]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/acpi/osl.c
ACPI: Remove unnecessary from/to-void* and to-void casts in drivers/acpi
[linux-3.10.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/mm.h>
32 #include <linux/pci.h>
33 #include <linux/smp_lock.h>
34 #include <linux/interrupt.h>
35 #include <linux/kmod.h>
36 #include <linux/delay.h>
37 #include <linux/workqueue.h>
38 #include <linux/nmi.h>
39 #include <acpi/acpi.h>
40 #include <asm/io.h>
41 #include <acpi/acpi_bus.h>
42 #include <acpi/processor.h>
43 #include <asm/uaccess.h>
44
45 #include <linux/efi.h>
46
47 #define _COMPONENT              ACPI_OS_SERVICES
48 ACPI_MODULE_NAME("osl")
49 #define PREFIX          "ACPI: "
50 struct acpi_os_dpc {
51         acpi_osd_exec_callback function;
52         void *context;
53 };
54
55 #ifdef CONFIG_ACPI_CUSTOM_DSDT
56 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
57 #endif
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65
66 extern char line_buf[80];
67 #endif                          /*ENABLE_DEBUGGER */
68
69 int acpi_specific_hotkey_enabled = TRUE;
70 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
71
72 static unsigned int acpi_irq_irq;
73 static acpi_osd_handler acpi_irq_handler;
74 static void *acpi_irq_context;
75 static struct workqueue_struct *kacpid_wq;
76
77 acpi_status acpi_os_initialize(void)
78 {
79         return AE_OK;
80 }
81
82 acpi_status acpi_os_initialize1(void)
83 {
84         /*
85          * Initialize PCI configuration space access, as we'll need to access
86          * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
87          */
88         if (!raw_pci_ops) {
89                 printk(KERN_ERR PREFIX
90                        "Access to PCI configuration space unavailable\n");
91                 return AE_NULL_ENTRY;
92         }
93         kacpid_wq = create_singlethread_workqueue("kacpid");
94         BUG_ON(!kacpid_wq);
95
96         return AE_OK;
97 }
98
99 acpi_status acpi_os_terminate(void)
100 {
101         if (acpi_irq_handler) {
102                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
103                                                  acpi_irq_handler);
104         }
105
106         destroy_workqueue(kacpid_wq);
107
108         return AE_OK;
109 }
110
111 void acpi_os_printf(const char *fmt, ...)
112 {
113         va_list args;
114         va_start(args, fmt);
115         acpi_os_vprintf(fmt, args);
116         va_end(args);
117 }
118
119 EXPORT_SYMBOL(acpi_os_printf);
120
121 void acpi_os_vprintf(const char *fmt, va_list args)
122 {
123         static char buffer[512];
124
125         vsprintf(buffer, fmt, args);
126
127 #ifdef ENABLE_DEBUGGER
128         if (acpi_in_debugger) {
129                 kdb_printf("%s", buffer);
130         } else {
131                 printk("%s", buffer);
132         }
133 #else
134         printk("%s", buffer);
135 #endif
136 }
137
138 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
139 {
140         if (efi_enabled) {
141                 addr->pointer_type = ACPI_PHYSICAL_POINTER;
142                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
143                         addr->pointer.physical = efi.acpi20;
144                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
145                         addr->pointer.physical = efi.acpi;
146                 else {
147                         printk(KERN_ERR PREFIX
148                                "System description tables not found\n");
149                         return AE_NOT_FOUND;
150                 }
151         } else {
152                 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
153                         printk(KERN_ERR PREFIX
154                                "System description tables not found\n");
155                         return AE_NOT_FOUND;
156                 }
157         }
158
159         return AE_OK;
160 }
161
162 acpi_status
163 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
164                    void __iomem ** virt)
165 {
166         if (phys > ULONG_MAX) {
167                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
168                 return AE_BAD_PARAMETER;
169         }
170         /*
171          * ioremap checks to ensure this is in reserved space
172          */
173         *virt = ioremap((unsigned long)phys, size);
174
175         if (!*virt)
176                 return AE_NO_MEMORY;
177
178         return AE_OK;
179 }
180 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
181
182 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
183 {
184         iounmap(virt);
185 }
186 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
187
188 #ifdef ACPI_FUTURE_USAGE
189 acpi_status
190 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
191 {
192         if (!phys || !virt)
193                 return AE_BAD_PARAMETER;
194
195         *phys = virt_to_phys(virt);
196
197         return AE_OK;
198 }
199 #endif
200
201 #define ACPI_MAX_OVERRIDE_LEN 100
202
203 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
204
205 acpi_status
206 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
207                             acpi_string * new_val)
