5318f0cbfc260b3bd3295a5fd0b9daffe045d0c7
[linux-3.10.git] / arch / ia64 / kernel / smpboot.c
1 /*
2  * SMP boot-related support
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *
7  * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
8  * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
9  * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
10  *                                              smp_boot_cpus()/smp_commence() is replaced by
11  *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
12  */
13 #include <linux/config.h>
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/bootmem.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/kernel.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/mm.h>
26 #include <linux/notifier.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/spinlock.h>
30 #include <linux/efi.h>
31 #include <linux/percpu.h>
32 #include <linux/bitops.h>
33
34 #include <asm/atomic.h>
35 #include <asm/cache.h>
36 #include <asm/current.h>
37 #include <asm/delay.h>
38 #include <asm/ia32.h>
39 #include <asm/io.h>
40 #include <asm/irq.h>
41 #include <asm/machvec.h>
42 #include <asm/mca.h>
43 #include <asm/page.h>
44 #include <asm/pgalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/processor.h>
47 #include <asm/ptrace.h>
48 #include <asm/sal.h>
49 #include <asm/system.h>
50 #include <asm/tlbflush.h>
51 #include <asm/unistd.h>
52
53 #define SMP_DEBUG 0
54
55 #if SMP_DEBUG
56 #define Dprintk(x...)  printk(x)
57 #else
58 #define Dprintk(x...)
59 #endif
60
61
62 /*
63  * ITC synchronization related stuff:
64  */
65 #define MASTER  0
66 #define SLAVE   (SMP_CACHE_BYTES/8)
67
68 #define NUM_ROUNDS      64      /* magic value */
69 #define NUM_ITERS       5       /* likewise */
70
71 static DEFINE_SPINLOCK(itc_sync_lock);
72 static volatile unsigned long go[SLAVE + 1];
73
74 #define DEBUG_ITC_SYNC  0
75
76 extern void __devinit calibrate_delay (void);
77 extern void start_ap (void);
78 extern unsigned long ia64_iobase;
79
80 task_t *task_for_booting_cpu;
81
82 /*
83  * State for each CPU
84  */
85 DEFINE_PER_CPU(int, cpu_state);
86
87 /* Bitmasks of currently online, and possible CPUs */
88 cpumask_t cpu_online_map;
89 EXPORT_SYMBOL(cpu_online_map);
90 cpumask_t cpu_possible_map;
91 EXPORT_SYMBOL(cpu_possible_map);
92
93 /* which logical CPU number maps to which CPU (physical APIC ID) */
94 volatile int ia64_cpu_to_sapicid[NR_CPUS];
95 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
96
97 static volatile cpumask_t cpu_callin_map;
98
99 struct smp_boot_data smp_boot_data __initdata;
100
101 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
102
103 char __initdata no_int_routing;
104
105 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
106
107 static int __init
108 nointroute (char *str)
109 {
110         no_int_routing = 1;
111         printk ("no_int_routing on\n");
112         return 1;
113 }
114
115 __setup("nointroute", nointroute);
116
117 void
118 sync_master (void *arg)
119 {
120         unsigned long flags, i;
121
122         go[MASTER] = 0;
123
124         local_irq_save(flags);
125         {
126                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
127                         while (!go[MASTER]);
128                         go[MASTER] = 0;
129                         go[SLAVE] = ia64_get_itc();
130                 }
131         }
132         local_irq_restore(flags);
133 }
134
135 /*
136  * Return the number of cycles by which our itc differs from the itc on the master
137  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
138  * negative that it is behind.
139  */
140 static inline long
141 get_delta (long *rt, long *master)
142 {
143         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
144         unsigned long tcenter, t0, t1, tm;
145         long i;
146
147         for (i = 0; i < NUM_ITERS; ++i) {
148                 t0 = ia64_get_itc();
149                 go[MASTER] = 1;
150                 while (!(tm = go[SLAVE]));
151                 go[SLAVE] = 0;
152                 t1 = ia64_get_itc();
153
154                 if (t1 - t0 < best_t1 - best_t0)
155                         best_t0 = t0, best_t1 = t1, best_tm = tm;
156         }
157
158         *rt = best_t1 - best_t0;
159         *master = best_tm - best_t0;
160
161         /* average best_t0 and best_t1 without overflow: */
162         tcenter = (best_t0/2 + best_t1/2);
163         if (best_t0 % 2 + best_t1 % 2 == 2)
164                 ++tcenter;
165         return tcenter - best_tm;
166 }
167
168 /*
169  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
170  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
171  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
172  * step).  The basic idea is for the slave to ask the master what itc value it has and to
173  * read its own itc before and after the master responds.  Each iteration gives us three
174  * timestamps:
175  *
176  *      slave           master
177  *
178  *      t0 ---\
179  *             ---\
180  *                 --->
181  *                      tm
182  *                 /---
183  *             /---
184  *      t1 <---
185  *
186  *
187  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
188  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
189  * between the slave and the master is symmetric.  Even if the interconnect were
190  * asymmetric, we would still know that the synchronization error is smaller than the
191  * roundtrip latency (t0 - t1).
