2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
52 #include <asm/debugreg.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94 struct kvm_cpuid_entry2 __user *entries);
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
102 #define KVM_NR_SHARED_MSRS 16
104 struct kvm_shared_msrs_global {
106 u32 msrs[KVM_NR_SHARED_MSRS];
109 struct kvm_shared_msrs {
110 struct user_return_notifier urn;
112 struct kvm_shared_msr_values {
115 } values[KVM_NR_SHARED_MSRS];
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed) },
123 { "pf_guest", VCPU_STAT(pf_guest) },
124 { "tlb_flush", VCPU_STAT(tlb_flush) },
125 { "invlpg", VCPU_STAT(invlpg) },
126 { "exits", VCPU_STAT(exits) },
127 { "io_exits", VCPU_STAT(io_exits) },
128 { "mmio_exits", VCPU_STAT(mmio_exits) },
129 { "signal_exits", VCPU_STAT(signal_exits) },
130 { "irq_window", VCPU_STAT(irq_window_exits) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits) },
132 { "halt_exits", VCPU_STAT(halt_exits) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134 { "hypercalls", VCPU_STAT(hypercalls) },
135 { "request_irq", VCPU_STAT(request_irq_exits) },
136 { "irq_exits", VCPU_STAT(irq_exits) },
137 { "host_state_reload", VCPU_STAT(host_state_reload) },
138 { "efer_reload", VCPU_STAT(efer_reload) },
139 { "fpu_reload", VCPU_STAT(fpu_reload) },
140 { "insn_emulation", VCPU_STAT(insn_emulation) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142 { "irq_injections", VCPU_STAT(irq_injections) },
143 { "nmi_injections", VCPU_STAT(nmi_injections) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148 { "mmu_flooded", VM_STAT(mmu_flooded) },
149 { "mmu_recycled", VM_STAT(mmu_recycled) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151 { "mmu_unsync", VM_STAT(mmu_unsync) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153 { "largepages", VM_STAT(lpages) },
157 u64 __read_mostly host_xcr0;
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
166 static void kvm_on_user_return(struct user_return_notifier *urn)
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
184 static void shared_msr_update(unsigned slot, u32 msr)
186 struct kvm_shared_msrs *smsr;
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
211 static void kvm_shared_msr_cpu_online(void)
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
235 static void drop_user_return_notifiers(void *ignore)
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
248 return vcpu->arch.apic_base;
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
258 vcpu->arch.apic_base = data;
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
266 static int exception_class(int vector)
276 return EXCPT_CONTRIBUTORY;
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
292 if (!vcpu->arch.exception.pending) {
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
339 unsigned error_code = vcpu->arch.fault.error_code;
341 ++vcpu->stat.pf_guest;
342 vcpu->arch.cr2 = vcpu->arch.fault.address;
343 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
346 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
348 if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
349 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
351 vcpu->arch.mmu.inject_page_fault(vcpu);
353 vcpu->arch.fault.nested = false;
356 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
358 kvm_make_request(KVM_REQ_EVENT, vcpu);
359 vcpu->arch.nmi_pending = 1;
361 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
363 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
365 kvm_multiple_exception(vcpu, nr, true, error_code, false);
367 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
369 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
371 kvm_multiple_exception(vcpu, nr, true, error_code, true);
373 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
376 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
377 * a #GP and return false.
379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
381 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
383 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
386 EXPORT_SYMBOL_GPL(kvm_require_cpl);
389 * This function will be used to read from the physical memory of the currently
390 * running guest. The difference to kvm_read_guest_page is that this function
391 * can read from guest physical or from the guest's guest physical memory.
393 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
394 gfn_t ngfn, void *data, int offset, int len,
400 ngpa = gfn_to_gpa(ngfn);
401 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
402 if (real_gfn == UNMAPPED_GVA)
405 real_gfn = gpa_to_gfn(real_gfn);
407 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
409 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
411 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
412 void *data, int offset, int len, u32 access)
414 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
415 data, offset, len, access);
419 * Load the pae pdptrs. Return true is they are all valid.
421 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
423 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
424 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
427 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
429 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
430 offset * sizeof(u64), sizeof(pdpte),
431 PFERR_USER_MASK|PFERR_WRITE_MASK);
436 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437 if (is_present_gpte(pdpte[i]) &&
438 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
446 __set_bit(VCPU_EXREG_PDPTR,
447 (unsigned long *)&vcpu->arch.regs_avail);
448 __set_bit(VCPU_EXREG_PDPTR,
449 (unsigned long *)&vcpu->arch.regs_dirty);
454 EXPORT_SYMBOL_GPL(load_pdptrs);
456 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
458 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464 if (is_long_mode(vcpu) || !is_pae(vcpu))
467 if (!test_bit(VCPU_EXREG_PDPTR,
468 (unsigned long *)&vcpu->arch.regs_avail))
471 gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
472 offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
473 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
474 PFERR_USER_MASK | PFERR_WRITE_MASK);
477 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
485 unsigned long old_cr0 = kvm_read_cr0(vcpu);
486 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
487 X86_CR0_CD | X86_CR0_NW;
492 if (cr0 & 0xffffffff00000000UL)
496 cr0 &= ~CR0_RESERVED_BITS;
498 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
501 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
504 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
506 if ((vcpu->arch.efer & EFER_LME)) {
511 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
516 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
521 kvm_x86_ops->set_cr0(vcpu, cr0);
523 if ((cr0 ^ old_cr0) & update_bits)
524 kvm_mmu_reset_context(vcpu);
527 EXPORT_SYMBOL_GPL(kvm_set_cr0);
529 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
531 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
533 EXPORT_SYMBOL_GPL(kvm_lmsw);
535 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
539 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
540 if (index != XCR_XFEATURE_ENABLED_MASK)
543 if (kvm_x86_ops->get_cpl(vcpu) != 0)
545 if (!(xcr0 & XSTATE_FP))
547 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
549 if (xcr0 & ~host_xcr0)
551 vcpu->arch.xcr0 = xcr0;
552 vcpu->guest_xcr0_loaded = 0;
556 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
558 if (__kvm_set_xcr(vcpu, index, xcr)) {
559 kvm_inject_gp(vcpu, 0);
564 EXPORT_SYMBOL_GPL(kvm_set_xcr);
566 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
568 struct kvm_cpuid_entry2 *best;
570 best = kvm_find_cpuid_entry(vcpu, 1, 0);
571 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
574 static void update_cpuid(struct kvm_vcpu *vcpu)
576 struct kvm_cpuid_entry2 *best;
578 best = kvm_find_cpuid_entry(vcpu, 1, 0);
582 /* Update OSXSAVE bit */
583 if (cpu_has_xsave && best->function == 0x1) {
584 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
585 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
586 best->ecx |= bit(X86_FEATURE_OSXSAVE);
590 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
592 unsigned long old_cr4 = kvm_read_cr4(vcpu);
593 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
595 if (cr4 & CR4_RESERVED_BITS)
598 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
601 if (is_long_mode(vcpu)) {
602 if (!(cr4 & X86_CR4_PAE))
604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 && ((cr4 ^ old_cr4) & pdptr_bits)
606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
609 if (cr4 & X86_CR4_VMXE)
612 kvm_x86_ops->set_cr4(vcpu, cr4);
614 if ((cr4 ^ old_cr4) & pdptr_bits)
615 kvm_mmu_reset_context(vcpu);
617 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
622 EXPORT_SYMBOL_GPL(kvm_set_cr4);
624 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
626 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
627 kvm_mmu_sync_roots(vcpu);
628 kvm_mmu_flush_tlb(vcpu);
632 if (is_long_mode(vcpu)) {
633 if (cr3 & CR3_L_MODE_RESERVED_BITS)
637 if (cr3 & CR3_PAE_RESERVED_BITS)
639 if (is_paging(vcpu) &&
640 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
644 * We don't check reserved bits in nonpae mode, because
645 * this isn't enforced, and VMware depends on this.
