[PATCH] ll_rw_blk.c kerneldoc updates
[linux-3.10.git] / drivers / block / ll_rw_blk.c
1 /*
2  *  linux/drivers/block/ll_rw_blk.c
3  *
4  * Copyright (C) 1991, 1992 Linus Torvalds
5  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
6  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
7  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> -  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31
32 /*
33  * for max sense size
34  */
35 #include <scsi/scsi_cmnd.h>
36
37 static void blk_unplug_work(void *data);
38 static void blk_unplug_timeout(unsigned long data);
39
40 /*
41  * For the allocated request tables
42  */
43 static kmem_cache_t *request_cachep;
44
45 /*
46  * For queue allocation
47  */
48 static kmem_cache_t *requestq_cachep;
49
50 /*
51  * For io context allocations
52  */
53 static kmem_cache_t *iocontext_cachep;
54
55 static wait_queue_head_t congestion_wqh[2] = {
56                 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
57                 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
58         };
59
60 /*
61  * Controlling structure to kblockd
62  */
63 static struct workqueue_struct *kblockd_workqueue; 
64
65 unsigned long blk_max_low_pfn, blk_max_pfn;
66
67 EXPORT_SYMBOL(blk_max_low_pfn);
68 EXPORT_SYMBOL(blk_max_pfn);
69
70 /* Amount of time in which a process may batch requests */
71 #define BLK_BATCH_TIME  (HZ/50UL)
72
73 /* Number of requests a "batching" process may submit */
74 #define BLK_BATCH_REQ   32
75
76 /*
77  * Return the threshold (number of used requests) at which the queue is
78  * considered to be congested.  It include a little hysteresis to keep the
79  * context switch rate down.
80  */
81 static inline int queue_congestion_on_threshold(struct request_queue *q)
82 {
83         return q->nr_congestion_on;
84 }
85
86 /*
87  * The threshold at which a queue is considered to be uncongested
88  */
89 static inline int queue_congestion_off_threshold(struct request_queue *q)
90 {
91         return q->nr_congestion_off;
92 }
93
94 static void blk_queue_congestion_threshold(struct request_queue *q)
95 {
96         int nr;
97
98         nr = q->nr_requests - (q->nr_requests / 8) + 1;
99         if (nr > q->nr_requests)
100                 nr = q->nr_requests;
101         q->nr_congestion_on = nr;
102
103         nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104         if (nr < 1)
105                 nr = 1;
106         q->nr_congestion_off = nr;
107 }
108
109 /*
110  * A queue has just exitted congestion.  Note this in the global counter of
111  * congested queues, and wake up anyone who was waiting for requests to be
112  * put back.
113  */
114 static void clear_queue_congested(request_queue_t *q, int rw)
115 {
116         enum bdi_state bit;
117         wait_queue_head_t *wqh = &congestion_wqh[rw];
118
119         bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
120         clear_bit(bit, &q->backing_dev_info.state);
121         smp_mb__after_clear_bit();
122         if (waitqueue_active(wqh))
123                 wake_up(wqh);
124 }
125
126 /*
127  * A queue has just entered congestion.  Flag that in the queue's VM-visible
128  * state flags and increment the global gounter of congested queues.
129  */
130 static void set_queue_congested(request_queue_t *q, int rw)
131 {
132         enum bdi_state bit;
133
134         bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
135         set_bit(bit, &q->backing_dev_info.state);
136 }
137
138 /**
139  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
140  * @bdev:       device
141  *
142  * Locates the passed device's request queue and returns the address of its
143  * backing_dev_info
144  *
145  * Will return NULL if the request queue cannot be located.
146  */
147 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
148 {
149         struct backing_dev_info *ret = NULL;
150         request_queue_t *q = bdev_get_queue(bdev);
151
152         if (q)
153                 ret = &q->backing_dev_info;
154         return ret;
155 }
156
157 EXPORT_SYMBOL(blk_get_backing_dev_info);
158
159 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
160 {
161         q->activity_fn = fn;
162         q->activity_data = data;
163 }
164
165 EXPORT_SYMBOL(blk_queue_activity_fn);
166
167 /**
168  * blk_queue_prep_rq - set a prepare_request function for queue
169  * @q:          queue
170  * @pfn:        prepare_request function
171  *
172  * It's possible for a queue to register a prepare_request callback which
173  * is invoked before the request is handed to the request_fn. The goal of
174  * the function is to prepare a request for I/O, it can be used to build a
175  * cdb from the request data for instance.
176  *
177  */
178 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
179 {
180         q->prep_rq_fn = pfn;
181 }
182
183 EXPORT_SYMBOL(blk_queue_prep_rq);
184
185 /**
186  * blk_queue_merge_bvec - set a merge_bvec function for queue
187  * @q:          queue
188  * @mbfn:       merge_bvec_fn
189  *
190  * Usually queues have static limitations on the max sectors or segments that
191  * we can put in a request. Stacking drivers may have some settings that
192  * are dynamic, and thus we have to query the queue whether it is ok to
193  * add a new bio_vec to a bio at a given offset or not. If the block device
194  * has such limitations, it needs to register a merge_bvec_fn to control
195  * the size of bio's sent to it. Note that a block device *must* allow a
196  * single page to be added to an empty bio. The block device driver may want
197  * to use the bio_split() function to deal with these bio's. By default
198  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
199  * honored.
200  */
201 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
202 {
203         q->merge_bvec_fn = mbfn;
204 }
205
206 EXPORT_SYMBOL(blk_queue_merge_bvec);
207
208 /**
209  * blk_queue_make_request - define an alternate make_request function for a device
210  * @q:  the request queue for the device to be affected
211  * @mfn: the alternate make_request function
212  *
213  * Description:
214  *    The normal way for &struct bios to be passed to a device
215  *    driver is for them to be collected into requests on a request
216  *    queue, and then to allow the device driver to select requests
217  *    off that queue when it is ready.  This works well for many block
218  *    devices. However some block devices (typically virtual devices
219  *    such as md or lvm) do not benefit from the processing on the
220  *    request queue, and are served best by having the requests passed
221  *    directly to them.  This can be achieved by providing a function
222  *    to blk_queue_make_request().
223  *
224  * Caveat:
225  *    The driver that does this *must* be able to deal appropriately
226  *    with buffers in "highmemory". This can be accomplished by either calling
227  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
228  *    blk_queue_bounce() to create a buffer in normal memory.
229  **/
230 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
231 {
232         /*
233          * set defaults
234          */
235         q->nr_requests = BLKDEV_MAX_RQ;
236         q->max_phys_segments = MAX_PHYS_SEGMENTS;
237         q->max_hw_segments = MAX_HW_SEGMENTS;
238         q->make_request_fn = mfn;
239         q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
240         q->backing_dev_info.state = 0;
241         q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
242         blk_queue_max_sectors(q, MAX_SECTORS);
243         blk_queue_hardsect_size(q, 512);
244         blk_queue_dma_alignment(q, 511);
245         blk_queue_congestion_threshold(q);
246         q->nr_batching = BLK_BATCH_REQ;
247
248         q->unplug_thresh = 4;           /* hmm */
249         q->unplug_delay = (3 * HZ) / 1000;      /* 3 milliseconds */
250         if (q->unplug_delay == 0)
251                 q->unplug_delay = 1;
252
253         INIT_WORK(&q->unplug_work, blk_unplug_work, q);
254
255         q->unplug_timer.function = blk_unplug_timeout;
256         q->unplug_timer.data = (unsigned long)q;
257
258         /*
259          * by default assume old behaviour and bounce for any highmem page
260          */
261         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
262
263         blk_queue_activity_fn(q, NULL, NULL);
264
265         INIT_LIST_HEAD(&q->drain_list);
266 }
267
268 EXPORT_SYMBOL(blk_queue_make_request);
269
270 static inline void rq_init(request_queue_t *q, struct request *rq)
271 {
272         INIT_LIST_HEAD(&rq->queuelist);
273
274         rq->errors = 0;
275         rq->rq_status = RQ_ACTIVE;
276         rq->bio = rq->biotail = NULL;
277         rq->buffer = NULL;
278         rq->ref_count = 1;
279         rq->q = q;
280         rq->waiting = NULL;
281         rq->special = NULL;
282         rq->data_len = 0;
283         rq->data = NULL;
284         rq->nr_phys_segments = 0;
285         rq->sense = NULL;
286         rq->end_io = NULL;
287         rq->end_io_data = NULL;
288 }
289
290 /**
291  * blk_queue_ordered - does this queue support ordered writes
292  * @q:     the request queue
293  * @flag:  see below
294  *
295  * Description:
296  *   For journalled file systems, doing ordered writes on a commit
297  *   block instead of explicitly doing wait_on_buffer (which is bad
298  *   for performance) can be a big win. Block drivers supporting this
299  *   feature should call this function and indicate so.
300  *
301  **/
302 void blk_queue_ordered(request_queue_t *q, int flag)
303 {
304         switch (flag) {
305                 case QUEUE_ORDERED_NONE:
306                         if (q->flush_rq)
307                                 kmem_cache_free(request_cachep, q->flush_rq);
308                         q->flush_rq = NULL;
309                         q->ordered = flag;
310                         break;
311                 case QUEUE_ORDERED_TAG:
312                         q->ordered = flag;
313                         break;
314                 case QUEUE_ORDERED_FLUSH:
315                         q->ordered = flag;
316                         if (!q->flush_rq)
317                                 q->flush_rq = kmem_cache_alloc(request_cachep,
318                                                                 GFP_KERNEL);
319                         break;
320                 default:
321                         printk("blk_queue_ordered: bad value %d\n", flag);
322                         break;
323         }
324 }
325
326 EXPORT_SYMBOL(blk_queue_ordered);
327
328 /**
329  * blk_queue_issue_flush_fn - set function for issuing a flush
330  * @q:     the request queue
331  * @iff:   the function to be called issuing the flush
332  *
333  * Description:
334  *   If a driver supports issuing a flush command, the support is notified
335  *   to the block layer by defining it through this call.
336  *
337  **/
338 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339 {
340         q->issue_flush_fn = iff;
341 }
342
343 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
344
345 /*
346  * Cache flushing for ordered writes handling
347  */
348 static void blk_pre_flush_end_io(struct request *flush_rq)
349 {
350         struct request *rq = flush_rq->end_io_data;
351         request_queue_t *q = rq->q;
352
353         rq->flags |= REQ_BAR_PREFLUSH;
354
355         if (!flush_rq->errors)
356                 elv_requeue_request(q, rq);
357         else {
358                 q->end_flush_fn(q, flush_rq);
359                 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
360                 q->request_fn(q);
361         }
362 }
363
364 static void blk_post_flush_end_io(struct request *flush_rq)
365 {
366         struct request *rq = flush_rq->end_io_data;
367         request_queue_t *q = rq->q;
368
369         rq->flags |= REQ_BAR_POSTFLUSH;
370
371         q->end_flush_fn(q, flush_rq);
372         clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
373         q->request_fn(q);
374 }
375
376 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
377 {
378         struct request *flush_rq = q->flush_rq;
379
380         BUG_ON(!blk_barrier_rq(rq));
381
382         if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
383                 return NULL;
384
385         rq_init(q, flush_rq);
386         flush_rq->elevator_private = NULL;
387         flush_rq->flags = REQ_BAR_FLUSH;
388         flush_rq->rq_disk = rq->rq_disk;
389         flush_rq->rl = NULL;
390
391         /*
392          * prepare_flush returns 0 if no flush is needed, just mark both
393          * pre and post flush as done in that case
394          */
395         if (!q->prepare_flush_fn(q, flush_rq)) {
396                 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
397                 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
398                 return rq;
399         }
400
401         /*
402          * some drivers dequeue requests right away, some only after io
403          * completion. make sure the request is dequeued.
404          */
405         if (!list_empty(&rq->queuelist))
406                 blkdev_dequeue_request(rq);
407
408         elv_deactivate_request(q, rq);
409
410         flush_rq->end_io_data = rq;
411         flush_rq->end_io = blk_pre_flush_end_io;
412
413         __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
414         return flush_rq;
415 }
416
417 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
418 {
419         struct request *flush_rq = q->flush_rq;
420
421         BUG_ON(!blk_barrier_rq(rq));
422
423         rq_init(q, flush_rq);
424         flush_rq->elevator_private = NULL;
425         flush_rq->flags = REQ_BAR_FLUSH;
426         flush_rq->rq_disk = rq->rq_disk;
427         flush_rq->rl = NULL;
428
429         if (q->prepare_flush_fn(q, flush_rq)) {
430                 flush_rq->end_io_data = rq;
431                 flush_rq->end_io = blk_post_flush_end_io;
432
433                 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
434                 q->request_fn(q);
435         }
436 }
437
438 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
439                                         int sectors)
440 {
441         if (sectors > rq->nr_sectors)
442                 sectors = rq->nr_sectors;
443
444         rq->nr_sectors -= sectors;
445         return rq->nr_sectors;
446 }
447
448 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
449                                      int sectors, int queue_locked)
450 {
451         if (q->ordered != QUEUE_ORDERED_FLUSH)
452                 return 0;
453         if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
454                 return 0;
455         if (blk_barrier_postflush(rq))
456                 return 0;
457
458         if (!blk_check_end_barrier(q, rq, sectors)) {
459                 unsigned long flags = 0;
460
461                 if (!queue_locked)
462                         spin_lock_irqsave(q->queue_lock, flags);
463
464                 blk_start_post_flush(q, rq);
465
466                 if (!queue_locked)
467                         spin_unlock_irqrestore(q->queue_lock, flags);
468         }
469
470         return 1;
471 }
472
473 /**
474  * blk_complete_barrier_rq - complete possible barrier request
475  * @q:  the request queue for the device
476  * @rq:  the request
477  * @sectors:  number of sectors to complete
478  *
479  * Description:
480  *   Used in driver end_io handling to determine whether to postpone
481  *   completion of a barrier request until a post flush has been done. This
482  *   is the unlocked variant, used if the caller doesn't already hold the
483  *   queue lock.
