeof(struct freelQ_e) * q->size;
574                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
575                 if (!q->entries)
576                         goto err_no_mem;
577
578                 size = sizeof(struct freelQ_ce) * q->size;
579                 q->centries = kzalloc(size, GFP_KERNEL);
580                 if (!q->centries)
581                         goto err_no_mem;
582         }
583
584         /*
585          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
586          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
587          * including all the sk_buff overhead.
588          *
589          * Note: For T2 FL0 and FL1 are reversed.
590          */
591         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
592                 sizeof(struct cpl_rx_data) +
593                 sge->freelQ[!sge->jumbo_fl].dma_offset;
594
595                 size = (16 * 1024) -
596                     SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
597
598         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
599
600         /*
601          * Setup which skb recycle Q should be used when recycling buffers from
602          * each free list.
603          */
604         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
605         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
606
607         sge->respQ.genbit = 1;
608         sge->respQ.size = SGE_RESPQ_E_N;
609         sge->respQ.credits = 0;
610         size = sizeof(struct respQ_e) * sge->respQ.size;
611         sge->respQ.entries =
612                 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
613         if (!sge->respQ.entries)
614                 goto err_no_mem;
615         return 0;
616
617 err_no_mem:
618         free_rx_resources(sge);
619         return -ENOMEM;
620 }
621
622 /*
623  * Reclaims n TX descriptors and frees the buffers associated with them.
624  */
625 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
626 {
627         struct cmdQ_ce *ce;
628         struct pci_dev *pdev = sge->adapter->pdev;
629         unsigned int cidx = q->cidx;
630
631         q->in_use -= n;
632         ce = &q->centries[cidx];
633         while (n--) {
634                 if (likely(pci_unmap_len(ce, dma_len))) {
635                         pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
636                                          pci_unmap_len(ce, dma_len),
637                                          PCI_DMA_TODEVICE);
638                         if (q->sop)
639                                 q->sop = 0;
640                 }
641                 if (ce->skb) {
642                         dev_kfree_skb_any(ce->skb);
643                         q->sop = 1;
644                 }
645                 ce++;
646                 if (++cidx == q->size) {
647                         cidx = 0;
648                         ce = q->centries;
649                 }
650         }
651         q->cidx = cidx;
652 }
653
654 /*
655  * Free TX resources.
656  *
657  * Assumes that SGE is stopped and all interrupts are disabled.
658  */
659 static void free_tx_resources(struct sge *sge)
660 {
661         struct pci_dev *pdev = sge->adapter->pdev;
662         unsigned int size, i;
663
664         for (i = 0; i < SGE_CMDQ_N; i++) {
665                 struct cmdQ *q = &sge->cmdQ[i];
666
667                 if (q->centries) {
668                         if (q->in_use)
669                                 free_cmdQ_buffers(sge, q, q->in_use);
670                         kfree(q->centries);
671                 }
672                 if (q->entries) {
673                         size = sizeof(struct cmdQ_e) * q->size;
674                         pci_free_consistent(pdev, size, q->entries,
675                                             q->dma_addr);
676                 }
677         }
678 }
679
680 /*
681  * Allocates basic TX resources, consisting of memory mapped command Qs.
682  */
683 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
684 {
685         struct pci_dev *pdev = sge->adapter->pdev;
686         unsigned int size, i;
687
688         for (i = 0; i < SGE_CMDQ_N; i++) {
689                 struct cmdQ *q = &sge->cmdQ[i];
690
691                 q->genbit = 1;
692                 q->sop = 1;
693                 q->size = p->cmdQ_size[i];
694                 q->in_use = 0;
695                 q->status = 0;
696                 q->processed = q->cleaned = 0;
697                 q->stop_thres = 0;
698                 spin_lock_init(&q->lock);
699                 size = sizeof(struct cmdQ_e) * q->size;
700                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
701                 if (!q->entries)
702                         goto err_no_mem;
703
704                 size = sizeof(struct cmdQ_ce) * q->size;
705                 q->centries = kzalloc(size, GFP_KERNEL);
706                 if (!q->centries)
707                         goto err_no_mem;
708         }
709
710         /*
711          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
712          * only.  For queue 0 set the stop threshold so we can handle one more
713          * packet from each port, plus reserve an additional 24 entries for
714          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
715          * space for Ethernet packets.
716          */
717         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
718                 (MAX_SKB_FRAGS + 1);
719         return 0;
720
721 err_no_mem:
722         free_tx_resources(sge);
723         return -ENOMEM;
724 }
725
726 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
727                                      u32 size, int base_reg_lo,
728                                      int base_reg_hi, int size_reg)
729 {
730         writel((u32)addr, adapter->regs + base_reg_lo);
731         writel(addr >> 32, adapter->regs + base_reg_hi);
732         writel(size, adapter->regs + size_reg);
733 }
734
735 /*
736  * Enable/disable VLAN acceleration.
737  */
738 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
739 {
740         struct sge *sge = adapter->sge;
741
742         sge->sge_control &= ~F_VLAN_XTRACT;
743         if (on_off)
744                 sge->sge_control |= F_VLAN_XTRACT;
745         if (adapter->open_device_map) {
746                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
747                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
748         }
749 }
750
751 /*
752  * Programs the various SGE registers. However, the engine is not yet enabled,
753  * but sge->sge_control is setup and ready to go.
754  */
755 static void configure_sge(struct sge *sge, struct sge_params *p)
756 {
757         struct adapter *ap = sge->adapter;
758
759         writel(0, ap->regs + A_SG_CONTROL);
760         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
761                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
762         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
763                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
764         setup_ring_params(ap, sge->freelQ[0].dma_addr,
765                           sge->freelQ[0].size, A_SG_FL0BASELWR,
766                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
767         setup_ring_params(ap, sge->freelQ[1].dma_addr,
768                           sge->freelQ[1].size, A_SG_FL1BASELWR,
769                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
770
771         /* The threshold comparison uses <. */
772         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
773
774         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
775                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
776         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
777
778         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
779                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
780                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
781                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
782
783 #if defined(__BIG_ENDIAN_BITFIELD)
784         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
785 #endif
786
787         /* Initialize no-resource timer */
788         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
789
790         t1_sge_set_coalesce_params(sge, p);
791 }
792
793 /*
794  * Return the payload capacity of the jumbo free-list buffers.
