[PATCH] pktcdvd: Use bd_claim to get exclusive access
[linux-3.10.git] / drivers / block / pktcdvd.c
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  *
5  * May be copied or modified under the terms of the GNU General Public
6  * License.  See linux/COPYING for more information.
7  *
8  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9  * DVD-RAM devices.
10  *
11  * Theory of operation:
12  *
13  * At the lowest level, there is the standard driver for the CD/DVD device,
14  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15  * but it doesn't know anything about the special restrictions that apply to
16  * packet writing. One restriction is that write requests must be aligned to
17  * packet boundaries on the physical media, and the size of a write request
18  * must be equal to the packet size. Another restriction is that a
19  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20  * command, if the previous command was a write.
21  *
22  * The purpose of the packet writing driver is to hide these restrictions from
23  * higher layers, such as file systems, and present a block device that can be
24  * randomly read and written using 2kB-sized blocks.
25  *
26  * The lowest layer in the packet writing driver is the packet I/O scheduler.
27  * Its data is defined by the struct packet_iosched and includes two bio
28  * queues with pending read and write requests. These queues are processed
29  * by the pkt_iosched_process_queue() function. The write requests in this
30  * queue are already properly aligned and sized. This layer is responsible for
31  * issuing the flush cache commands and scheduling the I/O in a good order.
32  *
33  * The next layer transforms unaligned write requests to aligned writes. This
34  * transformation requires reading missing pieces of data from the underlying
35  * block device, assembling the pieces to full packets and queuing them to the
36  * packet I/O scheduler.
37  *
38  * At the top layer there is a custom make_request_fn function that forwards
39  * read requests directly to the iosched queue and puts write requests in the
40  * unaligned write queue. A kernel thread performs the necessary read
41  * gathering to convert the unaligned writes to aligned writes and then feeds
42  * them to the packet I/O scheduler.
43  *
44  *************************************************************************/
45
46 #define VERSION_CODE    "v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com"
47
48 #include <linux/pktcdvd.h>
49 #include <linux/config.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/kthread.h>
54 #include <linux/errno.h>
55 #include <linux/spinlock.h>
56 #include <linux/file.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/miscdevice.h>
60 #include <linux/suspend.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_ioctl.h>
63
64 #include <asm/uaccess.h>
65
66 #if PACKET_DEBUG
67 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
68 #else
69 #define DPRINTK(fmt, args...)
70 #endif
71
72 #if PACKET_DEBUG > 1
73 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define VPRINTK(fmt, args...)
76 #endif
77
78 #define MAX_SPEED 0xffff
79
80 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
81
82 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
83 static struct proc_dir_entry *pkt_proc;
84 static int pkt_major;
85 static struct semaphore ctl_mutex;      /* Serialize open/close/setup/teardown */
86 static mempool_t *psd_pool;
87
88
89 static void pkt_bio_finished(struct pktcdvd_device *pd)
90 {
91         BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
92         if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
93                 VPRINTK("pktcdvd: queue empty\n");
94                 atomic_set(&pd->iosched.attention, 1);
95                 wake_up(&pd->wqueue);
96         }
97 }
98
99 static void pkt_bio_destructor(struct bio *bio)
100 {
101         kfree(bio->bi_io_vec);
102         kfree(bio);
103 }
104
105 static struct bio *pkt_bio_alloc(int nr_iovecs)
106 {
107         struct bio_vec *bvl = NULL;
108         struct bio *bio;
109
110         bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
111         if (!bio)
112                 goto no_bio;
113         bio_init(bio);
114
115         bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
116         if (!bvl)
117                 goto no_bvl;
118
119         bio->bi_max_vecs = nr_iovecs;
120         bio->bi_io_vec = bvl;
121         bio->bi_destructor = pkt_bio_destructor;
122
123         return bio;
124
125  no_bvl:
126         kfree(bio);
127  no_bio:
128         return NULL;
129 }
130
131 /*
132  * Allocate a packet_data struct
133  */
134 static struct packet_data *pkt_alloc_packet_data(void)
135 {
136         int i;
137         struct packet_data *pkt;
138
139         pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
140         if (!pkt)
141                 goto no_pkt;
142
143         pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
144         if (!pkt->w_bio)
145                 goto no_bio;
146
147         for (i = 0; i < PAGES_PER_PACKET; i++) {
148                 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
149                 if (!pkt->pages[i])
150                         goto no_page;
151         }
152
153         spin_lock_init(&pkt->lock);
154
155         for (i = 0; i < PACKET_MAX_SIZE; i++) {
156                 struct bio *bio = pkt_bio_alloc(1);
157                 if (!bio)
158                         goto no_rd_bio;
159                 pkt->r_bios[i] = bio;
160         }
161
162         return pkt;
163
164 no_rd_bio:
165         for (i = 0; i < PACKET_MAX_SIZE; i++) {
166                 struct bio *bio = pkt->r_bios[i];
167                 if (bio)
168                         bio_put(bio);
169         }
170
171 no_page:
172         for (i = 0; i < PAGES_PER_PACKET; i++)
173                 if (pkt->pages[i])
174                         __free_page(pkt->pages[i]);
175         bio_put(pkt->w_bio);
176 no_bio:
177         kfree(pkt);
178 no_pkt:
179         return NULL;
180 }
181
182 /*
183  * Free a packet_data struct
184  */
185 static void pkt_free_packet_data(struct packet_data *pkt)
186 {
187         int i;
188
189         for (i = 0; i < PACKET_MAX_SIZE; i++) {
190                 struct bio *bio = pkt->r_bios[i];
191                 if (bio)
192                         bio_put(bio);
193         }
194         for (i = 0; i < PAGES_PER_PACKET; i++)
195                 __free_page(pkt->pages[i]);
196         bio_put(pkt->w_bio);
197         kfree(pkt);
198 }
199
200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
201 {
202         struct packet_data *pkt, *next;
203
204         BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
205
206         list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
207                 pkt_free_packet_data(pkt);
208         }
209 }
210
211 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
212 {
213         struct packet_data *pkt;
214
215         INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
216         INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
217         spin_lock_init(&pd->cdrw.active_list_lock);
218         while (nr_packets > 0) {
219                 pkt = pkt_alloc_packet_data();
220                 if (!pkt) {
221                         pkt_shrink_pktlist(pd);
222                         return 0;
223                 }
224                 pkt->id = nr_packets;
225                 pkt->pd = pd;
226                 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
227                 nr_packets--;
228         }
229         return 1;
230 }
231
232 static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
233 {
234         return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
235 }
236
237 static void pkt_rb_free(void *ptr, void *data)
238 {
239         kfree(ptr);
240 }
241
242 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
243 {
244         struct rb_node *n = rb_next(&node->rb_node);
245         if (!n)
246                 return NULL;
247         return rb_entry(n, struct pkt_rb_node, rb_node);
248 }
249
250 static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
251 {
252         rb_erase(&node->rb_node, &pd->bio_queue);
253         mempool_free(node, pd->rb_pool);
254         pd->bio_queue_size--;
255         BUG_ON(pd->bio_queue_size < 0);
256 }
257
258 /*
259  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
260  */
261 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
262 {
263         struct rb_node *n = pd->bio_queue.rb_node;
264         struct rb_node *next;
265         struct pkt_rb_node *tmp;
266
267         if (!n) {
268                 BUG_ON(pd->bio_queue_size > 0);
269                 return NULL;
270         }
271
272         for (;;) {
273                 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
274                 if (s <= tmp->bio->bi_sector)
275                         next = n->rb_left;
276                 else
277                         next = n->rb_right;
278                 if (!next)
279                         break;
280                 n = next;
281         }
282
283         if (s > tmp->bio->bi_sector) {
284                 tmp = pkt_rbtree_next(tmp);
285                 if (!tmp)
286                         return NULL;
287         }
288         BUG_ON(s > tmp->bio->bi_sector);
289         return tmp;
290 }
291
292 /*
293  * Insert a node into the pd->bio_queue rb tree.
294  */
295 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
296 {
297         struct rb_node **p = &pd->bio_queue.rb_node;
298         struct rb_node *parent = NULL;
299         sector_t s = node->bio->bi_sector;
300         struct pkt_rb_node *tmp;
301
302         while (*p) {
303                 parent = *p;
304                 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
305                 if (s < tmp->bio->bi_sector)
306                         p = &(*p)->rb_left;
307                 else
308                         p = &(*p)->rb_right;
309         }
310         rb_link_node(&node->rb_node, parent, p);
311         rb_insert_color(&node->rb_node, &pd->bio_queue);
312         pd->bio_queue_size++;
313 }
314
315 /*
316  * Add a bio to a single linked list defined by its head and tail pointers.
317  */
318 static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
319 {
320         bio->bi_next = NULL;
321         if (*list_tail) {
322                 BUG_ON((*list_head) == NULL);
323                 (*list_tail)->bi_next = bio;
324                 (*list_tail) = bio;
325         } else {
326                 BUG_ON((*list_head) != NULL);
327                 (*list_head) = bio;
328                 (*list_tail) = bio;
329         }
330 }
331
332 /*
333  * Remove and return the first bio from a single linked list defined by its
334  * head and tail pointers.
335  */
336 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
337 {
338         struct bio *bio;
339
340         if (*list_head == NULL)
341                 return NULL;
342
343         bio = *list_head;
344         *list_head = bio->bi_next;
345         if (*list_head == NULL)
346                 *list_tail = NULL;
347
348         bio->bi_next = NULL;
349         return bio;
350 }
351
352 /*
353  * Send a packet_command to the underlying block device and
354  * wait for completion.