484  **/
485 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
486 {
487         return __blk_complete_barrier_rq(q, rq, sectors, 0);
488 }
489 EXPORT_SYMBOL(blk_complete_barrier_rq);
490
491 /**
492  * blk_complete_barrier_rq_locked - complete possible barrier request
493  * @q:  the request queue for the device
494  * @rq:  the request
495  * @sectors:  number of sectors to complete
496  *
497  * Description:
498  *   See blk_complete_barrier_rq(). This variant must be used if the caller
499  *   holds the queue lock.
500  **/
501 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
502                                    int sectors)
503 {
504         return __blk_complete_barrier_rq(q, rq, sectors, 1);
505 }
506 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
507
508 /**
509  * blk_queue_bounce_limit - set bounce buffer limit for queue
510  * @q:  the request queue for the device
511  * @dma_addr:   bus address limit
512  *
513  * Description:
514  *    Different hardware can have different requirements as to what pages
515  *    it can do I/O directly to. A low level driver can call
516  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
517  *    buffers for doing I/O to pages residing above @page. By default
518  *    the block layer sets this to the highest numbered "low" memory page.
519  **/
520 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
521 {
522         unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
523
524         /*
525          * set appropriate bounce gfp mask -- unfortunately we don't have a
526          * full 4GB zone, so we have to resort to low memory for any bounces.
527          * ISA has its own < 16MB zone.
528          */
529         if (bounce_pfn < blk_max_low_pfn) {
530                 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
531                 init_emergency_isa_pool();
532                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
533         } else
534                 q->bounce_gfp = GFP_NOIO;
535
536         q->bounce_pfn = bounce_pfn;
537 }
538
539 EXPORT_SYMBOL(blk_queue_bounce_limit);
540
541 /**
542  * blk_queue_max_sectors - set max sectors for a request for this queue
543  * @q:  the request queue for the device
544  * @max_sectors:  max sectors in the usual 512b unit
545  *
546  * Description:
547  *    Enables a low level driver to set an upper limit on the size of
548  *    received requests.
549  **/
550 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
551 {
552         if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
553                 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
554                 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
555         }
556
557         q->max_sectors = q->max_hw_sectors = max_sectors;
558 }
559
560 EXPORT_SYMBOL(blk_queue_max_sectors);
561
562 /**
563  * blk_queue_max_phys_segments - set max phys segments for a request for this queue
564  * @q:  the request queue for the device
565  * @max_segments:  max number of segments
566  *
567  * Description:
568  *    Enables a low level driver to set an upper limit on the number of
569  *    physical data segments in a request.  This would be the largest sized
570  *    scatter list the driver could handle.
571  **/
572 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
573 {
574         if (!max_segments) {
575                 max_segments = 1;
576                 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
577         }
578
579         q->max_phys_segments = max_segments;
580 }
581
582 EXPORT_SYMBOL(blk_queue_max_phys_segments);
583
584 /**
585  * blk_queue_max_hw_segments - set max hw segments for a request for this queue
586  * @q:  the request queue for the device
587  * @max_segments:  max number of segments
588  *
589  * Description:
590  *    Enables a low level driver to set an upper limit on the number of
591  *    hw data segments in a request.  This would be the largest number of
592  *    address/length pairs the host adapter can actually give as once
593  *    to the device.
594  **/
595 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
596 {
597         if (!max_segments) {
598                 max_segments = 1;
599                 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
600         }
601
602         q->max_hw_segments = max_segments;
603 }
604
605 EXPORT_SYMBOL(blk_queue_max_hw_segments);
606
607 /**
608  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
609  * @q:  the request queue for the device
610  * @max_size:  max size of segment in bytes
611  *
612  * Description:
613  *    Enables a low level driver to set an upper limit on the size of a
614  *    coalesced segment
615  **/
616 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
617 {
618         if (max_size < PAGE_CACHE_SIZE) {
619                 max_size = PAGE_CACHE_SIZE;
620                 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
621         }
622
623         q->max_segment_size = max_size;
624 }
625
626 EXPORT_SYMBOL(blk_queue_max_segment_size);
627
628 /**
629  * blk_queue_hardsect_size - set hardware sector size for the queue
630  * @q:  the request queue for the device
631  * @size:  the hardware sector size, in bytes
632  *
633  * Description:
634  *   This should typically be set to the lowest possible sector size
635  *   that the hardware can operate on (possible without reverting to
636  *   even internal read-modify-write operations). Usually the default
637  *   of 512 covers most hardware.
638  **/
639 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
640 {
641         q->hardsect_size = size;
642 }
643
644 EXPORT_SYMBOL(blk_queue_hardsect_size);
645
646 /*
647  * Returns the minimum that is _not_ zero, unless both are zero.
648  */
649 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
650
651 /**
652  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
653  * @t:  the stacking driver (top)
654  * @b:  the underlying device (bottom)
655  **/
656 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
657 {
658         /* zero is "infinity" */
659         t->max_sectors = t->max_hw_sectors =
660                 min_not_zero(t->max_sectors,b->max_sectors);
661
662         t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
663         t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
664         t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
665         t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
666 }
667
668 EXPORT_SYMBOL(blk_queue_stack_limits);
669
670 /**
671  * blk_queue_segment_boundary - set boundary rules for segment merging
672  * @q:  the request queue for the device
673  * @mask:  the memory boundary mask
674  **/
675 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
676 {
677         if (mask < PAGE_CACHE_SIZE - 1) {
678                 mask = PAGE_CACHE_SIZE - 1;
679                 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
680         }
681
682         q->seg_boundary_mask = mask;
683 }
684
685 EXPORT_SYMBOL(blk_queue_segment_boundary);
686
687 /**
688  * blk_queue_dma_alignment - set dma length and memory alignment
689  * @q:     the request queue for the device
690  * @mask:  alignment mask
691  *
692  * description:
693  *    set required memory and length aligment for direct dma transactions.
694  *    this is used when buiding direct io requests for the queue.
695  *
696  **/
697 void blk_queue_dma_alignment(request_queue_t *q, int mask)
698 {
699         q->dma_alignment = mask;
700 }
701
702 EXPORT_SYMBOL(blk_queue_dma_alignment);
703
704 /**
705  * blk_queue_find_tag - find a request by its tag and queue
706  *
707  * @q:   The request queue for the device
708  * @tag: The tag of the request
709  *
710  * Notes:
711  *    Should be used when a device returns a tag and you want to match
712  *    it with a request.
713  *
714  *    no locks need be held.
715  **/
716 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
717 {
718         struct blk_queue_tag *bqt = q->queue_tags;
719
720         if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
721                 return NULL;
722
723         return bqt->tag_index[tag];
724 }
725
726 EXPORT_SYMBOL(blk_queue_find_tag);
727
728 /**
729  * __blk_queue_free_tags - release tag maintenance info
730  * @q:  the request queue for the device
731  *
732  *  Notes:
733  *    blk_cleanup_queue() will take care of calling this function, if tagging
734  *    has been used. So there's no need to call this directly.
735  **/
736 static void __blk_queue_free_tags(request_queue_t *q)
737 {
738         struct blk_queue_tag *bqt = q->queue_tags;
739
740         if (!bqt)
741                 return;
742
743         if (atomic_dec_and_test(&bqt->refcnt)) {
744                 BUG_ON(bqt->busy);
745                 BUG_ON(!list_empty(&bqt->busy_list));
746
747                 kfree(bqt->tag_index);
748                 bqt->tag_index = NULL;
749
750                 kfree(bqt->tag_map);
751                 bqt->tag_map = NULL;
752
753                 kfree(bqt);
754         }
755
756         q->queue_tags = NULL;
757         q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
758 }
759
760 /**
761  * blk_queue_free_tags - release tag maintenance info
762  * @q:  the request queue for the device
763  *
764  *  Notes:
765  *      This is used to disabled tagged queuing to a device, yet leave
766  *      queue in function.
767  **/
768 void blk_queue_free_tags(request_queue_t *q)
769 {
770         clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
771 }
772
773 EXPORT_SYMBOL(blk_queue_free_tags);
774
775 static int
776 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
777 {
778         int bits, i;
779         struct request **tag_index;
780         unsigned long *tag_map;
781
782         if (depth > q->nr_requests * 2) {
783                 depth = q->nr_requests * 2;
784                 printk(KERN_ERR "%s: adjusted depth to %d\n",
785                                 __FUNCTION__, depth);
786         }
787
788         tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
789         if (!tag_index)
790                 goto fail;
791
792         bits = (depth / BLK_TAGS_PER_LONG) + 1;
793         tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
794         if (!tag_map)
795                 goto fail;
796
797         memset(tag_index, 0, depth * sizeof(struct request *));
798         memset(tag_map, 0, bits * sizeof(unsigned long));
799         tags->max_depth = depth;
800         tags->real_max_depth = bits * BITS_PER_LONG;
801         tags->tag_index = tag_index;
802         tags->tag_map = tag_map;
803
804         /*
805          * set the upper bits if the depth isn't a multiple of the word size
806          */
807         for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
808                 __set_bit(i, tag_map);
809
810         return 0;
811 fail:
812         kfree(tag_index);
813         return -ENOMEM;
814 }
815
816 /**
817  * blk_queue_init_tags - initialize the queue tag info
818  * @q:  the request queue for the device
819  * @depth:  the maximum queue depth supported
820  * @tags: the tag to use
821  **/
822 int blk_queue_init_tags(request_queue_t *q, int depth,
823                         struct blk_queue_tag *tags)
824 {
825         int rc;
826
827         BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
828
829         if (!tags && !q->queue_tags) {
830                 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
831                 if (!tags)
832                         goto fail;
833
834                 if (init_tag_map(q, tags, depth))
835                         goto fail;
836
837                 INIT_LIST_HEAD(&tags->busy_list);
838                 tags->busy = 0;
839                 atomic_set(&tags->refcnt, 1);
840         } else if (q->queue_tags) {
841                 if ((rc = blk_queue_resize_tags(q, depth)))
842                         return rc;
843                 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
844                 return 0;
845         } else
846                 atomic_inc(&tags->refcnt);
847
848         /*
849          * assign it, all done
850          */
851         q->queue_tags = tags;
852         q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
853         return 0;
854 fail:
855         kfree(tags);
856         return -ENOMEM;
857 }
858
859 EXPORT_SYMBOL(blk_queue_init_tags);
860
861 /**
862  * blk_queue_resize_tags - change the queueing depth
863  * @q:  the request queue for the device
864  * @new_depth: the new max command queueing depth
865  *
866  *  Notes:
867  *    Must be called with the queue lock held.
868  **/
869 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
870 {
871         struct blk_queue_tag *bqt = q->queue_tags;
872         struct request **tag_index;
873         unsigned long *tag_map;
874         int bits, max_depth;
875
876         if (!bqt)
877                 return -ENXIO;
878
879         /*
880          * don't bother sizing down
881          */
882         if (new_depth <= bqt->real_max_depth) {
883                 bqt->max_depth = new_depth;
884                 return 0;
885         }
886
887         /*
888          * save the old state info, so we can copy it back
889          */
890         tag_index = bqt->tag_index;
891         tag_map = bqt->tag_map;
892         max_depth = bqt->real_max_depth;
893
894         if (init_tag_map(q, bqt, new_depth))
895                 return -ENOMEM;
896
897         memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
898         bits = max_depth / BLK_TAGS_PER_LONG;
899         memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
900
901         kfree(tag_index);
902         kfree(tag_map);
903         return 0;
904 }
905
906 EXPORT_SYMBOL(blk_queue_resize_tags);
907
908 /**
909  * blk_queue_end_tag - end tag operations for a request
910  * @q:  the request queue for the device
911  * @rq: the request that has completed
912  *
913  *  Description:
914  *    Typically called when end_that_request_first() returns 0, meaning
915  *    all transfers have been done for a request. It's important to call
916  *    this function before end_that_request_last(), as that will put the
917  *    request back on the free list thus corrupting the internal tag list.
918  *
919  *  Notes:
920  *   queue lock must be held.
