]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - arch/mips/sibyte/sb1250/irq.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[linux-3.10.git] / arch / mips / sibyte / sb1250 / irq.c
1 /*
2  * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  */
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/linkage.h>
21 #include <linux/interrupt.h>
22 #include <linux/spinlock.h>
23 #include <linux/smp.h>
24 #include <linux/mm.h>
25 #include <linux/slab.h>
26 #include <linux/kernel_stat.h>
27
28 #include <asm/errno.h>
29 #include <asm/signal.h>
30 #include <asm/system.h>
31 #include <asm/time.h>
32 #include <asm/io.h>
33
34 #include <asm/sibyte/sb1250_regs.h>
35 #include <asm/sibyte/sb1250_int.h>
36 #include <asm/sibyte/sb1250_uart.h>
37 #include <asm/sibyte/sb1250_scd.h>
38 #include <asm/sibyte/sb1250.h>
39
40 /*
41  * These are the routines that handle all the low level interrupt stuff.
42  * Actions handled here are: initialization of the interrupt map, requesting of
43  * interrupt lines by handlers, dispatching if interrupts to handlers, probing
44  * for interrupt lines
45  */
46
47
48 static void end_sb1250_irq(unsigned int irq);
49 static void enable_sb1250_irq(unsigned int irq);
50 static void disable_sb1250_irq(unsigned int irq);
51 static void ack_sb1250_irq(unsigned int irq);
52 #ifdef CONFIG_SMP
53 static void sb1250_set_affinity(unsigned int irq, cpumask_t mask);
54 #endif
55
56 #ifdef CONFIG_SIBYTE_HAS_LDT
57 extern unsigned long ldt_eoi_space;
58 #endif
59
60 #ifdef CONFIG_KGDB
61 static int kgdb_irq;
62
63 /* Default to UART1 */
64 int kgdb_port = 1;
65 #ifdef CONFIG_SERIAL_SB1250_DUART
66 extern char sb1250_duart_present[];
67 #endif
68 #endif
69
70 static struct irq_chip sb1250_irq_type = {
71         .name = "SB1250-IMR",
72         .ack = ack_sb1250_irq,
73         .mask = disable_sb1250_irq,
74         .mask_ack = ack_sb1250_irq,
75         .unmask = enable_sb1250_irq,
76         .end = end_sb1250_irq,
77 #ifdef CONFIG_SMP
78         .set_affinity = sb1250_set_affinity
79 #endif
80 };
81
82 /* Store the CPU id (not the logical number) */
83 int sb1250_irq_owner[SB1250_NR_IRQS];
84
85 DEFINE_SPINLOCK(sb1250_imr_lock);
86
87 void sb1250_mask_irq(int cpu, int irq)
88 {
89         unsigned long flags;
90         u64 cur_ints;
91
92         spin_lock_irqsave(&sb1250_imr_lock, flags);
93         cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
94                                         R_IMR_INTERRUPT_MASK));
95         cur_ints |= (((u64) 1) << irq);
96         ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
97                                         R_IMR_INTERRUPT_MASK));
98         spin_unlock_irqrestore(&sb1250_imr_lock, flags);
99 }
100
101 void sb1250_unmask_irq(int cpu, int irq)
102 {
103         unsigned long flags;
104         u64 cur_ints;
105
106         spin_lock_irqsave(&sb1250_imr_lock, flags);
107         cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
108                                         R_IMR_INTERRUPT_MASK));
109         cur_ints &= ~(((u64) 1) << irq);
110         ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
111                                         R_IMR_INTERRUPT_MASK));
112         spin_unlock_irqrestore(&sb1250_imr_lock, flags);
113 }
114
115 #ifdef CONFIG_SMP
116 static void sb1250_set_affinity(unsigned int irq, cpumask_t mask)
117 {
118         int i = 0, old_cpu, cpu, int_on;
119         u64 cur_ints;
120         struct irq_desc *desc = irq_desc + irq;
121         unsigned long flags;
122
123         i = first_cpu(mask);
124
125         if (cpus_weight(mask) > 1) {
126                 printk("attempted to set irq affinity for irq %d to multiple CPUs\n", irq);
127                 return;
128         }
129
130         /* Convert logical CPU to physical CPU */
131         cpu = cpu_logical_map(i);
132
133         /* Protect against other affinity changers and IMR manipulation */
134         spin_lock_irqsave(&desc->lock, flags);
135         spin_lock(&sb1250_imr_lock);
136
137         /* Swizzle each CPU's IMR (but leave the IP selection alone) */
138         old_cpu = sb1250_irq_owner[irq];
139         cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(old_cpu) +
140                                         R_IMR_INTERRUPT_MASK));
141         int_on = !(cur_ints & (((u64) 1) << irq));
142         if (int_on) {
143                 /* If it was on, mask it */
144                 cur_ints |= (((u64) 1) << irq);
145                 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(old_cpu) +