355  */
356 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
357 {
358         char sense[SCSI_SENSE_BUFFERSIZE];
359         request_queue_t *q;
360         struct request *rq;
361         DECLARE_COMPLETION(wait);
362         int err = 0;
363
364         q = bdev_get_queue(pd->bdev);
365
366         rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
367                              __GFP_WAIT);
368         rq->errors = 0;
369         rq->rq_disk = pd->bdev->bd_disk;
370         rq->bio = NULL;
371         rq->buffer = NULL;
372         rq->timeout = 60*HZ;
373         rq->data = cgc->buffer;
374         rq->data_len = cgc->buflen;
375         rq->sense = sense;
376         memset(sense, 0, sizeof(sense));
377         rq->sense_len = 0;
378         rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
379         if (cgc->quiet)
380                 rq->flags |= REQ_QUIET;
381         memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
382         if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
383                 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
384
385         rq->ref_count++;
386         rq->flags |= REQ_NOMERGE;
387         rq->waiting = &wait;
388         rq->end_io = blk_end_sync_rq;
389         elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
390         generic_unplug_device(q);
391         wait_for_completion(&wait);
392
393         if (rq->errors)
394                 err = -EIO;
395
396         blk_put_request(rq);
397         return err;
398 }
399
400 /*
401  * A generic sense dump / resolve mechanism should be implemented across
402  * all ATAPI + SCSI devices.
403  */
404 static void pkt_dump_sense(struct packet_command *cgc)
405 {
406         static char *info[9] = { "No sense", "Recovered error", "Not ready",
407                                  "Medium error", "Hardware error", "Illegal request",
408                                  "Unit attention", "Data protect", "Blank check" };
409         int i;
410         struct request_sense *sense = cgc->sense;
411
412         printk("pktcdvd:");
413         for (i = 0; i < CDROM_PACKET_SIZE; i++)
414                 printk(" %02x", cgc->cmd[i]);
415         printk(" - ");
416
417         if (sense == NULL) {
418                 printk("no sense\n");
419                 return;
420         }
421
422         printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
423
424         if (sense->sense_key > 8) {
425                 printk(" (INVALID)\n");
426                 return;
427         }
428
429         printk(" (%s)\n", info[sense->sense_key]);
430 }
431
432 /*
433  * flush the drive cache to media
434  */
435 static int pkt_flush_cache(struct pktcdvd_device *pd)
436 {
437         struct packet_command cgc;
438
439         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
440         cgc.cmd[0] = GPCMD_FLUSH_CACHE;
441         cgc.quiet = 1;
442
443         /*
444          * the IMMED bit -- we default to not setting it, although that
445          * would allow a much faster close, this is safer
446          */
447 #if 0
448         cgc.cmd[1] = 1 << 1;
449 #endif
450         return pkt_generic_packet(pd, &cgc);
451 }
452
453 /*
454  * speed is given as the normal factor, e.g. 4 for 4x
455  */
456 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
457 {
458         struct packet_command cgc;
459         struct request_sense sense;
460         int ret;
461
462         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
463         cgc.sense = &sense;
464         cgc.cmd[0] = GPCMD_SET_SPEED;
465         cgc.cmd[2] = (read_speed >> 8) & 0xff;
466         cgc.cmd[3] = read_speed & 0xff;
467         cgc.cmd[4] = (write_speed >> 8) & 0xff;
468         cgc.cmd[5] = write_speed & 0xff;
469
470         if ((ret = pkt_generic_packet(pd, &cgc)))
471                 pkt_dump_sense(&cgc);
472
473         return ret;
474 }
475
476 /*
477  * Queue a bio for processing by the low-level CD device. Must be called
478  * from process context.
479  */
480 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
481 {
482         spin_lock(&pd->iosched.lock);
483         if (bio_data_dir(bio) == READ) {
484                 pkt_add_list_last(bio, &pd->iosched.read_queue,
485                                   &pd->iosched.read_queue_tail);
486         } else {
487                 pkt_add_list_last(bio, &pd->iosched.write_queue,
488                                   &pd->iosched.write_queue_tail);
489         }
490         spin_unlock(&pd->iosched.lock);
491
492         atomic_set(&pd->iosched.attention, 1);
493         wake_up(&pd->wqueue);
494 }
495
496 /*
497  * Process the queued read/write requests. This function handles special
498  * requirements for CDRW drives:
499  * - A cache flush command must be inserted before a read request if the
500  *   previous request was a write.
501  * - Switching between reading and writing is slow, so don't do it more often
502  *   than necessary.
503  * - Optimize for throughput at the expense of latency. This means that streaming
504  *   writes will never be interrupted by a read, but if the drive has to seek
505  *   before the next write, switch to reading instead if there are any pending
506  *   read requests.
507  * - Set the read speed according to current usage pattern. When only reading
508  *   from the device, it's best to use the highest possible read speed, but
509  *   when switching often between reading and writing, it's better to have the
510  *   same read and write speeds.
511  */
512 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
513 {
514
515         if (atomic_read(&pd->iosched.attention) == 0)
516                 return;
517         atomic_set(&pd->iosched.attention, 0);
518
519         for (;;) {
520                 struct bio *bio;
521                 int reads_queued, writes_queued;
522
523                 spin_lock(&pd->iosched.lock);
524                 reads_queued = (pd->iosched.read_queue != NULL);
525                 writes_queued = (pd->iosched.write_queue != NULL);
526                 spin_unlock(&pd->iosched.lock);
527
528                 if (!reads_queued && !writes_queued)
529                         break;
530
531                 if (pd->iosched.writing) {
532                         int need_write_seek = 1;
533                         spin_lock(&pd->iosched.lock);
534                         bio = pd->iosched.write_queue;
535                         spin_unlock(&pd->iosched.lock);
536                         if (bio && (bio->bi_sector == pd->iosched.last_write))
537                                 need_write_seek = 0;
538                         if (need_write_seek && reads_queued) {
539                                 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
540                                         VPRINTK("pktcdvd: write, waiting\n");
541                                         break;
542                                 }
543                                 pkt_flush_cache(pd);
544                                 pd->iosched.writing = 0;
545                         }
546                 } else {
547                         if (!reads_queued && writes_queued) {
548                                 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
549                                         VPRINTK("pktcdvd: read, waiting\n");
550                                         break;
551                                 }
552                                 pd->iosched.writing = 1;
553                         }
554                 }
555
556                 spin_lock(&pd->iosched.lock);
557                 if (pd->iosched.writing) {
558                         bio = pkt_get_list_first(&pd->iosched.write_queue,
559                                                  &pd->iosched.write_queue_tail);
560                 } else {
561                         bio = pkt_get_list_first(&pd->iosched.read_queue,
562                                                  &pd->iosched.read_queue_tail);
563                 }
564                 spin_unlock(&pd->iosched.lock);
565
566                 if (!bio)
567                         continue;
568
569                 if (bio_data_dir(bio) == READ)
570                         pd->iosched.successive_reads += bio->bi_size >> 10;
571                 else {
572                         pd->iosched.successive_reads = 0;
573                         pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
574                 }
575                 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
576                         if (pd->read_speed == pd->write_speed) {
577                                 pd->read_speed = MAX_SPEED;
578                                 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
579                         }
580                 } else {
581                         if (pd->read_speed != pd->write_speed) {
582                                 pd->read_speed = pd->write_speed;
583                                 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
584                         }
585                 }
586
587                 atomic_inc(&pd->cdrw.pending_bios);
588                 generic_make_request(bio);
589         }
590 }
591
592 /*
593  * Special care is needed if the underlying block device has a small
594  * max_phys_segments value.
595  */
596 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
597 {
598         if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
599                 /*
600                  * The cdrom device can handle one segment/frame
601                  */
602                 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
603                 return 0;
604         } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
605                 /*
606                  * We can handle this case at the expense of some extra memory
607                  * copies during write operations
608                  */
609                 set_bit(PACKET_MERGE_SEGS, &pd->flags);
610                 return 0;
611         } else {
612                 printk("pktcdvd: cdrom max_phys_segments too small\n");
613                 return -EIO;
614         }
615 }
616
617 /*
618  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
619  */
620 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
621 {
622         unsigned int copy_size = CD_FRAMESIZE;
623
624         while (copy_size > 0) {
625                 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
626                 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
627                         src_bvl->bv_offset + offs;
628                 void *vto = page_address(dst_page) + dst_offs;
629                 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
630
631                 BUG_ON(len < 0);
632                 memcpy(vto, vfrom, len);
633                 kunmap_atomic(vfrom, KM_USER0);
634
635                 seg++;
636                 offs = 0;
637                 dst_offs += len;
638                 copy_size -= len;
639         }
640 }
641
642 /*
643  * Copy all data for this packet to pkt->pages[], so that
644  * a) The number of required segments for the write bio is minimized, which
645  *    is necessary for some scsi controllers.
646  * b) The data can be used as cache to avoid read requests if we receive a
647  *    new write request for the same zone.
648  */
649 static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
650 {
651         int f, p, offs;
652
653         /* Copy all data to pkt->pages[] */
654         p = 0;
655         offs = 0;
656         for (f = 0; f < pkt->frames; f++) {
657                 if (pages[f] != pkt->pages[p]) {
658                         void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
659                         void *vto = page_address(pkt->pages[p]) + offs;
660                         memcpy(vto, vfrom, CD_FRAMESIZE);
661                         kunmap_atomic(vfrom, KM_USER0);
662                         pages[f] = pkt->pages[p];
663                         offsets[f] = offs;
664                 } else {
665                         BUG_ON(offsets[f] != offs);
666                 }
667                 offs += CD_FRAMESIZE;
668                 if (offs >= PAGE_SIZE) {
669                         offs = 0;
670                         p++;
671                 }
672         }
673 }
674
675 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
676 {
677         struct packet_data *pkt = bio->bi_private;
678         struct pktcdvd_device *pd = pkt->pd;
679         BUG_ON(!pd);
680
681         if (bio->bi_size)
682                 return 1;
683
684         VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
685                 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
686
687         if (err)
688                 atomic_inc(&pkt->io_errors);
689         if (atomic_dec_and_test(&pkt->io_wait)) {
690                 atomic_inc(&pkt->run_sm);
691                 wake_up(&pd->wqueue);
692         }
693         pkt_bio_finished(pd);
694
695         return 0;
696 }
697
698 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
699 {
700         struct packet_data *pkt = bio->bi_private;
701         struct pktcdvd_device *pd = pkt->pd;
702         BUG_ON(!pd);
703
704         if (bio->bi_size)
705                 return 1;
706
707         VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
708
709         pd->stats.pkt_ended++;
710
711         pkt_bio_finished(pd);
712         atomic_dec(&pkt->io_wait);
713         atomic_inc(&pkt->run_sm);
714         wake_up(&pd->wqueue);
715         return 0;
716 }
717
718 /*
719  * Schedule reads for the holes in a packet
720  */
721 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
722 {
723         int frames_read = 0;
724         struct bio *bio;
725         int f;
726         char written[PACKET_MAX_SIZE];
727
728         BUG_ON(!pkt->orig_bios);
729
730         atomic_set(&pkt->io_wait, 0);
731         atomic_set(&pkt->io_errors, 0);
732
733         /*
734          * Figure out which frames we need to read before we can write.