921  **/
922 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
923 {
924         struct blk_queue_tag *bqt = q->queue_tags;
925         int tag = rq->tag;
926
927         BUG_ON(tag == -1);
928
929         if (unlikely(tag >= bqt->real_max_depth))
930                 return;
931
932         if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
933                 printk("attempt to clear non-busy tag (%d)\n", tag);
934                 return;
935         }
936
937         list_del_init(&rq->queuelist);
938         rq->flags &= ~REQ_QUEUED;
939         rq->tag = -1;
940
941         if (unlikely(bqt->tag_index[tag] == NULL))
942                 printk("tag %d is missing\n", tag);
943
944         bqt->tag_index[tag] = NULL;
945         bqt->busy--;
946 }
947
948 EXPORT_SYMBOL(blk_queue_end_tag);
949
950 /**
951  * blk_queue_start_tag - find a free tag and assign it
952  * @q:  the request queue for the device
953  * @rq:  the block request that needs tagging
954  *
955  *  Description:
956  *    This can either be used as a stand-alone helper, or possibly be
957  *    assigned as the queue &prep_rq_fn (in which case &struct request
958  *    automagically gets a tag assigned). Note that this function
959  *    assumes that any type of request can be queued! if this is not
960  *    true for your device, you must check the request type before
961  *    calling this function.  The request will also be removed from
962  *    the request queue, so it's the drivers responsibility to readd
963  *    it if it should need to be restarted for some reason.
964  *
965  *  Notes:
966  *   queue lock must be held.
967  **/
968 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
969 {
970         struct blk_queue_tag *bqt = q->queue_tags;
971         unsigned long *map = bqt->tag_map;
972         int tag = 0;
973
974         if (unlikely((rq->flags & REQ_QUEUED))) {
975                 printk(KERN_ERR 
976                        "request %p for device [%s] already tagged %d",
977                        rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
978                 BUG();
979         }
980
981         for (map = bqt->tag_map; *map == -1UL; map++) {
982                 tag += BLK_TAGS_PER_LONG;
983
984                 if (tag >= bqt->max_depth)
985                         return 1;
986         }
987
988         tag += ffz(*map);
989         __set_bit(tag, bqt->tag_map);
990
991         rq->flags |= REQ_QUEUED;
992         rq->tag = tag;
993         bqt->tag_index[tag] = rq;
994         blkdev_dequeue_request(rq);
995         list_add(&rq->queuelist, &bqt->busy_list);
996         bqt->busy++;
997         return 0;
998 }
999
1000 EXPORT_SYMBOL(blk_queue_start_tag);
1001
1002 /**
1003  * blk_queue_invalidate_tags - invalidate all pending tags
1004  * @q:  the request queue for the device
1005  *
1006  *  Description:
1007  *   Hardware conditions may dictate a need to stop all pending requests.
1008  *   In this case, we will safely clear the block side of the tag queue and
1009  *   readd all requests to the request queue in the right order.
1010  *
1011  *  Notes:
1012  *   queue lock must be held.
1013  **/
1014 void blk_queue_invalidate_tags(request_queue_t *q)
1015 {
1016         struct blk_queue_tag *bqt = q->queue_tags;
1017         struct list_head *tmp, *n;
1018         struct request *rq;
1019
1020         list_for_each_safe(tmp, n, &bqt->busy_list) {
1021                 rq = list_entry_rq(tmp);
1022
1023                 if (rq->tag == -1) {
1024                         printk("bad tag found on list\n");
1025                         list_del_init(&rq->queuelist);
1026                         rq->flags &= ~REQ_QUEUED;
1027                 } else
1028                         blk_queue_end_tag(q, rq);
1029
1030                 rq->flags &= ~REQ_STARTED;
1031                 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1032         }
1033 }
1034
1035 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1036
1037 static char *rq_flags[] = {
1038         "REQ_RW",
1039         "REQ_FAILFAST",
1040         "REQ_SOFTBARRIER",
1041         "REQ_HARDBARRIER",
1042         "REQ_CMD",
1043         "REQ_NOMERGE",
1044         "REQ_STARTED",
1045         "REQ_DONTPREP",
1046         "REQ_QUEUED",
1047         "REQ_PC",
1048         "REQ_BLOCK_PC",
1049         "REQ_SENSE",
1050         "REQ_FAILED",
1051         "REQ_QUIET",
1052         "REQ_SPECIAL",
1053         "REQ_DRIVE_CMD",
1054         "REQ_DRIVE_TASK",
1055         "REQ_DRIVE_TASKFILE",
1056         "REQ_PREEMPT",
1057         "REQ_PM_SUSPEND",
1058         "REQ_PM_RESUME",
1059         "REQ_PM_SHUTDOWN",
1060 };
1061
1062 void blk_dump_rq_flags(struct request *rq, char *msg)
1063 {
1064         int bit;
1065
1066         printk("%s: dev %s: flags = ", msg,
1067                 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1068         bit = 0;
1069         do {
1070                 if (rq->flags & (1 << bit))
1071                         printk("%s ", rq_flags[bit]);
1072                 bit++;
1073         } while (bit < __REQ_NR_BITS);
1074
1075         printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1076                                                        rq->nr_sectors,
1077                                                        rq->current_nr_sectors);
1078         printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1079
1080         if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1081                 printk("cdb: ");
1082                 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1083                         printk("%02x ", rq->cmd[bit]);
1084                 printk("\n");
1085         }
1086 }
1087
1088 EXPORT_SYMBOL(blk_dump_rq_flags);
1089
1090 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1091 {
1092         struct bio_vec *bv, *bvprv = NULL;
1093         int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1094         int high, highprv = 1;
1095
1096         if (unlikely(!bio->bi_io_vec))
1097                 return;
1098
1099         cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1100         hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1101         bio_for_each_segment(bv, bio, i) {
1102                 /*
1103                  * the trick here is making sure that a high page is never
1104                  * considered part of another segment, since that might
1105                  * change with the bounce page.
1106                  */
1107                 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1108                 if (high || highprv)
1109                         goto new_hw_segment;
1110                 if (cluster) {
1111                         if (seg_size + bv->bv_len > q->max_segment_size)
1112                                 goto new_segment;
1113                         if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1114                                 goto new_segment;
1115                         if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1116                                 goto new_segment;
1117                         if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1118                                 goto new_hw_segment;
1119
1120                         seg_size += bv->bv_len;
1121                         hw_seg_size += bv->bv_len;
1122                         bvprv = bv;
1123                         continue;
1124                 }
1125 new_segment:
1126                 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1127                     !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1128                         hw_seg_size += bv->bv_len;
1129                 } else {
1130 new_hw_segment:
1131                         if (hw_seg_size > bio->bi_hw_front_size)
1132                                 bio->bi_hw_front_size = hw_seg_size;
1133                         hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1134                         nr_hw_segs++;
1135                 }
1136
1137                 nr_phys_segs++;
1138                 bvprv = bv;
1139                 seg_size = bv->bv_len;
1140                 highprv = high;
1141         }
1142         if (hw_seg_size > bio->bi_hw_back_size)
1143                 bio->bi_hw_back_size = hw_seg_size;
1144         if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1145                 bio->bi_hw_front_size = hw_seg_size;
1146         bio->bi_phys_segments = nr_phys_segs;
1147         bio->bi_hw_segments = nr_hw_segs;
1148         bio->bi_flags |= (1 << BIO_SEG_VALID);
1149 }
1150
1151
1152 int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1153                                    struct bio *nxt)
1154 {
1155         if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1156                 return 0;
1157
1158         if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1159                 return 0;
1160         if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1161                 return 0;
1162
1163         /*
1164          * bio and nxt are contigous in memory, check if the queue allows
1165          * these two to be merged into one
1166          */
1167         if (BIO_SEG_BOUNDARY(q, bio, nxt))
1168                 return 1;
1169
1170         return 0;
1171 }
1172
1173 EXPORT_SYMBOL(blk_phys_contig_segment);
1174
1175 int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1176                                  struct bio *nxt)
1177 {
1178         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1179                 blk_recount_segments(q, bio);
1180         if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1181                 blk_recount_segments(q, nxt);
1182         if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1183             BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1184                 return 0;
1185         if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1186                 return 0;
1187
1188         return 1;
1189 }
1190
1191 EXPORT_SYMBOL(blk_hw_contig_segment);
1192
1193 /*
1194  * map a request to scatterlist, return number of sg entries setup. Caller
1195  * must make sure sg can hold rq->nr_phys_segments entries
1196  */
1197 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1198 {
1199         struct bio_vec *bvec, *bvprv;
1200         struct bio *bio;
1201         int nsegs, i, cluster;
1202
1203         nsegs = 0;
1204         cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1205
1206         /*
1207          * for each bio in rq
1208          */
1209         bvprv = NULL;
1210         rq_for_each_bio(bio, rq) {
1211                 /*
1212                  * for each segment in bio
1213                  */
1214                 bio_for_each_segment(bvec, bio, i) {
1215                         int nbytes = bvec->bv_len;
1216
1217                         if (bvprv && cluster) {
1218                                 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1219                                         goto new_segment;
1220
1221                                 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1222                                         goto new_segment;
1223                                 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1224                                         goto new_segment;
1225
1226                                 sg[nsegs - 1].length += nbytes;
1227                         } else {
1228 new_segment:
1229                                 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1230                                 sg[nsegs].page = bvec->bv_page;
1231                                 sg[nsegs].length = nbytes;
1232                                 sg[nsegs].offset = bvec->bv_offset;
1233
1234                                 nsegs++;
1235                         }
1236                         bvprv = bvec;
1237                 } /* segments in bio */
1238         } /* bios in rq */
1239
1240         return nsegs;
1241 }
1242
1243 EXPORT_SYMBOL(blk_rq_map_sg);
1244
1245 /*
1246  * the standard queue merge functions, can be overridden with device
1247  * specific ones if so desired
1248  */
1249
1250 static inline int ll_new_mergeable(request_queue_t *q,
1251                                    struct request *req,
1252                                    struct bio *bio)
1253 {
1254         int nr_phys_segs = bio_phys_segments(q, bio);
1255
1256         if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1257                 req->flags |= REQ_NOMERGE;
1258                 if (req == q->last_merge)
1259                         q->last_merge = NULL;
1260                 return 0;
1261         }
1262
1263         /*
1264          * A hw segment is just getting larger, bump just the phys
1265          * counter.
1266          */
1267         req->nr_phys_segments += nr_phys_segs;
1268         return 1;
1269 }
1270
1271 static inline int ll_new_hw_segment(request_queue_t *q,
1272                                     struct request *req,
1273                                     struct bio *bio)
1274 {
1275         int nr_hw_segs = bio_hw_segments(q, bio);
1276         int nr_phys_segs = bio_phys_segments(q, bio);
1277
1278         if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1279             || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1280                 req->flags |= REQ_NOMERGE;
1281                 if (req == q->last_merge)
1282                         q->last_merge = NULL;
1283                 return 0;
1284         }
1285
1286         /*
1287          * This will form the start of a new hw segment.  Bump both
1288          * counters.
1289          */
1290         req->nr_hw_segments += nr_hw_segs;
1291         req->nr_phys_segments += nr_phys_segs;
1292         return 1;
1293 }
1294
1295 static int ll_back_merge_fn(request_queue_t *q, struct request *req, 
1296                             struct bio *bio)
1297 {
1298         int len;
1299
1300         if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1301                 req->flags |= REQ_NOMERGE;
1302                 if (req == q->last_merge)
1303                         q->last_merge = NULL;
1304                 return 0;
1305         }
1306         if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1307                 blk_recount_segments(q, req->biotail);
1308         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1309                 blk_recount_segments(q, bio);
1310         len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1311         if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1312             !BIOVEC_VIRT_OVERSIZE(len)) {
1313                 int mergeable =  ll_new_mergeable(q, req, bio);
1314
1315                 if (mergeable) {
1316                         if (req->nr_hw_segments == 1)
1317                                 req->bio->bi_hw_front_size = len;
1318                         if (bio->bi_hw_segments == 1)
1319                                 bio->bi_hw_back_size = len;
1320                 }
1321                 return mergeable;
1322         }
1323
1324         return ll_new_hw_segment(q, req, bio);
1325 }
1326
1327 static int ll_front_merge_fn(request_queue_t *q, struct request *req, 
1328                              struct bio *bio)
1329 {
1330         int len;
1331
1332         if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1333                 req->flags |= REQ_NOMERGE;
1334                 if (req == q->last_merge)
1335                         q->last_merge = NULL;
1336                 return 0;
1337         }
1338         len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1339         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1340                 blk_recount_segments(q, bio);
1341         if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1342                 blk_recount_segments(q, req->bio);
1343         if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1344             !BIOVEC_VIRT_OVERSIZE(len)) {
1345                 int mergeable =  ll_new_mergeable(q, req, bio);
1346
1347                 if (mergeable) {
1348                         if (bio->bi_hw_segments == 1)
1349                                 bio->bi_hw_front_size = len;
1350                         if (req->nr_hw_segments == 1)
1351                                 req->biotail->bi_hw_back_size = len;
1352                 }
1353                 return mergeable;
1354         }
1355
1356         return ll_new_hw_segment(q, req, bio);
1357 }
1358
1359 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1360                                 struct request *next)
1361 {
1362         int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1363         int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1364
1365         /*
1366          * First check if the either of the requests are re-queued
1367          * requests.  Can't merge them if they are.
1368          */
1369         if (req->special || next->special)
1370                 return 0;
1371
1372         /*
1373          * Will it become to large?