146                                         R_IMR_INTERRUPT_MASK));
147         }
148         sb1250_irq_owner[irq] = cpu;
149         if (int_on) {
150                 /* unmask for the new CPU */
151                 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
152                                         R_IMR_INTERRUPT_MASK));
153                 cur_ints &= ~(((u64) 1) << irq);
154                 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
155                                         R_IMR_INTERRUPT_MASK));
156         }
157         spin_unlock(&sb1250_imr_lock);
158         spin_unlock_irqrestore(&desc->lock, flags);
159 }
160 #endif
161
162 /*****************************************************************************/
163
164 static void disable_sb1250_irq(unsigned int irq)
165 {
166         sb1250_mask_irq(sb1250_irq_owner[irq], irq);
167 }
168
169 static void enable_sb1250_irq(unsigned int irq)
170 {
171         sb1250_unmask_irq(sb1250_irq_owner[irq], irq);
172 }
173
174
175 static void ack_sb1250_irq(unsigned int irq)
176 {
177 #ifdef CONFIG_SIBYTE_HAS_LDT
178         u64 pending;
179
180         /*
181          * If the interrupt was an HT interrupt, now is the time to
182          * clear it.  NOTE: we assume the HT bridge was set up to
183          * deliver the interrupts to all CPUs (which makes affinity
184          * changing easier for us)
185          */
186         pending = __raw_readq(IOADDR(A_IMR_REGISTER(sb1250_irq_owner[irq],
187                                                     R_IMR_LDT_INTERRUPT)));
188         pending &= ((u64)1 << (irq));
189         if (pending) {
190                 int i;
191                 for (i=0; i<NR_CPUS; i++) {
192                         int cpu;
193 #ifdef CONFIG_SMP
194                         cpu = cpu_logical_map(i);
195 #else
196                         cpu = i;
197 #endif
198                         /*
199                          * Clear for all CPUs so an affinity switch
200                          * doesn't find an old status
201                          */
202                         __raw_writeq(pending,
203                                      IOADDR(A_IMR_REGISTER(cpu,
204                                                 R_IMR_LDT_INTERRUPT_CLR)));
205                 }
206
207                 /*
208                  * Generate EOI.  For Pass 1 parts, EOI is a nop.  For
209                  * Pass 2, the LDT world may be edge-triggered, but
210                  * this EOI shouldn't hurt.  If they are
211                  * level-sensitive, the EOI is required.
212                  */
213                 *(uint32_t *)(ldt_eoi_space+(irq<<16)+(7<<2)) = 0;
214         }
215 #endif
216         sb1250_mask_irq(sb1250_irq_owner[irq], irq);
217 }
218
219
220 static void end_sb1250_irq(unsigned int irq)
221 {
222         if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
223                 sb1250_unmask_irq(sb1250_irq_owner[irq], irq);
224         }
225 }
226
227
228 void __init init_sb1250_irqs(void)
229 {
230         int i;
231
232         for (i = 0; i < SB1250_NR_IRQS; i++) {
233                 set_irq_chip(i, &sb1250_irq_type);
234                 sb1250_irq_owner[i] = 0;
235         }
236 }
237
238
239 static irqreturn_t  sb1250_dummy_handler(int irq, void *dev_id)
240 {
241         return IRQ_NONE;
242 }
243
244 static struct irqaction sb1250_dummy_action = {
245         .handler = sb1250_dummy_handler,
246         .flags   = 0,
247         .mask    = CPU_MASK_NONE,
248         .name    = "sb1250-private",
249         .next    = NULL,
250         .dev_id  = 0
251 };
252
253 int sb1250_steal_irq(int irq)
254 {
255         struct irq_desc *desc = irq_desc + irq;
256         unsigned long flags;
257         int retval = 0;
258
259         if (irq >= SB1250_NR_IRQS)
260                 return -EINVAL;
261
262         spin_lock_irqsave(&desc->lock, flags);
263         /* Don't allow sharing at all for these */
264         if (desc->action != NULL)
265                 retval = -EBUSY;
266         else {
267                 desc->action = &sb1250_dummy_action;
268                 desc->depth = 0;
269         }
270         spin_unlock_irqrestore(&desc->lock, flags);
271         return 0;
272 }
273
274 /*
275  *  arch_init_irq is called early in the boot sequence from init/main.c via
276  *  init_IRQ.  It is responsible for setting up the interrupt mapper and
277  *  installing the handler that will be responsible for dispatching interrupts
278  *  to the "right" place.