208 {
209         if (!init_val || !new_val)
210                 return AE_BAD_PARAMETER;
211
212         *new_val = NULL;
213         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
214                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
215                        acpi_os_name);
216                 *new_val = acpi_os_name;
217         }
218
219         return AE_OK;
220 }
221
222 acpi_status
223 acpi_os_table_override(struct acpi_table_header * existing_table,
224                        struct acpi_table_header ** new_table)
225 {
226         if (!existing_table || !new_table)
227                 return AE_BAD_PARAMETER;
228
229 #ifdef CONFIG_ACPI_CUSTOM_DSDT
230         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
231                 *new_table = (struct acpi_table_header *)AmlCode;
232         else
233                 *new_table = NULL;
234 #else
235         *new_table = NULL;
236 #endif
237         return AE_OK;
238 }
239
240 static irqreturn_t acpi_irq(int irq, void *dev_id)
241 {
242         return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
243 }
244
245 acpi_status
246 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
247                                   void *context)
248 {
249         unsigned int irq;
250
251         /*
252          * Ignore the GSI from the core, and use the value in our copy of the
253          * FADT. It may not be the same if an interrupt source override exists
254          * for the SCI.
255          */
256         gsi = acpi_fadt.sci_int;
257         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
258                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
259                        gsi);
260                 return AE_OK;
261         }
262
263         acpi_irq_handler = handler;
264         acpi_irq_context = context;
265         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
266                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
267                 return AE_NOT_ACQUIRED;
268         }
269         acpi_irq_irq = irq;
270
271         return AE_OK;
272 }
273
274 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
275 {
276         if (irq) {
277                 free_irq(irq, acpi_irq);
278                 acpi_irq_handler = NULL;
279                 acpi_irq_irq = 0;
280         }
281
282         return AE_OK;
283 }
284
285 /*
286  * Running in interpreter thread context, safe to sleep
287  */
288
289 void acpi_os_sleep(acpi_integer ms)
290 {
291         schedule_timeout_interruptible(msecs_to_jiffies(ms));
292 }
293
294 EXPORT_SYMBOL(acpi_os_sleep);
295
296 void acpi_os_stall(u32 us)
297 {
298         while (us) {
299                 u32 delay = 1000;
300
301                 if (delay > us)
302                         delay = us;
303                 udelay(delay);
304                 touch_nmi_watchdog();
305                 us -= delay;
306         }
307 }
308
309 EXPORT_SYMBOL(acpi_os_stall);
310
311 /*
312  * Support ACPI 3.0 AML Timer operand
313  * Returns 64-bit free-running, monotonically increasing timer
314  * with 100ns granularity
315  */
316 u64 acpi_os_get_timer(void)
317 {
318         static u64 t;
319
320 #ifdef  CONFIG_HPET
321         /* TBD: use HPET if available */
322 #endif
323
324 #ifdef  CONFIG_X86_PM_TIMER
325         /* TBD: default to PM timer if HPET was not available */
326 #endif
327         if (!t)
328                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
329
330         return ++t;
331 }
332
333 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
334 {
335         u32 dummy;
336
337         if (!value)
338                 value = &dummy;
339
340         switch (width) {
341         case 8:
342                 *(u8 *) value = inb(port);
343                 break;
344         case 16:
345                 *(u16 *) value = inw(port);
346                 break;
347         case 32:
348                 *(u32 *) value = inl(port);
349                 break;
350         default:
351                 BUG();
352         }
353
354         return AE_OK;
355 }
356
357 EXPORT_SYMBOL(acpi_os_read_port);
358
359 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
360 {
361         switch (width) {
362         case 8:
363                 outb(value, port);
364                 break;
365         case 16:
366                 outw(value, port);
367                 break;
368         case 32:
369                 outl(value, port);
370                 break;
371         default:
372                 BUG();
373         }
374
375         return AE_OK;
376 }
377
378 EXPORT_SYMBOL(acpi_os_write_port);
379
380 acpi_status
381 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
382 {
383         u32 dummy;
384         void __iomem *virt_addr;
385
386         virt_addr = ioremap(phys_addr, width);
387         if (!value)
388                 value = &dummy;
389
390         switch (width) {
391         case 8:
392                 *(u8 *) value = readb(virt_addr);
393                 break;
394         case 16:
395                 *(u16 *) value = readw(virt_addr);
396                 break;
397         case 32:
398                 *(u32 *) value = readl(virt_addr);
399                 break;
400         default:
401                 BUG();
402         }
403
404         iounmap(virt_addr);
405
406         return AE_OK;
407 }
408
409 acpi_status
410 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
411 {
412         void __iomem *virt_addr;
413
414         virt_addr = ioremap(phys_addr, width);
415
416         switch (width) {
417         case 8:
418                 writeb(value, virt_addr);
419                 break;
420         case 16:
421                 writew(value, virt_addr);
422                 break;
423         case 32:
424                 writel(value, virt_addr);
425                 break;
426         default:
427                 BUG();
428         }
429
430         iounmap(virt_addr);
431
432         return AE_OK;
433 }
434
435 acpi_status
436 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
437                                void *value, u32 width)
438 {
439         int result, size;
440
441         if (!value)
442                 return AE_BAD_PARAMETER;
443
444         switch (width) {
445         case 8:
446                 size = 1;
447                 break;
448         case 16:
449                 size = 2;
450                 break;
451         case 32:
452                 size = 4;
453                 break;
454         default:
455                 return AE_ERROR;
456         }
457
458         BUG_ON(!raw_pci_ops);
459
460         result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
461                                    PCI_DEVFN(pci_id->device, pci_id->function),
462                                    reg, size, value);
463
464         return (result ? AE_ERROR : AE_OK);
465 }
466
467 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
468
469 acpi_status
470 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
471                                 acpi_integer value, u32 width)
472 {
473         int result, size;
474
475         switch (width) {
476         case 8:
477                 size = 1;
478                 break;
479         case 16:
480                 size = 2;
481                 break;
482         case 32:
483                 size = 4;
484                 break;
485         default:
486                 return AE_ERROR;
487         }
488
489         BUG_ON(!raw_pci_ops);
490
491         result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
492                                     PCI_DEVFN(pci_id->device, pci_id->function),
493                                     reg, size, value);
494
495         return (result ? AE_ERROR : AE_OK);
496 }
497
498 /* TODO: Change code to take advantage of driver model more */
499 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,        /* upper bound  */
500                                     acpi_handle chandle,        /* current node */
501                                     struct acpi_pci_id **id,
502                                     int *is_bridge, u8 * bus_number)
503 {
504         acpi_handle handle;
505         struct acpi_pci_id *pci_id = *id;
506         acpi_status status;
507         unsigned long temp;
508         acpi_object_type type;
509         u8 tu8;
510
511         acpi_get_parent(chandle, &handle);
512         if (handle != rhandle) {
513                 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
514                                         bus_number);
515
516                 status = acpi_get_type(handle, &type);
517                 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
518                         return;
519
520                 status =
521                     acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
522                                           &temp);
523                 if (ACPI_SUCCESS(status)) {
524                         pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
525                         pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
526
527                         if (*is_bridge)
528                                 pci_id->bus = *bus_number;
529
530                         /* any nicer way to get bus number of bridge ? */
531                         status =
532                             acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
533                                                            8);
534                         if (ACPI_SUCCESS(status)
535                             && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
536                                 status =
537                                     acpi_os_read_pci_configuration(pci_id, 0x18,
538                                                                    &tu8, 8);
539                                 if (!ACPI_SUCCESS(status)) {
540                                         /* Certainly broken...  FIX ME */
541                                         return;
542                                 }
543                                 *is_bridge = 1;
544                                 pci_id->bus = tu8;
545                                 status =
546                                     acpi_os_read_pci_configuration(pci_id, 0x19,