650 * Does the new cr3 value map to physical memory? (Note, we
651 * catch an invalid cr3 even in real-mode, because it would
652 * cause trouble later on when we turn on paging anyway.)
654 * A real CPU would silently accept an invalid cr3 and would
655 * attempt to use it - with largely undefined (and often hard
656 * to debug) behavior on the guest side.
658 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
660 vcpu->arch.cr3 = cr3;
661 vcpu->arch.mmu.new_cr3(vcpu);
664 EXPORT_SYMBOL_GPL(kvm_set_cr3);
666 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
668 if (cr8 & CR8_RESERVED_BITS)
670 if (irqchip_in_kernel(vcpu->kvm))
671 kvm_lapic_set_tpr(vcpu, cr8);
673 vcpu->arch.cr8 = cr8;
677 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
679 if (__kvm_set_cr8(vcpu, cr8))
680 kvm_inject_gp(vcpu, 0);
682 EXPORT_SYMBOL_GPL(kvm_set_cr8);
684 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
686 if (irqchip_in_kernel(vcpu->kvm))
687 return kvm_lapic_get_cr8(vcpu);
689 return vcpu->arch.cr8;
691 EXPORT_SYMBOL_GPL(kvm_get_cr8);
693 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
697 vcpu->arch.db[dr] = val;
698 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
699 vcpu->arch.eff_db[dr] = val;
702 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
706 if (val & 0xffffffff00000000ULL)
708 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
711 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
715 if (val & 0xffffffff00000000ULL)
717 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
718 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
719 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
720 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
728 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
732 res = __kvm_set_dr(vcpu, dr, val);
734 kvm_queue_exception(vcpu, UD_VECTOR);
736 kvm_inject_gp(vcpu, 0);
740 EXPORT_SYMBOL_GPL(kvm_set_dr);
742 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
746 *val = vcpu->arch.db[dr];
749 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
753 *val = vcpu->arch.dr6;
756 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
760 *val = vcpu->arch.dr7;
767 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
769 if (_kvm_get_dr(vcpu, dr, val)) {
770 kvm_queue_exception(vcpu, UD_VECTOR);
775 EXPORT_SYMBOL_GPL(kvm_get_dr);
778 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
779 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
781 * This list is modified at module load time to reflect the
782 * capabilities of the host cpu. This capabilities test skips MSRs that are
783 * kvm-specific. Those are put in the beginning of the list.
786 #define KVM_SAVE_MSRS_BEGIN 7
787 static u32 msrs_to_save[] = {
788 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
789 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
790 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
791 HV_X64_MSR_APIC_ASSIST_PAGE,
792 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
795 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
797 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
800 static unsigned num_msrs_to_save;
802 static u32 emulated_msrs[] = {
803 MSR_IA32_MISC_ENABLE,
808 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
810 u64 old_efer = vcpu->arch.efer;
812 if (efer & efer_reserved_bits)
816 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
819 if (efer & EFER_FFXSR) {
820 struct kvm_cpuid_entry2 *feat;
822 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
823 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
827 if (efer & EFER_SVME) {
828 struct kvm_cpuid_entry2 *feat;
830 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
831 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
836 efer |= vcpu->arch.efer & EFER_LMA;
838 kvm_x86_ops->set_efer(vcpu, efer);
840 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
842 /* Update reserved bits */
843 if ((efer ^ old_efer) & EFER_NX)
844 kvm_mmu_reset_context(vcpu);
849 void kvm_enable_efer_bits(u64 mask)
851 efer_reserved_bits &= ~mask;
853 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
857 * Writes msr value into into the appropriate "register".
858 * Returns 0 on success, non-0 otherwise.
859 * Assumes vcpu_load() was already called.
861 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
863 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
867 * Adapt set_msr() to msr_io()'s calling convention
869 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
871 return kvm_set_msr(vcpu, index, *data);
874 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
878 struct pvclock_wall_clock wc;
879 struct timespec boot;
884 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
889 ++version; /* first time write, random junk */
893 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
896 * The guest calculates current wall clock time by adding
897 * system time (updated by kvm_guest_time_update below) to the
898 * wall clock specified here. guest system time equals host
899 * system time for us, thus we must fill in host boot time here.
903 wc.sec = boot.tv_sec;
904 wc.nsec = boot.tv_nsec;
905 wc.version = version;
907 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
910 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
913 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
915 uint32_t quotient, remainder;
917 /* Don't try to replace with do_div(), this one calculates
918 * "(dividend << 32) / divisor" */
920 : "=a" (quotient), "=d" (remainder)
921 : "0" (0), "1" (dividend), "r" (divisor) );
925 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
926 s8 *pshift, u32 *pmultiplier)
933 tps64 = base_khz * 1000LL;
934 scaled64 = scaled_khz * 1000LL;
935 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
940 tps32 = (uint32_t)tps64;
941 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
942 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
950 *pmultiplier = div_frac(scaled64, tps32);
952 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
953 __func__, base_khz, scaled_khz, shift, *pmultiplier);
956 static inline u64 get_kernel_ns(void)
960 WARN_ON(preemptible());
962 monotonic_to_bootbased(&ts);
963 return timespec_to_ns(&ts);
966 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
967 unsigned long max_tsc_khz;
969 static inline int kvm_tsc_changes_freq(void)
972 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
973 cpufreq_quick_get(cpu) != 0;
978 static inline u64 nsec_to_cycles(u64 nsec)
982 WARN_ON(preemptible());
983 if (kvm_tsc_changes_freq())
984 printk_once(KERN_WARNING
985 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
986 ret = nsec * __get_cpu_var(cpu_tsc_khz);
987 do_div(ret, USEC_PER_SEC);
991 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
993 /* Compute a scale to convert nanoseconds in TSC cycles */
994 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995 &kvm->arch.virtual_tsc_shift,
996 &kvm->arch.virtual_tsc_mult);
997 kvm->arch.virtual_tsc_khz = this_tsc_khz;
1000 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1002 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1003 vcpu->kvm->arch.virtual_tsc_mult,
1004 vcpu->kvm->arch.virtual_tsc_shift);
1005 tsc += vcpu->arch.last_tsc_write;
1009 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1011 struct kvm *kvm = vcpu->kvm;
1012 u64 offset, ns, elapsed;
1013 unsigned long flags;
1016 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1017 offset = data - native_read_tsc();
1018 ns = get_kernel_ns();
1019 elapsed = ns - kvm->arch.last_tsc_nsec;
1020 sdiff = data - kvm->arch.last_tsc_write;
1025 * Special case: close write to TSC within 5 seconds of
1026 * another CPU is interpreted as an attempt to synchronize
1027 * The 5 seconds is to accomodate host load / swapping as
1028 * well as any reset of TSC during the boot process.
1030 * In that case, for a reliable TSC, we can match TSC offsets,
1031 * or make a best guest using elapsed value.
1033 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1034 elapsed < 5ULL * NSEC_PER_SEC) {
1035 if (!check_tsc_unstable()) {
1036 offset = kvm->arch.last_tsc_offset;
1037 pr_debug("kvm: matched tsc offset for %llu\n", data);
1039 u64 delta = nsec_to_cycles(elapsed);
1041 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1043 ns = kvm->arch.last_tsc_nsec;
1045 kvm->arch.last_tsc_nsec = ns;
1046 kvm->arch.last_tsc_write = data;
1047 kvm->arch.last_tsc_offset = offset;
1048 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1049 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1051 /* Reset of TSC must disable overshoot protection below */
1052 vcpu->arch.hv_clock.tsc_timestamp = 0;
1053 vcpu->arch.last_tsc_write = data;
1054 vcpu->arch.last_tsc_nsec = ns;
1056 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1058 static int kvm_guest_time_update(struct kvm_vcpu *v)
1060 unsigned long flags;
1061 struct kvm_vcpu_arch *vcpu = &v->arch;
1063 unsigned long this_tsc_khz;
1064 s64 kernel_ns, max_kernel_ns;
1067 /* Keep irq disabled to prevent changes to the clock */
1068 local_irq_save(flags);
1069 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1070 kernel_ns = get_kernel_ns();
1071 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1073 if (unlikely(this_tsc_khz == 0)) {
1074 local_irq_restore(flags);
1075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1080 * We may have to catch up the TSC to match elapsed wall clock
1081 * time for two reasons, even if kvmclock is used.