735          */
736         memset(written, 0, sizeof(written));
737         spin_lock(&pkt->lock);
738         for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
739                 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
740                 int num_frames = bio->bi_size / CD_FRAMESIZE;
741                 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
742                 BUG_ON(first_frame < 0);
743                 BUG_ON(first_frame + num_frames > pkt->frames);
744                 for (f = first_frame; f < first_frame + num_frames; f++)
745                         written[f] = 1;
746         }
747         spin_unlock(&pkt->lock);
748
749         if (pkt->cache_valid) {
750                 VPRINTK("pkt_gather_data: zone %llx cached\n",
751                         (unsigned long long)pkt->sector);
752                 goto out_account;
753         }
754
755         /*
756          * Schedule reads for missing parts of the packet.
757          */
758         for (f = 0; f < pkt->frames; f++) {
759                 int p, offset;
760                 if (written[f])
761                         continue;
762                 bio = pkt->r_bios[f];
763                 bio_init(bio);
764                 bio->bi_max_vecs = 1;
765                 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
766                 bio->bi_bdev = pd->bdev;
767                 bio->bi_end_io = pkt_end_io_read;
768                 bio->bi_private = pkt;
769
770                 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
771                 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
772                 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
773                         f, pkt->pages[p], offset);
774                 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
775                         BUG();
776
777                 atomic_inc(&pkt->io_wait);
778                 bio->bi_rw = READ;
779                 pkt_queue_bio(pd, bio);
780                 frames_read++;
781         }
782
783 out_account:
784         VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
785                 frames_read, (unsigned long long)pkt->sector);
786         pd->stats.pkt_started++;
787         pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
788 }
789
790 /*
791  * Find a packet matching zone, or the least recently used packet if
792  * there is no match.
793  */
794 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
795 {
796         struct packet_data *pkt;
797
798         list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
799                 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
800                         list_del_init(&pkt->list);
801                         if (pkt->sector != zone)
802                                 pkt->cache_valid = 0;
803                         return pkt;
804                 }
805         }
806         BUG();
807         return NULL;
808 }
809
810 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
811 {
812         if (pkt->cache_valid) {
813                 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
814         } else {
815                 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
816         }
817 }
818
819 /*
820  * recover a failed write, query for relocation if possible
821  *
822  * returns 1 if recovery is possible, or 0 if not
823  *
824  */
825 static int pkt_start_recovery(struct packet_data *pkt)
826 {
827         /*
828          * FIXME. We need help from the file system to implement
829          * recovery handling.
830          */
831         return 0;
832 #if 0
833         struct request *rq = pkt->rq;
834         struct pktcdvd_device *pd = rq->rq_disk->private_data;
835         struct block_device *pkt_bdev;
836         struct super_block *sb = NULL;
837         unsigned long old_block, new_block;
838         sector_t new_sector;
839
840         pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
841         if (pkt_bdev) {
842                 sb = get_super(pkt_bdev);
843                 bdput(pkt_bdev);
844         }
845
846         if (!sb)
847                 return 0;
848
849         if (!sb->s_op || !sb->s_op->relocate_blocks)
850                 goto out;
851
852         old_block = pkt->sector / (CD_FRAMESIZE >> 9);
853         if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
854                 goto out;
855
856         new_sector = new_block * (CD_FRAMESIZE >> 9);
857         pkt->sector = new_sector;
858
859         pkt->bio->bi_sector = new_sector;
860         pkt->bio->bi_next = NULL;
861         pkt->bio->bi_flags = 1 << BIO_UPTODATE;
862         pkt->bio->bi_idx = 0;
863
864         BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
865         BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
866         BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
867         BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
868         BUG_ON(pkt->bio->bi_private != pkt);
869
870         drop_super(sb);
871         return 1;
872
873 out:
874         drop_super(sb);
875         return 0;
876 #endif
877 }
878
879 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
880 {
881 #if PACKET_DEBUG > 1
882         static const char *state_name[] = {
883                 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
884         };
885         enum packet_data_state old_state = pkt->state;
886         VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
887                 state_name[old_state], state_name[state]);
888 #endif
889         pkt->state = state;
890 }
891
892 /*
893  * Scan the work queue to see if we can start a new packet.
894  * returns non-zero if any work was done.
895  */
896 static int pkt_handle_queue(struct pktcdvd_device *pd)
897 {
898         struct packet_data *pkt, *p;
899         struct bio *bio = NULL;
900         sector_t zone = 0; /* Suppress gcc warning */
901         struct pkt_rb_node *node, *first_node;
902         struct rb_node *n;
903
904         VPRINTK("handle_queue\n");
905
906         atomic_set(&pd->scan_queue, 0);
907
908         if (list_empty(&pd->cdrw.pkt_free_list)) {
909                 VPRINTK("handle_queue: no pkt\n");
910                 return 0;
911         }
912
913         /*
914          * Try to find a zone we are not already working on.
915          */
916         spin_lock(&pd->lock);
917         first_node = pkt_rbtree_find(pd, pd->current_sector);
918         if (!first_node) {
919                 n = rb_first(&pd->bio_queue);
920                 if (n)
921                         first_node = rb_entry(n, struct pkt_rb_node, rb_node);
922         }
923         node = first_node;
924         while (node) {
925                 bio = node->bio;
926                 zone = ZONE(bio->bi_sector, pd);
927                 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
928                         if (p->sector == zone) {
929                                 bio = NULL;
930                                 goto try_next_bio;
931                         }
932                 }
933                 break;
934 try_next_bio:
935                 node = pkt_rbtree_next(node);
936                 if (!node) {
937                         n = rb_first(&pd->bio_queue);
938                         if (n)
939                                 node = rb_entry(n, struct pkt_rb_node, rb_node);
940                 }
941                 if (node == first_node)
942                         node = NULL;
943         }
944         spin_unlock(&pd->lock);
945         if (!bio) {
946                 VPRINTK("handle_queue: no bio\n");
947                 return 0;
948         }
949
950         pkt = pkt_get_packet_data(pd, zone);
951
952         pd->current_sector = zone + pd->settings.size;
953         pkt->sector = zone;
954         pkt->frames = pd->settings.size >> 2;
955         pkt->write_size = 0;
956
957         /*
958          * Scan work queue for bios in the same zone and link them
959          * to this packet.
960          */
961         spin_lock(&pd->lock);
962         VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
963         while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
964                 bio = node->bio;
965                 VPRINTK("pkt_handle_queue: found zone=%llx\n",
966                         (unsigned long long)ZONE(bio->bi_sector, pd));
967                 if (ZONE(bio->bi_sector, pd) != zone)
968                         break;
969                 pkt_rbtree_erase(pd, node);
970                 spin_lock(&pkt->lock);
971                 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
972                 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
973                 spin_unlock(&pkt->lock);
974         }
975         spin_unlock(&pd->lock);
976
977         pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
978         pkt_set_state(pkt, PACKET_WAITING_STATE);
979         atomic_set(&pkt->run_sm, 1);
980
981         spin_lock(&pd->cdrw.active_list_lock);
982         list_add(&pkt->list, &pd->cdrw.pkt_active_list);
983         spin_unlock(&pd->cdrw.active_list_lock);
984
985         return 1;
986 }
987
988 /*
989  * Assemble a bio to write one packet and queue the bio for processing
990  * by the underlying block device.
991  */
992 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
993 {
994         struct bio *bio;
995         struct page *pages[PACKET_MAX_SIZE];
996         int offsets[PACKET_MAX_SIZE];
997         int f;
998         int frames_write;
999
1000         for (f = 0; f < pkt->frames; f++) {
1001                 pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1002                 offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
1003         }
1004
1005         /*
1006          * Fill-in pages[] and offsets[] with data from orig_bios.