547                                                                    &tu8, 8);
548                                 if (ACPI_SUCCESS(status)) {
549                                         *bus_number = tu8;
550                                 }
551                         } else
552                                 *is_bridge = 0;
553                 }
554         }
555 }
556
557 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound  */
558                            acpi_handle chandle, /* current node */
559                            struct acpi_pci_id **id)
560 {
561         int is_bridge = 1;
562         u8 bus_number = (*id)->bus;
563
564         acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
565 }
566
567 static void acpi_os_execute_deferred(void *context)
568 {
569         struct acpi_os_dpc *dpc = NULL;
570
571
572         dpc = context;
573         if (!dpc) {
574                 printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
575                 return;
576         }
577
578         dpc->function(dpc->context);
579
580         kfree(dpc);
581
582         return;
583 }
584
585 /*******************************************************************************
586  *
587  * FUNCTION:    acpi_os_execute
588  *
589  * PARAMETERS:  Type               - Type of the callback
590  *              Function           - Function to be executed
591  *              Context            - Function parameters
592  *
593  * RETURN:      Status
594  *
595  * DESCRIPTION: Depending on type, either queues function for deferred execution or
596  *              immediately executes function on a separate thread.
597  *
598  ******************************************************************************/
599
600 acpi_status acpi_os_execute(acpi_execute_type type,
601                             acpi_osd_exec_callback function, void *context)
602 {
603         acpi_status status = AE_OK;
604         struct acpi_os_dpc *dpc;
605         struct work_struct *task;
606
607         ACPI_FUNCTION_TRACE("os_queue_for_execution");
608
609         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
610                           "Scheduling function [%p(%p)] for deferred execution.\n",
611                           function, context));
612
613         if (!function)
614                 return_ACPI_STATUS(AE_BAD_PARAMETER);
615
616         /*
617          * Allocate/initialize DPC structure.  Note that this memory will be
618          * freed by the callee.  The kernel handles the tq_struct list  in a
619          * way that allows us to also free its memory inside the callee.
620          * Because we may want to schedule several tasks with different
621          * parameters we can't use the approach some kernel code uses of
622          * having a static tq_struct.
623          * We can save time and code by allocating the DPC and tq_structs
624          * from the same memory.
625          */
626
627         dpc =
628             kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
629                     GFP_ATOMIC);
630         if (!dpc)
631                 return_ACPI_STATUS(AE_NO_MEMORY);
632
633         dpc->function = function;
634         dpc->context = context;
635
636         task = (void *)(dpc + 1);
637         INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
638
639         if (!queue_work(kacpid_wq, task)) {
640                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
641                                   "Call to queue_work() failed.\n"));
642                 kfree(dpc);
643                 status = AE_ERROR;
644         }
645
646         return_ACPI_STATUS(status);
647 }
648
649 EXPORT_SYMBOL(acpi_os_execute);
650
651 void acpi_os_wait_events_complete(void *context)
652 {
653         flush_workqueue(kacpid_wq);
654 }
655
656 EXPORT_SYMBOL(acpi_os_wait_events_complete);
657
658 /*
659  * Allocate the memory for a spinlock and initialize it.
660  */
661 acpi_status acpi_os_create_lock(acpi_spinlock * handle)
662 {
663         spin_lock_init(*handle);
664
665         return AE_OK;
666 }
667
668 /*
669  * Deallocate the memory for a spinlock.
670  */
671 void acpi_os_delete_lock(acpi_spinlock handle)
672 {
673         return;
674 }
675
676 acpi_status
677 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
678 {
679         struct semaphore *sem = NULL;
680
681
682         sem = acpi_os_allocate(sizeof(struct semaphore));
683         if (!sem)
684                 return AE_NO_MEMORY;
685         memset(sem, 0, sizeof(struct semaphore));
686
687         sema_init(sem, initial_units);
688
689         *handle = (acpi_handle *) sem;
690
691         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
692                           *handle, initial_units));
693
694         return AE_OK;
695 }
696
697 EXPORT_SYMBOL(acpi_os_create_semaphore);
698
699 /*
700  * TODO: A better way to delete semaphores?  Linux doesn't have a
701  * 'delete_semaphore()' function -- may result in an invalid
702  * pointer dereference for non-synchronized consumers.  Should
703  * we at least check for blocked threads and signal/cancel them?