279  */
280 /*
281  * For now, map all interrupts to IP[2].  We could save
282  * some cycles by parceling out system interrupts to different
283  * IP lines, but keep it simple for bringup.  We'll also direct
284  * all interrupts to a single CPU; we should probably route
285  * PCI and LDT to one cpu and everything else to the other
286  * to balance the load a bit.
287  *
288  * On the second cpu, everything is set to IP5, which is
289  * ignored, EXCEPT the mailbox interrupt.  That one is
290  * set to IP[2] so it is handled.  This is needed so we
291  * can do cross-cpu function calls, as requred by SMP
292  */
293
294 #define IMR_IP2_VAL     K_INT_MAP_I0
295 #define IMR_IP3_VAL     K_INT_MAP_I1
296 #define IMR_IP4_VAL     K_INT_MAP_I2
297 #define IMR_IP5_VAL     K_INT_MAP_I3
298 #define IMR_IP6_VAL     K_INT_MAP_I4
299
300 void __init arch_init_irq(void)
301 {
302
303         unsigned int i;
304         u64 tmp;
305         unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
306                 STATUSF_IP1 | STATUSF_IP0;
307
308         /* Default everything to IP2 */
309         for (i = 0; i < SB1250_NR_IRQS; i++) {  /* was I0 */
310                 __raw_writeq(IMR_IP2_VAL,
311                              IOADDR(A_IMR_REGISTER(0,
312                                                    R_IMR_INTERRUPT_MAP_BASE) +
313                                     (i << 3)));
314                 __raw_writeq(IMR_IP2_VAL,
315                              IOADDR(A_IMR_REGISTER(1,
316                                                    R_IMR_INTERRUPT_MAP_BASE) +
317                                     (i << 3)));
318         }
319
320         init_sb1250_irqs();
321
322         /*
323          * Map the high 16 bits of the mailbox registers to IP[3], for
324          * inter-cpu messages
325          */
326         /* Was I1 */
327         __raw_writeq(IMR_IP3_VAL,
328                      IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) +
329                             (K_INT_MBOX_0 << 3)));
330         __raw_writeq(IMR_IP3_VAL,
331                      IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MAP_BASE) +
332                             (K_INT_MBOX_0 << 3)));
333
334         /* Clear the mailboxes.  The firmware may leave them dirty */
335         __raw_writeq(0xffffffffffffffffULL,
336                      IOADDR(A_IMR_REGISTER(0, R_IMR_MAILBOX_CLR_CPU)));
337         __raw_writeq(0xffffffffffffffffULL,
338                      IOADDR(A_IMR_REGISTER(1, R_IMR_MAILBOX_CLR_CPU)));
339
340         /* Mask everything except the mailbox registers for both cpus */
341         tmp = ~((u64) 0) ^ (((u64) 1) << K_INT_MBOX_0);
342         __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MASK)));
343         __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MASK)));
344
345         sb1250_steal_irq(K_INT_MBOX_0);
346
347         /*
348          * Note that the timer interrupts are also mapped, but this is
349          * done in sb1250_time_init().  Also, the profiling driver
350          * does its own management of IP7.