1007          */
1008         frames_write = 0;
1009         spin_lock(&pkt->lock);
1010         for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1011                 int segment = bio->bi_idx;
1012                 int src_offs = 0;
1013                 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1014                 int num_frames = bio->bi_size / CD_FRAMESIZE;
1015                 BUG_ON(first_frame < 0);
1016                 BUG_ON(first_frame + num_frames > pkt->frames);
1017                 for (f = first_frame; f < first_frame + num_frames; f++) {
1018                         struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1019
1020                         while (src_offs >= src_bvl->bv_len) {
1021                                 src_offs -= src_bvl->bv_len;
1022                                 segment++;
1023                                 BUG_ON(segment >= bio->bi_vcnt);
1024                                 src_bvl = bio_iovec_idx(bio, segment);
1025                         }
1026
1027                         if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1028                                 pages[f] = src_bvl->bv_page;
1029                                 offsets[f] = src_bvl->bv_offset + src_offs;
1030                         } else {
1031                                 pkt_copy_bio_data(bio, segment, src_offs,
1032                                                   pages[f], offsets[f]);
1033                         }
1034                         src_offs += CD_FRAMESIZE;
1035                         frames_write++;
1036                 }
1037         }
1038         pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1039         spin_unlock(&pkt->lock);
1040
1041         VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1042                 frames_write, (unsigned long long)pkt->sector);
1043         BUG_ON(frames_write != pkt->write_size);
1044
1045         if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1046                 pkt_make_local_copy(pkt, pages, offsets);
1047                 pkt->cache_valid = 1;
1048         } else {
1049                 pkt->cache_valid = 0;
1050         }
1051
1052         /* Start the write request */
1053         bio_init(pkt->w_bio);
1054         pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1055         pkt->w_bio->bi_sector = pkt->sector;
1056         pkt->w_bio->bi_bdev = pd->bdev;
1057         pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1058         pkt->w_bio->bi_private = pkt;
1059         for (f = 0; f < pkt->frames; f++) {
1060                 if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
1061                     (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
1062                         if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
1063                                 BUG();
1064                         f++;
1065                 } else {
1066                         if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
1067                                 BUG();
1068                 }
1069         }
1070         VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1071
1072         atomic_set(&pkt->io_wait, 1);
1073         pkt->w_bio->bi_rw = WRITE;
1074         pkt_queue_bio(pd, pkt->w_bio);
1075 }
1076
1077 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1078 {
1079         struct bio *bio, *next;
1080
1081         if (!uptodate)
1082                 pkt->cache_valid = 0;
1083
1084         /* Finish all bios corresponding to this packet */
1085         bio = pkt->orig_bios;
1086         while (bio) {
1087                 next = bio->bi_next;
1088                 bio->bi_next = NULL;
1089                 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1090                 bio = next;
1091         }
1092         pkt->orig_bios = pkt->orig_bios_tail = NULL;
1093 }
1094
1095 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1096 {
1097         int uptodate;
1098
1099         VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1100
1101         for (;;) {
1102                 switch (pkt->state) {
1103                 case PACKET_WAITING_STATE:
1104                         if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1105                                 return;
1106
1107                         pkt->sleep_time = 0;
1108                         pkt_gather_data(pd, pkt);
1109                         pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1110                         break;
1111
1112                 case PACKET_READ_WAIT_STATE:
1113                         if (atomic_read(&pkt->io_wait) > 0)
1114                                 return;
1115
1116                         if (atomic_read(&pkt->io_errors) > 0) {
1117                                 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1118                         } else {
1119                                 pkt_start_write(pd, pkt);
1120                         }
1121                         break;
1122
1123                 case PACKET_WRITE_WAIT_STATE:
1124                         if (atomic_read(&pkt->io_wait) > 0)
1125                                 return;
1126
1127                         if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1128                                 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1129                         } else {
1130                                 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1131                         }
1132                         break;
1133
1134                 case PACKET_RECOVERY_STATE:
1135                         if (pkt_start_recovery(pkt)) {
1136                                 pkt_start_write(pd, pkt);
1137                         } else {
1138                                 VPRINTK("No recovery possible\n");
1139                                 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1140                         }
1141                         break;
1142
1143                 case PACKET_FINISHED_STATE:
1144                         uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1145                         pkt_finish_packet(pkt, uptodate);
1146                         return;
1147
1148                 default:
1149                         BUG();
1150                         break;
1151                 }
1152         }
1153 }
1154
1155 static void pkt_handle_packets(struct pktcdvd_device *pd)
1156 {
1157         struct packet_data *pkt, *next;
1158
1159         VPRINTK("pkt_handle_packets\n");
1160
1161         /*
1162          * Run state machine for active packets
1163          */
1164         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1165                 if (atomic_read(&pkt->run_sm) > 0) {
1166                         atomic_set(&pkt->run_sm, 0);
1167                         pkt_run_state_machine(pd, pkt);
1168                 }
1169         }
1170
1171         /*
1172          * Move no longer active packets to the free list
1173          */
1174         spin_lock(&pd->cdrw.active_list_lock);
1175         list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1176                 if (pkt->state == PACKET_FINISHED_STATE) {
1177                         list_del(&pkt->list);
1178                         pkt_put_packet_data(pd, pkt);
1179                         pkt_set_state(pkt, PACKET_IDLE_STATE);
1180                         atomic_set(&pd->scan_queue, 1);
1181                 }
1182         }
1183         spin_unlock(&pd->cdrw.active_list_lock);
1184 }
1185
1186 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1187 {
1188         struct packet_data *pkt;
1189         int i;
1190
1191         for (i = 0; i < PACKET_NUM_STATES; i++)
1192                 states[i] = 0;
1193
1194         spin_lock(&pd->cdrw.active_list_lock);
1195         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1196                 states[pkt->state]++;
1197         }
1198         spin_unlock(&pd->cdrw.active_list_lock);
1199 }
1200
1201 /*
1202  * kcdrwd is woken up when writes have been queued for one of our
1203  * registered devices
1204  */
1205 static int kcdrwd(void *foobar)
1206 {
1207         struct pktcdvd_device *pd = foobar;
1208         struct packet_data *pkt;
1209         long min_sleep_time, residue;
1210
1211         set_user_nice(current, -20);
1212
1213         for (;;) {
1214                 DECLARE_WAITQUEUE(wait, current);
1215
1216                 /*
1217                  * Wait until there is something to do
1218                  */
1219                 add_wait_queue(&pd->wqueue, &wait);
1220                 for (;;) {
1221                         set_current_state(TASK_INTERRUPTIBLE);
1222
1223                         /* Check if we need to run pkt_handle_queue */
1224                         if (atomic_read(&pd->scan_queue) > 0)
1225                                 goto work_to_do;
1226
1227                         /* Check if we need to run the state machine for some packet */
1228                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1229                                 if (atomic_read(&pkt->run_sm) > 0)
1230                                         goto work_to_do;
1231                         }
1232
1233                         /* Check if we need to process the iosched queues */
1234                         if (atomic_read(&pd->iosched.attention) != 0)
1235                                 goto work_to_do;
1236
1237                         /* Otherwise, go to sleep */
1238                         if (PACKET_DEBUG > 1) {
1239                                 int states[PACKET_NUM_STATES];
1240                                 pkt_count_states(pd, states);
1241                                 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1242                                         states[0], states[1], states[2], states[3],
1243                                         states[4], states[5]);
1244                         }
1245
1246                         min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1247                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1248                                 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1249                                         min_sleep_time = pkt->sleep_time;
1250                         }
1251
1252                         generic_unplug_device(bdev_get_queue(pd->bdev));
1253
1254                         VPRINTK("kcdrwd: sleeping\n");
1255                         residue = schedule_timeout(min_sleep_time);
1256                         VPRINTK("kcdrwd: wake up\n");
1257
1258                         /* make swsusp happy with our thread */
1259                         try_to_freeze();
1260
1261                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1262                                 if (!pkt->sleep_time)
1263                                         continue;
1264                                 pkt->sleep_time -= min_sleep_time - residue;
1265                                 if (pkt->sleep_time <= 0) {
1266                                         pkt->sleep_time = 0;
1267                                         atomic_inc(&pkt->run_sm);
1268                                 }
1269                         }
1270
1271                         if (signal_pending(current)) {
1272                                 flush_signals(current);
1273                         }
1274                         if (kthread_should_stop())
1275                                 break;
1276                 }
1277 work_to_do:
1278                 set_current_state(TASK_RUNNING);
1279                 remove_wait_queue(&pd->wqueue, &wait);
1280
1281                 if (kthread_should_stop())
1282                         break;
1283
1284                 /*
1285                  * if pkt_handle_queue returns true, we can queue
1286                  * another request.