704  */
705
706 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
707 {
708         struct semaphore *sem = (struct semaphore *)handle;
709
710
711         if (!sem)
712                 return AE_BAD_PARAMETER;
713
714         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
715
716         kfree(sem);
717         sem = NULL;
718
719         return AE_OK;
720 }
721
722 EXPORT_SYMBOL(acpi_os_delete_semaphore);
723
724 /*
725  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
726  * improvise.  The process is to sleep for one scheduler quantum
727  * until the semaphore becomes available.  Downside is that this
728  * may result in starvation for timeout-based waits when there's
729  * lots of semaphore activity.
730  *
731  * TODO: Support for units > 1?
732  */
733 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
734 {
735         acpi_status status = AE_OK;
736         struct semaphore *sem = (struct semaphore *)handle;
737         int ret = 0;
738
739
740         if (!sem || (units < 1))
741                 return AE_BAD_PARAMETER;
742
743         if (units > 1)
744                 return AE_SUPPORT;
745
746         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
747                           handle, units, timeout));
748
749         /*
750          * This can be called during resume with interrupts off.
751          * Like boot-time, we should be single threaded and will
752          * always get the lock if we try -- timeout or not.
753          * If this doesn't succeed, then we will oops courtesy of
754          * might_sleep() in down().
755          */
756         if (!down_trylock(sem))
757                 return AE_OK;
758
759         switch (timeout) {
760                 /*
761                  * No Wait:
762                  * --------
763                  * A zero timeout value indicates that we shouldn't wait - just
764                  * acquire the semaphore if available otherwise return AE_TIME
765                  * (a.k.a. 'would block').
766                  */
767         case 0:
768                 if (down_trylock(sem))
769                         status = AE_TIME;
770                 break;
771
772                 /*
773                  * Wait Indefinitely:
774                  * ------------------
775                  */
776         case ACPI_WAIT_FOREVER:
777                 down(sem);
778                 break;
779
780                 /*
781                  * Wait w/ Timeout:
782                  * ----------------
783                  */
784         default:
785                 // TODO: A better timeout algorithm?
786                 {
787                         int i = 0;
788                         static const int quantum_ms = 1000 / HZ;
789
790                         ret = down_trylock(sem);
791                         for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
792                                 schedule_timeout_interruptible(1);
793                                 ret = down_trylock(sem);
794                         }
795
796                         if (ret != 0)
797                                 status = AE_TIME;
798                 }
799                 break;
800         }
801
802         if (ACPI_FAILURE(status)) {
803                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
804                                   "Failed to acquire semaphore[%p|%d|%d], %s",
805                                   handle, units, timeout,
806                                   acpi_format_exception(status)));
807         } else {
808                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
809                                   "Acquired semaphore[%p|%d|%d]", handle,
810                                   units, timeout));
811         }
812
813         return status;
814 }
815
816 EXPORT_SYMBOL(acpi_os_wait_semaphore);
817
818 /*
819  * TODO: Support for units > 1?