1082 * 1) CPU could have been running below the maximum TSC rate
1083 * 2) Broken TSC compensation resets the base at each VCPU
1084 * entry to avoid unknown leaps of TSC even when running
1085 * again on the same CPU. This may cause apparent elapsed
1086 * time to disappear, and the guest to stand still or run
1089 if (vcpu->tsc_catchup) {
1090 u64 tsc = compute_guest_tsc(v, kernel_ns);
1091 if (tsc > tsc_timestamp) {
1092 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1093 tsc_timestamp = tsc;
1097 local_irq_restore(flags);
1099 if (!vcpu->time_page)
1103 * Time as measured by the TSC may go backwards when resetting the base
1104 * tsc_timestamp. The reason for this is that the TSC resolution is
1105 * higher than the resolution of the other clock scales. Thus, many
1106 * possible measurments of the TSC correspond to one measurement of any
1107 * other clock, and so a spread of values is possible. This is not a
1108 * problem for the computation of the nanosecond clock; with TSC rates
1109 * around 1GHZ, there can only be a few cycles which correspond to one
1110 * nanosecond value, and any path through this code will inevitably
1111 * take longer than that. However, with the kernel_ns value itself,
1112 * the precision may be much lower, down to HZ granularity. If the
1113 * first sampling of TSC against kernel_ns ends in the low part of the
1114 * range, and the second in the high end of the range, we can get:
1116 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1118 * As the sampling errors potentially range in the thousands of cycles,
1119 * it is possible such a time value has already been observed by the
1120 * guest. To protect against this, we must compute the system time as
1121 * observed by the guest and ensure the new system time is greater.
1124 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1125 max_kernel_ns = vcpu->last_guest_tsc -
1126 vcpu->hv_clock.tsc_timestamp;
1127 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1128 vcpu->hv_clock.tsc_to_system_mul,
1129 vcpu->hv_clock.tsc_shift);
1130 max_kernel_ns += vcpu->last_kernel_ns;
1133 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1134 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1135 &vcpu->hv_clock.tsc_shift,
1136 &vcpu->hv_clock.tsc_to_system_mul);
1137 vcpu->hw_tsc_khz = this_tsc_khz;
1140 if (max_kernel_ns > kernel_ns)
1141 kernel_ns = max_kernel_ns;
1143 /* With all the info we got, fill in the values */
1144 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1145 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1146 vcpu->last_kernel_ns = kernel_ns;
1147 vcpu->last_guest_tsc = tsc_timestamp;
1148 vcpu->hv_clock.flags = 0;
1151 * The interface expects us to write an even number signaling that the
1152 * update is finished. Since the guest won't see the intermediate
1153 * state, we just increase by 2 at the end.
1155 vcpu->hv_clock.version += 2;
1157 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1159 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1160 sizeof(vcpu->hv_clock));
1162 kunmap_atomic(shared_kaddr, KM_USER0);
1164 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1168 static bool msr_mtrr_valid(unsigned msr)
1171 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1172 case MSR_MTRRfix64K_00000:
1173 case MSR_MTRRfix16K_80000:
1174 case MSR_MTRRfix16K_A0000:
1175 case MSR_MTRRfix4K_C0000:
1176 case MSR_MTRRfix4K_C8000:
1177 case MSR_MTRRfix4K_D0000:
1178 case MSR_MTRRfix4K_D8000:
1179 case MSR_MTRRfix4K_E0000:
1180 case MSR_MTRRfix4K_E8000:
1181 case MSR_MTRRfix4K_F0000:
1182 case MSR_MTRRfix4K_F8000:
1183 case MSR_MTRRdefType:
1184 case MSR_IA32_CR_PAT:
1192 static bool valid_pat_type(unsigned t)
1194 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1197 static bool valid_mtrr_type(unsigned t)
1199 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1202 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1206 if (!msr_mtrr_valid(msr))
1209 if (msr == MSR_IA32_CR_PAT) {
1210 for (i = 0; i < 8; i++)
1211 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1214 } else if (msr == MSR_MTRRdefType) {
1217 return valid_mtrr_type(data & 0xff);
1218 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1219 for (i = 0; i < 8 ; i++)
1220 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1225 /* variable MTRRs */
1226 return valid_mtrr_type(data & 0xff);
1229 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1231 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1233 if (!mtrr_valid(vcpu, msr, data))
1236 if (msr == MSR_MTRRdefType) {
1237 vcpu->arch.mtrr_state.def_type = data;
1238 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1239 } else if (msr == MSR_MTRRfix64K_00000)
1241 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1242 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1243 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1244 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1245 else if (msr == MSR_IA32_CR_PAT)
1246 vcpu->arch.pat = data;
1247 else { /* Variable MTRRs */
1248 int idx, is_mtrr_mask;
1251 idx = (msr - 0x200) / 2;
1252 is_mtrr_mask = msr - 0x200 - 2 * idx;
1255 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1258 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1262 kvm_mmu_reset_context(vcpu);
1266 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1268 u64 mcg_cap = vcpu->arch.mcg_cap;
1269 unsigned bank_num = mcg_cap & 0xff;
1272 case MSR_IA32_MCG_STATUS:
1273 vcpu->arch.mcg_status = data;
1275 case MSR_IA32_MCG_CTL:
1276 if (!(mcg_cap & MCG_CTL_P))
1278 if (data != 0 && data != ~(u64)0)
1280 vcpu->arch.mcg_ctl = data;
1283 if (msr >= MSR_IA32_MC0_CTL &&
1284 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1285 u32 offset = msr - MSR_IA32_MC0_CTL;
1286 /* only 0 or all 1s can be written to IA32_MCi_CTL
1287 * some Linux kernels though clear bit 10 in bank 4 to
1288 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1289 * this to avoid an uncatched #GP in the guest
1291 if ((offset & 0x3) == 0 &&
1292 data != 0 && (data | (1 << 10)) != ~(u64)0)
1294 vcpu->arch.mce_banks[offset] = data;
1302 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1304 struct kvm *kvm = vcpu->kvm;
1305 int lm = is_long_mode(vcpu);
1306 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1307 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1308 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1309 : kvm->arch.xen_hvm_config.blob_size_32;
1310 u32 page_num = data & ~PAGE_MASK;
1311 u64 page_addr = data & PAGE_MASK;
1316 if (page_num >= blob_size)
1319 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1323 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1325 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1334 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1336 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1339 static bool kvm_hv_msr_partition_wide(u32 msr)
1343 case HV_X64_MSR_GUEST_OS_ID:
1344 case HV_X64_MSR_HYPERCALL:
1352 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1354 struct kvm *kvm = vcpu->kvm;
1357 case HV_X64_MSR_GUEST_OS_ID:
1358 kvm->arch.hv_guest_os_id = data;
1359 /* setting guest os id to zero disables hypercall page */
1360 if (!kvm->arch.hv_guest_os_id)
1361 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1363 case HV_X64_MSR_HYPERCALL: {
1368 /* if guest os id is not set hypercall should remain disabled */
1369 if (!kvm->arch.hv_guest_os_id)
1371 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1372 kvm->arch.hv_hypercall = data;
1375 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1376 addr = gfn_to_hva(kvm, gfn);
1377 if (kvm_is_error_hva(addr))
1379 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1380 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1381 if (copy_to_user((void __user *)addr, instructions, 4))
1383 kvm->arch.hv_hypercall = data;
1387 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1388 "data 0x%llx\n", msr, data);