1287                  */
1288                 while (pkt_handle_queue(pd))
1289                         ;
1290
1291                 /*
1292                  * Handle packet state machine
1293                  */
1294                 pkt_handle_packets(pd);
1295
1296                 /*
1297                  * Handle iosched queues
1298                  */
1299                 pkt_iosched_process_queue(pd);
1300         }
1301
1302         return 0;
1303 }
1304
1305 static void pkt_print_settings(struct pktcdvd_device *pd)
1306 {
1307         printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1308         printk("%u blocks, ", pd->settings.size >> 2);
1309         printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1310 }
1311
1312 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1313 {
1314         memset(cgc->cmd, 0, sizeof(cgc->cmd));
1315
1316         cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1317         cgc->cmd[2] = page_code | (page_control << 6);
1318         cgc->cmd[7] = cgc->buflen >> 8;
1319         cgc->cmd[8] = cgc->buflen & 0xff;
1320         cgc->data_direction = CGC_DATA_READ;
1321         return pkt_generic_packet(pd, cgc);
1322 }
1323
1324 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1325 {
1326         memset(cgc->cmd, 0, sizeof(cgc->cmd));
1327         memset(cgc->buffer, 0, 2);
1328         cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1329         cgc->cmd[1] = 0x10;             /* PF */
1330         cgc->cmd[7] = cgc->buflen >> 8;
1331         cgc->cmd[8] = cgc->buflen & 0xff;
1332         cgc->data_direction = CGC_DATA_WRITE;
1333         return pkt_generic_packet(pd, cgc);
1334 }
1335
1336 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1337 {
1338         struct packet_command cgc;
1339         int ret;
1340
1341         /* set up command and get the disc info */
1342         init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1343         cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1344         cgc.cmd[8] = cgc.buflen = 2;
1345         cgc.quiet = 1;
1346
1347         if ((ret = pkt_generic_packet(pd, &cgc)))
1348                 return ret;
1349
1350         /* not all drives have the same disc_info length, so requeue
1351          * packet with the length the drive tells us it can supply
1352          */
1353         cgc.buflen = be16_to_cpu(di->disc_information_length) +
1354                      sizeof(di->disc_information_length);
1355
1356         if (cgc.buflen > sizeof(disc_information))
1357                 cgc.buflen = sizeof(disc_information);
1358
1359         cgc.cmd[8] = cgc.buflen;
1360         return pkt_generic_packet(pd, &cgc);
1361 }
1362
1363 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1364 {
1365         struct packet_command cgc;
1366         int ret;
1367
1368         init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1369         cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1370         cgc.cmd[1] = type & 3;
1371         cgc.cmd[4] = (track & 0xff00) >> 8;
1372         cgc.cmd[5] = track & 0xff;
1373         cgc.cmd[8] = 8;
1374         cgc.quiet = 1;
1375
1376         if ((ret = pkt_generic_packet(pd, &cgc)))
1377                 return ret;
1378
1379         cgc.buflen = be16_to_cpu(ti->track_information_length) +
1380                      sizeof(ti->track_information_length);
1381
1382         if (cgc.buflen > sizeof(track_information))
1383                 cgc.buflen = sizeof(track_information);
1384
1385         cgc.cmd[8] = cgc.buflen;
1386         return pkt_generic_packet(pd, &cgc);
1387 }
1388
1389 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1390 {
1391         disc_information di;
1392         track_information ti;
1393         __u32 last_track;
1394         int ret = -1;
1395
1396         if ((ret = pkt_get_disc_info(pd, &di)))
1397                 return ret;
1398
1399         last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1400         if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1401                 return ret;
1402
1403         /* if this track is blank, try the previous. */
1404         if (ti.blank) {
1405                 last_track--;
1406                 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1407                         return ret;
1408         }
1409
1410         /* if last recorded field is valid, return it. */
1411         if (ti.lra_v) {
1412                 *last_written = be32_to_cpu(ti.last_rec_address);
1413         } else {
1414                 /* make it up instead */
1415                 *last_written = be32_to_cpu(ti.track_start) +
1416                                 be32_to_cpu(ti.track_size);
1417                 if (ti.free_blocks)
1418                         *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1419         }
1420         return 0;
1421 }
1422
1423 /*
1424  * write mode select package based on pd->settings
1425  */
1426 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1427 {
1428         struct packet_command cgc;
1429         struct request_sense sense;
1430         write_param_page *wp;
1431         char buffer[128];
1432         int ret, size;
1433
1434         /* doesn't apply to DVD+RW or DVD-RAM */
1435         if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1436                 return 0;
1437
1438         memset(buffer, 0, sizeof(buffer));
1439         init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1440         cgc.sense = &sense;
1441         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1442                 pkt_dump_sense(&cgc);
1443                 return ret;
1444         }
1445
1446         size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1447         pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1448         if (size > sizeof(buffer))
1449                 size = sizeof(buffer);
1450
1451         /*
1452          * now get it all
1453          */
1454         init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1455         cgc.sense = &sense;
1456         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1457                 pkt_dump_sense(&cgc);
1458                 return ret;
1459         }
1460
1461         /*
1462          * write page is offset header + block descriptor length
1463          */
1464         wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1465
1466         wp->fp = pd->settings.fp;
1467         wp->track_mode = pd->settings.track_mode;
1468         wp->write_type = pd->settings.write_type;
1469         wp->data_block_type = pd->settings.block_mode;
1470
1471         wp->multi_session = 0;
1472
1473 #ifdef PACKET_USE_LS
1474         wp->link_size = 7;
1475         wp->ls_v = 1;
1476 #endif
1477
1478         if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1479                 wp->session_format = 0;
1480                 wp->subhdr2 = 0x20;
1481         } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1482                 wp->session_format = 0x20;
1483                 wp->subhdr2 = 8;
1484 #if 0
1485                 wp->mcn[0] = 0x80;
1486                 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1487 #endif
1488         } else {
1489                 /*
1490                  * paranoia
1491                  */
1492                 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1493                 return 1;
1494         }
1495         wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1496
1497         cgc.buflen = cgc.cmd[8] = size;
1498         if ((ret = pkt_mode_select(pd, &cgc))) {
1499                 pkt_dump_sense(&cgc);
1500                 return ret;
1501         }
1502
1503         pkt_print_settings(pd);
1504         return 0;
1505 }
1506
1507 /*
1508  * 0 -- we can write to this track, 1 -- we can't
1509  */
1510 static int pkt_good_track(track_information *ti)
1511 {
1512         /*
1513          * only good for CD-RW at the moment, not DVD-RW
1514          */
1515
1516         /*
1517          * FIXME: only for FP
1518          */
1519         if (ti->fp == 0)
1520                 return 0;
1521
1522         /*
1523          * "good" settings as per Mt Fuji.
1524          */
1525         if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1526                 return 0;
1527
1528         if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1529                 return 0;
1530
1531         if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1532                 return 0;
1533
1534         printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1535         return 1;
1536 }
1537
1538 /*
1539  * 0 -- we can write to this disc, 1 -- we can't
1540  */
1541 static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
1542 {
1543         switch (pd->mmc3_profile) {
1544                 case 0x0a: /* CD-RW */
1545                 case 0xffff: /* MMC3 not supported */
1546                         break;
1547                 case 0x1a: /* DVD+RW */
1548                 case 0x13: /* DVD-RW */
1549                 case 0x12: /* DVD-RAM */
1550                         return 0;
1551                 default:
1552                         printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1553                         return 1;
1554         }
1555
1556         /*
1557          * for disc type 0xff we should probably reserve a new track.
1558          * but i'm not sure, should we leave this to user apps? probably.
1559          */
1560         if (di->disc_type == 0xff) {
1561                 printk("pktcdvd: Unknown disc. No track?\n");
1562                 return 1;
1563         }
1564
1565         if (di->disc_type != 0x20 && di->disc_type != 0) {
1566                 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1567                 return 1;
1568         }
1569
1570         if (di->erasable == 0) {
1571                 printk("pktcdvd: Disc not erasable\n");
1572                 return 1;
1573         }
1574
1575         if (di->border_status == PACKET_SESSION_RESERVED) {
1576                 printk("pktcdvd: Can't write to last track (reserved)\n");
1577                 return 1;
1578         }
1579
1580         return 0;
1581 }
1582
1583 static int pkt_probe_settings(struct pktcdvd_device *pd)
1584 {
1585         struct packet_command cgc;
1586         unsigned char buf[12];
1587         disc_information di;
1588         track_information ti;
1589         int ret, track;
1590
1591         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1592         cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1593         cgc.cmd[8] = 8;
1594         ret = pkt_generic_packet(pd, &cgc);
1595         pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1596
1597         memset(&di, 0, sizeof(disc_information));
1598         memset(&ti, 0, sizeof(track_information));
1599
1600         if ((ret = pkt_get_disc_info(pd, &di))) {
1601                 printk("failed get_disc\n");
1602                 return ret;
1603         }
1604
1605         if (pkt_good_disc(pd, &di))
1606                 return -ENXIO;
1607
1608         switch (pd->mmc3_profile) {
1609                 case 0x1a: /* DVD+RW */
1610                         printk("pktcdvd: inserted media is DVD+RW\n");
1611                         break;
1612                 case 0x13: /* DVD-RW */
1613                         printk("pktcdvd: inserted media is DVD-RW\n");
1614                         break;
1615                 case 0x12: /* DVD-RAM */
1616                         printk("pktcdvd: inserted media is DVD-RAM\n");
1617                         break;
1618                 default:
1619                         printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1620                         break;
1621         }
1622         pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1623
1624         track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1625         if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1626                 printk("pktcdvd: failed get_track\n");
1627                 return ret;
1628         }
1629
1630         if (pkt_good_track(&ti)) {
1631                 printk("pktcdvd: can't write to this track\n");
1632                 return -ENXIO;
1633         }
1634
1635         /*
1636          * we keep packet size in 512 byte units, makes it easier to
1637          * deal with request calculations.
1638          */
1639         pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1640         if (pd->settings.size == 0) {
1641                 printk("pktcdvd: detected zero packet size!\n");
1642                 pd->settings.size = 128;
1643         }
1644         if (pd->settings.size > PACKET_MAX_SECTORS) {
1645                 printk("pktcdvd: packet size is too big\n");
1646                 return -ENXIO;
1647         }
1648         pd->settings.fp = ti.fp;
1649         pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1650
1651         if (ti.nwa_v) {
1652                 pd->nwa = be32_to_cpu(ti.next_writable);
1653                 set_bit(PACKET_NWA_VALID, &pd->flags);
1654         }
1655
1656         /*
1657          * in theory we could use lra on -RW media as well and just zero
1658          * blocks that haven't been written yet, but in practice that
1659          * is just a no-go. we'll use that for -R, naturally.