192  *
193  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
194  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
195  * accurate to within a round-trip time, which is typically in the range of several
196  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
197  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
198  * than half a micro second or so.
199  */
200 void
201 ia64_sync_itc (unsigned int master)
202 {
203         long i, delta, adj, adjust_latency = 0, done = 0;
204         unsigned long flags, rt, master_time_stamp, bound;
205 #if DEBUG_ITC_SYNC
206         struct {
207                 long rt;        /* roundtrip time */
208                 long master;    /* master's timestamp */
209                 long diff;      /* difference between midpoint and master's timestamp */
210                 long lat;       /* estimate of itc adjustment latency */
211         } t[NUM_ROUNDS];
212 #endif
213
214         /*
215          * Make sure local timer ticks are disabled while we sync.  If
216          * they were enabled, we'd have to worry about nasty issues
217          * like setting the ITC ahead of (or a long time before) the
218          * next scheduled tick.
219          */
220         BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
221
222         go[MASTER] = 1;
223
224         if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
225                 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
226                 return;
227         }
228
229         while (go[MASTER]);     /* wait for master to be ready */
230
231         spin_lock_irqsave(&itc_sync_lock, flags);
232         {
233                 for (i = 0; i < NUM_ROUNDS; ++i) {
234                         delta = get_delta(&rt, &master_time_stamp);
235                         if (delta == 0) {
236                                 done = 1;       /* let's lock on to this... */
237                                 bound = rt;
238                         }
239
240                         if (!done) {
241                                 if (i > 0) {
242                                         adjust_latency += -delta;
243                                         adj = -delta + adjust_latency/4;
244                                 } else
245                                         adj = -delta;
246
247                                 ia64_set_itc(ia64_get_itc() + adj);
248                         }
249 #if DEBUG_ITC_SYNC
250                         t[i].rt = rt;
251                         t[i].master = master_time_stamp;
252                         t[i].diff = delta;
253                         t[i].lat = adjust_latency/4;
254 #endif
255                 }
256         }
257         spin_unlock_irqrestore(&itc_sync_lock, flags);
258
259 #if DEBUG_ITC_SYNC
260         for (i = 0; i < NUM_ROUNDS; ++i)
261                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
262                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
263 #endif
264
265         printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
266                "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
267 }
268
269 /*
270  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
271  */
272 static inline void __devinit
273 smp_setup_percpu_timer (void)
274 {
275 }
276
277 static void __devinit
278 smp_callin (void)
279 {
280         int cpuid, phys_id;
281         extern void ia64_init_itm(void);
282
283 #ifdef CONFIG_PERFMON
284         extern void pfm_init_percpu(void);
285 #endif
286
287         cpuid = smp_processor_id();
288         phys_id = hard_smp_processor_id();
289
290         if (cpu_online(cpuid)) {
291                 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
292                        phys_id, cpuid);
293                 BUG();
294         }
295
296         lock_ipi_calllock();
297         cpu_set(cpuid, cpu_online_map);
298         unlock_ipi_calllock();
299
300         smp_setup_percpu_timer();
301
302         ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
303
304 #ifdef CONFIG_PERFMON
305         pfm_init_percpu();
306 #endif
307
308         local_irq_enable();
309
310         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
311                 /*
312                  * Synchronize the ITC with the BP.  Need to do this after irqs are
313                  * enabled because ia64_sync_itc() calls smp_call_function_single(), which
314                  * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
315                  * local_bh_enable(), which bugs out if irqs are not enabled...
316                  */
317                 Dprintk("Going to syncup ITC with BP.\n");
318                 ia64_sync_itc(0);
319         }
320
321         /*
322          * Get our bogomips.
323          */
324         ia64_init_itm();
325         calibrate_delay();
326         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
327
328 #ifdef CONFIG_IA32_SUPPORT
329         ia32_gdt_init();
330 #endif
331
332         /*
333          * Allow the master to continue.