795  */
796 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
797 {
798         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
799                 sge->freelQ[sge->jumbo_fl].dma_offset -
800                 sizeof(struct cpl_rx_data);
801 }
802
803 /*
804  * Frees all SGE related resources and the sge structure itself
805  */
806 void t1_sge_destroy(struct sge *sge)
807 {
808         int i;
809
810         for_each_port(sge->adapter, i)
811                 free_percpu(sge->port_stats[i]);
812
813         kfree(sge->tx_sched);
814         free_tx_resources(sge);
815         free_rx_resources(sge);
816         kfree(sge);
817 }
818
819 /*
820  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
821  * context Q) until the Q is full or alloc_skb fails.
822  *
823  * It is possible that the generation bits already match, indicating that the
824  * buffer is already valid and nothing needs to be done. This happens when we
825  * copied a received buffer into a new sk_buff during the interrupt processing.
826  *
827  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
828  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
829  * aligned.
830  */
831 static void refill_free_list(struct sge *sge, struct freelQ *q)
832 {
833         struct pci_dev *pdev = sge->adapter->pdev;
834         struct freelQ_ce *ce = &q->centries[q->pidx];
835         struct freelQ_e *e = &q->entries[q->pidx];
836         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
837
838         while (q->credits < q->size) {
839                 struct sk_buff *skb;
840                 dma_addr_t mapping;
841
842                 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
843                 if (!skb)
844                         break;
845
846                 skb_reserve(skb, q->dma_offset);
847                 mapping = pci_map_single(pdev, skb->data, dma_len,
848                                          PCI_DMA_FROMDEVICE);
849                 ce->skb = skb;
850                 pci_unmap_addr_set(ce, dma_addr, mapping);
851                 pci_unmap_len_set(ce, dma_len, dma_len);
852                 e->addr_lo = (u32)mapping;
853                 e->addr_hi = (u64)mapping >> 32;
854                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
855                 wmb();
856                 e->gen2 = V_CMD_GEN2(q->genbit);
857
858                 e++;
859                 ce++;
860                 if (++q->pidx == q->size) {
861                         q->pidx = 0;
862                         q->genbit ^= 1;
863                         ce = q->centries;
864                         e = q->entries;
865                 }
866                 q->credits++;
867         }
868 }
869
870 /*
871  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
872  * of both rings, we go into 'few interrupt mode' in order to give the system
873  * time to free up resources.
874  */
875 static void freelQs_empty(struct sge *sge)
876 {
877         struct adapter *adapter = sge->adapter;
878         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
879         u32 irqholdoff_reg;
880
881         refill_free_list(sge, &sge->freelQ[0]);
882         refill_free_list(sge, &sge->freelQ[1]);
883
884         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
885             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
886                 irq_reg |= F_FL_EXHAUSTED;
887                 irqholdoff_reg = sge->fixed_intrtimer;
888         } else {
889                 /* Clear the F_FL_EXHAUSTED interrupts for now */
890                 irq_reg &= ~F_FL_EXHAUSTED;
891                 irqholdoff_reg = sge->intrtimer_nres;
892         }
893         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
894         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
895
896         /* We reenable the Qs to force a freelist GTS interrupt later */
897         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
898 }
899
900 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
901 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
902 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
903                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
904
905 /*
906  * Disable SGE Interrupts
907  */
908 void t1_sge_intr_disable(struct sge *sge)
909 {
910         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
911
912         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
913         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
914 }
915
916 /*
917  * Enable SGE interrupts.
918  */
919 void t1_sge_intr_enable(struct sge *sge)
920 {
921         u32 en = SGE_INT_ENABLE;
922         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
923
924         if (sge->adapter->flags & TSO_CAPABLE)
925                 en &= ~F_PACKET_TOO_BIG;
926         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
927         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
928 }
929
930 /*
931  * Clear SGE interrupts.
932  */
933 void t1_sge_intr_clear(struct sge *sge)
934 {
935         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
936         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
937 }
938
939 /*
940  * SGE 'Error' interrupt handler
941  */
942 int t1_sge_intr_error_handler(struct sge *sge)
943 {
944         struct adapter *adapter = sge->adapter;
945         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
946
947         if (adapter->flags & TSO_CAPABLE)
948                 cause &= ~F_PACKET_TOO_BIG;
949         if (cause & F_RESPQ_EXHAUSTED)
950                 sge->stats.respQ_empty++;
951         if (cause & F_RESPQ_OVERFLOW) {
952                 sge->stats.respQ_overflow++;
953                 CH_ALERT("%s: SGE response queue overflow\n",
954                          adapter->name);
955         }
956         if (cause & F_FL_EXHAUSTED) {
957                 sge->stats.freelistQ_empty++;
958                 freelQs_empty(sge);
959         }
960         if (cause & F_PACKET_TOO_BIG) {
961                 sge->stats.pkt_too_big++;
962                 CH_ALERT("%s: SGE max packet size exceeded\n",
963                          adapter->name);
964         }
965         if (cause & F_PACKET_MISMATCH) {
966                 sge->stats.pkt_mismatch++;
967                 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
968         }
969         if (cause & SGE_INT_FATAL)
970                 t1_fatal_err(adapter);
971
972         writel(cause, adapter->regs + A_SG_INT_CAUSE);
973         return 0;
974 }
975
976 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
977 {
978         return &sge->stats;
979 }
980
981 void t1_sge_get_port_stats(const struct sge *sge, int port,
982                            struct sge_port_stats *ss)
983 {
984         int cpu;
985
986         memset(ss, 0, sizeof(*ss));
987         for_each_possible_cpu(cpu) {
988                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
989
990                 ss->rx_packets += st->rx_packets;
991                 ss->rx_cso_good += st->rx_cso_good;
992                 ss->tx_packets += st->tx_packets;
993                 ss->tx_cso += st->tx_cso;
994                 ss->tx_tso += st->tx_tso;
995                 ss->vlan_xtract += st->vlan_xtract;
996                 ss->vlan_insert += st->vlan_insert;
997         }
998 }
999
1000 /**
1001  *      recycle_fl_buf - recycle a free list buffer
1002  *      @fl: the free list
1003  *      @idx: index of buffer to recycle
1004  *
1005  *      Recycles the specified buffer on the given free list by adding it at
1006  *      the next available slot on the list.