1374          */
1375         if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1376                 return 0;
1377
1378         total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1379         if (blk_phys_contig_segment(q, req->biotail, next->bio))
1380                 total_phys_segments--;
1381
1382         if (total_phys_segments > q->max_phys_segments)
1383                 return 0;
1384
1385         total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1386         if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1387                 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1388                 /*
1389                  * propagate the combined length to the end of the requests
1390                  */
1391                 if (req->nr_hw_segments == 1)
1392                         req->bio->bi_hw_front_size = len;
1393                 if (next->nr_hw_segments == 1)
1394                         next->biotail->bi_hw_back_size = len;
1395                 total_hw_segments--;
1396         }
1397
1398         if (total_hw_segments > q->max_hw_segments)
1399                 return 0;
1400
1401         /* Merge is OK... */
1402         req->nr_phys_segments = total_phys_segments;
1403         req->nr_hw_segments = total_hw_segments;
1404         return 1;
1405 }
1406
1407 /*
1408  * "plug" the device if there are no outstanding requests: this will
1409  * force the transfer to start only after we have put all the requests
1410  * on the list.
1411  *
1412  * This is called with interrupts off and no requests on the queue and
1413  * with the queue lock held.
1414  */
1415 void blk_plug_device(request_queue_t *q)
1416 {
1417         WARN_ON(!irqs_disabled());
1418
1419         /*
1420          * don't plug a stopped queue, it must be paired with blk_start_queue()
1421          * which will restart the queueing
1422          */
1423         if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1424                 return;
1425
1426         if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1427                 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1428 }
1429
1430 EXPORT_SYMBOL(blk_plug_device);
1431
1432 /*
1433  * remove the queue from the plugged list, if present. called with
1434  * queue lock held and interrupts disabled.
1435  */
1436 int blk_remove_plug(request_queue_t *q)
1437 {
1438         WARN_ON(!irqs_disabled());
1439
1440         if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1441                 return 0;
1442
1443         del_timer(&q->unplug_timer);
1444         return 1;
1445 }
1446
1447 EXPORT_SYMBOL(blk_remove_plug);
1448
1449 /*
1450  * remove the plug and let it rip..
1451  */
1452 void __generic_unplug_device(request_queue_t *q)
1453 {
1454         if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1455                 return;
1456
1457         if (!blk_remove_plug(q))
1458                 return;
1459
1460         /*
1461          * was plugged, fire request_fn if queue has stuff to do
1462          */
1463         if (elv_next_request(q))
1464                 q->request_fn(q);
1465 }
1466 EXPORT_SYMBOL(__generic_unplug_device);
1467
1468 /**
1469  * generic_unplug_device - fire a request queue
1470  * @q:    The &request_queue_t in question
1471  *
1472  * Description:
1473  *   Linux uses plugging to build bigger requests queues before letting
1474  *   the device have at them. If a queue is plugged, the I/O scheduler
1475  *   is still adding and merging requests on the queue. Once the queue
1476  *   gets unplugged, the request_fn defined for the queue is invoked and
1477  *   transfers started.
1478  **/
1479 void generic_unplug_device(request_queue_t *q)
1480 {
1481         spin_lock_irq(q->queue_lock);
1482         __generic_unplug_device(q);
1483         spin_unlock_irq(q->queue_lock);
1484 }
1485 EXPORT_SYMBOL(generic_unplug_device);
1486
1487 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1488                                    struct page *page)
1489 {
1490         request_queue_t *q = bdi->unplug_io_data;
1491
1492         /*
1493          * devices don't necessarily have an ->unplug_fn defined
1494          */
1495         if (q->unplug_fn)
1496                 q->unplug_fn(q);
1497 }
1498
1499 static void blk_unplug_work(void *data)
1500 {
1501         request_queue_t *q = data;
1502
1503         q->unplug_fn(q);
1504 }
1505
1506 static void blk_unplug_timeout(unsigned long data)
1507 {
1508         request_queue_t *q = (request_queue_t *)data;
1509
1510         kblockd_schedule_work(&q->unplug_work);
1511 }
1512
1513 /**
1514  * blk_start_queue - restart a previously stopped queue
1515  * @q:    The &request_queue_t in question
1516  *
1517  * Description:
1518  *   blk_start_queue() will clear the stop flag on the queue, and call
1519  *   the request_fn for the queue if it was in a stopped state when
1520  *   entered. Also see blk_stop_queue(). Queue lock must be held.
1521  **/
1522 void blk_start_queue(request_queue_t *q)
1523 {
1524         clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1525
1526         /*
1527          * one level of recursion is ok and is much faster than kicking
1528          * the unplug handling
1529          */
1530         if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1531                 q->request_fn(q);
1532                 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1533         } else {
1534                 blk_plug_device(q);
1535                 kblockd_schedule_work(&q->unplug_work);
1536         }
1537 }
1538
1539 EXPORT_SYMBOL(blk_start_queue);
1540
1541 /**
1542  * blk_stop_queue - stop a queue
1543  * @q:    The &request_queue_t in question
1544  *
1545  * Description:
1546  *   The Linux block layer assumes that a block driver will consume all
1547  *   entries on the request queue when the request_fn strategy is called.
1548  *   Often this will not happen, because of hardware limitations (queue
1549  *   depth settings). If a device driver gets a 'queue full' response,
1550  *   or if it simply chooses not to queue more I/O at one point, it can
1551  *   call this function to prevent the request_fn from being called until
1552  *   the driver has signalled it's ready to go again. This happens by calling
1553  *   blk_start_queue() to restart queue operations. Queue lock must be held.
1554  **/
1555 void blk_stop_queue(request_queue_t *q)
1556 {
1557         blk_remove_plug(q);
1558         set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1559 }
1560 EXPORT_SYMBOL(blk_stop_queue);
1561
1562 /**
1563  * blk_sync_queue - cancel any pending callbacks on a queue
1564  * @q: the queue
1565  *
1566  * Description:
1567  *     The block layer may perform asynchronous callback activity
1568  *     on a queue, such as calling the unplug function after a timeout.
1569  *     A block device may call blk_sync_queue to ensure that any
1570  *     such activity is cancelled, thus allowing it to release resources
1571  *     the the callbacks might use. The caller must already have made sure
1572  *     that its ->make_request_fn will not re-add plugging prior to calling
1573  *     this function.
1574  *
1575  */
1576 void blk_sync_queue(struct request_queue *q)
1577 {
1578         del_timer_sync(&q->unplug_timer);
1579         kblockd_flush();
1580 }
1581 EXPORT_SYMBOL(blk_sync_queue);
1582
1583 /**
1584  * blk_run_queue - run a single device queue
1585  * @q:  The queue to run
1586  */
1587 void blk_run_queue(struct request_queue *q)
1588 {
1589         unsigned long flags;
1590
1591         spin_lock_irqsave(q->queue_lock, flags);
1592         blk_remove_plug(q);
1593         if (!elv_queue_empty(q))
1594                 q->request_fn(q);
1595         spin_unlock_irqrestore(q->queue_lock, flags);
1596 }
1597 EXPORT_SYMBOL(blk_run_queue);
1598
1599 /**
1600  * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1601  * @q:    the request queue to be released
1602  *
1603  * Description:
1604  *     blk_cleanup_queue is the pair to blk_init_queue() or
1605  *     blk_queue_make_request().  It should be called when a request queue is
1606  *     being released; typically when a block device is being de-registered.
1607  *     Currently, its primary task it to free all the &struct request
1608  *     structures that were allocated to the queue and the queue itself.
1609  *
1610  * Caveat:
1611  *     Hopefully the low level driver will have finished any
1612  *     outstanding requests first...
1613  **/
1614 void blk_cleanup_queue(request_queue_t * q)
1615 {
1616         struct request_list *rl = &q->rq;
1617
1618         if (!atomic_dec_and_test(&q->refcnt))
1619                 return;
1620
1621         if (q->elevator)
1622                 elevator_exit(q->elevator);
1623
1624         blk_sync_queue(q);
1625
1626         if (rl->rq_pool)
1627                 mempool_destroy(rl->rq_pool);
1628
1629         if (q->queue_tags)
1630                 __blk_queue_free_tags(q);
1631
1632         blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1633
1634         kmem_cache_free(requestq_cachep, q);
1635 }
1636
1637 EXPORT_SYMBOL(blk_cleanup_queue);
1638
1639 static int blk_init_free_list(request_queue_t *q)
1640 {
1641         struct request_list *rl = &q->rq;
1642
1643         rl->count[READ] = rl->count[WRITE] = 0;
1644         rl->starved[READ] = rl->starved[WRITE] = 0;
1645         init_waitqueue_head(&rl->wait[READ]);
1646         init_waitqueue_head(&rl->wait[WRITE]);
1647         init_waitqueue_head(&rl->drain);
1648
1649         rl->rq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, request_cachep);
1650
1651         if (!rl->rq_pool)
1652                 return -ENOMEM;
1653
1654         return 0;
1655 }
1656
1657 static int __make_request(request_queue_t *, struct bio *);
1658
1659 request_queue_t *blk_alloc_queue(int gfp_mask)
1660 {
1661         request_queue_t *q = kmem_cache_alloc(requestq_cachep, gfp_mask);
1662
1663         if (!q)
1664                 return NULL;
1665
1666         memset(q, 0, sizeof(*q));
1667         init_timer(&q->unplug_timer);
1668         atomic_set(&q->refcnt, 1);
1669
1670         q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1671         q->backing_dev_info.unplug_io_data = q;
1672
1673         return q;
1674 }
1675
1676 EXPORT_SYMBOL(blk_alloc_queue);
1677
1678 /**
1679  * blk_init_queue  - prepare a request queue for use with a block device
1680  * @rfn:  The function to be called to process requests that have been
1681  *        placed on the queue.
1682  * @lock: Request queue spin lock
1683  *
1684  * Description:
1685  *    If a block device wishes to use the standard request handling procedures,
1686  *    which sorts requests and coalesces adjacent requests, then it must
1687  *    call blk_init_queue().  The function @rfn will be called when there
1688  *    are requests on the queue that need to be processed.  If the device
1689  *    supports plugging, then @rfn may not be called immediately when requests
1690  *    are available on the queue, but may be called at some time later instead.
1691  *    Plugged queues are generally unplugged when a buffer belonging to one
1692  *    of the requests on the queue is needed, or due to memory pressure.
1693  *
1694  *    @rfn is not required, or even expected, to remove all requests off the
1695  *    queue, but only as many as it can handle at a time.  If it does leave
1696  *    requests on the queue, it is responsible for arranging that the requests
1697  *    get dealt with eventually.
1698  *
1699  *    The queue spin lock must be held while manipulating the requests on the
1700  *    request queue.
1701  *
1702  *    Function returns a pointer to the initialized request queue, or NULL if
1703  *    it didn't succeed.
1704  *
1705  * Note:
1706  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1707  *    when the block device is deactivated (such as at module unload).
1708  **/
1709 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1710 {
1711         request_queue_t *q = blk_alloc_queue(GFP_KERNEL);
1712
1713         if (!q)
1714                 return NULL;
1715
1716         if (blk_init_free_list(q))
1717                 goto out_init;
1718
1719         /*
1720          * if caller didn't supply a lock, they get per-queue locking with
1721          * our embedded lock
1722          */
1723         if (!lock) {
1724                 spin_lock_init(&q->__queue_lock);
1725                 lock = &q->__queue_lock;
1726         }
1727
1728         q->request_fn           = rfn;
1729         q->back_merge_fn        = ll_back_merge_fn;
1730         q->front_merge_fn       = ll_front_merge_fn;
1731         q->merge_requests_fn    = ll_merge_requests_fn;
1732         q->prep_rq_fn           = NULL;
1733         q->unplug_fn            = generic_unplug_device;
1734         q->queue_flags          = (1 << QUEUE_FLAG_CLUSTER);
1735         q->queue_lock           = lock;
1736
1737         blk_queue_segment_boundary(q, 0xffffffff);
1738
1739         blk_queue_make_request(q, __make_request);
1740         blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1741
1742         blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1743         blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1744
1745         /*
1746          * all done
1747          */
1748         if (!elevator_init(q, NULL)) {
1749                 blk_queue_congestion_threshold(q);
1750                 return q;
1751         }
1752
1753         blk_cleanup_queue(q);
1754 out_init:
1755         kmem_cache_free(requestq_cachep, q);
1756         return NULL;
1757 }
1758
1759 EXPORT_SYMBOL(blk_init_queue);
1760
1761 int blk_get_queue(request_queue_t *q)
1762 {
1763         if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1764                 atomic_inc(&q->refcnt);
1765                 return 0;
1766         }
1767
1768         return 1;
1769 }
1770
1771 EXPORT_SYMBOL(blk_get_queue);
1772
1773 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1774 {
1775         elv_put_request(q, rq);
1776         mempool_free(rq, q->rq.rq_pool);
1777 }
1778
1779 static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1780                                                 int gfp_mask)
1781 {
1782         struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1783
1784         if (!rq)
1785                 return NULL;
1786
1787         /*
1788          * first three bits are identical in rq->flags and bio->bi_rw,
1789          * see bio.h and blkdev.h
1790          */
1791         rq->flags = rw;
1792
1793         if (!elv_set_request(q, rq, gfp_mask))
1794                 return rq;
1795
1796         mempool_free(rq, q->rq.rq_pool);
1797         return NULL;
1798 }
1799
1800 /*
1801  * ioc_batching returns true if the ioc is a valid batching request and
1802  * should be given priority access to a request.