334          */
335         cpu_set(cpuid, cpu_callin_map);
336         Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
337 }
338
339
340 /*
341  * Activate a secondary processor.  head.S calls this.
342  */
343 int __devinit
344 start_secondary (void *unused)
345 {
346         /* Early console may use I/O ports */
347         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
348
349         Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
350         efi_map_pal_code();
351         cpu_init();
352         smp_callin();
353
354         cpu_idle();
355         return 0;
356 }
357
358 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
359 {
360         return NULL;
361 }
362
363 struct create_idle {
364         struct task_struct *idle;
365         struct completion done;
366         int cpu;
367 };
368
369 void
370 do_fork_idle(void *_c_idle)
371 {
372         struct create_idle *c_idle = _c_idle;
373
374         c_idle->idle = fork_idle(c_idle->cpu);
375         complete(&c_idle->done);
376 }
377
378 static int __devinit
379 do_boot_cpu (int sapicid, int cpu)
380 {
381         int timeout;
382         struct create_idle c_idle = {
383                 .cpu    = cpu,
384                 .done   = COMPLETION_INITIALIZER(c_idle.done),
385         };
386         DECLARE_WORK(work, do_fork_idle, &c_idle);
387         /*
388          * We can't use kernel_thread since we must avoid to reschedule the child.
389          */
390         if (!keventd_up() || current_is_keventd())
391                 work.func(work.data);
392         else {
393                 schedule_work(&work);
394                 wait_for_completion(&c_idle.done);
395         }
396
397         if (IS_ERR(c_idle.idle))
398                 panic("failed fork for CPU %d", cpu);
399         task_for_booting_cpu = c_idle.idle;
400
401         Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
402
403         platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
404
405         /*
406          * Wait 10s total for the AP to start
407          */
408         Dprintk("Waiting on callin_map ...");
409         for (timeout = 0; timeout < 100000; timeout++) {
410                 if (cpu_isset(cpu, cpu_callin_map))
411                         break;  /* It has booted */
412                 udelay(100);
413         }
414         Dprintk("\n");
415
416         if (!cpu_isset(cpu, cpu_callin_map)) {
417                 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
418                 ia64_cpu_to_sapicid[cpu] = -1;
419                 cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */
420                 return -EINVAL;
421         }
422         return 0;
423 }
424
425 static int __init
426 decay (char *str)
427 {
428         int ticks;
429         get_option (&str, &ticks);
430         return 1;
431 }
432
433 __setup("decay=", decay);
434
435 /*
436  * Initialize the logical CPU number to SAPICID mapping
437  */
438 void __init
439 smp_build_cpu_map (void)
440 {
441         int sapicid, cpu, i;
442         int boot_cpu_id = hard_smp_processor_id();
443
444         for (cpu = 0; cpu < NR_CPUS; cpu++) {
445                 ia64_cpu_to_sapicid[cpu] = -1;
446 #ifdef CONFIG_HOTPLUG_CPU
447                 cpu_set(cpu, cpu_possible_map);
448 #endif
449         }
450
451         ia64_cpu_to_sapicid[0] = boot_cpu_id;
452         cpus_clear(cpu_present_map);
453         cpu_set(0, cpu_present_map);
454         cpu_set(0, cpu_possible_map);
455         for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
456                 sapicid = smp_boot_data.cpu_phys_id[i];
457                 if (sapicid == boot_cpu_id)
458                         continue;
459                 cpu_set(cpu, cpu_present_map);
460                 cpu_set(cpu, cpu_possible_map);
461                 ia64_cpu_to_sapicid[cpu] = sapicid;
462                 cpu++;
463         }
464 }
465
466 #ifdef CONFIG_NUMA
467
468 /* on which node is each logical CPU (one cacheline even for 64 CPUs) */
469 u8 cpu_to_node_map[NR_CPUS] __cacheline_aligned;
470 EXPORT_SYMBOL(cpu_to_node_map);
471 /* which logical CPUs are on which nodes */
472 cpumask_t node_to_cpu_mask[MAX_NUMNODES] __cacheline_aligned;
473
474 /*
475  * Build cpu to node mapping and initialize the per node cpu masks.