1007  */
1008 static void recycle_fl_buf(struct freelQ *fl, int idx)
1009 {
1010         struct freelQ_e *from = &fl->entries[idx];
1011         struct freelQ_e *to = &fl->entries[fl->pidx];
1012
1013         fl->centries[fl->pidx] = fl->centries[idx];
1014         to->addr_lo = from->addr_lo;
1015         to->addr_hi = from->addr_hi;
1016         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1017         wmb();
1018         to->gen2 = V_CMD_GEN2(fl->genbit);
1019         fl->credits++;
1020
1021         if (++fl->pidx == fl->size) {
1022                 fl->pidx = 0;
1023                 fl->genbit ^= 1;
1024         }
1025 }
1026
1027 /**
1028  *      get_packet - return the next ingress packet buffer
1029  *      @pdev: the PCI device that received the packet
1030  *      @fl: the SGE free list holding the packet
1031  *      @len: the actual packet length, excluding any SGE padding
1032  *      @dma_pad: padding at beginning of buffer left by SGE DMA
1033  *      @skb_pad: padding to be used if the packet is copied
1034  *      @copy_thres: length threshold under which a packet should be copied
1035  *      @drop_thres: # of remaining buffers before we start dropping packets
1036  *
1037  *      Get the next packet from a free list and complete setup of the
1038  *      sk_buff.  If the packet is small we make a copy and recycle the
1039  *      original buffer, otherwise we use the original buffer itself.  If a
1040  *      positive drop threshold is supplied packets are dropped and their
1041  *      buffers recycled if (a) the number of remaining buffers is under the
1042  *      threshold and the packet is too big to copy, or (b) the packet should
1043  *      be copied but there is no memory for the copy.
1044  */
1045 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1046                                          struct freelQ *fl, unsigned int len,
1047                                          int dma_pad, int skb_pad,
1048                                          unsigned int copy_thres,
1049                                          unsigned int drop_thres)
1050 {
1051         struct sk_buff *skb;
1052         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1053
1054         if (len < copy_thres) {
1055                 skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
1056                 if (likely(skb != NULL)) {
1057                         skb_reserve(skb, skb_pad);
1058                         skb_put(skb, len);
1059                         pci_dma_sync_single_for_cpu(pdev,
1060                                             pci_unmap_addr(ce, dma_addr),
1061                                             pci_unmap_len(ce, dma_len),
1062                                             PCI_DMA_FROMDEVICE);
1063                         memcpy(skb->data, ce->skb->data + dma_pad, len);
1064                         pci_dma_sync_single_for_device(pdev,
1065                                             pci_unmap_addr(ce, dma_addr),
1066                                             pci_unmap_len(ce, dma_len),
1067                                             PCI_DMA_FROMDEVICE);
1068                 } else if (!drop_thres)
1069                         goto use_orig_buf;
1070
1071                 recycle_fl_buf(fl, fl->cidx);
1072                 return skb;
1073         }
1074
1075         if (fl->credits < drop_thres) {
1076                 recycle_fl_buf(fl, fl->cidx);
1077                 return NULL;
1078         }
1079
1080 use_orig_buf:
1081         pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1082                          pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1083         skb = ce->skb;
1084         skb_reserve(skb, dma_pad);
1085         skb_put(skb, len);
1086         return skb;
1087 }
1088
1089 /**
1090  *      unexpected_offload - handle an unexpected offload packet
1091  *      @adapter: the adapter
1092  *      @fl: the free list that received the packet
1093  *
1094  *      Called when we receive an unexpected offload packet (e.g., the TOE
1095  *      function is disabled or the card is a NIC).  Prints a message and
1096  *      recycles the buffer.
1097  */
1098 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1099 {
1100         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1101         struct sk_buff *skb = ce->skb;
1102
1103         pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1104                             pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1105         CH_ERR("%s: unexpected offload packet, cmd %u\n",
1106                adapter->name, *skb->data);
1107         recycle_fl_buf(fl, fl->cidx);
1108 }
1109
1110 /*
1111  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1112  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1113  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1114  * Note that the *_large_page_tx_descs stuff will be optimized out when
1115  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1116  *
1117  * compute_large_page_descs() computes how many additional descriptors are
1118  * required to break down the stack's request.
1119  */
1120 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1121 {
1122         unsigned int count = 0;
1123
1124         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1125                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1126                 unsigned int i, len = skb->len - skb->data_len;
1127                 while (len > SGE_TX_DESC_MAX_PLEN) {
1128                         count++;
1129                         len -= SGE_TX_DESC_MAX_PLEN;
1130                 }
1131                 for (i = 0; nfrags--; i++) {
1132                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133                         len = frag->size;
1134                         while (len > SGE_TX_DESC_MAX_PLEN) {
1135                                 count++;
1136                                 len -= SGE_TX_DESC_MAX_PLEN;
1137                         }
1138                 }
1139         }
1140         return count;
1141 }
1142
1143 /*
1144  * Write a cmdQ entry.
1145  *
1146  * Since this function writes the 'flags' field, it must not be used to
1147  * write the first cmdQ entry.
1148  */
1149 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1150                                  unsigned int len, unsigned int gen,
1151                                  unsigned int eop)
1152 {
1153         if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1154                 BUG();
1155         e->addr_lo = (u32)mapping;
1156         e->addr_hi = (u64)mapping >> 32;
1157         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1158         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1159 }
1160
1161 /*
1162  * See comment for previous function.
1163  *
1164  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1165  * *desc_len exceeds HW's capability.
1166  */
1167 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1168                                                      struct cmdQ_e **e,
1169                                                      struct cmdQ_ce **ce,
1170                                                      unsigned int *gen,
1171                                                      dma_addr_t *desc_mapping,
1172                                                      unsigned int *desc_len,
1173                                                      unsigned int nfrags,
1174                                                      struct cmdQ *q)
1175 {
1176         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1177                 struct cmdQ_e *e1 = *e;
1178                 struct cmdQ_ce *ce1 = *ce;
1179
1180                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1181                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1182                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1183                                       *gen, nfrags == 0 && *desc_len == 0);
1184                         ce1->skb = NULL;
1185                         pci_unmap_len_set(ce1, dma_len, 0);
1186                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1187                         if (*desc_len) {
1188                                 ce1++;
1189                                 e1++;
1190                                 if (++pidx == q->size) {
1191                                         pidx = 0;
1192                                         *gen ^= 1;
1193                                         ce1 = q->centries;
1194                                         e1 = q->entries;
1195                                 }
1196                         }
1197                 }
1198                 *e = e1;
1199                 *ce = ce1;
1200         }
1201         return pidx;
1202 }
1203
1204 /*
1205  * Write the command descriptors to transmit the given skb starting at
1206  * descriptor pidx with the given generation.