820  */
821 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
822 {
823         struct semaphore *sem = (struct semaphore *)handle;
824
825
826         if (!sem || (units < 1))
827                 return AE_BAD_PARAMETER;
828
829         if (units > 1)
830                 return AE_SUPPORT;
831
832         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
833                           units));
834
835         up(sem);
836
837         return AE_OK;
838 }
839
840 EXPORT_SYMBOL(acpi_os_signal_semaphore);
841
842 #ifdef ACPI_FUTURE_USAGE
843 u32 acpi_os_get_line(char *buffer)
844 {
845
846 #ifdef ENABLE_DEBUGGER
847         if (acpi_in_debugger) {
848                 u32 chars;
849
850                 kdb_read(buffer, sizeof(line_buf));
851
852                 /* remove the CR kdb includes */
853                 chars = strlen(buffer) - 1;
854                 buffer[chars] = '\0';
855         }
856 #endif
857
858         return 0;
859 }
860 #endif                          /*  ACPI_FUTURE_USAGE  */
861
862 /* Assumes no unreadable holes inbetween */
863 u8 acpi_os_readable(void *ptr, acpi_size len)
864 {
865 #if defined(__i386__) || defined(__x86_64__)
866         char tmp;
867         return !__get_user(tmp, (char __user *)ptr)
868             && !__get_user(tmp, (char __user *)ptr + len - 1);
869 #endif
870         return 1;
871 }
872
873 #ifdef ACPI_FUTURE_USAGE
874 u8 acpi_os_writable(void *ptr, acpi_size len)
875 {
876         /* could do dummy write (racy) or a kernel page table lookup.
877            The later may be difficult at early boot when kmap doesn't work yet. */
878         return 1;
879 }
880 #endif
881
882 acpi_status acpi_os_signal(u32 function, void *info)
883 {
884         switch (function) {
885         case ACPI_SIGNAL_FATAL:
886                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
887                 break;
888         case ACPI_SIGNAL_BREAKPOINT:
889                 /*
890                  * AML Breakpoint
891                  * ACPI spec. says to treat it as a NOP unless
892                  * you are debugging.  So if/when we integrate
893                  * AML debugger into the kernel debugger its
894                  * hook will go here.  But until then it is
895                  * not useful to print anything on breakpoints.
896                  */
897                 break;
898         default:
899                 break;
900         }
901
902         return AE_OK;
903 }
904
905 EXPORT_SYMBOL(acpi_os_signal);
906
907 static int __init acpi_os_name_setup(char *str)
908 {
909         char *p = acpi_os_name;
910         int count = ACPI_MAX_OVERRIDE_LEN - 1;
911
912         if (!str || !*str)
913                 return 0;
914
915         for (; count-- && str && *str; str++) {
916                 if (isalnum(*str) || *str == ' ' || *str == ':')
917                         *p++ = *str;
918                 else if (*str == '\'' || *str == '"')
919                         continue;
920                 else
921                         break;
922         }
923         *p = 0;
924
925         return 1;
926
927 }
928
929 __setup("acpi_os_name=", acpi_os_name_setup);
930
931 /*
932  * _OSI control
933  * empty string disables _OSI
934  * TBD additional string adds to _OSI
935  */
936 static int __init acpi_osi_setup(char *str)
937 {
938         if (str == NULL || *str == '\0') {
939                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
940                 acpi_gbl_create_osi_method = FALSE;
941         } else {
942                 /* TBD */
943                 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
944                        str);
945         }
946
947         return 1;
948 }
949
950 __setup("acpi_osi=", acpi_osi_setup);
951
952 /* enable serialization to combat AE_ALREADY_EXISTS errors */
953 static int __init acpi_serialize_setup(char *str)
954 {
955         printk(KERN_INFO PREFIX "serialize enabled\n");
956
957         acpi_gbl_all_methods_serialized = TRUE;
958
959         return 1;
960 }
961
962 __setup("acpi_serialize", acpi_serialize_setup);
963
964 /*
965  * Wake and Run-Time GPES are expected to be separate.
966  * We disable wake-GPEs at run-time to prevent spurious
967  * interrupts.
968  *
969  * However, if a system exists that shares Wake and
970  * Run-time events on the same GPE this flag is available
971  * to tell Linux to keep the wake-time GPEs enabled at run-time.
972  */
973 static int __init acpi_wake_gpes_always_on_setup(char *str)
974 {
975         printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
976
977         acpi_gbl_leave_wake_gpes_disabled = FALSE;
978
979         return 1;
980 }
981
982 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
983
984 static int __init acpi_hotkey_setup(char *str)
985 {
986         acpi_specific_hotkey_enabled = FALSE;
987         return 1;
988 }
989
990 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
991
992 /*
993  * max_cstate is defined in the base kernel so modules can
994  * change it w/o depending on the state of the processor module.