1803  */
1804 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1805 {
1806         if (!ioc)
1807                 return 0;
1808
1809         /*
1810          * Make sure the process is able to allocate at least 1 request
1811          * even if the batch times out, otherwise we could theoretically
1812          * lose wakeups.
1813          */
1814         return ioc->nr_batch_requests == q->nr_batching ||
1815                 (ioc->nr_batch_requests > 0
1816                 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1817 }
1818
1819 /*
1820  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1821  * will cause the process to be a "batcher" on all queues in the system. This
1822  * is the behaviour we want though - once it gets a wakeup it should be given
1823  * a nice run.
1824  */
1825 void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1826 {
1827         if (!ioc || ioc_batching(q, ioc))
1828                 return;
1829
1830         ioc->nr_batch_requests = q->nr_batching;
1831         ioc->last_waited = jiffies;
1832 }
1833
1834 static void __freed_request(request_queue_t *q, int rw)
1835 {
1836         struct request_list *rl = &q->rq;
1837
1838         if (rl->count[rw] < queue_congestion_off_threshold(q))
1839                 clear_queue_congested(q, rw);
1840
1841         if (rl->count[rw] + 1 <= q->nr_requests) {
1842                 smp_mb();
1843                 if (waitqueue_active(&rl->wait[rw]))
1844                         wake_up(&rl->wait[rw]);
1845
1846                 blk_clear_queue_full(q, rw);
1847         }
1848 }
1849
1850 /*
1851  * A request has just been released.  Account for it, update the full and
1852  * congestion status, wake up any waiters.   Called under q->queue_lock.
1853  */
1854 static void freed_request(request_queue_t *q, int rw)
1855 {
1856         struct request_list *rl = &q->rq;
1857
1858         rl->count[rw]--;
1859
1860         __freed_request(q, rw);
1861
1862         if (unlikely(rl->starved[rw ^ 1]))
1863                 __freed_request(q, rw ^ 1);
1864
1865         if (!rl->count[READ] && !rl->count[WRITE]) {
1866                 smp_mb();
1867                 if (unlikely(waitqueue_active(&rl->drain)))
1868                         wake_up(&rl->drain);
1869         }
1870 }
1871
1872 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1873 /*
1874  * Get a free request, queue_lock must not be held
1875  */
1876 static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1877 {
1878         struct request *rq = NULL;
1879         struct request_list *rl = &q->rq;
1880         struct io_context *ioc = get_io_context(gfp_mask);
1881
1882         if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1883                 goto out;
1884
1885         spin_lock_irq(q->queue_lock);
1886         if (rl->count[rw]+1 >= q->nr_requests) {
1887                 /*
1888                  * The queue will fill after this allocation, so set it as
1889                  * full, and mark this process as "batching". This process
1890                  * will be allowed to complete a batch of requests, others
1891                  * will be blocked.
1892                  */
1893                 if (!blk_queue_full(q, rw)) {
1894                         ioc_set_batching(q, ioc);
1895                         blk_set_queue_full(q, rw);
1896                 }
1897         }
1898
1899         switch (elv_may_queue(q, rw)) {
1900                 case ELV_MQUEUE_NO:
1901                         goto rq_starved;
1902                 case ELV_MQUEUE_MAY:
1903                         break;
1904                 case ELV_MQUEUE_MUST:
1905                         goto get_rq;
1906         }
1907
1908         if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1909                 /*
1910                  * The queue is full and the allocating process is not a
1911                  * "batcher", and not exempted by the IO scheduler
1912                  */
1913                 spin_unlock_irq(q->queue_lock);
1914                 goto out;
1915         }
1916
1917 get_rq:
1918         rl->count[rw]++;
1919         rl->starved[rw] = 0;
1920         if (rl->count[rw] >= queue_congestion_on_threshold(q))
1921                 set_queue_congested(q, rw);
1922         spin_unlock_irq(q->queue_lock);
1923
1924         rq = blk_alloc_request(q, rw, gfp_mask);
1925         if (!rq) {
1926                 /*
1927                  * Allocation failed presumably due to memory. Undo anything
1928                  * we might have messed up.
1929                  *
1930                  * Allocating task should really be put onto the front of the
1931                  * wait queue, but this is pretty rare.
1932                  */
1933                 spin_lock_irq(q->queue_lock);
1934                 freed_request(q, rw);
1935
1936                 /*
1937                  * in the very unlikely event that allocation failed and no
1938                  * requests for this direction was pending, mark us starved
1939                  * so that freeing of a request in the other direction will
1940                  * notice us. another possible fix would be to split the
1941                  * rq mempool into READ and WRITE
1942                  */
1943 rq_starved:
1944                 if (unlikely(rl->count[rw] == 0))
1945                         rl->starved[rw] = 1;
1946
1947                 spin_unlock_irq(q->queue_lock);
1948                 goto out;
1949         }
1950
1951         if (ioc_batching(q, ioc))
1952                 ioc->nr_batch_requests--;
1953         
1954         rq_init(q, rq);
1955         rq->rl = rl;
1956 out:
1957         put_io_context(ioc);
1958         return rq;
1959 }
1960
1961 /*
1962  * No available requests for this queue, unplug the device and wait for some
1963  * requests to become available.
1964  */
1965 static struct request *get_request_wait(request_queue_t *q, int rw)
1966 {
1967         DEFINE_WAIT(wait);
1968         struct request *rq;
1969
1970         generic_unplug_device(q);
1971         do {
1972                 struct request_list *rl = &q->rq;
1973
1974                 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1975                                 TASK_UNINTERRUPTIBLE);
1976
1977                 rq = get_request(q, rw, GFP_NOIO);
1978
1979                 if (!rq) {
1980                         struct io_context *ioc;
1981
1982                         io_schedule();
1983
1984                         /*
1985                          * After sleeping, we become a "batching" process and
1986                          * will be able to allocate at least one request, and
1987                          * up to a big batch of them for a small period time.
1988                          * See ioc_batching, ioc_set_batching
1989                          */
1990                         ioc = get_io_context(GFP_NOIO);
1991                         ioc_set_batching(q, ioc);
1992                         put_io_context(ioc);
1993                 }
1994                 finish_wait(&rl->wait[rw], &wait);
1995         } while (!rq);
1996
1997         return rq;
1998 }
1999
2000 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2001 {
2002         struct request *rq;
2003
2004         BUG_ON(rw != READ && rw != WRITE);
2005
2006         if (gfp_mask & __GFP_WAIT)
2007                 rq = get_request_wait(q, rw);
2008         else
2009                 rq = get_request(q, rw, gfp_mask);
2010
2011         return rq;
2012 }
2013
2014 EXPORT_SYMBOL(blk_get_request);
2015
2016 /**
2017  * blk_requeue_request - put a request back on queue
2018  * @q:          request queue where request should be inserted
2019  * @rq:         request to be inserted
2020  *
2021  * Description:
2022  *    Drivers often keep queueing requests until the hardware cannot accept
2023  *    more, when that condition happens we need to put the request back
2024  *    on the queue. Must be called with queue lock held.
2025  */
2026 void blk_requeue_request(request_queue_t *q, struct request *rq)
2027 {
2028         if (blk_rq_tagged(rq))
2029                 blk_queue_end_tag(q, rq);
2030
2031         elv_requeue_request(q, rq);
2032 }
2033
2034 EXPORT_SYMBOL(blk_requeue_request);
2035
2036 /**
2037  * blk_insert_request - insert a special request in to a request queue
2038  * @q:          request queue where request should be inserted
2039  * @rq:         request to be inserted
2040  * @at_head:    insert request at head or tail of queue
2041  * @data:       private data
2042  *
2043  * Description:
2044  *    Many block devices need to execute commands asynchronously, so they don't
2045  *    block the whole kernel from preemption during request execution.  This is
2046  *    accomplished normally by inserting aritficial requests tagged as
2047  *    REQ_SPECIAL in to the corresponding request queue, and letting them be
2048  *    scheduled for actual execution by the request queue.
2049  *
2050  *    We have the option of inserting the head or the tail of the queue.
2051  *    Typically we use the tail for new ioctls and so forth.  We use the head
2052  *    of the queue for things like a QUEUE_FULL message from a device, or a
2053  *    host that is unable to accept a particular command.
2054  */
2055 void blk_insert_request(request_queue_t *q, struct request *rq,
2056                         int at_head, void *data)
2057 {
2058         int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2059         unsigned long flags;
2060
2061         /*
2062          * tell I/O scheduler that this isn't a regular read/write (ie it
2063          * must not attempt merges on this) and that it acts as a soft
2064          * barrier
2065          */
2066         rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2067
2068         rq->special = data;
2069
2070         spin_lock_irqsave(q->queue_lock, flags);
2071
2072         /*
2073          * If command is tagged, release the tag
2074          */
2075         if (blk_rq_tagged(rq))
2076                 blk_queue_end_tag(q, rq);
2077
2078         drive_stat_acct(rq, rq->nr_sectors, 1);
2079         __elv_add_request(q, rq, where, 0);
2080
2081         if (blk_queue_plugged(q))
2082                 __generic_unplug_device(q);
2083         else
2084                 q->request_fn(q);
2085         spin_unlock_irqrestore(q->queue_lock, flags);
2086 }
2087
2088 EXPORT_SYMBOL(blk_insert_request);
2089
2090 /**
2091  * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2092  * @q:          request queue where request should be inserted
2093  * @rq:         request structure to fill
2094  * @ubuf:       the user buffer
2095  * @len:        length of user data
2096  *
2097  * Description:
2098  *    Data will be mapped directly for zero copy io, if possible. Otherwise
2099  *    a kernel bounce buffer is used.
2100  *
2101  *    A matching blk_rq_unmap_user() must be issued at the end of io, while
2102  *    still in process context.
2103  *
2104  *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
2105  *    before being submitted to the device, as pages mapped may be out of
2106  *    reach. It's the callers responsibility to make sure this happens. The
2107  *    original bio must be passed back in to blk_rq_unmap_user() for proper
2108  *    unmapping.
2109  */
2110 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2111                     unsigned int len)
2112 {
2113         unsigned long uaddr;
2114         struct bio *bio;
2115         int reading;
2116
2117         if (len > (q->max_sectors << 9))
2118                 return -EINVAL;
2119         if (!len || !ubuf)
2120                 return -EINVAL;
2121
2122         reading = rq_data_dir(rq) == READ;
2123
2124         /*
2125          * if alignment requirement is satisfied, map in user pages for
2126          * direct dma. else, set up kernel bounce buffers
2127          */
2128         uaddr = (unsigned long) ubuf;
2129         if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2130                 bio = bio_map_user(q, NULL, uaddr, len, reading);
2131         else
2132                 bio = bio_copy_user(q, uaddr, len, reading);
2133
2134         if (!IS_ERR(bio)) {
2135                 rq->bio = rq->biotail = bio;
2136                 blk_rq_bio_prep(q, rq, bio);
2137
2138                 rq->buffer = rq->data = NULL;
2139                 rq->data_len = len;
2140                 return 0;
2141         }
2142
2143         /*
2144          * bio is the err-ptr
2145          */
2146         return PTR_ERR(bio);
2147 }
2148
2149 EXPORT_SYMBOL(blk_rq_map_user);
2150
2151 /**
2152  * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2153  * @q:          request queue where request should be inserted
2154  * @rq:         request to map data to
2155  * @iov:        pointer to the iovec
2156  * @iov_count:  number of elements in the iovec
2157  *
2158  * Description:
2159  *    Data will be mapped directly for zero copy io, if possible. Otherwise
2160  *    a kernel bounce buffer is used.
2161  *
2162  *    A matching blk_rq_unmap_user() must be issued at the end of io, while
2163  *    still in process context.
2164  *
2165  *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
2166  *    before being submitted to the device, as pages mapped may be out of
2167  *    reach. It's the callers responsibility to make sure this happens. The
2168  *    original bio must be passed back in to blk_rq_unmap_user() for proper
2169  *    unmapping.
2170  */
2171 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2172                         struct sg_iovec *iov, int iov_count)
2173 {
2174         struct bio *bio;
2175
2176         if (!iov || iov_count <= 0)
2177                 return -EINVAL;
2178
2179         /* we don't allow misaligned data like bio_map_user() does.  If the
2180          * user is using sg, they're expected to know the alignment constraints
2181          * and respect them accordingly */
2182         bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2183         if (IS_ERR(bio))
2184                 return PTR_ERR(bio);
2185
2186         rq->bio = rq->biotail = bio;
2187         blk_rq_bio_prep(q, rq, bio);
2188         rq->buffer = rq->data = NULL;
2189         rq->data_len = bio->bi_size;
2190         return 0;
2191 }
2192
2193 EXPORT_SYMBOL(blk_rq_map_user_iov);
2194
2195 /**
2196  * blk_rq_unmap_user - unmap a request with user data
2197  * @bio:        bio to be unmapped
2198  * @ulen:       length of user buffer
2199  *
2200  * Description:
2201  *    Unmap a bio previously mapped by blk_rq_map_user().