1207  */
1208 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1209                                   unsigned int pidx, unsigned int gen,
1210                                   struct cmdQ *q)
1211 {
1212         dma_addr_t mapping, desc_mapping;
1213         struct cmdQ_e *e, *e1;
1214         struct cmdQ_ce *ce;
1215         unsigned int i, flags, first_desc_len, desc_len,
1216             nfrags = skb_shinfo(skb)->nr_frags;
1217
1218         e = e1 = &q->entries[pidx];
1219         ce = &q->centries[pidx];
1220
1221         mapping = pci_map_single(adapter->pdev, skb->data,
1222                                 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1223
1224         desc_mapping = mapping;
1225         desc_len = skb->len - skb->data_len;
1226
1227         flags = F_CMD_DATAVALID | F_CMD_SOP |
1228             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1229             V_CMD_GEN2(gen);
1230         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1231             desc_len : SGE_TX_DESC_MAX_PLEN;
1232         e->addr_lo = (u32)desc_mapping;
1233         e->addr_hi = (u64)desc_mapping >> 32;
1234         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1235         ce->skb = NULL;
1236         pci_unmap_len_set(ce, dma_len, 0);
1237
1238         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1239             desc_len > SGE_TX_DESC_MAX_PLEN) {
1240                 desc_mapping += first_desc_len;
1241                 desc_len -= first_desc_len;
1242                 e1++;
1243                 ce++;
1244                 if (++pidx == q->size) {
1245                         pidx = 0;
1246                         gen ^= 1;
1247                         e1 = q->entries;
1248                         ce = q->centries;
1249                 }
1250                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1251                                                  &desc_mapping, &desc_len,
1252                                                  nfrags, q);
1253
1254                 if (likely(desc_len))
1255                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1256                                       nfrags == 0);
1257         }
1258
1259         ce->skb = NULL;
1260         pci_unmap_addr_set(ce, dma_addr, mapping);
1261         pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1262
1263         for (i = 0; nfrags--; i++) {
1264                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1265                 e1++;
1266                 ce++;
1267                 if (++pidx == q->size) {
1268                         pidx = 0;
1269                         gen ^= 1;
1270                         e1 = q->entries;
1271                         ce = q->centries;
1272                 }
1273
1274                 mapping = pci_map_page(adapter->pdev, frag->page,
1275                                        frag->page_offset, frag->size,
1276                                        PCI_DMA_TODEVICE);
1277                 desc_mapping = mapping;
1278                 desc_len = frag->size;
1279
1280                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1281                                                  &desc_mapping, &desc_len,
1282                                                  nfrags, q);
1283                 if (likely(desc_len))
1284                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1285                                       nfrags == 0);
1286                 ce->skb = NULL;
1287                 pci_unmap_addr_set(ce, dma_addr, mapping);
1288                 pci_unmap_len_set(ce, dma_len, frag->size);
1289         }
1290         ce->skb = skb;
1291         wmb();
1292         e->flags = flags;
1293 }
1294
1295 /*
1296  * Clean up completed Tx buffers.
1297  */
1298 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1299 {
1300         unsigned int reclaim = q->processed - q->cleaned;
1301
1302         if (reclaim) {
1303                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1304                          q->processed, q->cleaned);
1305                 free_cmdQ_buffers(sge, q, reclaim);
1306                 q->cleaned += reclaim;
1307         }
1308 }
1309
1310 /*
1311  * Called from tasklet. Checks the scheduler for any
1312  * pending skbs that can be sent.
1313  */
1314 static void restart_sched(unsigned long arg)
1315 {
1316         struct sge *sge = (struct sge *) arg;
1317         struct adapter *adapter = sge->adapter;
1318         struct cmdQ *q = &sge->cmdQ[0];
1319         struct sk_buff *skb;
1320         unsigned int credits, queued_skb = 0;
1321
1322         spin_lock(&q->lock);
1323         reclaim_completed_tx(sge, q);
1324
1325         credits = q->size - q->in_use;
1326         pr_debug("restart_sched credits=%d\n", credits);
1327         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1328                 unsigned int genbit, pidx, count;
1329                 count = 1 + skb_shinfo(skb)->nr_frags;
1330                 count += compute_large_page_tx_descs(skb);
1331                 q->in_use += count;
1332                 genbit = q->genbit;
1333                 pidx = q->pidx;
1334                 q->pidx += count;
1335                 if (q->pidx >= q->size) {
1336                         q->pidx -= q->size;
1337                         q->genbit ^= 1;
1338                 }
1339                 write_tx_descs(adapter, skb, pidx, genbit, q);
1340                 credits = q->size - q->in_use;
1341                 queued_skb = 1;
1342         }
1343
1344         if (queued_skb) {
1345                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1347                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1349                 }
1350         }
1351         spin_unlock(&q->lock);
1352 }
1353
1354 /**
1355  *      sge_rx - process an ingress ethernet packet
1356  *      @sge: the sge structure
1357  *      @fl: the free list that contains the packet buffer
1358  *      @len: the packet length
1359  *
1360  *      Process an ingress ethernet pakcet and deliver it to the stack.
1361  */
1362 static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1363 {
1364         struct sk_buff *skb;
1365         struct cpl_rx_pkt *p;
1366         struct adapter *adapter = sge->adapter;
1367         struct sge_port_stats *st;
1368
1369         skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
1370                          sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
1371                          SGE_RX_DROP_THRES);
1372         if (unlikely(!skb)) {
1373                 sge->stats.rx_drops++;
1374                 return 0;
1375         }
1376
1377         p = (struct cpl_rx_pkt *)skb->data;
1378         skb_pull(skb, sizeof(*p));
1379         if (p->iff >= adapter->params.nports) {
1380                 kfree_skb(skb);
1381                 return 0;
1382         }
1383
1384         skb->dev = adapter->port[p->iff].dev;
1385         skb->dev->last_rx = jiffies;
1386         st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1387         st->rx_packets++;
1388
1389         skb->protocol = eth_type_trans(skb, skb->dev);
1390         if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1391             skb->protocol == htons(ETH_P_IP) &&
1392             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1393                 ++st->rx_cso_good;
1394                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1395         } else
1396                 skb->ip_summed = CHECKSUM_NONE;
1397
1398         if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1399                 st->vlan_xtract++;
1400 #ifdef CONFIG_CHELSIO_T1_NAPI
1401                         vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1402                                                  ntohs(p->vlan));
1403 #else
1404                         vlan_hwaccel_rx(skb, adapter->vlan_grp,
1405                                         ntohs(p->vlan));
1406 #endif
1407         } else {
1408 #ifdef CONFIG_CHELSIO_T1_NAPI
1409                 netif_receive_skb(skb);
1410 #else
1411                 netif_rx(skb);
1412 #endif
1413         }
1414         return 0;
1415 }
1416
1417 /*
1418  * Returns true if a command queue has enough available descriptors that
1419  * we can resume Tx operation after temporarily disabling its packet queue.