1394 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1397 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1400 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1401 vcpu->arch.hv_vapic = data;
1404 addr = gfn_to_hva(vcpu->kvm, data >>
1405 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1406 if (kvm_is_error_hva(addr))
1408 if (clear_user((void __user *)addr, PAGE_SIZE))
1410 vcpu->arch.hv_vapic = data;
1413 case HV_X64_MSR_EOI:
1414 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1415 case HV_X64_MSR_ICR:
1416 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1417 case HV_X64_MSR_TPR:
1418 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1420 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1421 "data 0x%llx\n", msr, data);
1428 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1432 return set_efer(vcpu, data);
1434 data &= ~(u64)0x40; /* ignore flush filter disable */
1435 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1437 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1442 case MSR_FAM10H_MMIO_CONF_BASE:
1444 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1449 case MSR_AMD64_NB_CFG:
1451 case MSR_IA32_DEBUGCTLMSR:
1453 /* We support the non-activated case already */
1455 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1456 /* Values other than LBR and BTF are vendor-specific,
1457 thus reserved and should throw a #GP */
1460 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1463 case MSR_IA32_UCODE_REV:
1464 case MSR_IA32_UCODE_WRITE:
1465 case MSR_VM_HSAVE_PA:
1466 case MSR_AMD64_PATCH_LOADER:
1468 case 0x200 ... 0x2ff:
1469 return set_msr_mtrr(vcpu, msr, data);
1470 case MSR_IA32_APICBASE:
1471 kvm_set_apic_base(vcpu, data);
1473 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1474 return kvm_x2apic_msr_write(vcpu, msr, data);
1475 case MSR_IA32_MISC_ENABLE:
1476 vcpu->arch.ia32_misc_enable_msr = data;
1478 case MSR_KVM_WALL_CLOCK_NEW:
1479 case MSR_KVM_WALL_CLOCK:
1480 vcpu->kvm->arch.wall_clock = data;
1481 kvm_write_wall_clock(vcpu->kvm, data);
1483 case MSR_KVM_SYSTEM_TIME_NEW:
1484 case MSR_KVM_SYSTEM_TIME: {
1485 if (vcpu->arch.time_page) {
1486 kvm_release_page_dirty(vcpu->arch.time_page);
1487 vcpu->arch.time_page = NULL;
1490 vcpu->arch.time = data;
1491 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1493 /* we verify if the enable bit is set... */
1497 /* ...but clean it before doing the actual write */
1498 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1500 vcpu->arch.time_page =
1501 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1503 if (is_error_page(vcpu->arch.time_page)) {
1504 kvm_release_page_clean(vcpu->arch.time_page);
1505 vcpu->arch.time_page = NULL;
1509 case MSR_IA32_MCG_CTL:
1510 case MSR_IA32_MCG_STATUS:
1511 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1512 return set_msr_mce(vcpu, msr, data);
1514 /* Performance counters are not protected by a CPUID bit,
1515 * so we should check all of them in the generic path for the sake of
1516 * cross vendor migration.
1517 * Writing a zero into the event select MSRs disables them,
1518 * which we perfectly emulate ;-). Any other value should be at least
1519 * reported, some guests depend on them.
1521 case MSR_P6_EVNTSEL0:
1522 case MSR_P6_EVNTSEL1:
1523 case MSR_K7_EVNTSEL0:
1524 case MSR_K7_EVNTSEL1:
1525 case MSR_K7_EVNTSEL2:
1526 case MSR_K7_EVNTSEL3:
1528 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1529 "0x%x data 0x%llx\n", msr, data);
1531 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1532 * so we ignore writes to make it happy.
1534 case MSR_P6_PERFCTR0:
1535 case MSR_P6_PERFCTR1:
1536 case MSR_K7_PERFCTR0:
1537 case MSR_K7_PERFCTR1:
1538 case MSR_K7_PERFCTR2:
1539 case MSR_K7_PERFCTR3:
1540 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1541 "0x%x data 0x%llx\n", msr, data);
1543 case MSR_K7_CLK_CTL:
1545 * Ignore all writes to this no longer documented MSR.
1546 * Writes are only relevant for old K7 processors,
1547 * all pre-dating SVM, but a recommended workaround from
1548 * AMD for these chips. It is possible to speicify the
1549 * affected processor models on the command line, hence
1550 * the need to ignore the workaround.
1553 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1554 if (kvm_hv_msr_partition_wide(msr)) {
1556 mutex_lock(&vcpu->kvm->lock);
1557 r = set_msr_hyperv_pw(vcpu, msr, data);
1558 mutex_unlock(&vcpu->kvm->lock);
1561 return set_msr_hyperv(vcpu, msr, data);
1564 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1565 return xen_hvm_config(vcpu, data);
1567 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1571 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1578 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1582 * Reads an msr value (of 'msr_index') into 'pdata'.
1583 * Returns 0 on success, non-0 otherwise.
1584 * Assumes vcpu_load() was already called.
1586 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1588 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1591 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1593 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1595 if (!msr_mtrr_valid(msr))
1598 if (msr == MSR_MTRRdefType)
1599 *pdata = vcpu->arch.mtrr_state.def_type +
1600 (vcpu->arch.mtrr_state.enabled << 10);
1601 else if (msr == MSR_MTRRfix64K_00000)
1603 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1604 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1605 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1606 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1607 else if (msr == MSR_IA32_CR_PAT)
1608 *pdata = vcpu->arch.pat;
1609 else { /* Variable MTRRs */
1610 int idx, is_mtrr_mask;
1613 idx = (msr - 0x200) / 2;
1614 is_mtrr_mask = msr - 0x200 - 2 * idx;
1617 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1620 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1627 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1630 u64 mcg_cap = vcpu->arch.mcg_cap;
1631 unsigned bank_num = mcg_cap & 0xff;
1634 case MSR_IA32_P5_MC_ADDR:
1635 case MSR_IA32_P5_MC_TYPE:
1638 case MSR_IA32_MCG_CAP:
1639 data = vcpu->arch.mcg_cap;
1641 case MSR_IA32_MCG_CTL:
1642 if (!(mcg_cap & MCG_CTL_P))
1644 data = vcpu->arch.mcg_ctl;
1646 case MSR_IA32_MCG_STATUS:
1647 data = vcpu->arch.mcg_status;
1650 if (msr >= MSR_IA32_MC0_CTL &&
1651 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1652 u32 offset = msr - MSR_IA32_MC0_CTL;
1653 data = vcpu->arch.mce_banks[offset];
1662 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1665 struct kvm *kvm = vcpu->kvm;
1668 case HV_X64_MSR_GUEST_OS_ID:
1669 data = kvm->arch.hv_guest_os_id;
1671 case HV_X64_MSR_HYPERCALL:
1672 data = kvm->arch.hv_hypercall;
1675 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1683 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1688 case HV_X64_MSR_VP_INDEX: {
1691 kvm_for_each_vcpu(r, v, vcpu->kvm)
1696 case HV_X64_MSR_EOI:
1697 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1698 case HV_X64_MSR_ICR:
1699 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1700 case HV_X64_MSR_TPR:
1701 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1703 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1710 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1715 case MSR_IA32_PLATFORM_ID:
1716 case MSR_IA32_UCODE_REV:
1717 case MSR_IA32_EBL_CR_POWERON:
1718 case MSR_IA32_DEBUGCTLMSR:
1719 case MSR_IA32_LASTBRANCHFROMIP:
1720 case MSR_IA32_LASTBRANCHTOIP:
1721 case MSR_IA32_LASTINTFROMIP:
1722 case MSR_IA32_LASTINTTOIP:
1725 case MSR_VM_HSAVE_PA:
1726 case MSR_P6_PERFCTR0:
1727 case MSR_P6_PERFCTR1:
1728 case MSR_P6_EVNTSEL0:
1729 case MSR_P6_EVNTSEL1:
1730 case MSR_K7_EVNTSEL0:
1731 case MSR_K7_PERFCTR0:
1732 case MSR_K8_INT_PENDING_MSG:
1733 case MSR_AMD64_NB_CFG:
1734 case MSR_FAM10H_MMIO_CONF_BASE:
1738 data = 0x500 | KVM_NR_VAR_MTRR;
1740 case 0x200 ... 0x2ff:
1741 return get_msr_mtrr(vcpu, msr, pdata);
1742 case 0xcd: /* fsb frequency */
1746 * MSR_EBC_FREQUENCY_ID
1747 * Conservative value valid for even the basic CPU models.