1660          */
1661         if (ti.lra_v) {
1662                 pd->lra = be32_to_cpu(ti.last_rec_address);
1663                 set_bit(PACKET_LRA_VALID, &pd->flags);
1664         } else {
1665                 pd->lra = 0xffffffff;
1666                 set_bit(PACKET_LRA_VALID, &pd->flags);
1667         }
1668
1669         /*
1670          * fine for now
1671          */
1672         pd->settings.link_loss = 7;
1673         pd->settings.write_type = 0;    /* packet */
1674         pd->settings.track_mode = ti.track_mode;
1675
1676         /*
1677          * mode1 or mode2 disc
1678          */
1679         switch (ti.data_mode) {
1680                 case PACKET_MODE1:
1681                         pd->settings.block_mode = PACKET_BLOCK_MODE1;
1682                         break;
1683                 case PACKET_MODE2:
1684                         pd->settings.block_mode = PACKET_BLOCK_MODE2;
1685                         break;
1686                 default:
1687                         printk("pktcdvd: unknown data mode\n");
1688                         return 1;
1689         }
1690         return 0;
1691 }
1692
1693 /*
1694  * enable/disable write caching on drive
1695  */
1696 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1697 {
1698         struct packet_command cgc;
1699         struct request_sense sense;
1700         unsigned char buf[64];
1701         int ret;
1702
1703         memset(buf, 0, sizeof(buf));
1704         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1705         cgc.sense = &sense;
1706         cgc.buflen = pd->mode_offset + 12;
1707
1708         /*
1709          * caching mode page might not be there, so quiet this command
1710          */
1711         cgc.quiet = 1;
1712
1713         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1714                 return ret;
1715
1716         buf[pd->mode_offset + 10] |= (!!set << 2);
1717
1718         cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1719         ret = pkt_mode_select(pd, &cgc);
1720         if (ret) {
1721                 printk("pktcdvd: write caching control failed\n");
1722                 pkt_dump_sense(&cgc);
1723         } else if (!ret && set)
1724                 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1725         return ret;
1726 }
1727
1728 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1729 {
1730         struct packet_command cgc;
1731
1732         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1733         cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1734         cgc.cmd[4] = lockflag ? 1 : 0;
1735         return pkt_generic_packet(pd, &cgc);
1736 }
1737
1738 /*
1739  * Returns drive maximum write speed
1740  */
1741 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1742 {
1743         struct packet_command cgc;
1744         struct request_sense sense;
1745         unsigned char buf[256+18];
1746         unsigned char *cap_buf;
1747         int ret, offset;
1748
1749         memset(buf, 0, sizeof(buf));
1750         cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1751         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1752         cgc.sense = &sense;
1753
1754         ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1755         if (ret) {
1756                 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1757                              sizeof(struct mode_page_header);
1758                 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1759                 if (ret) {
1760                         pkt_dump_sense(&cgc);
1761                         return ret;
1762                 }
1763         }
1764
1765         offset = 20;                        /* Obsoleted field, used by older drives */
1766         if (cap_buf[1] >= 28)
1767                 offset = 28;                /* Current write speed selected */
1768         if (cap_buf[1] >= 30) {
1769                 /* If the drive reports at least one "Logical Unit Write
1770                  * Speed Performance Descriptor Block", use the information
1771                  * in the first block. (contains the highest speed)
1772                  */
1773                 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1774                 if (num_spdb > 0)
1775                         offset = 34;
1776         }
1777
1778         *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1779         return 0;
1780 }
1781
1782 /* These tables from cdrecord - I don't have orange book */
1783 /* standard speed CD-RW (1-4x) */
1784 static char clv_to_speed[16] = {
1785         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1786            0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1787 };
1788 /* high speed CD-RW (-10x) */
1789 static char hs_clv_to_speed[16] = {
1790         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1791            0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1792 };
1793 /* ultra high speed CD-RW */
1794 static char us_clv_to_speed[16] = {
1795         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1796            0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1797 };
1798
1799 /*
1800  * reads the maximum media speed from ATIP
1801  */
1802 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1803 {
1804         struct packet_command cgc;
1805         struct request_sense sense;
1806         unsigned char buf[64];
1807         unsigned int size, st, sp;
1808         int ret;
1809
1810         init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1811         cgc.sense = &sense;
1812         cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1813         cgc.cmd[1] = 2;
1814         cgc.cmd[2] = 4; /* READ ATIP */
1815         cgc.cmd[8] = 2;
1816         ret = pkt_generic_packet(pd, &cgc);
1817         if (ret) {
1818                 pkt_dump_sense(&cgc);
1819                 return ret;
1820         }
1821         size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1822         if (size > sizeof(buf))
1823                 size = sizeof(buf);
1824
1825         init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1826         cgc.sense = &sense;
1827         cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1828         cgc.cmd[1] = 2;
1829         cgc.cmd[2] = 4;
1830         cgc.cmd[8] = size;
1831         ret = pkt_generic_packet(pd, &cgc);
1832         if (ret) {
1833                 pkt_dump_sense(&cgc);
1834                 return ret;
1835         }
1836
1837         if (!buf[6] & 0x40) {
1838                 printk("pktcdvd: Disc type is not CD-RW\n");
1839                 return 1;
1840         }
1841         if (!buf[6] & 0x4) {
1842                 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1843                 return 1;
1844         }
1845
1846         st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1847
1848         sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1849
1850         /* Info from cdrecord */
1851         switch (st) {
1852                 case 0: /* standard speed */
1853                         *speed = clv_to_speed[sp];
1854                         break;
1855                 case 1: /* high speed */
1856                         *speed = hs_clv_to_speed[sp];
1857                         break;
1858                 case 2: /* ultra high speed */
1859                         *speed = us_clv_to_speed[sp];
1860                         break;
1861                 default:
1862                         printk("pktcdvd: Unknown disc sub-type %d\n",st);
1863                         return 1;
1864         }
1865         if (*speed) {
1866                 printk("pktcdvd: Max. media speed: %d\n",*speed);
1867                 return 0;
1868         } else {
1869                 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1870                 return 1;
1871         }
1872 }
1873
1874 static int pkt_perform_opc(struct pktcdvd_device *pd)
1875 {
1876         struct packet_command cgc;
1877         struct request_sense sense;
1878         int ret;
1879
1880         VPRINTK("pktcdvd: Performing OPC\n");
1881
1882         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1883         cgc.sense = &sense;
1884         cgc.timeout = 60*HZ;
1885         cgc.cmd[0] = GPCMD_SEND_OPC;
1886         cgc.cmd[1] = 1;
1887         if ((ret = pkt_generic_packet(pd, &cgc)))
1888                 pkt_dump_sense(&cgc);
1889         return ret;
1890 }
1891
1892 static int pkt_open_write(struct pktcdvd_device *pd)
1893 {
1894         int ret;
1895         unsigned int write_speed, media_write_speed, read_speed;
1896
1897         if ((ret = pkt_probe_settings(pd))) {
1898                 DPRINTK("pktcdvd: %s failed probe\n", pd->name);
1899                 return -EIO;
1900         }
1901
1902         if ((ret = pkt_set_write_settings(pd))) {
1903                 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1904                 return -EIO;
1905         }
1906
1907         pkt_write_caching(pd, USE_WCACHING);
1908
1909         if ((ret = pkt_get_max_speed(pd, &write_speed)))
1910                 write_speed = 16 * 177;
1911         switch (pd->mmc3_profile) {
1912                 case 0x13: /* DVD-RW */
1913                 case 0x1a: /* DVD+RW */
1914                 case 0x12: /* DVD-RAM */
1915                         DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1916                         break;
1917                 default:
1918                         if ((ret = pkt_media_speed(pd, &media_write_speed)))
1919                                 media_write_speed = 16;
1920                         write_speed = min(write_speed, media_write_speed * 177);
1921                         DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1922                         break;
1923         }
1924         read_speed = write_speed;
1925
1926         if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1927                 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1928                 return -EIO;
1929         }
1930         pd->write_speed = write_speed;
1931         pd->read_speed = read_speed;
1932
1933         if ((ret = pkt_perform_opc(pd))) {
1934                 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1935         }
1936
1937         return 0;
1938 }
1939
1940 /*
1941  * called at open time.
1942  */
1943 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1944 {
1945         int ret;
1946         long lba;
1947         request_queue_t *q;
1948
1949         /*
1950          * We need to re-open the cdrom device without O_NONBLOCK to be able
1951          * to read/write from/to it. It is already opened in O_NONBLOCK mode
1952          * so bdget() can't fail.
1953          */
1954         bdget(pd->bdev->bd_dev);
1955         if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1956                 goto out;
1957
1958         if ((ret = bd_claim(pd->bdev, pd)))
1959                 goto out_putdev;
1960
1961         if ((ret = pkt_get_last_written(pd, &lba))) {
1962                 printk("pktcdvd: pkt_get_last_written failed\n");
1963                 goto out_unclaim;
1964         }
1965
1966         set_capacity(pd->disk, lba << 2);
1967         set_capacity(pd->bdev->bd_disk, lba << 2);
1968         bd_set_size(pd->bdev, (loff_t)lba << 11);
1969
1970         q = bdev_get_queue(pd->bdev);
1971         if (write) {
1972                 if ((ret = pkt_open_write(pd)))
1973                         goto out_unclaim;
1974                 /*
1975                  * Some CDRW drives can not handle writes larger than one packet,
1976                  * even if the size is a multiple of the packet size.
1977                  */
1978                 spin_lock_irq(q->queue_lock);
1979                 blk_queue_max_sectors(q, pd->settings.size);
1980                 spin_unlock_irq(q->queue_lock);
1981                 set_bit(PACKET_WRITABLE, &pd->flags);
1982         } else {
1983                 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1984                 clear_bit(PACKET_WRITABLE, &pd->flags);
1985         }
1986
1987         if ((ret = pkt_set_segment_merging(pd, q)))
1988                 goto out_unclaim;
1989
1990         if (write)
1991                 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1992
1993         return 0;
1994
1995 out_unclaim:
1996         bd_release(pd->bdev);
1997 out_putdev:
1998         blkdev_put(pd->bdev);
1999 out:
2000         return ret;
2001 }
2002
2003 /*
2004  * called when the device is closed. makes sure that the device flushes
2005  * the internal cache before we close.