2202  */
2203 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2204 {
2205         int ret = 0;
2206
2207         if (bio) {
2208                 if (bio_flagged(bio, BIO_USER_MAPPED))
2209                         bio_unmap_user(bio);
2210                 else
2211                         ret = bio_uncopy_user(bio);
2212         }
2213
2214         return 0;
2215 }
2216
2217 EXPORT_SYMBOL(blk_rq_unmap_user);
2218
2219 /**
2220  * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2221  * @q:          request queue where request should be inserted
2222  * @rq:         request to fill
2223  * @kbuf:       the kernel buffer
2224  * @len:        length of user data
2225  * @gfp_mask:   memory allocation flags
2226  */
2227 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2228                     unsigned int len, unsigned int gfp_mask)
2229 {
2230         struct bio *bio;
2231
2232         if (len > (q->max_sectors << 9))
2233                 return -EINVAL;
2234         if (!len || !kbuf)
2235                 return -EINVAL;
2236
2237         bio = bio_map_kern(q, kbuf, len, gfp_mask);
2238         if (IS_ERR(bio))
2239                 return PTR_ERR(bio);
2240
2241         if (rq_data_dir(rq) == WRITE)
2242                 bio->bi_rw |= (1 << BIO_RW);
2243
2244         rq->bio = rq->biotail = bio;
2245         blk_rq_bio_prep(q, rq, bio);
2246
2247         rq->buffer = rq->data = NULL;
2248         rq->data_len = len;
2249         return 0;
2250 }
2251
2252 EXPORT_SYMBOL(blk_rq_map_kern);
2253
2254 /**
2255  * blk_execute_rq_nowait - insert a request into queue for execution
2256  * @q:          queue to insert the request in
2257  * @bd_disk:    matching gendisk
2258  * @rq:         request to insert
2259  * @at_head:    insert request at head or tail of queue
2260  * @done:       I/O completion handler
2261  *
2262  * Description:
2263  *    Insert a fully prepared request at the back of the io scheduler queue
2264  *    for execution.  Don't wait for completion.
2265  */
2266 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2267                            struct request *rq, int at_head,
2268                            void (*done)(struct request *))
2269 {
2270         int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2271
2272         rq->rq_disk = bd_disk;
2273         rq->flags |= REQ_NOMERGE;
2274         rq->end_io = done;
2275         elv_add_request(q, rq, where, 1);
2276         generic_unplug_device(q);
2277 }
2278
2279 /**
2280  * blk_execute_rq - insert a request into queue for execution
2281  * @q:          queue to insert the request in
2282  * @bd_disk:    matching gendisk
2283  * @rq:         request to insert
2284  * @at_head:    insert request at head or tail of queue
2285  *
2286  * Description:
2287  *    Insert a fully prepared request at the back of the io scheduler queue
2288  *    for execution and wait for completion.
2289  */
2290 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2291                    struct request *rq, int at_head)
2292 {
2293         DECLARE_COMPLETION(wait);
2294         char sense[SCSI_SENSE_BUFFERSIZE];
2295         int err = 0;
2296
2297         /*
2298          * we need an extra reference to the request, so we can look at
2299          * it after io completion
2300          */
2301         rq->ref_count++;
2302
2303         if (!rq->sense) {
2304                 memset(sense, 0, sizeof(sense));
2305                 rq->sense = sense;
2306                 rq->sense_len = 0;
2307         }
2308
2309         rq->waiting = &wait;
2310         blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2311         wait_for_completion(&wait);
2312         rq->waiting = NULL;
2313
2314         if (rq->errors)
2315                 err = -EIO;
2316
2317         return err;
2318 }
2319
2320 EXPORT_SYMBOL(blk_execute_rq);
2321
2322 /**
2323  * blkdev_issue_flush - queue a flush
2324  * @bdev:       blockdev to issue flush for
2325  * @error_sector:       error sector
2326  *
2327  * Description:
2328  *    Issue a flush for the block device in question. Caller can supply
2329  *    room for storing the error offset in case of a flush error, if they
2330  *    wish to.  Caller must run wait_for_completion() on its own.
2331  */
2332 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2333 {
2334         request_queue_t *q;
2335
2336         if (bdev->bd_disk == NULL)
2337                 return -ENXIO;
2338
2339         q = bdev_get_queue(bdev);
2340         if (!q)
2341                 return -ENXIO;
2342         if (!q->issue_flush_fn)
2343                 return -EOPNOTSUPP;
2344
2345         return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2346 }
2347
2348 EXPORT_SYMBOL(blkdev_issue_flush);
2349
2350 /**
2351  * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2352  * @q:          device queue
2353  * @disk:       gendisk
2354  * @error_sector:       error offset
2355  *
2356  * Description:
2357  *    Devices understanding the SCSI command set, can use this function as
2358  *    a helper for issuing a cache flush. Note: driver is required to store
2359  *    the error offset (in case of error flushing) in ->sector of struct
2360  *    request.
2361  */
2362 int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2363                                sector_t *error_sector)
2364 {
2365         struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2366         int ret;
2367
2368         rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2369         rq->sector = 0;
2370         memset(rq->cmd, 0, sizeof(rq->cmd));
2371         rq->cmd[0] = 0x35;
2372         rq->cmd_len = 12;
2373         rq->data = NULL;
2374         rq->data_len = 0;
2375         rq->timeout = 60 * HZ;
2376
2377         ret = blk_execute_rq(q, disk, rq, 0);
2378
2379         if (ret && error_sector)
2380                 *error_sector = rq->sector;
2381
2382         blk_put_request(rq);
2383         return ret;
2384 }
2385
2386 EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2387
2388 void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2389 {
2390         int rw = rq_data_dir(rq);
2391
2392         if (!blk_fs_request(rq) || !rq->rq_disk)
2393                 return;
2394
2395         if (rw == READ) {
2396                 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2397                 if (!new_io)
2398                         __disk_stat_inc(rq->rq_disk, read_merges);
2399         } else if (rw == WRITE) {
2400                 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2401                 if (!new_io)
2402                         __disk_stat_inc(rq->rq_disk, write_merges);
2403         }
2404         if (new_io) {
2405                 disk_round_stats(rq->rq_disk);
2406                 rq->rq_disk->in_flight++;
2407         }
2408 }
2409
2410 /*
2411  * add-request adds a request to the linked list.
2412  * queue lock is held and interrupts disabled, as we muck with the
2413  * request queue list.
2414  */
2415 static inline void add_request(request_queue_t * q, struct request * req)
2416 {
2417         drive_stat_acct(req, req->nr_sectors, 1);
2418
2419         if (q->activity_fn)
2420                 q->activity_fn(q->activity_data, rq_data_dir(req));
2421
2422         /*
2423          * elevator indicated where it wants this request to be
2424          * inserted at elevator_merge time
2425          */
2426         __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2427 }
2428  
2429 /*
2430  * disk_round_stats()   - Round off the performance stats on a struct
2431  * disk_stats.
2432  *
2433  * The average IO queue length and utilisation statistics are maintained
2434  * by observing the current state of the queue length and the amount of
2435  * time it has been in this state for.
2436  *
2437  * Normally, that accounting is done on IO completion, but that can result
2438  * in more than a second's worth of IO being accounted for within any one
2439  * second, leading to >100% utilisation.  To deal with that, we call this
2440  * function to do a round-off before returning the results when reading
2441  * /proc/diskstats.  This accounts immediately for all queue usage up to
2442  * the current jiffies and restarts the counters again.
2443  */
2444 void disk_round_stats(struct gendisk *disk)
2445 {
2446         unsigned long now = jiffies;
2447
2448         __disk_stat_add(disk, time_in_queue,
2449                         disk->in_flight * (now - disk->stamp));
2450         disk->stamp = now;
2451
2452         if (disk->in_flight)
2453                 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2454         disk->stamp_idle = now;
2455 }
2456
2457 /*
2458  * queue lock must be held
2459  */
2460 static void __blk_put_request(request_queue_t *q, struct request *req)
2461 {
2462         struct request_list *rl = req->rl;
2463
2464         if (unlikely(!q))
2465                 return;
2466         if (unlikely(--req->ref_count))
2467                 return;
2468
2469         req->rq_status = RQ_INACTIVE;
2470         req->q = NULL;
2471         req->rl = NULL;
2472
2473         /*
2474          * Request may not have originated from ll_rw_blk. if not,
2475          * it didn't come out of our reserved rq pools
2476          */
2477         if (rl) {
2478                 int rw = rq_data_dir(req);
2479
2480                 elv_completed_request(q, req);
2481
2482                 BUG_ON(!list_empty(&req->queuelist));
2483
2484                 blk_free_request(q, req);
2485                 freed_request(q, rw);
2486         }
2487 }
2488
2489 void blk_put_request(struct request *req)
2490 {
2491         /*
2492          * if req->rl isn't set, this request didnt originate from the
2493          * block layer, so it's safe to just disregard it
2494          */
2495         if (req->rl) {
2496                 unsigned long flags;
2497                 request_queue_t *q = req->q;
2498
2499                 spin_lock_irqsave(q->queue_lock, flags);
2500                 __blk_put_request(q, req);
2501                 spin_unlock_irqrestore(q->queue_lock, flags);
2502         }
2503 }
2504
2505 EXPORT_SYMBOL(blk_put_request);
2506
2507 /**
2508  * blk_end_sync_rq - executes a completion event on a request
2509  * @rq: request to complete
2510  */
2511 void blk_end_sync_rq(struct request *rq)
2512 {
2513         struct completion *waiting = rq->waiting;
2514
2515         rq->waiting = NULL;
2516         __blk_put_request(rq->q, rq);
2517
2518         /*
2519          * complete last, if this is a stack request the process (and thus
2520          * the rq pointer) could be invalid right after this complete()
2521          */
2522         complete(waiting);
2523 }
2524 EXPORT_SYMBOL(blk_end_sync_rq);
2525
2526 /**
2527  * blk_congestion_wait - wait for a queue to become uncongested
2528  * @rw: READ or WRITE
2529  * @timeout: timeout in jiffies
2530  *
2531  * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2532  * If no queues are congested then just wait for the next request to be
2533  * returned.
2534  */
2535 long blk_congestion_wait(int rw, long timeout)
2536 {
2537         long ret;
2538         DEFINE_WAIT(wait);
2539         wait_queue_head_t *wqh = &congestion_wqh[rw];
2540
2541         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2542         ret = io_schedule_timeout(timeout);
2543         finish_wait(wqh, &wait);
2544         return ret;
2545 }
2546
2547 EXPORT_SYMBOL(blk_congestion_wait);
2548
2549 /*
2550  * Has to be called with the request spinlock acquired
2551  */
2552 static int attempt_merge(request_queue_t *q, struct request *req,
2553                           struct request *next)
2554 {
2555         if (!rq_mergeable(req) || !rq_mergeable(next))
2556                 return 0;
2557
2558         /*
2559          * not contigious
2560          */
2561         if (req->sector + req->nr_sectors != next->sector)
2562                 return 0;
2563
2564         if (rq_data_dir(req) != rq_data_dir(next)
2565             || req->rq_disk != next->rq_disk
2566             || next->waiting || next->special)
2567                 return 0;
2568
2569         /*
2570          * If we are allowed to merge, then append bio list
2571          * from next to rq and release next. merge_requests_fn
2572          * will have updated segment counts, update sector
2573          * counts here.
2574          */
2575         if (!q->merge_requests_fn(q, req, next))
2576                 return 0;
2577
2578         /*
2579          * At this point we have either done a back merge
2580          * or front merge. We need the smaller start_time of
2581          * the merged requests to be the current request
2582          * for accounting purposes.
2583          */
2584         if (time_after(req->start_time, next->start_time))
2585                 req->start_time = next->start_time;
2586
2587         req->biotail->bi_next = next->bio;
2588         req->biotail = next->biotail;
2589
2590         req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2591
2592         elv_merge_requests(q, req, next);
2593
2594         if (req->rq_disk) {
2595                 disk_round_stats(req->rq_disk);
2596                 req->rq_disk->in_flight--;
2597         }
2598
2599         __blk_put_request(q, next);
2600         return 1;
2601 }
2602
2603 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2604 {
2605         struct request *next = elv_latter_request(q, rq);
2606
2607         if (next)
2608                 return attempt_merge(q, rq, next);
2609
2610         return 0;
2611 }
2612
2613 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2614 {
2615         struct request *prev = elv_former_request(q, rq);
2616
2617         if (prev)
2618                 return attempt_merge(q, prev, rq);
2619
2620         return 0;
2621 }
2622
2623 /**
2624  * blk_attempt_remerge  - attempt to remerge active head with next request
2625  * @q:    The &request_queue_t belonging to the device
2626  * @rq:   The head request (usually)
2627  *
2628  * Description:
2629  *    For head-active devices, the queue can easily be unplugged so quickly
2630  *    that proper merging is not done on the front request. This may hurt
2631  *    performance greatly for some devices. The block layer cannot safely
2632  *    do merging on that first request for these queues, but the driver can
2633  *    call this function and make it happen any way. Only the driver knows
2634  *    when it is safe to do so.