995  */
996 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
997
998 EXPORT_SYMBOL(max_cstate);
999
1000 /*
1001  * Acquire a spinlock.
1002  *
1003  * handle is a pointer to the spinlock_t.
1004  */
1005
1006 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1007 {
1008         acpi_cpu_flags flags;
1009         spin_lock_irqsave(lockp, flags);
1010         return flags;
1011 }
1012
1013 /*
1014  * Release a spinlock. See above.
1015  */
1016
1017 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1018 {
1019         spin_unlock_irqrestore(lockp, flags);
1020 }
1021
1022 #ifndef ACPI_USE_LOCAL_CACHE
1023
1024 /*******************************************************************************
1025  *
1026  * FUNCTION:    acpi_os_create_cache
1027  *
1028  * PARAMETERS:  name      - Ascii name for the cache
1029  *              size      - Size of each cached object
1030  *              depth     - Maximum depth of the cache (in objects) <ignored>
1031  *              cache     - Where the new cache object is returned
1032  *
1033  * RETURN:      status
1034  *
1035  * DESCRIPTION: Create a cache object
1036  *
1037  ******************************************************************************/
1038
1039 acpi_status
1040 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1041 {
1042         *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1043         if (cache == NULL)
1044                 return AE_ERROR;
1045         else
1046                 return AE_OK;
1047 }
1048
1049 /*******************************************************************************
1050  *
1051  * FUNCTION:    acpi_os_purge_cache
1052  *
1053  * PARAMETERS:  Cache           - Handle to cache object
1054  *
1055  * RETURN:      Status
1056  *
1057  * DESCRIPTION: Free all objects within the requested cache.
1058  *
1059  ******************************************************************************/
1060
1061 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1062 {
1063         kmem_cache_shrink(cache);
1064         return (AE_OK);
1065 }
1066
1067 /*******************************************************************************
1068  *
1069  * FUNCTION:    acpi_os_delete_cache
1070  *
1071  * PARAMETERS:  Cache           - Handle to cache object
1072  *
1073  * RETURN:      Status
1074  *
1075  * DESCRIPTION: Free all objects within the requested cache and delete the
1076  *              cache object.
1077  *
1078  ******************************************************************************/
1079
1080 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1081 {
1082         kmem_cache_destroy(cache);
1083         return (AE_OK);
1084 }
1085
1086 /*******************************************************************************
1087  *
1088  * FUNCTION:    acpi_os_release_object
1089  *
1090  * PARAMETERS:  Cache       - Handle to cache object
1091  *              Object      - The object to be released
1092  *
1093  * RETURN:      None
1094  *
1095  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1096  *              the object is deleted.
1097  *
1098  ******************************************************************************/
1099
1100 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1101 {
1102         kmem_cache_free(cache, object);
1103         return (AE_OK);
1104 }
1105
1106 /******************************************************************************
1107  *
1108  * FUNCTION:    acpi_os_validate_interface
1109  *
1110  * PARAMETERS:  interface           - Requested interface to be validated
1111  *
1112  * RETURN:      AE_OK if interface is supported, AE_SUPPORT otherwise
1113  *
1114  * DESCRIPTION: Match an interface string to the interfaces supported by the
1115  *              host. Strings originate from an AML call to the _OSI method.
1116  *
1117  *****************************************************************************/
1118
1119 acpi_status
1120 acpi_os_validate_interface (char *interface)
1121 {
1122
1123     return AE_SUPPORT;
1124 }
1125
1126
1127 /******************************************************************************
1128  *
1129  * FUNCTION:    acpi_os_validate_address
1130  *
1131  * PARAMETERS:  space_id             - ACPI space ID
1132  *              address             - Physical address
1133  *              length              - Address length
1134  *
1135  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1136  *              should return AE_AML_ILLEGAL_ADDRESS.
1137  *
1138  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1139  *              the addresses accessed by AML operation regions.
1140  *
1141  *****************************************************************************/
1142
1143 acpi_status
1144 acpi_os_validate_address (
1145     u8                   space_id,
1146     acpi_physical_address   address,
1147     acpi_size               length)
1148 {
1149
1150     return AE_OK;
1151 }
1152
1153
1154 #endif