1420  */
1421 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1422 {
1423         unsigned int r = q->processed - q->cleaned;
1424
1425         return q->in_use - r < (q->size >> 1);
1426 }
1427
1428 /*
1429  * Called when sufficient space has become available in the SGE command queues
1430  * after the Tx packet schedulers have been suspended to restart the Tx path.
1431  */
1432 static void restart_tx_queues(struct sge *sge)
1433 {
1434         struct adapter *adap = sge->adapter;
1435         int i;
1436
1437         if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1438                 return;
1439
1440         for_each_port(adap, i) {
1441                 struct net_device *nd = adap->port[i].dev;
1442
1443                 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1444                     netif_running(nd)) {
1445                         sge->stats.cmdQ_restarted[2]++;
1446                         netif_wake_queue(nd);
1447                 }
1448         }
1449 }
1450
1451 /*
1452  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1453  * information.
1454  */
1455 static unsigned int update_tx_info(struct adapter *adapter,
1456                                           unsigned int flags,
1457                                           unsigned int pr0)
1458 {
1459         struct sge *sge = adapter->sge;
1460         struct cmdQ *cmdq = &sge->cmdQ[0];
1461
1462         cmdq->processed += pr0;
1463         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1464                 freelQs_empty(sge);
1465                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1466         }
1467         if (flags & F_CMDQ0_ENABLE) {
1468                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1469
1470                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1471                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1472                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1473                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1474                 }
1475                 if (sge->tx_sched)
1476                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1477
1478                 flags &= ~F_CMDQ0_ENABLE;
1479         }
1480
1481         if (unlikely(sge->stopped_tx_queues != 0))
1482                 restart_tx_queues(sge);
1483
1484         return flags;
1485 }
1486
1487 /*
1488  * Process SGE responses, up to the supplied budget.  Returns the number of
1489  * responses processed.  A negative budget is effectively unlimited.
1490  */
1491 static int process_responses(struct adapter *adapter, int budget)
1492 {
1493         struct sge *sge = adapter->sge;
1494         struct respQ *q = &sge->respQ;
1495         struct respQ_e *e = &q->entries[q->cidx];
1496         int budget_left = budget;
1497         unsigned int flags = 0;
1498         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1499
1500
1501         while (likely(budget_left && e->GenerationBit == q->genbit)) {
1502                 flags |= e->Qsleeping;
1503
1504                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1505                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1506
1507                 /* We batch updates to the TX side to avoid cacheline
1508                  * ping-pong of TX state information on MP where the sender
1509                  * might run on a different CPU than this function...
1510                  */
1511                 if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
1512                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1513                         cmdq_processed[0] = 0;
1514                 }
1515                 if (unlikely(cmdq_processed[1] > 16)) {
1516                         sge->cmdQ[1].processed += cmdq_processed[1];
1517                         cmdq_processed[1] = 0;
1518                 }
1519                 if (likely(e->DataValid)) {
1520                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1521
1522                         BUG_ON(!e->Sop || !e->Eop);
1523                         if (unlikely(e->Offload))
1524                                 unexpected_offload(adapter, fl);
1525                         else
1526                                 sge_rx(sge, fl, e->BufferLength);
1527
1528                         /*
1529                          * Note: this depends on each packet consuming a
1530                          * single free-list buffer; cf. the BUG above.
1531                          */
1532                         if (++fl->cidx == fl->size)
1533                                 fl->cidx = 0;
1534                         if (unlikely(--fl->credits <
1535                                      fl->size - SGE_FREEL_REFILL_THRESH))
1536                                 refill_free_list(sge, fl);
1537                 } else
1538                         sge->stats.pure_rsps++;
1539
1540                 e++;
1541                 if (unlikely(++q->cidx == q->size)) {
1542                         q->cidx = 0;
1543                         q->genbit ^= 1;
1544                         e = q->entries;
1545                 }
1546                 prefetch(e);
1547
1548                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1549                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1550                         q->credits = 0;
1551                 }
1552                 --budget_left;
1553         }
1554
1555         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1556         sge->cmdQ[1].processed += cmdq_processed[1];
1557
1558         budget -= budget_left;
1559         return budget;
1560 }
1561
1562 #ifdef CONFIG_CHELSIO_T1_NAPI
1563 /*
1564  * A simpler version of process_responses() that handles only pure (i.e.,
1565  * non data-carrying) responses.  Such respones are too light-weight to justify
1566  * calling a softirq when using NAPI, so we handle them specially in hard
1567  * interrupt context.  The function is called with a pointer to a response,
1568  * which the caller must ensure is a valid pure response.  Returns 1 if it
1569  * encounters a valid data-carrying response, 0 otherwise.
1570  */
1571 static int process_pure_responses(struct adapter *adapter, struct respQ_e *e)
1572 {
1573         struct sge *sge = adapter->sge;
1574         struct respQ *q = &sge->respQ;
1575         unsigned int flags = 0;
1576         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1577
1578         do {
1579                 flags |= e->Qsleeping;
1580
1581                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1582                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1583
1584                 e++;
1585                 if (unlikely(++q->cidx == q->size)) {
1586                         q->cidx = 0;
1587                         q->genbit ^= 1;
1588                         e = q->entries;
1589                 }
1590                 prefetch(e);
1591
1592                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1593                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1594                         q->credits = 0;
1595                 }
1596                 sge->stats.pure_rsps++;
1597         } while (e->GenerationBit == q->genbit && !e->DataValid);
1598
1599         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1600         sge->cmdQ[1].processed += cmdq_processed[1];
1601
1602         return e->GenerationBit == q->genbit;
1603 }
1604
1605 /*
1606  * Handler for new data events when using NAPI.  This does not need any locking
1607  * or protection from interrupts as data interrupts are off at this point and
1608  * other adapter interrupts do not interfere.