1748 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1749 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1750 * and 266MHz for model 3, or 4. Set Core Clock
1751 * Frequency to System Bus Frequency Ratio to 1 (bits
1752 * 31:24) even though these are only valid for CPU
1753 * models > 2, however guests may end up dividing or
1754 * multiplying by zero otherwise.
1756 case MSR_EBC_FREQUENCY_ID:
1759 case MSR_IA32_APICBASE:
1760 data = kvm_get_apic_base(vcpu);
1762 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1763 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1765 case MSR_IA32_MISC_ENABLE:
1766 data = vcpu->arch.ia32_misc_enable_msr;
1768 case MSR_IA32_PERF_STATUS:
1769 /* TSC increment by tick */
1771 /* CPU multiplier */
1772 data |= (((uint64_t)4ULL) << 40);
1775 data = vcpu->arch.efer;
1777 case MSR_KVM_WALL_CLOCK:
1778 case MSR_KVM_WALL_CLOCK_NEW:
1779 data = vcpu->kvm->arch.wall_clock;
1781 case MSR_KVM_SYSTEM_TIME:
1782 case MSR_KVM_SYSTEM_TIME_NEW:
1783 data = vcpu->arch.time;
1785 case MSR_IA32_P5_MC_ADDR:
1786 case MSR_IA32_P5_MC_TYPE:
1787 case MSR_IA32_MCG_CAP:
1788 case MSR_IA32_MCG_CTL:
1789 case MSR_IA32_MCG_STATUS:
1790 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1791 return get_msr_mce(vcpu, msr, pdata);
1792 case MSR_K7_CLK_CTL:
1794 * Provide expected ramp-up count for K7. All other
1795 * are set to zero, indicating minimum divisors for
1798 * This prevents guest kernels on AMD host with CPU
1799 * type 6, model 8 and higher from exploding due to
1800 * the rdmsr failing.
1804 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1805 if (kvm_hv_msr_partition_wide(msr)) {
1807 mutex_lock(&vcpu->kvm->lock);
1808 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1809 mutex_unlock(&vcpu->kvm->lock);
1812 return get_msr_hyperv(vcpu, msr, pdata);
1816 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1819 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1827 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1830 * Read or write a bunch of msrs. All parameters are kernel addresses.
1832 * @return number of msrs set successfully.
1834 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1835 struct kvm_msr_entry *entries,
1836 int (*do_msr)(struct kvm_vcpu *vcpu,
1837 unsigned index, u64 *data))
1841 idx = srcu_read_lock(&vcpu->kvm->srcu);
1842 for (i = 0; i < msrs->nmsrs; ++i)
1843 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1845 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1851 * Read or write a bunch of msrs. Parameters are user addresses.
1853 * @return number of msrs set successfully.
1855 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1856 int (*do_msr)(struct kvm_vcpu *vcpu,
1857 unsigned index, u64 *data),
1860 struct kvm_msrs msrs;
1861 struct kvm_msr_entry *entries;
1866 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1870 if (msrs.nmsrs >= MAX_IO_MSRS)
1874 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1875 entries = kmalloc(size, GFP_KERNEL);
1880 if (copy_from_user(entries, user_msrs->entries, size))
1883 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1888 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1899 int kvm_dev_ioctl_check_extension(long ext)
1904 case KVM_CAP_IRQCHIP:
1906 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1907 case KVM_CAP_SET_TSS_ADDR:
1908 case KVM_CAP_EXT_CPUID:
1909 case KVM_CAP_CLOCKSOURCE:
1911 case KVM_CAP_NOP_IO_DELAY:
1912 case KVM_CAP_MP_STATE:
1913 case KVM_CAP_SYNC_MMU:
1914 case KVM_CAP_REINJECT_CONTROL:
1915 case KVM_CAP_IRQ_INJECT_STATUS:
1916 case KVM_CAP_ASSIGN_DEV_IRQ:
1918 case KVM_CAP_IOEVENTFD:
1920 case KVM_CAP_PIT_STATE2:
1921 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1922 case KVM_CAP_XEN_HVM:
1923 case KVM_CAP_ADJUST_CLOCK:
1924 case KVM_CAP_VCPU_EVENTS:
1925 case KVM_CAP_HYPERV:
1926 case KVM_CAP_HYPERV_VAPIC:
1927 case KVM_CAP_HYPERV_SPIN:
1928 case KVM_CAP_PCI_SEGMENT:
1929 case KVM_CAP_DEBUGREGS:
1930 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1934 case KVM_CAP_COALESCED_MMIO:
1935 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1938 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1940 case KVM_CAP_NR_VCPUS:
1943 case KVM_CAP_NR_MEMSLOTS:
1944 r = KVM_MEMORY_SLOTS;
1946 case KVM_CAP_PV_MMU: /* obsolete */
1953 r = KVM_MAX_MCE_BANKS;
1966 long kvm_arch_dev_ioctl(struct file *filp,
1967 unsigned int ioctl, unsigned long arg)
1969 void __user *argp = (void __user *)arg;
1973 case KVM_GET_MSR_INDEX_LIST: {
1974 struct kvm_msr_list __user *user_msr_list = argp;
1975 struct kvm_msr_list msr_list;
1979 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1982 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1983 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1986 if (n < msr_list.nmsrs)
1989 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1990 num_msrs_to_save * sizeof(u32)))
1992 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1994 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1999 case KVM_GET_SUPPORTED_CPUID: {
2000 struct kvm_cpuid2 __user *cpuid_arg = argp;
2001 struct kvm_cpuid2 cpuid;
2004 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2006 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2007 cpuid_arg->entries);
2012 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2017 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2020 mce_cap = KVM_MCE_CAP_SUPPORTED;
2022 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2034 static void wbinvd_ipi(void *garbage)
2039 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2041 return vcpu->kvm->arch.iommu_domain &&
2042 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2045 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2047 /* Address WBINVD may be executed by guest */
2048 if (need_emulate_wbinvd(vcpu)) {
2049 if (kvm_x86_ops->has_wbinvd_exit())
2050 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2051 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2052 smp_call_function_single(vcpu->cpu,
2053 wbinvd_ipi, NULL, 1);
2056 kvm_x86_ops->vcpu_load(vcpu, cpu);
2057 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2058 /* Make sure TSC doesn't go backwards */
2059 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2060 native_read_tsc() - vcpu->arch.last_host_tsc;
2062 mark_tsc_unstable("KVM discovered backwards TSC");
2063 if (check_tsc_unstable()) {
2064 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2065 vcpu->arch.tsc_catchup = 1;
2066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2068 if (vcpu->cpu != cpu)
2069 kvm_migrate_timers(vcpu);
2074 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2076 kvm_x86_ops->vcpu_put(vcpu);
2077 kvm_put_guest_fpu(vcpu);
2078 vcpu->arch.last_host_tsc = native_read_tsc();
2081 static int is_efer_nx(void)
2083 unsigned long long efer = 0;
2085 rdmsrl_safe(MSR_EFER, &efer);
2086 return efer & EFER_NX;
2089 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2092 struct kvm_cpuid_entry2 *e, *entry;
2095 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2096 e = &vcpu->arch.cpuid_entries[i];
2097 if (e->function == 0x80000001) {
2102 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2103 entry->edx &= ~(1 << 20);
2104 printk(KERN_INFO "kvm: guest NX capability removed\n");
2108 /* when an old userspace process fills a new kernel module */
2109 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2110 struct kvm_cpuid *cpuid,
2111 struct kvm_cpuid_entry __user *entries)
2114 struct kvm_cpuid_entry *cpuid_entries;
2117 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2120 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2124 if (copy_from_user(cpuid_entries, entries,
2125 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2127 for (i = 0; i < cpuid->nent; i++) {
2128 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2129 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2130 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2131 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2132 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2133 vcpu->arch.cpuid_entries[i].index = 0;
2134 vcpu->arch.cpuid_entries[i].flags = 0;
2135 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2136 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2137 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2139 vcpu->arch.cpuid_nent = cpuid->nent;
2140 cpuid_fix_nx_cap(vcpu);
2142 kvm_apic_set_version(vcpu);
2143 kvm_x86_ops->cpuid_update(vcpu);
2147 vfree(cpuid_entries);
2152 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2153 struct kvm_cpuid2 *cpuid,