2635  **/
2636 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2637 {
2638         unsigned long flags;
2639
2640         spin_lock_irqsave(q->queue_lock, flags);
2641         attempt_back_merge(q, rq);
2642         spin_unlock_irqrestore(q->queue_lock, flags);
2643 }
2644
2645 EXPORT_SYMBOL(blk_attempt_remerge);
2646
2647 /*
2648  * Non-locking blk_attempt_remerge variant.
2649  */
2650 void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2651 {
2652         attempt_back_merge(q, rq);
2653 }
2654
2655 EXPORT_SYMBOL(__blk_attempt_remerge);
2656
2657 static int __make_request(request_queue_t *q, struct bio *bio)
2658 {
2659         struct request *req, *freereq = NULL;
2660         int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2661         sector_t sector;
2662
2663         sector = bio->bi_sector;
2664         nr_sectors = bio_sectors(bio);
2665         cur_nr_sectors = bio_cur_sectors(bio);
2666
2667         rw = bio_data_dir(bio);
2668         sync = bio_sync(bio);
2669
2670         /*
2671          * low level driver can indicate that it wants pages above a
2672          * certain limit bounced to low memory (ie for highmem, or even
2673          * ISA dma in theory)
2674          */
2675         blk_queue_bounce(q, &bio);
2676
2677         spin_lock_prefetch(q->queue_lock);
2678
2679         barrier = bio_barrier(bio);
2680         if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
2681                 err = -EOPNOTSUPP;
2682                 goto end_io;
2683         }
2684
2685 again:
2686         spin_lock_irq(q->queue_lock);
2687
2688         if (elv_queue_empty(q)) {
2689                 blk_plug_device(q);
2690                 goto get_rq;
2691         }
2692         if (barrier)
2693                 goto get_rq;
2694
2695         el_ret = elv_merge(q, &req, bio);
2696         switch (el_ret) {
2697                 case ELEVATOR_BACK_MERGE:
2698                         BUG_ON(!rq_mergeable(req));
2699
2700                         if (!q->back_merge_fn(q, req, bio))
2701                                 break;
2702
2703                         req->biotail->bi_next = bio;
2704                         req->biotail = bio;
2705                         req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2706                         drive_stat_acct(req, nr_sectors, 0);
2707                         if (!attempt_back_merge(q, req))
2708                                 elv_merged_request(q, req);
2709                         goto out;
2710
2711                 case ELEVATOR_FRONT_MERGE:
2712                         BUG_ON(!rq_mergeable(req));
2713
2714                         if (!q->front_merge_fn(q, req, bio))
2715                                 break;
2716
2717                         bio->bi_next = req->bio;
2718                         req->bio = bio;
2719
2720                         /*
2721                          * may not be valid. if the low level driver said
2722                          * it didn't need a bounce buffer then it better
2723                          * not touch req->buffer either...
2724                          */
2725                         req->buffer = bio_data(bio);
2726                         req->current_nr_sectors = cur_nr_sectors;
2727                         req->hard_cur_sectors = cur_nr_sectors;
2728                         req->sector = req->hard_sector = sector;
2729                         req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2730                         drive_stat_acct(req, nr_sectors, 0);
2731                         if (!attempt_front_merge(q, req))
2732                                 elv_merged_request(q, req);
2733                         goto out;
2734
2735                 /*
2736                  * elevator says don't/can't merge. get new request
2737                  */
2738                 case ELEVATOR_NO_MERGE:
2739                         break;
2740
2741                 default:
2742                         printk("elevator returned crap (%d)\n", el_ret);
2743                         BUG();
2744         }
2745
2746         /*
2747          * Grab a free request from the freelist - if that is empty, check
2748          * if we are doing read ahead and abort instead of blocking for
2749          * a free slot.
2750          */
2751 get_rq:
2752         if (freereq) {
2753                 req = freereq;
2754                 freereq = NULL;
2755         } else {
2756                 spin_unlock_irq(q->queue_lock);
2757                 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2758                         /*
2759                          * READA bit set
2760                          */
2761                         err = -EWOULDBLOCK;
2762                         if (bio_rw_ahead(bio))
2763                                 goto end_io;
2764         
2765                         freereq = get_request_wait(q, rw);
2766                 }
2767                 goto again;
2768         }
2769
2770         req->flags |= REQ_CMD;
2771
2772         /*
2773          * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2774          */
2775         if (bio_rw_ahead(bio) || bio_failfast(bio))
2776                 req->flags |= REQ_FAILFAST;
2777
2778         /*
2779          * REQ_BARRIER implies no merging, but lets make it explicit
2780          */
2781         if (barrier)
2782                 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2783
2784         req->errors = 0;
2785         req->hard_sector = req->sector = sector;
2786         req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2787         req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2788         req->nr_phys_segments = bio_phys_segments(q, bio);
2789         req->nr_hw_segments = bio_hw_segments(q, bio);
2790         req->buffer = bio_data(bio);    /* see ->buffer comment above */
2791         req->waiting = NULL;
2792         req->bio = req->biotail = bio;
2793         req->rq_disk = bio->bi_bdev->bd_disk;
2794         req->start_time = jiffies;
2795
2796         add_request(q, req);
2797 out:
2798         if (freereq)
2799                 __blk_put_request(q, freereq);
2800         if (sync)
2801                 __generic_unplug_device(q);
2802
2803         spin_unlock_irq(q->queue_lock);
2804         return 0;
2805
2806 end_io:
2807         bio_endio(bio, nr_sectors << 9, err);
2808         return 0;
2809 }
2810
2811 /*
2812  * If bio->bi_dev is a partition, remap the location
2813  */
2814 static inline void blk_partition_remap(struct bio *bio)
2815 {
2816         struct block_device *bdev = bio->bi_bdev;
2817
2818         if (bdev != bdev->bd_contains) {
2819                 struct hd_struct *p = bdev->bd_part;
2820
2821                 switch (bio->bi_rw) {
2822                 case READ:
2823                         p->read_sectors += bio_sectors(bio);
2824                         p->reads++;
2825                         break;
2826                 case WRITE:
2827                         p->write_sectors += bio_sectors(bio);
2828                         p->writes++;
2829                         break;
2830                 }
2831                 bio->bi_sector += p->start_sect;
2832                 bio->bi_bdev = bdev->bd_contains;
2833         }
2834 }
2835
2836 void blk_finish_queue_drain(request_queue_t *q)
2837 {
2838         struct request_list *rl = &q->rq;
2839         struct request *rq;
2840
2841         spin_lock_irq(q->queue_lock);
2842         clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2843
2844         while (!list_empty(&q->drain_list)) {
2845                 rq = list_entry_rq(q->drain_list.next);
2846
2847                 list_del_init(&rq->queuelist);
2848                 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2849         }
2850
2851         spin_unlock_irq(q->queue_lock);
2852
2853         wake_up(&rl->wait[0]);
2854         wake_up(&rl->wait[1]);
2855         wake_up(&rl->drain);
2856 }
2857
2858 static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2859 {
2860         int wait = rl->count[READ] + rl->count[WRITE];
2861
2862         if (dispatch)
2863                 wait += !list_empty(&q->queue_head);
2864
2865         return wait;
2866 }
2867
2868 /*
2869  * We rely on the fact that only requests allocated through blk_alloc_request()
2870  * have io scheduler private data structures associated with them. Any other
2871  * type of request (allocated on stack or through kmalloc()) should not go
2872  * to the io scheduler core, but be attached to the queue head instead.
2873  */
2874 void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2875 {
2876         struct request_list *rl = &q->rq;
2877         DEFINE_WAIT(wait);
2878
2879         spin_lock_irq(q->queue_lock);
2880         set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2881
2882         while (wait_drain(q, rl, wait_dispatch)) {
2883                 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2884
2885                 if (wait_drain(q, rl, wait_dispatch)) {
2886                         __generic_unplug_device(q);
2887                         spin_unlock_irq(q->queue_lock);
2888                         io_schedule();
2889                         spin_lock_irq(q->queue_lock);
2890                 }
2891
2892                 finish_wait(&rl->drain, &wait);
2893         }
2894
2895         spin_unlock_irq(q->queue_lock);
2896 }
2897
2898 /*
2899  * block waiting for the io scheduler being started again.
2900  */
2901 static inline void block_wait_queue_running(request_queue_t *q)
2902 {
2903         DEFINE_WAIT(wait);
2904
2905         while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
2906                 struct request_list *rl = &q->rq;
2907
2908                 prepare_to_wait_exclusive(&rl->drain, &wait,
2909                                 TASK_UNINTERRUPTIBLE);
2910
2911                 /*
2912                  * re-check the condition. avoids using prepare_to_wait()
2913                  * in the fast path (queue is running)
2914                  */
2915                 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2916                         io_schedule();
2917
2918                 finish_wait(&rl->drain, &wait);
2919         }
2920 }
2921
2922 static void handle_bad_sector(struct bio *bio)
2923 {
2924         char b[BDEVNAME_SIZE];
2925
2926         printk(KERN_INFO "attempt to access beyond end of device\n");
2927         printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2928                         bdevname(bio->bi_bdev, b),
2929                         bio->bi_rw,
2930                         (unsigned long long)bio->bi_sector + bio_sectors(bio),
2931                         (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2932
2933         set_bit(BIO_EOF, &bio->bi_flags);
2934 }
2935
2936 /**
2937  * generic_make_request: hand a buffer to its device driver for I/O
2938  * @bio:  The bio describing the location in memory and on the device.
2939  *
2940  * generic_make_request() is used to make I/O requests of block
2941  * devices. It is passed a &struct bio, which describes the I/O that needs
2942  * to be done.
2943  *
2944  * generic_make_request() does not return any status.  The
2945  * success/failure status of the request, along with notification of
2946  * completion, is delivered asynchronously through the bio->bi_end_io
2947  * function described (one day) else where.
2948  *
2949  * The caller of generic_make_request must make sure that bi_io_vec
2950  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2951  * set to describe the device address, and the
2952  * bi_end_io and optionally bi_private are set to describe how
2953  * completion notification should be signaled.
2954  *
2955  * generic_make_request and the drivers it calls may use bi_next if this
2956  * bio happens to be merged with someone else, and may change bi_dev and
2957  * bi_sector for remaps as it sees fit.  So the values of these fields
2958  * should NOT be depended on after the call to generic_make_request.
2959  */
2960 void generic_make_request(struct bio *bio)
2961 {
2962         request_queue_t *q;
2963         sector_t maxsector;
2964         int ret, nr_sectors = bio_sectors(bio);
2965
2966         might_sleep();
2967         /* Test device or partition size, when known. */
2968         maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2969         if (maxsector) {
2970                 sector_t sector = bio->bi_sector;
2971
2972                 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2973                         /*
2974                          * This may well happen - the kernel calls bread()
2975                          * without checking the size of the device, e.g., when
2976                          * mounting a device.
2977                          */
2978                         handle_bad_sector(bio);
2979                         goto end_io;
2980                 }
2981         }
2982
2983         /*
2984          * Resolve the mapping until finished. (drivers are
2985          * still free to implement/resolve their own stacking
2986          * by explicitly returning 0)
2987          *
2988          * NOTE: we don't repeat the blk_size check for each new device.
2989          * Stacking drivers are expected to know what they are doing.
2990          */
2991         do {
2992                 char b[BDEVNAME_SIZE];
2993
2994                 q = bdev_get_queue(bio->bi_bdev);
2995                 if (!q) {
2996                         printk(KERN_ERR
2997                                "generic_make_request: Trying to access "
2998                                 "nonexistent block-device %s (%Lu)\n",
2999                                 bdevname(bio->bi_bdev, b),
3000                                 (long long) bio->bi_sector);
3001 end_io:
3002                         bio_endio(bio, bio->bi_size, -EIO);
3003                         break;
3004                 }
3005
3006                 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3007                         printk("bio too big device %s (%u > %u)\n", 
3008                                 bdevname(bio->bi_bdev, b),
3009                                 bio_sectors(bio),
3010                                 q->max_hw_sectors);
3011                         goto end_io;
3012                 }
3013
3014                 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
3015                         goto end_io;
3016
3017                 block_wait_queue_running(q);
3018
3019                 /*
3020                  * If this device has partitions, remap block n
3021                  * of partition p to block n+start(p) of the disk.
3022                  */
3023                 blk_partition_remap(bio);
3024
3025                 ret = q->make_request_fn(q, bio);
3026         } while (ret);
3027 }
3028
3029 EXPORT_SYMBOL(generic_make_request);
3030
3031 /**
3032  * submit_bio: submit a bio to the block device layer for I/O
3033  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3034  * @bio: The &struct bio which describes the I/O
3035  *
3036  * submit_bio() is very similar in purpose to generic_make_request(), and
3037  * uses that function to do most of the work. Both are fairly rough
3038  * interfaces, @bio must be presetup and ready for I/O.