1609  */
1610 int t1_poll(struct net_device *dev, int *budget)
1611 {
1612         struct adapter *adapter = dev->priv;
1613         int effective_budget = min(*budget, dev->quota);
1614         int work_done = process_responses(adapter, effective_budget);
1615
1616         *budget -= work_done;
1617         dev->quota -= work_done;
1618
1619         if (work_done >= effective_budget)
1620                 return 1;
1621
1622         spin_lock_irq(&adapter->async_lock);
1623         __netif_rx_complete(dev);
1624         writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1625         writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
1626                adapter->regs + A_PL_ENABLE);
1627         spin_unlock_irq(&adapter->async_lock);
1628
1629         return 0;
1630 }
1631
1632 /*
1633  * NAPI version of the main interrupt handler.
1634  */
1635 irqreturn_t t1_interrupt(int irq, void *data)
1636 {
1637         struct adapter *adapter = data;
1638         struct net_device *dev = adapter->sge->netdev;
1639         struct sge *sge = adapter->sge;
1640         u32 cause;
1641         int handled = 0;
1642
1643         cause = readl(adapter->regs + A_PL_CAUSE);
1644         if (cause == 0 || cause == ~0)
1645                 return IRQ_NONE;
1646
1647         spin_lock(&adapter->async_lock);
1648         if (cause & F_PL_INTR_SGE_DATA) {
1649                 struct respQ *q = &adapter->sge->respQ;
1650                 struct respQ_e *e = &q->entries[q->cidx];
1651
1652                 handled = 1;
1653                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1654
1655                 if (e->GenerationBit == q->genbit &&
1656                     __netif_rx_schedule_prep(dev)) {
1657                         if (e->DataValid || process_pure_responses(adapter, e)) {
1658                                 /* mask off data IRQ */
1659                                 writel(adapter->slow_intr_mask,
1660                                        adapter->regs + A_PL_ENABLE);
1661                                 __netif_rx_schedule(sge->netdev);
1662                                 goto unlock;
1663                         }
1664                         /* no data, no NAPI needed */
1665                         netif_poll_enable(dev);
1666
1667                 }
1668                 writel(q->cidx, adapter->regs + A_SG_SLEEPING);
1669         } else
1670                 handled = t1_slow_intr_handler(adapter);
1671
1672         if (!handled)
1673                 sge->stats.unhandled_irqs++;
1674 unlock:
1675         spin_unlock(&adapter->async_lock);
1676         return IRQ_RETVAL(handled != 0);
1677 }
1678
1679 #else
1680 /*
1681  * Main interrupt handler, optimized assuming that we took a 'DATA'
1682  * interrupt.
1683  *
1684  * 1. Clear the interrupt
1685  * 2. Loop while we find valid descriptors and process them; accumulate
1686  *      information that can be processed after the loop
1687  * 3. Tell the SGE at which index we stopped processing descriptors
1688  * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1689  *      outstanding TX buffers waiting, replenish RX buffers, potentially
1690  *      reenable upper layers if they were turned off due to lack of TX
1691  *      resources which are available again.
1692  * 5. If we took an interrupt, but no valid respQ descriptors was found we
1693  *      let the slow_intr_handler run and do error handling.
1694  */
1695 irqreturn_t t1_interrupt(int irq, void *cookie)
1696 {
1697         int work_done;
1698         struct respQ_e *e;
1699         struct adapter *adapter = cookie;
1700         struct respQ *Q = &adapter->sge->respQ;
1701
1702         spin_lock(&adapter->async_lock);
1703         e = &Q->entries[Q->cidx];
1704         prefetch(e);
1705
1706         writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1707
1708         if (likely(e->GenerationBit == Q->genbit))
1709                 work_done = process_responses(adapter, -1);
1710         else
1711                 work_done = t1_slow_intr_handler(adapter);
1712
1713         /*
1714          * The unconditional clearing of the PL_CAUSE above may have raced
1715          * with DMA completion and the corresponding generation of a response
1716          * to cause us to miss the resulting data interrupt.  The next write
1717          * is also unconditional to recover the missed interrupt and render
1718          * this race harmless.
1719          */
1720         writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1721
1722         if (!work_done)
1723                 adapter->sge->stats.unhandled_irqs++;
1724         spin_unlock(&adapter->async_lock);
1725         return IRQ_RETVAL(work_done != 0);
1726 }
1727 #endif
1728
1729 /*
1730  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1731  *
1732  * The code figures out how many entries the sk_buff will require in the
1733  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1734  * has complete. Then, it doesn't access the global structure anymore, but
1735  * uses the corresponding fields on the stack. In conjuction with a spinlock
1736  * around that code, we can make the function reentrant without holding the
1737  * lock when we actually enqueue (which might be expensive, especially on
1738  * architectures with IO MMUs).
1739  *
1740  * This runs with softirqs disabled.
1741  */
1742 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1743                      unsigned int qid, struct net_device *dev)
1744 {
1745         struct sge *sge = adapter->sge;
1746         struct cmdQ *q = &sge->cmdQ[qid];
1747         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1748
1749         if (!spin_trylock(&q->lock))
1750                 return NETDEV_TX_LOCKED;
1751
1752         reclaim_completed_tx(sge, q);
1753
1754         pidx = q->pidx;
1755         credits = q->size - q->in_use;
1756         count = 1 + skb_shinfo(skb)->nr_frags;
1757         count += compute_large_page_tx_descs(skb);
1758
1759         /* Ethernet packet */
1760         if (unlikely(credits < count)) {
1761                 if (!netif_queue_stopped(dev)) {
1762                         netif_stop_queue(dev);
1763                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1764                         sge->stats.cmdQ_full[2]++;
1765                         CH_ERR("%s: Tx ring full while queue awake!\n",
1766                                adapter->name);
1767                 }
1768                 spin_unlock(&q->lock);
1769                 return NETDEV_TX_BUSY;
1770         }
1771
1772         if (unlikely(credits - count < q->stop_thres)) {
1773                 netif_stop_queue(dev);
1774                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1775                 sge->stats.cmdQ_full[2]++;
1776         }
1777
1778         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1779          * through the scheduler.
1780          */
1781         if (sge->tx_sched && !qid && skb->dev) {
1782 use_sched:
1783                 use_sched_skb = 1;
1784                 /* Note that the scheduler might return a different skb than
1785                  * the one passed in.