2154 struct kvm_cpuid_entry2 __user *entries)
2159 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2162 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2163 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2165 vcpu->arch.cpuid_nent = cpuid->nent;
2166 kvm_apic_set_version(vcpu);
2167 kvm_x86_ops->cpuid_update(vcpu);
2175 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2176 struct kvm_cpuid2 *cpuid,
2177 struct kvm_cpuid_entry2 __user *entries)
2182 if (cpuid->nent < vcpu->arch.cpuid_nent)
2185 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2186 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2191 cpuid->nent = vcpu->arch.cpuid_nent;
2195 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2198 entry->function = function;
2199 entry->index = index;
2200 cpuid_count(entry->function, entry->index,
2201 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2205 #define F(x) bit(X86_FEATURE_##x)
2207 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2208 u32 index, int *nent, int maxnent)
2210 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2211 #ifdef CONFIG_X86_64
2212 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2214 unsigned f_lm = F(LM);
2216 unsigned f_gbpages = 0;
2219 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2222 const u32 kvm_supported_word0_x86_features =
2223 F(FPU) | F(VME) | F(DE) | F(PSE) |
2224 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2225 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2226 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2227 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2228 0 /* Reserved, DS, ACPI */ | F(MMX) |
2229 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2230 0 /* HTT, TM, Reserved, PBE */;
2231 /* cpuid 0x80000001.edx */
2232 const u32 kvm_supported_word1_x86_features =
2233 F(FPU) | F(VME) | F(DE) | F(PSE) |
2234 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2235 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2236 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2237 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2238 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2239 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2240 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2242 const u32 kvm_supported_word4_x86_features =
2243 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2244 0 /* DS-CPL, VMX, SMX, EST */ |
2245 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2246 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2247 0 /* Reserved, DCA */ | F(XMM4_1) |
2248 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2249 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2251 /* cpuid 0x80000001.ecx */
2252 const u32 kvm_supported_word6_x86_features =
2253 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2254 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2255 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2256 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2258 /* all calls to cpuid_count() should be made on the same cpu */
2260 do_cpuid_1_ent(entry, function, index);
2265 entry->eax = min(entry->eax, (u32)0xd);
2268 entry->edx &= kvm_supported_word0_x86_features;
2269 entry->ecx &= kvm_supported_word4_x86_features;
2270 /* we support x2apic emulation even if host does not support
2271 * it since we emulate x2apic in software */
2272 entry->ecx |= F(X2APIC);
2274 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2275 * may return different values. This forces us to get_cpu() before
2276 * issuing the first command, and also to emulate this annoying behavior
2277 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2279 int t, times = entry->eax & 0xff;
2281 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2282 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2283 for (t = 1; t < times && *nent < maxnent; ++t) {
2284 do_cpuid_1_ent(&entry[t], function, 0);
2285 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2290 /* function 4 and 0xb have additional index. */
2294 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2295 /* read more entries until cache_type is zero */
2296 for (i = 1; *nent < maxnent; ++i) {
2297 cache_type = entry[i - 1].eax & 0x1f;
2300 do_cpuid_1_ent(&entry[i], function, i);
2302 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2310 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2311 /* read more entries until level_type is zero */
2312 for (i = 1; *nent < maxnent; ++i) {
2313 level_type = entry[i - 1].ecx & 0xff00;
2316 do_cpuid_1_ent(&entry[i], function, i);
2318 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2326 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2327 for (i = 1; *nent < maxnent; ++i) {
2328 if (entry[i - 1].eax == 0 && i != 2)
2330 do_cpuid_1_ent(&entry[i], function, i);
2332 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2337 case KVM_CPUID_SIGNATURE: {
2338 char signature[12] = "KVMKVMKVM\0\0";
2339 u32 *sigptr = (u32 *)signature;
2341 entry->ebx = sigptr[0];
2342 entry->ecx = sigptr[1];
2343 entry->edx = sigptr[2];
2346 case KVM_CPUID_FEATURES:
2347 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2348 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2349 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2350 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2356 entry->eax = min(entry->eax, 0x8000001a);
2359 entry->edx &= kvm_supported_word1_x86_features;
2360 entry->ecx &= kvm_supported_word6_x86_features;
2364 kvm_x86_ops->set_supported_cpuid(function, entry);
2371 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2372 struct kvm_cpuid_entry2 __user *entries)
2374 struct kvm_cpuid_entry2 *cpuid_entries;
2375 int limit, nent = 0, r = -E2BIG;
2378 if (cpuid->nent < 1)
2380 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2381 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2383 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2387 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2388 limit = cpuid_entries[0].eax;
2389 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2390 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2391 &nent, cpuid->nent);
2393 if (nent >= cpuid->nent)
2396 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2397 limit = cpuid_entries[nent - 1].eax;
2398 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2399 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2400 &nent, cpuid->nent);
2405 if (nent >= cpuid->nent)
2408 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2412 if (nent >= cpuid->nent)
2415 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2419 if (nent >= cpuid->nent)
2423 if (copy_to_user(entries, cpuid_entries,
2424 nent * sizeof(struct kvm_cpuid_entry2)))
2430 vfree(cpuid_entries);
2435 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2436 struct kvm_lapic_state *s)
2438 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2443 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2444 struct kvm_lapic_state *s)
2446 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2447 kvm_apic_post_state_restore(vcpu);
2448 update_cr8_intercept(vcpu);
2453 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2454 struct kvm_interrupt *irq)
2456 if (irq->irq < 0 || irq->irq >= 256)
2458 if (irqchip_in_kernel(vcpu->kvm))
2461 kvm_queue_interrupt(vcpu, irq->irq, false);
2462 kvm_make_request(KVM_REQ_EVENT, vcpu);
2467 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2469 kvm_inject_nmi(vcpu);
2474 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2475 struct kvm_tpr_access_ctl *tac)
2479 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2483 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2487 unsigned bank_num = mcg_cap & 0xff, bank;
2490 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2492 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2495 vcpu->arch.mcg_cap = mcg_cap;
2496 /* Init IA32_MCG_CTL to all 1s */
2497 if (mcg_cap & MCG_CTL_P)
2498 vcpu->arch.mcg_ctl = ~(u64)0;
2499 /* Init IA32_MCi_CTL to all 1s */
2500 for (bank = 0; bank < bank_num; bank++)
2501 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2506 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2507 struct kvm_x86_mce *mce)
2509 u64 mcg_cap = vcpu->arch.mcg_cap;
2510 unsigned bank_num = mcg_cap & 0xff;
2511 u64 *banks = vcpu->arch.mce_banks;
2513 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2516 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2517 * reporting is disabled
2519 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2520 vcpu->arch.mcg_ctl != ~(u64)0)