2006  */
2007 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2008 {
2009         if (flush && pkt_flush_cache(pd))
2010                 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
2011
2012         pkt_lock_door(pd, 0);
2013
2014         pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2015         bd_release(pd->bdev);
2016         blkdev_put(pd->bdev);
2017 }
2018
2019 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2020 {
2021         if (dev_minor >= MAX_WRITERS)
2022                 return NULL;
2023         return pkt_devs[dev_minor];
2024 }
2025
2026 static int pkt_open(struct inode *inode, struct file *file)
2027 {
2028         struct pktcdvd_device *pd = NULL;
2029         int ret;
2030
2031         VPRINTK("pktcdvd: entering open\n");
2032
2033         down(&ctl_mutex);
2034         pd = pkt_find_dev_from_minor(iminor(inode));
2035         if (!pd) {
2036                 ret = -ENODEV;
2037                 goto out;
2038         }
2039         BUG_ON(pd->refcnt < 0);
2040
2041         pd->refcnt++;
2042         if (pd->refcnt > 1) {
2043                 if ((file->f_mode & FMODE_WRITE) &&
2044                     !test_bit(PACKET_WRITABLE, &pd->flags)) {
2045                         ret = -EBUSY;
2046                         goto out_dec;
2047                 }
2048         } else {
2049                 if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
2050                         ret = -EIO;
2051                         goto out_dec;
2052                 }
2053                 /*
2054                  * needed here as well, since ext2 (among others) may change
2055                  * the blocksize at mount time
2056                  */
2057                 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2058         }
2059
2060         up(&ctl_mutex);
2061         return 0;
2062
2063 out_dec:
2064         pd->refcnt--;
2065 out:
2066         VPRINTK("pktcdvd: failed open (%d)\n", ret);
2067         up(&ctl_mutex);
2068         return ret;
2069 }
2070
2071 static int pkt_close(struct inode *inode, struct file *file)
2072 {
2073         struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2074         int ret = 0;
2075
2076         down(&ctl_mutex);
2077         pd->refcnt--;
2078         BUG_ON(pd->refcnt < 0);
2079         if (pd->refcnt == 0) {
2080                 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2081                 pkt_release_dev(pd, flush);
2082         }
2083         up(&ctl_mutex);
2084         return ret;
2085 }
2086
2087
2088 static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
2089 {
2090         return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2091 }
2092
2093 static void psd_pool_free(void *ptr, void *data)
2094 {
2095         kfree(ptr);
2096 }
2097
2098 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2099 {
2100         struct packet_stacked_data *psd = bio->bi_private;
2101         struct pktcdvd_device *pd = psd->pd;
2102
2103         if (bio->bi_size)
2104                 return 1;
2105
2106         bio_put(bio);
2107         bio_endio(psd->bio, psd->bio->bi_size, err);
2108         mempool_free(psd, psd_pool);
2109         pkt_bio_finished(pd);
2110         return 0;
2111 }
2112
2113 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2114 {
2115         struct pktcdvd_device *pd;
2116         char b[BDEVNAME_SIZE];
2117         sector_t zone;
2118         struct packet_data *pkt;
2119         int was_empty, blocked_bio;
2120         struct pkt_rb_node *node;
2121
2122         pd = q->queuedata;
2123         if (!pd) {
2124                 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2125                 goto end_io;
2126         }
2127
2128         /*
2129          * Clone READ bios so we can have our own bi_end_io callback.
2130          */
2131         if (bio_data_dir(bio) == READ) {
2132                 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2133                 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2134
2135                 psd->pd = pd;
2136                 psd->bio = bio;
2137                 cloned_bio->bi_bdev = pd->bdev;
2138                 cloned_bio->bi_private = psd;
2139                 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2140                 pd->stats.secs_r += bio->bi_size >> 9;
2141                 pkt_queue_bio(pd, cloned_bio);
2142                 return 0;
2143         }
2144
2145         if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2146                 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2147                         pd->name, (unsigned long long)bio->bi_sector);
2148                 goto end_io;
2149         }
2150
2151         if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2152                 printk("pktcdvd: wrong bio size\n");
2153                 goto end_io;
2154         }
2155
2156         blk_queue_bounce(q, &bio);
2157
2158         zone = ZONE(bio->bi_sector, pd);
2159         VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2160                 (unsigned long long)bio->bi_sector,
2161                 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2162
2163         /* Check if we have to split the bio */
2164         {
2165                 struct bio_pair *bp;
2166                 sector_t last_zone;
2167                 int first_sectors;
2168
2169                 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2170                 if (last_zone != zone) {
2171                         BUG_ON(last_zone != zone + pd->settings.size);
2172                         first_sectors = last_zone - bio->bi_sector;
2173                         bp = bio_split(bio, bio_split_pool, first_sectors);
2174                         BUG_ON(!bp);
2175                         pkt_make_request(q, &bp->bio1);
2176                         pkt_make_request(q, &bp->bio2);
2177                         bio_pair_release(bp);
2178                         return 0;
2179                 }
2180         }
2181
2182         /*
2183          * If we find a matching packet in state WAITING or READ_WAIT, we can
2184          * just append this bio to that packet.
2185          */
2186         spin_lock(&pd->cdrw.active_list_lock);
2187         blocked_bio = 0;
2188         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2189                 if (pkt->sector == zone) {
2190                         spin_lock(&pkt->lock);
2191                         if ((pkt->state == PACKET_WAITING_STATE) ||
2192                             (pkt->state == PACKET_READ_WAIT_STATE)) {
2193                                 pkt_add_list_last(bio, &pkt->orig_bios,
2194                                                   &pkt->orig_bios_tail);
2195                                 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2196                                 if ((pkt->write_size >= pkt->frames) &&
2197                                     (pkt->state == PACKET_WAITING_STATE)) {
2198                                         atomic_inc(&pkt->run_sm);
2199                                         wake_up(&pd->wqueue);
2200                                 }
2201                                 spin_unlock(&pkt->lock);
2202                                 spin_unlock(&pd->cdrw.active_list_lock);
2203                                 return 0;
2204                         } else {
2205                                 blocked_bio = 1;
2206                         }
2207                         spin_unlock(&pkt->lock);
2208                 }
2209         }
2210         spin_unlock(&pd->cdrw.active_list_lock);
2211
2212         /*
2213          * No matching packet found. Store the bio in the work queue.
2214          */
2215         node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2216         node->bio = bio;
2217         spin_lock(&pd->lock);
2218         BUG_ON(pd->bio_queue_size < 0);
2219         was_empty = (pd->bio_queue_size == 0);
2220         pkt_rbtree_insert(pd, node);
2221         spin_unlock(&pd->lock);
2222
2223         /*
2224          * Wake up the worker thread.
2225          */
2226         atomic_set(&pd->scan_queue, 1);
2227         if (was_empty) {
2228                 /* This wake_up is required for correct operation */
2229                 wake_up(&pd->wqueue);
2230         } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2231                 /*
2232                  * This wake up is not required for correct operation,
2233                  * but improves performance in some cases.
2234                  */
2235                 wake_up(&pd->wqueue);
2236         }
2237         return 0;
2238 end_io:
2239         bio_io_error(bio, bio->bi_size);
2240         return 0;
2241 }
2242
2243
2244
2245 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2246 {
2247         struct pktcdvd_device *pd = q->queuedata;
2248         sector_t zone = ZONE(bio->bi_sector, pd);
2249         int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2250         int remaining = (pd->settings.size << 9) - used;
2251         int remaining2;
2252
2253         /*
2254          * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2255          * boundary, pkt_make_request() will split the bio.
2256          */
2257         remaining2 = PAGE_SIZE - bio->bi_size;
2258         remaining = max(remaining, remaining2);
2259
2260         BUG_ON(remaining < 0);
2261         return remaining;
2262 }
2263
2264 static void pkt_init_queue(struct pktcdvd_device *pd)
2265 {
2266         request_queue_t *q = pd->disk->queue;
2267
2268         blk_queue_make_request(q, pkt_make_request);
2269         blk_queue_hardsect_size(q, CD_FRAMESIZE);
2270         blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2271         blk_queue_merge_bvec(q, pkt_merge_bvec);
2272         q->queuedata = pd;
2273 }
2274
2275 static int pkt_seq_show(struct seq_file *m, void *p)
2276 {
2277         struct pktcdvd_device *pd = m->private;
2278         char *msg;
2279         char bdev_buf[BDEVNAME_SIZE];
2280         int states[PACKET_NUM_STATES];
2281
2282         seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2283                    bdevname(pd->bdev, bdev_buf));
2284
2285         seq_printf(m, "\nSettings:\n");
2286         seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2287
2288         if (pd->settings.write_type == 0)
2289                 msg = "Packet";
2290         else
2291                 msg = "Unknown";
2292         seq_printf(m, "\twrite type:\t\t%s\n", msg);
2293
2294         seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2295         seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2296
2297         seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2298
2299         if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2300                 msg = "Mode 1";
2301         else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2302                 msg = "Mode 2";
2303         else
2304                 msg = "Unknown";
2305         seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2306
2307         seq_printf(m, "\nStatistics:\n");
2308         seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2309         seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2310         seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2311         seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2312         seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2313
2314         seq_printf(m, "\nMisc:\n");
2315         seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2316         seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2317         seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2318         seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2319         seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2320         seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2321
2322         seq_printf(m, "\nQueue state:\n");
2323         seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2324         seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2325         seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2326
2327         pkt_count_states(pd, states);
2328         seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2329                    states[0], states[1], states[2], states[3], states[4], states[5]);
2330
2331         return 0;
2332 }
2333
2334 static int pkt_seq_open(struct inode *inode, struct file *file)
2335 {
2336         return single_open(file, pkt_seq_show, PDE(inode)->data);
2337 }
2338
2339 static struct file_operations pkt_proc_fops = {
2340         .open   = pkt_seq_open,
2341         .read   = seq_read,
2342         .llseek = seq_lseek,
2343         .release = single_release
2344 };
2345
2346 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2347 {
2348         int i;
2349         int ret = 0;
2350         char b[BDEVNAME_SIZE];
2351         struct proc_dir_entry *proc;
2352         struct block_device *bdev;
2353
2354         if (pd->pkt_dev == dev) {
2355                 printk("pktcdvd: Recursive setup not allowed\n");
2356                 return -EBUSY;
2357         }
2358         for (i = 0; i < MAX_WRITERS; i++) {
2359                 struct pktcdvd_device *pd2 = pkt_devs[i];
2360                 if (!pd2)
2361                         continue;
2362                 if (pd2->bdev->bd_dev == dev) {
2363                         printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2364                         return -EBUSY;
2365                 }
2366                 if (pd2->pkt_dev == dev) {
2367                         printk("pktcdvd: Can't chain pktcdvd devices\n");
2368                         return -EBUSY;
2369                 }
2370         }
2371
2372         bdev = bdget(dev);
2373         if (!bdev)
2374                 return -ENOMEM;
2375         ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2376         if (ret)
2377                 return ret;
2378
2379         /* This is safe, since we have a reference from open(). */
2380         __module_get(THIS_MODULE);
2381
2382         if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2383                 printk("pktcdvd: not enough memory for buffers\n");
2384                 ret = -ENOMEM;
2385                 goto out_mem;
2386         }
2387
2388         pd->bdev = bdev;
2389         set_blocksize(bdev, CD_FRAMESIZE);
2390
2391         pkt_init_queue(pd);
2392
2393         atomic_set(&pd->cdrw.pending_bios, 0);
2394         pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2395         if (IS_ERR(pd->cdrw.thread)) {
2396                 printk("pktcdvd: can't start kernel thread\n");
2397                 ret = -ENOMEM;
2398                 goto out_thread;
2399         }
2400
2401         proc = create_proc_entry(pd->name, 0, pkt_proc);
2402         if (proc) {
2403                 proc->data = pd;
2404                 proc->proc_fops = &pkt_proc_fops;
2405         }
2406         DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2407         return 0;
2408
2409 out_thread:
2410         pkt_shrink_pktlist(pd);
2411 out_mem:
2412         blkdev_put(bdev);
2413         /* This is safe: open() is still holding a reference. */
2414         module_put(THIS_MODULE);
2415         return ret;
2416 }
2417
2418 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2419 {
2420         struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2421
2422         VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2423
2424         switch (cmd) {
2425         /*
2426          * forward selected CDROM ioctls to CD-ROM, for UDF
2427          */
2428         case CDROMMULTISESSION:
2429         case CDROMREADTOCENTRY:
2430         case CDROM_LAST_WRITTEN:
2431         case CDROM_SEND_PACKET:
2432         case SCSI_IOCTL_SEND_COMMAND:
2433                 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2434
2435         case CDROMEJECT:
2436                 /*
2437                  * The door gets locked when the device is opened, so we
2438                  * have to unlock it or else the eject command fails.