1786                  */
1787                 skb = sched_skb(sge, skb, credits);
1788                 if (!skb) {
1789                         spin_unlock(&q->lock);
1790                         return NETDEV_TX_OK;
1791                 }
1792                 pidx = q->pidx;
1793                 count = 1 + skb_shinfo(skb)->nr_frags;
1794                 count += compute_large_page_tx_descs(skb);
1795         }
1796
1797         q->in_use += count;
1798         genbit = q->genbit;
1799         pidx = q->pidx;
1800         q->pidx += count;
1801         if (q->pidx >= q->size) {
1802                 q->pidx -= q->size;
1803                 q->genbit ^= 1;
1804         }
1805         spin_unlock(&q->lock);
1806
1807         write_tx_descs(adapter, skb, pidx, genbit, q);
1808
1809         /*
1810          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1811          * the doorbell if the Q is asleep. There is a natural race, where
1812          * the hardware is going to sleep just after we checked, however,
1813          * then the interrupt handler will detect the outstanding TX packet
1814          * and ring the doorbell for us.
1815          */
1816         if (qid)
1817                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1818         else {
1819                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1820                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1821                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1822                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1823                 }
1824         }
1825
1826         if (use_sched_skb) {
1827                 if (spin_trylock(&q->lock)) {
1828                         credits = q->size - q->in_use;
1829                         skb = NULL;
1830                         goto use_sched;
1831                 }
1832         }
1833         return NETDEV_TX_OK;
1834 }
1835
1836 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1837
1838 /*
1839  *      eth_hdr_len - return the length of an Ethernet header
1840  *      @data: pointer to the start of the Ethernet header
1841  *
1842  *      Returns the length of an Ethernet header, including optional VLAN tag.
1843  */
1844 static inline int eth_hdr_len(const void *data)
1845 {
1846         const struct ethhdr *e = data;
1847
1848         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1849 }
1850
1851 /*
1852  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1853  */
1854 int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1855 {
1856         struct adapter *adapter = dev->priv;
1857         struct sge *sge = adapter->sge;
1858         struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], smp_processor_id());
1859         struct cpl_tx_pkt *cpl;
1860         struct sk_buff *orig_skb = skb;
1861         int ret;
1862
1863         if (skb->protocol == htons(ETH_P_CPL5))
1864                 goto send;
1865
1866         if (skb_shinfo(skb)->gso_size) {
1867                 int eth_type;
1868                 struct cpl_tx_pkt_lso *hdr;
1869
1870                 ++st->tx_tso;
1871
1872                 eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
1873                         CPL_ETH_II : CPL_ETH_II_VLAN;
1874
1875                 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1876                 hdr->opcode = CPL_TX_PKT_LSO;
1877                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1878                 hdr->ip_hdr_words = skb->nh.iph->ihl;
1879                 hdr->tcp_hdr_words = skb->h.th->doff;
1880                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1881                                                           skb_shinfo(skb)->gso_size));
1882                 hdr->len = htonl(skb->len - sizeof(*hdr));
1883                 cpl = (struct cpl_tx_pkt *)hdr;
1884         } else {
1885                 /*
1886                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1887                  * early.  Also, we may get oversized packets because some
1888                  * parts of the kernel don't handle our unusual hard_header_len
1889                  * right, drop those too.
1890                  */
1891                 if (unlikely(skb->len < ETH_HLEN ||
1892                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1893                         pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1894                                  skb->len, eth_hdr_len(skb->data), dev->mtu);
1895                         dev_kfree_skb_any(skb);
1896                         return NETDEV_TX_OK;
1897                 }
1898
1899                 /*
1900                  * We are using a non-standard hard_header_len and some kernel
1901                  * components, such as pktgen, do not handle it right.
1902                  * Complain when this happens but try to fix things up.
1903                  */
1904                 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1905                         pr_debug("%s: headroom %d header_len %d\n", dev->name,
1906                                  skb_headroom(skb), dev->hard_header_len);
1907
1908                         if (net_ratelimit())
1909                                 printk(KERN_ERR "%s: inadequate headroom in "
1910                                        "Tx packet\n", dev->name);
1911                         skb = skb_realloc_headroom(skb, sizeof(*cpl));
1912                         dev_kfree_skb_any(orig_skb);
1913                         if (!skb)
1914                                 return NETDEV_TX_OK;
1915                 }
1916
1917                 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1918                     skb->ip_summed == CHECKSUM_PARTIAL &&
1919                     skb->nh.iph->protocol == IPPROTO_UDP) {
1920                         if (unlikely(skb_checksum_help(skb))) {
1921                                 pr_debug("%s: unable to do udp checksum\n", dev->name);
1922                                 dev_kfree_skb_any(skb);
1923                                 return NETDEV_TX_OK;
1924                         }
1925                 }
1926
1927                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1928                  * it to flush out stuck espi packets...
1929                  */
1930                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1931                         if (skb->protocol == htons(ETH_P_ARP) &&
1932                             skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
1933                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1934                                 /* We want to re-use this skb later. We
1935                                  * simply bump the reference count and it
1936                                  * will not be freed...
1937                                  */
1938                                 skb = skb_get(skb);
1939                         }
1940                 }
1941
1942                 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1943                 cpl->opcode = CPL_TX_PKT;
1944                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1945                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1946                 /* the length field isn't used so don't bother setting it */
1947
1948                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1949         }
1950         cpl->iff = dev->if_port;
1951
1952 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1953         if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1954                 cpl->vlan_valid = 1;
1955                 cpl->vlan = htons(vlan_tx_tag_get(skb));
1956                 st->vlan_insert++;
1957         } else
1958 #endif
1959                 cpl->vlan_valid = 0;
1960
1961 send:
1962         st->tx_packets++;
1963         dev->trans_start = jiffies;
1964         ret = t1_sge_tx(skb, adapter, 0, dev);
1965
1966         /* If transmit busy, and we reallocated skb's due to headroom limit,
1967          * then silently discard to avoid leak.
1968          */
1969         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1970                 dev_kfree_skb_any(skb);
1971                 ret = NETDEV_TX_OK;
1972         }
1973         return ret;
1974 }
1975
1976 /*
1977  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1978  */
1979 static void sge_tx_reclaim_cb(unsigned long data)
1980 {
1981         int i;
1982         struct sge *sge = (struct sge *)data;
1983
1984         for (i = 0; i < SGE_CMDQ_N; ++i) {
1985                 struct cmdQ *q = &sge->cmdQ[i];
1986
1987                 if (!spin_trylock(&q->lock))
1988                         continue;
1989
1990                 reclaim_completed_tx(sge, q);
1991                 if (i == 0 && q->in_use) {    /* flush pending credits */
1992                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1993                 }
1994                 spin_unlock(&q->lock);
1995         }
1996         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1997 }
1998
1999 /*
2000  * Propagate changes of the SGE coalescing parameters to the HW.