2522 banks += 4 * mce->bank;
2524 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2525 * reporting is disabled for the bank
2527 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2529 if (mce->status & MCI_STATUS_UC) {
2530 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2531 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2532 printk(KERN_DEBUG "kvm: set_mce: "
2533 "injects mce exception while "
2534 "previous one is in progress!\n");
2535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2538 if (banks[1] & MCI_STATUS_VAL)
2539 mce->status |= MCI_STATUS_OVER;
2540 banks[2] = mce->addr;
2541 banks[3] = mce->misc;
2542 vcpu->arch.mcg_status = mce->mcg_status;
2543 banks[1] = mce->status;
2544 kvm_queue_exception(vcpu, MC_VECTOR);
2545 } else if (!(banks[1] & MCI_STATUS_VAL)
2546 || !(banks[1] & MCI_STATUS_UC)) {
2547 if (banks[1] & MCI_STATUS_VAL)
2548 mce->status |= MCI_STATUS_OVER;
2549 banks[2] = mce->addr;
2550 banks[3] = mce->misc;
2551 banks[1] = mce->status;
2553 banks[1] |= MCI_STATUS_OVER;
2557 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2558 struct kvm_vcpu_events *events)
2560 events->exception.injected =
2561 vcpu->arch.exception.pending &&
2562 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2563 events->exception.nr = vcpu->arch.exception.nr;
2564 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2565 events->exception.pad = 0;
2566 events->exception.error_code = vcpu->arch.exception.error_code;
2568 events->interrupt.injected =
2569 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2570 events->interrupt.nr = vcpu->arch.interrupt.nr;
2571 events->interrupt.soft = 0;
2572 events->interrupt.shadow =
2573 kvm_x86_ops->get_interrupt_shadow(vcpu,
2574 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2576 events->nmi.injected = vcpu->arch.nmi_injected;
2577 events->nmi.pending = vcpu->arch.nmi_pending;
2578 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2579 events->nmi.pad = 0;
2581 events->sipi_vector = vcpu->arch.sipi_vector;
2583 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2584 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2585 | KVM_VCPUEVENT_VALID_SHADOW);
2586 memset(&events->reserved, 0, sizeof(events->reserved));
2589 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2590 struct kvm_vcpu_events *events)
2592 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2593 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2594 | KVM_VCPUEVENT_VALID_SHADOW))
2597 vcpu->arch.exception.pending = events->exception.injected;
2598 vcpu->arch.exception.nr = events->exception.nr;
2599 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2600 vcpu->arch.exception.error_code = events->exception.error_code;
2602 vcpu->arch.interrupt.pending = events->interrupt.injected;
2603 vcpu->arch.interrupt.nr = events->interrupt.nr;
2604 vcpu->arch.interrupt.soft = events->interrupt.soft;
2605 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2606 kvm_pic_clear_isr_ack(vcpu->kvm);
2607 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2608 kvm_x86_ops->set_interrupt_shadow(vcpu,
2609 events->interrupt.shadow);
2611 vcpu->arch.nmi_injected = events->nmi.injected;
2612 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2613 vcpu->arch.nmi_pending = events->nmi.pending;
2614 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2616 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2617 vcpu->arch.sipi_vector = events->sipi_vector;
2619 kvm_make_request(KVM_REQ_EVENT, vcpu);
2624 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2625 struct kvm_debugregs *dbgregs)
2627 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2628 dbgregs->dr6 = vcpu->arch.dr6;
2629 dbgregs->dr7 = vcpu->arch.dr7;
2631 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2634 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2635 struct kvm_debugregs *dbgregs)
2640 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2641 vcpu->arch.dr6 = dbgregs->dr6;
2642 vcpu->arch.dr7 = dbgregs->dr7;
2647 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2648 struct kvm_xsave *guest_xsave)
2651 memcpy(guest_xsave->region,
2652 &vcpu->arch.guest_fpu.state->xsave,
2655 memcpy(guest_xsave->region,
2656 &vcpu->arch.guest_fpu.state->fxsave,
2657 sizeof(struct i387_fxsave_struct));
2658 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2663 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2664 struct kvm_xsave *guest_xsave)
2667 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2670 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2671 guest_xsave->region, xstate_size);
2673 if (xstate_bv & ~XSTATE_FPSSE)
2675 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2676 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2681 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2682 struct kvm_xcrs *guest_xcrs)
2684 if (!cpu_has_xsave) {
2685 guest_xcrs->nr_xcrs = 0;
2689 guest_xcrs->nr_xcrs = 1;
2690 guest_xcrs->flags = 0;
2691 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2692 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2695 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2696 struct kvm_xcrs *guest_xcrs)
2703 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2706 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2707 /* Only support XCR0 currently */
2708 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2709 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2710 guest_xcrs->xcrs[0].value);
2718 long kvm_arch_vcpu_ioctl(struct file *filp,
2719 unsigned int ioctl, unsigned long arg)
2721 struct kvm_vcpu *vcpu = filp->private_data;
2722 void __user *argp = (void __user *)arg;
2725 struct kvm_lapic_state *lapic;
2726 struct kvm_xsave *xsave;
2727 struct kvm_xcrs *xcrs;
2733 case KVM_GET_LAPIC: {
2735 if (!vcpu->arch.apic)
2737 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2742 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2746 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2751 case KVM_SET_LAPIC: {
2753 if (!vcpu->arch.apic)
2755 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2760 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2762 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2768 case KVM_INTERRUPT: {
2769 struct kvm_interrupt irq;
2772 if (copy_from_user(&irq, argp, sizeof irq))
2774 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2781 r = kvm_vcpu_ioctl_nmi(vcpu);
2787 case KVM_SET_CPUID: {
2788 struct kvm_cpuid __user *cpuid_arg = argp;
2789 struct kvm_cpuid cpuid;
2792 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2794 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2799 case KVM_SET_CPUID2: {
2800 struct kvm_cpuid2 __user *cpuid_arg = argp;
2801 struct kvm_cpuid2 cpuid;
2804 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2806 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2807 cpuid_arg->entries);
2812 case KVM_GET_CPUID2: {
2813 struct kvm_cpuid2 __user *cpuid_arg = argp;
2814 struct kvm_cpuid2 cpuid;
2817 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2819 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2820 cpuid_arg->entries);
2824 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2830 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2833 r = msr_io(vcpu, argp, do_set_msr, 0);
2835 case KVM_TPR_ACCESS_REPORTING: {
2836 struct kvm_tpr_access_ctl tac;
2839 if (copy_from_user(&tac, argp, sizeof tac))
2841 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2845 if (copy_to_user(argp, &tac, sizeof tac))
2850 case KVM_SET_VAPIC_ADDR: {
2851 struct kvm_vapic_addr va;
2854 if (!irqchip_in_kernel(vcpu->kvm))
2857 if (copy_from_user(&va, argp, sizeof va))
2860 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2863 case KVM_X86_SETUP_MCE: {
2867 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2869 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2872 case KVM_X86_SET_MCE: {
2873 struct kvm_x86_mce mce;
2876 if (copy_from_user(&mce, argp, sizeof mce))
2878 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2881 case KVM_GET_VCPU_EVENTS: {
2882 struct kvm_vcpu_events events;
2884 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2887 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2892 case KVM_SET_VCPU_EVENTS: {
2893 struct kvm_vcpu_events events;
2896 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2899 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2902 case KVM_GET_DEBUGREGS: {
2903 struct kvm_debugregs dbgregs;
2905 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2908 if (copy_to_user(argp, &dbgregs,