351          */
352
353 #ifdef CONFIG_KGDB
354         imask |= STATUSF_IP6;
355 #endif
356         /* Enable necessary IPs, disable the rest */
357         change_c0_status(ST0_IM, imask);
358
359 #ifdef CONFIG_KGDB
360         if (kgdb_flag) {
361                 kgdb_irq = K_INT_UART_0 + kgdb_port;
362
363 #ifdef CONFIG_SERIAL_SB1250_DUART
364                 sb1250_duart_present[kgdb_port] = 0;
365 #endif
366                 /* Setup uart 1 settings, mapper */
367                 __raw_writeq(M_DUART_IMR_BRK,
368                              IOADDR(A_DUART_IMRREG(kgdb_port)));
369
370                 sb1250_steal_irq(kgdb_irq);
371                 __raw_writeq(IMR_IP6_VAL,
372                              IOADDR(A_IMR_REGISTER(0,
373                                                    R_IMR_INTERRUPT_MAP_BASE) +
374                                     (kgdb_irq << 3)));
375                 sb1250_unmask_irq(0, kgdb_irq);
376         }
377 #endif
378 }
379
380 #ifdef CONFIG_KGDB
381
382 #include <linux/delay.h>
383
384 #define duart_out(reg, val)     csr_out32(val, IOADDR(A_DUART_CHANREG(kgdb_port, reg)))
385 #define duart_in(reg)           csr_in32(IOADDR(A_DUART_CHANREG(kgdb_port, reg)))
386
387 static void sb1250_kgdb_interrupt(void)
388 {
389         /*
390          * Clear break-change status (allow some time for the remote
391          * host to stop the break, since we would see another
392          * interrupt on the end-of-break too)
393          */
394         kstat_this_cpu.irqs[kgdb_irq]++;
395         mdelay(500);
396         duart_out(R_DUART_CMD, V_DUART_MISC_CMD_RESET_BREAK_INT |
397                                 M_DUART_RX_EN | M_DUART_TX_EN);
398         set_async_breakpoint(&get_irq_regs()->cp0_epc);
399 }
400
401 #endif  /* CONFIG_KGDB */
402
403 static inline void sb1250_timer_interrupt(void)
404 {
405         int cpu = smp_processor_id();
406         int irq = K_INT_TIMER_0 + cpu;
407
408         irq_enter();
409         kstat_this_cpu.irqs[irq]++;
410
411         write_seqlock(&xtime_lock);
412
413         /* ACK interrupt */
414         ____raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS,
415                        IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)));
416
417         /*
418          * call the generic timer interrupt handling
419          */
420         do_timer(1);
421
422         write_sequnlock(&xtime_lock);
423
424         /*
425          * In UP mode, we call local_timer_interrupt() to do profiling
426          * and process accouting.
427          *
428          * In SMP mode, local_timer_interrupt() is invoked by appropriate
429          * low-level local timer interrupt handler.
430          */
431         local_timer_interrupt(irq);
432
433         irq_exit();
434 }
435
436 extern void sb1250_mailbox_interrupt(void);
437
438 asmlinkage void plat_irq_dispatch(void)
439 {
440         unsigned int pending;
441
442         /*
443          * What a pain. We have to be really careful saving the upper 32 bits
444          * of any * register across function calls if we don't want them
445          * trashed--since were running in -o32, the calling routing never saves
446          * the full 64 bits of a register across a function call.  Being the
447          * interrupt handler, we're guaranteed that interrupts are disabled
448          * during this code so we don't have to worry about random interrupts
449          * blasting the high 32 bits.
450          */
451
452         pending = read_c0_cause() & read_c0_status() & ST0_IM;
453
454         if (pending & CAUSEF_IP7) /* CPU performance counter interrupt */
455                 do_IRQ(MIPS_CPU_IRQ_BASE + 7);
456         else if (pending & CAUSEF_IP4)
457                 sb1250_timer_interrupt();
458
459 #ifdef CONFIG_SMP
460         else if (pending & CAUSEF_IP3)
461                 sb1250_mailbox_interrupt();
462 #endif
463
464 #ifdef CONFIG_KGDB
465         else if (pending & CAUSEF_IP6)                  /* KGDB (uart 1) */
466                 sb1250_kgdb_interrupt();
467 #endif
468
469         else if (pending & CAUSEF_IP2) {
470                 unsigned long long mask;
471
472                 /*
473                  * Default...we've hit an IP[2] interrupt, which means we've
474                  * got to check the 1250 interrupt registers to figure out what
475                  * to do.  Need to detect which CPU we're on, now that
476                  * smp_affinity is supported.
477                  */
478                 mask = __raw_readq(IOADDR(A_IMR_REGISTER(smp_processor_id(),
479                                               R_IMR_INTERRUPT_STATUS_BASE)));
480                 if (mask)
481                         do_IRQ(fls64(mask) - 1);
482                 else
483                         spurious_interrupt();
484         } else
485                 spurious_interrupt();
486 }