2001  */
2002 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
2003 {
2004         sge->fixed_intrtimer = p->rx_coalesce_usecs *
2005                 core_ticks_per_usec(sge->adapter);
2006         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
2007         return 0;
2008 }
2009
2010 /*
2011  * Allocates both RX and TX resources and configures the SGE. However,
2012  * the hardware is not enabled yet.
2013  */
2014 int t1_sge_configure(struct sge *sge, struct sge_params *p)
2015 {
2016         if (alloc_rx_resources(sge, p))
2017                 return -ENOMEM;
2018         if (alloc_tx_resources(sge, p)) {
2019                 free_rx_resources(sge);
2020                 return -ENOMEM;
2021         }
2022         configure_sge(sge, p);
2023
2024         /*
2025          * Now that we have sized the free lists calculate the payload
2026          * capacity of the large buffers.  Other parts of the driver use
2027          * this to set the max offload coalescing size so that RX packets
2028          * do not overflow our large buffers.
2029          */
2030         p->large_buf_capacity = jumbo_payload_capacity(sge);
2031         return 0;
2032 }
2033
2034 /*
2035  * Disables the DMA engine.
2036  */
2037 void t1_sge_stop(struct sge *sge)
2038 {
2039         int i;
2040         writel(0, sge->adapter->regs + A_SG_CONTROL);
2041         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2042
2043         if (is_T2(sge->adapter))
2044                 del_timer_sync(&sge->espibug_timer);
2045
2046         del_timer_sync(&sge->tx_reclaim_timer);
2047         if (sge->tx_sched)
2048                 tx_sched_stop(sge);
2049
2050         for (i = 0; i < MAX_NPORTS; i++)
2051                 if (sge->espibug_skb[i])
2052                         kfree_skb(sge->espibug_skb[i]);
2053 }
2054
2055 /*
2056  * Enables the DMA engine.
2057  */
2058 void t1_sge_start(struct sge *sge)
2059 {
2060         refill_free_list(sge, &sge->freelQ[0]);
2061         refill_free_list(sge, &sge->freelQ[1]);
2062
2063         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2064         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2065         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2066
2067         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2068
2069         if (is_T2(sge->adapter))
2070                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2071 }
2072
2073 /*
2074  * Callback for the T2 ESPI 'stuck packet feature' workaorund
2075  */
2076 static void espibug_workaround_t204(unsigned long data)
2077 {
2078         struct adapter *adapter = (struct adapter *)data;
2079         struct sge *sge = adapter->sge;
2080         unsigned int nports = adapter->params.nports;
2081         u32 seop[MAX_NPORTS];
2082
2083         if (adapter->open_device_map & PORT_MASK) {
2084                 int i;
2085
2086                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2087                         return;
2088
2089                 for (i = 0; i < nports; i++) {
2090                         struct sk_buff *skb = sge->espibug_skb[i];
2091
2092                         if (!netif_running(adapter->port[i].dev) ||
2093                             netif_queue_stopped(adapter->port[i].dev) ||
2094                             !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2095                                 continue;
2096
2097                         if (!skb->cb[0]) {
2098                                 u8 ch_mac_addr[ETH_ALEN] = {
2099                                         0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2100                                 };
2101
2102                                 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2103                                         ch_mac_addr, ETH_ALEN);
2104                                 memcpy(skb->data + skb->len - 10,
2105                                         ch_mac_addr, ETH_ALEN);
2106                                 skb->cb[0] = 0xff;
2107                         }
2108
2109                         /* bump the reference count to avoid freeing of
2110                          * the skb once the DMA has completed.
2111                          */
2112                         skb = skb_get(skb);
2113                         t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2114                 }
2115         }
2116         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2117 }
2118
2119 static void espibug_workaround(unsigned long data)
2120 {
2121         struct adapter *adapter = (struct adapter *)data;
2122         struct sge *sge = adapter->sge;
2123
2124         if (netif_running(adapter->port[0].dev)) {
2125                 struct sk_buff *skb = sge->espibug_skb[0];
2126                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2127
2128                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2129                         if (!skb->cb[0]) {
2130                                 u8 ch_mac_addr[ETH_ALEN] =
2131                                     {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2132                                 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2133                                        ch_mac_addr, ETH_ALEN);
2134                                 memcpy(skb->data + skb->len - 10, ch_mac_addr,
2135                                        ETH_ALEN);
2136                                 skb->cb[0] = 0xff;
2137                         }
2138
2139                         /* bump the reference count to avoid freeing of the
2140                          * skb once the DMA has completed.
2141                          */
2142                         skb = skb_get(skb);
2143                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2144                 }
2145         }
2146         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2147 }
2148
2149 /*
2150  * Creates a t1_sge structure and returns suggested resource parameters.
2151  */
2152 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2153                                      struct sge_params *p)
2154 {
2155         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2156         int i;
2157
2158         if (!sge)
2159                 return NULL;
2160
2161         sge->adapter = adapter;
2162         sge->netdev = adapter->port[0].dev;
2163         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2164         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2165
2166         for_each_port(adapter, i) {
2167                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2168                 if (!sge->port_stats[i])
2169                         goto nomem_port;
2170         }
2171
2172         init_timer(&sge->tx_reclaim_timer);
2173         sge->tx_reclaim_timer.data = (unsigned long)sge;
2174         sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2175
2176         if (is_T2(sge->adapter)) {
2177                 init_timer(&sge->espibug_timer);
2178
2179                 if (adapter->params.nports > 1) {
2180                         tx_sched_init(sge);
2181                         sge->espibug_timer.function = espibug_workaround_t204;
2182                 } else
2183                         sge->espibug_timer.function = espibug_workaround;
2184                 sge->espibug_timer.data = (unsigned long)sge->adapter;
2185
2186                 sge->espibug_timeout = 1;
2187                 /* for T204, every 10ms */
2188                 if (adapter->params.nports > 1)
2189                         sge->espibug_timeout = HZ/100;
2190         }
2191
2192
2193         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2194         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2195         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2196         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2197         if (sge->tx_sched) {
2198                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2199                         p->rx_coalesce_usecs = 15;
2200                 else
2201                         p->rx_coalesce_usecs = 50;
2202         } else
2203                 p->rx_coalesce_usecs = 50;
2204
2205         p->coalesce_enable = 0;
2206         p->sample_interval_usecs = 0;
2207
2208         return sge;
2209 nomem_port:
2210         while (i >= 0) {
2211                 free_percpu(sge->port_stats[i]);
2212                 --i;
2213         }
2214         kfree(sge);
2215         return NULL;
2216
2217 }