3039  *
3040  */
3041 void submit_bio(int rw, struct bio *bio)
3042 {
3043         int count = bio_sectors(bio);
3044
3045         BIO_BUG_ON(!bio->bi_size);
3046         BIO_BUG_ON(!bio->bi_io_vec);
3047         bio->bi_rw = rw;
3048         if (rw & WRITE)
3049                 mod_page_state(pgpgout, count);
3050         else
3051                 mod_page_state(pgpgin, count);
3052
3053         if (unlikely(block_dump)) {
3054                 char b[BDEVNAME_SIZE];
3055                 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3056                         current->comm, current->pid,
3057                         (rw & WRITE) ? "WRITE" : "READ",
3058                         (unsigned long long)bio->bi_sector,
3059                         bdevname(bio->bi_bdev,b));
3060         }
3061
3062         generic_make_request(bio);
3063 }
3064
3065 EXPORT_SYMBOL(submit_bio);
3066
3067 void blk_recalc_rq_segments(struct request *rq)
3068 {
3069         struct bio *bio, *prevbio = NULL;
3070         int nr_phys_segs, nr_hw_segs;
3071         unsigned int phys_size, hw_size;
3072         request_queue_t *q = rq->q;
3073
3074         if (!rq->bio)
3075                 return;
3076
3077         phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3078         rq_for_each_bio(bio, rq) {
3079                 /* Force bio hw/phys segs to be recalculated. */
3080                 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3081
3082                 nr_phys_segs += bio_phys_segments(q, bio);
3083                 nr_hw_segs += bio_hw_segments(q, bio);
3084                 if (prevbio) {
3085                         int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3086                         int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3087
3088                         if (blk_phys_contig_segment(q, prevbio, bio) &&
3089                             pseg <= q->max_segment_size) {
3090                                 nr_phys_segs--;
3091                                 phys_size += prevbio->bi_size + bio->bi_size;
3092                         } else
3093                                 phys_size = 0;
3094
3095                         if (blk_hw_contig_segment(q, prevbio, bio) &&
3096                             hseg <= q->max_segment_size) {
3097                                 nr_hw_segs--;
3098                                 hw_size += prevbio->bi_size + bio->bi_size;
3099                         } else
3100                                 hw_size = 0;
3101                 }
3102                 prevbio = bio;
3103         }
3104
3105         rq->nr_phys_segments = nr_phys_segs;
3106         rq->nr_hw_segments = nr_hw_segs;
3107 }
3108
3109 void blk_recalc_rq_sectors(struct request *rq, int nsect)
3110 {
3111         if (blk_fs_request(rq)) {
3112                 rq->hard_sector += nsect;
3113                 rq->hard_nr_sectors -= nsect;
3114
3115                 /*
3116                  * Move the I/O submission pointers ahead if required.
3117                  */
3118                 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3119                     (rq->sector <= rq->hard_sector)) {
3120                         rq->sector = rq->hard_sector;
3121                         rq->nr_sectors = rq->hard_nr_sectors;
3122                         rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3123                         rq->current_nr_sectors = rq->hard_cur_sectors;
3124                         rq->buffer = bio_data(rq->bio);
3125                 }
3126
3127                 /*
3128                  * if total number of sectors is less than the first segment
3129                  * size, something has gone terribly wrong
3130                  */
3131                 if (rq->nr_sectors < rq->current_nr_sectors) {
3132                         printk("blk: request botched\n");
3133                         rq->nr_sectors = rq->current_nr_sectors;
3134                 }
3135         }
3136 }
3137
3138 static int __end_that_request_first(struct request *req, int uptodate,
3139                                     int nr_bytes)
3140 {
3141         int total_bytes, bio_nbytes, error, next_idx = 0;
3142         struct bio *bio;
3143
3144         /*
3145          * extend uptodate bool to allow < 0 value to be direct io error
3146          */
3147         error = 0;
3148         if (end_io_error(uptodate))
3149                 error = !uptodate ? -EIO : uptodate;
3150
3151         /*
3152          * for a REQ_BLOCK_PC request, we want to carry any eventual
3153          * sense key with us all the way through
3154          */
3155         if (!blk_pc_request(req))
3156                 req->errors = 0;
3157
3158         if (!uptodate) {
3159                 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3160                         printk("end_request: I/O error, dev %s, sector %llu\n",
3161                                 req->rq_disk ? req->rq_disk->disk_name : "?",
3162                                 (unsigned long long)req->sector);
3163         }
3164
3165         total_bytes = bio_nbytes = 0;
3166         while ((bio = req->bio) != NULL) {
3167                 int nbytes;
3168
3169                 if (nr_bytes >= bio->bi_size) {
3170                         req->bio = bio->bi_next;
3171                         nbytes = bio->bi_size;
3172                         bio_endio(bio, nbytes, error);
3173                         next_idx = 0;
3174                         bio_nbytes = 0;
3175                 } else {
3176                         int idx = bio->bi_idx + next_idx;
3177
3178                         if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3179                                 blk_dump_rq_flags(req, "__end_that");
3180                                 printk("%s: bio idx %d >= vcnt %d\n",
3181                                                 __FUNCTION__,
3182                                                 bio->bi_idx, bio->bi_vcnt);
3183                                 break;
3184                         }
3185
3186                         nbytes = bio_iovec_idx(bio, idx)->bv_len;
3187                         BIO_BUG_ON(nbytes > bio->bi_size);
3188
3189                         /*
3190                          * not a complete bvec done
3191                          */
3192                         if (unlikely(nbytes > nr_bytes)) {
3193                                 bio_nbytes += nr_bytes;
3194                                 total_bytes += nr_bytes;
3195                                 break;
3196                         }
3197
3198                         /*
3199                          * advance to the next vector
3200                          */
3201                         next_idx++;
3202                         bio_nbytes += nbytes;
3203                 }
3204
3205                 total_bytes += nbytes;
3206                 nr_bytes -= nbytes;
3207
3208                 if ((bio = req->bio)) {
3209                         /*
3210                          * end more in this run, or just return 'not-done'
3211                          */
3212                         if (unlikely(nr_bytes <= 0))
3213                                 break;
3214                 }
3215         }
3216
3217         /*
3218          * completely done
3219          */
3220         if (!req->bio)
3221                 return 0;
3222
3223         /*
3224          * if the request wasn't completed, update state
3225          */
3226         if (bio_nbytes) {
3227                 bio_endio(bio, bio_nbytes, error);
3228                 bio->bi_idx += next_idx;
3229                 bio_iovec(bio)->bv_offset += nr_bytes;
3230                 bio_iovec(bio)->bv_len -= nr_bytes;
3231         }
3232
3233         blk_recalc_rq_sectors(req, total_bytes >> 9);
3234         blk_recalc_rq_segments(req);
3235         return 1;
3236 }
3237
3238 /**
3239  * end_that_request_first - end I/O on a request
3240  * @req:      the request being processed
3241  * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3242  * @nr_sectors: number of sectors to end I/O on
3243  *
3244  * Description:
3245  *     Ends I/O on a number of sectors attached to @req, and sets it up
3246  *     for the next range of segments (if any) in the cluster.
3247  *
3248  * Return:
3249  *     0 - we are done with this request, call end_that_request_last()
3250  *     1 - still buffers pending for this request
3251  **/
3252 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3253 {
3254         return __end_that_request_first(req, uptodate, nr_sectors << 9);
3255 }
3256
3257 EXPORT_SYMBOL(end_that_request_first);
3258
3259 /**
3260  * end_that_request_chunk - end I/O on a request
3261  * @req:      the request being processed
3262  * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3263  * @nr_bytes: number of bytes to complete
3264  *
3265  * Description:
3266  *     Ends I/O on a number of bytes attached to @req, and sets it up
3267  *     for the next range of segments (if any). Like end_that_request_first(),
3268  *     but deals with bytes instead of sectors.
3269  *
3270  * Return:
3271  *     0 - we are done with this request, call end_that_request_last()
3272  *     1 - still buffers pending for this request
3273  **/
3274 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3275 {
3276         return __end_that_request_first(req, uptodate, nr_bytes);
3277 }
3278
3279 EXPORT_SYMBOL(end_that_request_chunk);
3280
3281 /*
3282  * queue lock must be held
3283  */
3284 void end_that_request_last(struct request *req)
3285 {
3286         struct gendisk *disk = req->rq_disk;
3287
3288         if (unlikely(laptop_mode) && blk_fs_request(req))
3289                 laptop_io_completion();
3290
3291         if (disk && blk_fs_request(req)) {
3292                 unsigned long duration = jiffies - req->start_time;
3293                 switch (rq_data_dir(req)) {
3294                     case WRITE:
3295                         __disk_stat_inc(disk, writes);
3296                         __disk_stat_add(disk, write_ticks, duration);
3297                         break;
3298                     case READ:
3299                         __disk_stat_inc(disk, reads);
3300                         __disk_stat_add(disk, read_ticks, duration);
3301                         break;
3302                 }
3303                 disk_round_stats(disk);
3304                 disk->in_flight--;
3305         }
3306         if (req->end_io)
3307                 req->end_io(req);
3308         else
3309                 __blk_put_request(req->q, req);
3310 }
3311
3312 EXPORT_SYMBOL(end_that_request_last);
3313
3314 void end_request(struct request *req, int uptodate)
3315 {
3316         if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3317                 add_disk_randomness(req->rq_disk);
3318                 blkdev_dequeue_request(req);
3319                 end_that_request_last(req);
3320         }
3321 }
3322
3323 EXPORT_SYMBOL(end_request);
3324
3325 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3326 {
3327         /* first three bits are identical in rq->flags and bio->bi_rw */
3328         rq->flags |= (bio->bi_rw & 7);
3329
3330         rq->nr_phys_segments = bio_phys_segments(q, bio);
3331         rq->nr_hw_segments = bio_hw_segments(q, bio);
3332         rq->current_nr_sectors = bio_cur_sectors(bio);
3333         rq->hard_cur_sectors = rq->current_nr_sectors;
3334         rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3335         rq->buffer = bio_data(bio);
3336
3337         rq->bio = rq->biotail = bio;
3338 }
3339
3340 EXPORT_SYMBOL(blk_rq_bio_prep);
3341
3342 int kblockd_schedule_work(struct work_struct *work)
3343 {
3344         return queue_work(kblockd_workqueue, work);
3345 }
3346
3347 EXPORT_SYMBOL(kblockd_schedule_work);
3348
3349 void kblockd_flush(void)
3350 {
3351         flush_workqueue(kblockd_workqueue);
3352 }
3353 EXPORT_SYMBOL(kblockd_flush);
3354
3355 int __init blk_dev_init(void)
3356 {
3357         kblockd_workqueue = create_workqueue("kblockd");
3358         if (!kblockd_workqueue)
3359                 panic("Failed to create kblockd\n");
3360
3361         request_cachep = kmem_cache_create("blkdev_requests",
3362                         sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3363
3364         requestq_cachep = kmem_cache_create("blkdev_queue",
3365                         sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3366
3367         iocontext_cachep = kmem_cache_create("blkdev_ioc",
3368                         sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3369
3370         blk_max_low_pfn = max_low_pfn;
3371         blk_max_pfn = max_pfn;
3372
3373         return 0;
3374 }
3375
3376 /*
3377  * IO Context helper functions
3378  */
3379 void put_io_context(struct io_context *ioc)
3380 {
3381         if (ioc == NULL)
3382                 return;
3383
3384         BUG_ON(atomic_read(&ioc->refcount) == 0);
3385
3386         if (atomic_dec_and_test(&ioc->refcount)) {
3387                 if (ioc->aic && ioc->aic->dtor)
3388                         ioc->aic->dtor(ioc->aic);
3389                 if (ioc->cic && ioc->cic->dtor)
3390                         ioc->cic->dtor(ioc->cic);
3391
3392                 kmem_cache_free(iocontext_cachep, ioc);
3393         }
3394 }
3395 EXPORT_SYMBOL(put_io_context);
3396
3397 /* Called by the exitting task */
3398 void exit_io_context(void)
3399 {
3400         unsigned long flags;
3401         struct io_context *ioc;
3402
3403         local_irq_save(flags);
3404         ioc = current->io_context;
3405         current->io_context = NULL;
3406         local_irq_restore(flags);
3407
3408         if (ioc->aic && ioc->aic->exit)
3409                 ioc->aic->exit(ioc->aic);
3410         if (ioc->cic && ioc->cic->exit)
3411                 ioc->cic->exit(ioc->cic);
3412
3413         put_io_context(ioc);
3414 }
3415
3416 /*
3417  * If the current task has no IO context then create one and initialise it.
3418  * If it does have a context, take a ref on it.
3419  *
3420  * This is always called in the context of the task which submitted the I/O.
3421  * But weird things happen, so we disable local interrupts to ensure exclusive
3422  * access to *current.
3423  */
3424 struct io_context *get_io_context(int gfp_flags)
3425 {
3426         struct task_struct *tsk = current;
3427         unsigned long flags;
3428         struct io_context *ret;
3429
3430         local_irq_save(flags);
3431         ret = tsk->io_context;
3432         if (ret)
3433                 goto out;
3434
3435         local_irq_restore(flags);
3436
3437         ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3438         if (ret) {
3439                 atomic_set(&ret->refcount, 1);
3440                 ret->pid = tsk->pid;
3441                 ret->last_waited = jiffies; /* doesn't matter... */
3442                 ret->nr_batch_requests = 0; /* because this is 0 */
3443                 ret->aic = NULL;
3444                 ret->cic = NULL;
3445                 spin_lock_init(&ret->lock);
3446
3447                 local_irq_save(flags);
3448
3449                 /*
3450                  * very unlikely, someone raced with us in setting up the task
3451                  * io context. free new context and just grab a reference.