2439                  */
2440                 pkt_lock_door(pd, 0);
2441                 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2442
2443         default:
2444                 printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2445                 return -ENOTTY;
2446         }
2447
2448         return 0;
2449 }
2450
2451 static int pkt_media_changed(struct gendisk *disk)
2452 {
2453         struct pktcdvd_device *pd = disk->private_data;
2454         struct gendisk *attached_disk;
2455
2456         if (!pd)
2457                 return 0;
2458         if (!pd->bdev)
2459                 return 0;
2460         attached_disk = pd->bdev->bd_disk;
2461         if (!attached_disk)
2462                 return 0;
2463         return attached_disk->fops->media_changed(attached_disk);
2464 }
2465
2466 static struct block_device_operations pktcdvd_ops = {
2467         .owner =                THIS_MODULE,
2468         .open =                 pkt_open,
2469         .release =              pkt_close,
2470         .ioctl =                pkt_ioctl,
2471         .media_changed =        pkt_media_changed,
2472 };
2473
2474 /*
2475  * Set up mapping from pktcdvd device to CD-ROM device.
2476  */
2477 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2478 {
2479         int idx;
2480         int ret = -ENOMEM;
2481         struct pktcdvd_device *pd;
2482         struct gendisk *disk;
2483         dev_t dev = new_decode_dev(ctrl_cmd->dev);
2484
2485         for (idx = 0; idx < MAX_WRITERS; idx++)
2486                 if (!pkt_devs[idx])
2487                         break;
2488         if (idx == MAX_WRITERS) {
2489                 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2490                 return -EBUSY;
2491         }
2492
2493         pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2494         if (!pd)
2495                 return ret;
2496
2497         pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2498         if (!pd->rb_pool)
2499                 goto out_mem;
2500
2501         disk = alloc_disk(1);
2502         if (!disk)
2503                 goto out_mem;
2504         pd->disk = disk;
2505
2506         spin_lock_init(&pd->lock);
2507         spin_lock_init(&pd->iosched.lock);
2508         sprintf(pd->name, "pktcdvd%d", idx);
2509         init_waitqueue_head(&pd->wqueue);
2510         pd->bio_queue = RB_ROOT;
2511
2512         disk->major = pkt_major;
2513         disk->first_minor = idx;
2514         disk->fops = &pktcdvd_ops;
2515         disk->flags = GENHD_FL_REMOVABLE;
2516         sprintf(disk->disk_name, "pktcdvd%d", idx);
2517         disk->private_data = pd;
2518         disk->queue = blk_alloc_queue(GFP_KERNEL);
2519         if (!disk->queue)
2520                 goto out_mem2;
2521
2522         pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2523         ret = pkt_new_dev(pd, dev);
2524         if (ret)
2525                 goto out_new_dev;
2526
2527         add_disk(disk);
2528         pkt_devs[idx] = pd;
2529         ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2530         return 0;
2531
2532 out_new_dev:
2533         blk_put_queue(disk->queue);
2534 out_mem2:
2535         put_disk(disk);
2536 out_mem:
2537         if (pd->rb_pool)
2538                 mempool_destroy(pd->rb_pool);
2539         kfree(pd);
2540         return ret;
2541 }
2542
2543 /*
2544  * Tear down mapping from pktcdvd device to CD-ROM device.
2545  */
2546 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2547 {
2548         struct pktcdvd_device *pd;
2549         int idx;
2550         dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2551
2552         for (idx = 0; idx < MAX_WRITERS; idx++) {
2553                 pd = pkt_devs[idx];
2554                 if (pd && (pd->pkt_dev == pkt_dev))
2555                         break;
2556         }
2557         if (idx == MAX_WRITERS) {
2558                 DPRINTK("pktcdvd: dev not setup\n");
2559                 return -ENXIO;
2560         }
2561
2562         if (pd->refcnt > 0)
2563                 return -EBUSY;
2564
2565         if (!IS_ERR(pd->cdrw.thread))
2566                 kthread_stop(pd->cdrw.thread);
2567
2568         blkdev_put(pd->bdev);
2569
2570         pkt_shrink_pktlist(pd);
2571
2572         remove_proc_entry(pd->name, pkt_proc);
2573         DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2574
2575         del_gendisk(pd->disk);
2576         blk_put_queue(pd->disk->queue);
2577         put_disk(pd->disk);
2578
2579         pkt_devs[idx] = NULL;
2580         mempool_destroy(pd->rb_pool);
2581         kfree(pd);
2582
2583         /* This is safe: open() is still holding a reference. */
2584         module_put(THIS_MODULE);
2585         return 0;
2586 }
2587
2588 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2589 {
2590         struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2591         if (pd) {
2592                 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2593                 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2594         } else {
2595                 ctrl_cmd->dev = 0;
2596                 ctrl_cmd->pkt_dev = 0;
2597         }
2598         ctrl_cmd->num_devices = MAX_WRITERS;
2599 }
2600
2601 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2602 {
2603         void __user *argp = (void __user *)arg;
2604         struct pkt_ctrl_command ctrl_cmd;
2605         int ret = 0;
2606
2607         if (cmd != PACKET_CTRL_CMD)
2608                 return -ENOTTY;
2609
2610         if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2611                 return -EFAULT;
2612
2613         switch (ctrl_cmd.command) {
2614         case PKT_CTRL_CMD_SETUP:
2615                 if (!capable(CAP_SYS_ADMIN))
2616                         return -EPERM;
2617                 down(&ctl_mutex);
2618                 ret = pkt_setup_dev(&ctrl_cmd);
2619                 up(&ctl_mutex);
2620                 break;
2621         case PKT_CTRL_CMD_TEARDOWN:
2622                 if (!capable(CAP_SYS_ADMIN))
2623                         return -EPERM;
2624                 down(&ctl_mutex);
2625                 ret = pkt_remove_dev(&ctrl_cmd);
2626                 up(&ctl_mutex);
2627                 break;
2628         case PKT_CTRL_CMD_STATUS:
2629                 down(&ctl_mutex);
2630                 pkt_get_status(&ctrl_cmd);
2631                 up(&ctl_mutex);
2632                 break;
2633         default:
2634                 return -ENOTTY;
2635         }
2636
2637         if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2638                 return -EFAULT;
2639         return ret;
2640 }
2641
2642
2643 static struct file_operations pkt_ctl_fops = {
2644         .ioctl   = pkt_ctl_ioctl,
2645         .owner   = THIS_MODULE,
2646 };
2647
2648 static struct miscdevice pkt_misc = {
2649         .minor          = MISC_DYNAMIC_MINOR,
2650         .name           = "pktcdvd",
2651         .devfs_name     = "pktcdvd/control",
2652         .fops           = &pkt_ctl_fops
2653 };
2654
2655 static int __init pkt_init(void)
2656 {
2657         int ret;
2658
2659         psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2660         if (!psd_pool)
2661                 return -ENOMEM;
2662
2663         ret = register_blkdev(pkt_major, "pktcdvd");
2664         if (ret < 0) {
2665                 printk("pktcdvd: Unable to register block device\n");
2666                 goto out2;
2667         }
2668         if (!pkt_major)
2669                 pkt_major = ret;
2670
2671         ret = misc_register(&pkt_misc);
2672         if (ret) {
2673                 printk("pktcdvd: Unable to register misc device\n");
2674                 goto out;
2675         }
2676
2677         init_MUTEX(&ctl_mutex);
2678
2679         pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2680
2681         DPRINTK("pktcdvd: %s\n", VERSION_CODE);
2682         return 0;
2683
2684 out:
2685         unregister_blkdev(pkt_major, "pktcdvd");
2686 out2:
2687         mempool_destroy(psd_pool);
2688         return ret;
2689 }
2690
2691 static void __exit pkt_exit(void)
2692 {
2693         remove_proc_entry("pktcdvd", proc_root_driver);
2694         misc_deregister(&pkt_misc);
2695         unregister_blkdev(pkt_major, "pktcdvd");
2696         mempool_destroy(psd_pool);
2697 }
2698
2699 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2700 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2701 MODULE_LICENSE("GPL");
2702
2703 module_init(pkt_init);
2704 module_exit(pkt_exit);