2909 sizeof(struct kvm_debugregs)))
2914 case KVM_SET_DEBUGREGS: {
2915 struct kvm_debugregs dbgregs;
2918 if (copy_from_user(&dbgregs, argp,
2919 sizeof(struct kvm_debugregs)))
2922 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2925 case KVM_GET_XSAVE: {
2926 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2931 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2934 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2939 case KVM_SET_XSAVE: {
2940 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2946 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2949 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2952 case KVM_GET_XCRS: {
2953 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2958 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2961 if (copy_to_user(argp, u.xcrs,
2962 sizeof(struct kvm_xcrs)))
2967 case KVM_SET_XCRS: {
2968 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2974 if (copy_from_user(u.xcrs, argp,
2975 sizeof(struct kvm_xcrs)))
2978 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2989 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2993 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2995 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2999 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3002 kvm->arch.ept_identity_map_addr = ident_addr;
3006 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3007 u32 kvm_nr_mmu_pages)
3009 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3012 mutex_lock(&kvm->slots_lock);
3013 spin_lock(&kvm->mmu_lock);
3015 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3016 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3018 spin_unlock(&kvm->mmu_lock);
3019 mutex_unlock(&kvm->slots_lock);
3023 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3025 return kvm->arch.n_max_mmu_pages;
3028 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3033 switch (chip->chip_id) {
3034 case KVM_IRQCHIP_PIC_MASTER:
3035 memcpy(&chip->chip.pic,
3036 &pic_irqchip(kvm)->pics[0],
3037 sizeof(struct kvm_pic_state));
3039 case KVM_IRQCHIP_PIC_SLAVE:
3040 memcpy(&chip->chip.pic,
3041 &pic_irqchip(kvm)->pics[1],
3042 sizeof(struct kvm_pic_state));
3044 case KVM_IRQCHIP_IOAPIC:
3045 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3054 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3059 switch (chip->chip_id) {
3060 case KVM_IRQCHIP_PIC_MASTER:
3061 spin_lock(&pic_irqchip(kvm)->lock);
3062 memcpy(&pic_irqchip(kvm)->pics[0],
3064 sizeof(struct kvm_pic_state));
3065 spin_unlock(&pic_irqchip(kvm)->lock);
3067 case KVM_IRQCHIP_PIC_SLAVE:
3068 spin_lock(&pic_irqchip(kvm)->lock);
3069 memcpy(&pic_irqchip(kvm)->pics[1],
3071 sizeof(struct kvm_pic_state));
3072 spin_unlock(&pic_irqchip(kvm)->lock);
3074 case KVM_IRQCHIP_IOAPIC:
3075 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3081 kvm_pic_update_irq(pic_irqchip(kvm));
3085 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3089 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3090 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3091 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3095 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3099 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3100 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3101 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3102 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3106 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3110 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3111 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3112 sizeof(ps->channels));
3113 ps->flags = kvm->arch.vpit->pit_state.flags;
3114 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3115 memset(&ps->reserved, 0, sizeof(ps->reserved));
3119 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3121 int r = 0, start = 0;
3122 u32 prev_legacy, cur_legacy;
3123 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3124 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3125 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3126 if (!prev_legacy && cur_legacy)
3128 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3129 sizeof(kvm->arch.vpit->pit_state.channels));
3130 kvm->arch.vpit->pit_state.flags = ps->flags;
3131 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3132 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3136 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3137 struct kvm_reinject_control *control)
3139 if (!kvm->arch.vpit)
3141 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3142 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3143 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3148 * Get (and clear) the dirty memory log for a memory slot.
3150 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3151 struct kvm_dirty_log *log)
3154 struct kvm_memory_slot *memslot;
3156 unsigned long is_dirty = 0;
3158 mutex_lock(&kvm->slots_lock);
3161 if (log->slot >= KVM_MEMORY_SLOTS)
3164 memslot = &kvm->memslots->memslots[log->slot];
3166 if (!memslot->dirty_bitmap)
3169 n = kvm_dirty_bitmap_bytes(memslot);
3171 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3172 is_dirty = memslot->dirty_bitmap[i];
3174 /* If nothing is dirty, don't bother messing with page tables. */
3176 struct kvm_memslots *slots, *old_slots;
3177 unsigned long *dirty_bitmap;
3180 dirty_bitmap = vmalloc(n);
3183 memset(dirty_bitmap, 0, n);
3186 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3188 vfree(dirty_bitmap);
3191 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3192 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3194 old_slots = kvm->memslots;
3195 rcu_assign_pointer(kvm->memslots, slots);
3196 synchronize_srcu_expedited(&kvm->srcu);
3197 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3200 spin_lock(&kvm->mmu_lock);
3201 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3202 spin_unlock(&kvm->mmu_lock);
3205 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3206 vfree(dirty_bitmap);
3209 vfree(dirty_bitmap);
3212 if (clear_user(log->dirty_bitmap, n))
3218 mutex_unlock(&kvm->slots_lock);
3222 long kvm_arch_vm_ioctl(struct file *filp,
3223 unsigned int ioctl, unsigned long arg)
3225 struct kvm *kvm = filp->private_data;
3226 void __user *argp = (void __user *)arg;
3229 * This union makes it completely explicit to gcc-3.x
3230 * that these two variables' stack usage should be
3231 * combined, not added together.
3234 struct kvm_pit_state ps;
3235 struct kvm_pit_state2 ps2;
3236 struct kvm_pit_config pit_config;
3240 case KVM_SET_TSS_ADDR:
3241 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3245 case KVM_SET_IDENTITY_MAP_ADDR: {
3249 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3251 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3256 case KVM_SET_NR_MMU_PAGES:
3257 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3261 case KVM_GET_NR_MMU_PAGES:
3262 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3264 case KVM_CREATE_IRQCHIP: {
3265 struct kvm_pic *vpic;
3267 mutex_lock(&kvm->lock);
3270 goto create_irqchip_unlock;
3272 vpic = kvm_create_pic(kvm);
3274 r = kvm_ioapic_init(kvm);
3276 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3279 goto create_irqchip_unlock;
3282 goto create_irqchip_unlock;
3284 kvm->arch.vpic = vpic;
3286 r = kvm_setup_default_irq_routing(kvm);
3288 mutex_lock(&kvm->irq_lock);
3289 kvm_ioapic_destroy(kvm);
3290 kvm_destroy_pic(kvm);
3291 mutex_unlock(&kvm->irq_lock);
3293 create_irqchip_unlock:
3294 mutex_unlock(&kvm->lock);
3297 case KVM_CREATE_PIT:
3298 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3300 case KVM_CREATE_PIT2:
3302 if (copy_from_user(&u.pit_config, argp,
3303 sizeof(struct kvm_pit_config)))
3306 mutex_lock(&kvm->slots_lock);
3309 goto create_pit_unlock;
3311 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3315 mutex_unlock(&kvm->slots_lock);
3317 case KVM_IRQ_LINE_STATUS:
3318 case KVM_IRQ_LINE: {
3319 struct kvm_irq_level irq_event;
3322 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3325 if (irqchip_in_kernel(kvm)) {
3327 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3328 irq_event.irq, irq_event.level);
3329 if (ioctl == KVM_IRQ_LINE_STATUS) {
3331 irq_event.status = status;
3332 if (copy_to_user(argp, &irq_event,
3340 case KVM_GET_IRQCHIP: {
3341 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3342 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3348 if (copy_from_user(chip, argp, sizeof *chip))
3349 goto get_irqchip_out;
3351 if (!irqchip_in_kernel(kvm))
3352 goto get_irqchip_out;