476  */
477 void __init
478 build_cpu_to_node_map (void)
479 {
480         int cpu, i, node;
481
482         for(node=0; node<MAX_NUMNODES; node++)
483                 cpus_clear(node_to_cpu_mask[node]);
484         for(cpu = 0; cpu < NR_CPUS; ++cpu) {
485                 /*
486                  * All Itanium NUMA platforms I know use ACPI, so maybe we
487                  * can drop this ifdef completely.                    [EF]
488                  */
489 #ifdef CONFIG_ACPI_NUMA
490                 node = -1;
491                 for (i = 0; i < NR_CPUS; ++i)
492                         if (cpu_physical_id(cpu) == node_cpuid[i].phys_id) {
493                                 node = node_cpuid[i].nid;
494                                 break;
495                         }
496 #else
497 #               error Fixme: Dunno how to build CPU-to-node map.
498 #endif
499                 cpu_to_node_map[cpu] = (node >= 0) ? node : 0;
500                 if (node >= 0)
501                         cpu_set(cpu, node_to_cpu_mask[node]);
502         }
503 }
504
505 #endif /* CONFIG_NUMA */
506
507 /*
508  * Cycle through the APs sending Wakeup IPIs to boot each.
509  */
510 void __init
511 smp_prepare_cpus (unsigned int max_cpus)
512 {
513         int boot_cpu_id = hard_smp_processor_id();
514
515         /*
516          * Initialize the per-CPU profiling counter/multiplier
517          */
518
519         smp_setup_percpu_timer();
520
521         /*
522          * We have the boot CPU online for sure.
523          */
524         cpu_set(0, cpu_online_map);
525         cpu_set(0, cpu_callin_map);
526
527         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
528         ia64_cpu_to_sapicid[0] = boot_cpu_id;
529
530         printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
531
532         current_thread_info()->cpu = 0;
533
534         /*
535          * If SMP should be disabled, then really disable it!
536          */
537         if (!max_cpus) {
538                 printk(KERN_INFO "SMP mode deactivated.\n");
539                 cpus_clear(cpu_online_map);
540                 cpus_clear(cpu_present_map);
541                 cpus_clear(cpu_possible_map);
542                 cpu_set(0, cpu_online_map);
543                 cpu_set(0, cpu_present_map);
544                 cpu_set(0, cpu_possible_map);
545                 return;
546         }
547 }
548
549 void __devinit smp_prepare_boot_cpu(void)
550 {
551         cpu_set(smp_processor_id(), cpu_online_map);
552         cpu_set(smp_processor_id(), cpu_callin_map);
553 }
554
555 #ifdef CONFIG_HOTPLUG_CPU
556 extern void fixup_irqs(void);
557 /* must be called with cpucontrol mutex held */
558 static int __devinit cpu_enable(unsigned int cpu)
559 {
560         per_cpu(cpu_state,cpu) = CPU_UP_PREPARE;
561         wmb();
562
563         while (!cpu_online(cpu))
564                 cpu_relax();
565         return 0;
566 }
567
568 int __cpu_disable(void)
569 {
570         int cpu = smp_processor_id();
571
572         /*
573          * dont permit boot processor for now
574          */
575         if (cpu == 0)
576                 return -EBUSY;
577
578         fixup_irqs();
579         local_flush_tlb_all();
580         printk ("Disabled cpu %u\n", smp_processor_id());
581         return 0;
582 }
583
584 void __cpu_die(unsigned int cpu)
585 {
586         unsigned int i;
587
588         for (i = 0; i < 100; i++) {
589                 /* They ack this in play_dead by setting CPU_DEAD */
590                 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
591                 {
592                         /*
593                          * TBD: Enable this when physical removal
594                          * or when we put the processor is put in
595                          * SAL_BOOT_RENDEZ mode
596                          * cpu_clear(cpu, cpu_callin_map);
597                          */
598                         return;
599                 }
600                 msleep(100);
601         }
602         printk(KERN_ERR "CPU %u didn't die...\n", cpu);
603 }
604 #else /* !CONFIG_HOTPLUG_CPU */
605 static int __devinit cpu_enable(unsigned int cpu)
606 {
607         return 0;
608 }
609
610 int __cpu_disable(void)
611 {
612         return -ENOSYS;
613 }
614
615 void __cpu_die(unsigned int cpu)
616 {
617         /* We said "no" in __cpu_disable */
618         BUG();
619 }
620 #endif /* CONFIG_HOTPLUG_CPU */
621
622 void
623 smp_cpus_done (unsigned int dummy)
624 {
625         int cpu;
626         unsigned long bogosum = 0;
627
628         /*
629          * Allow the user to impress friends.
630          */
631
632         for (cpu = 0; cpu < NR_CPUS; cpu++)
633                 if (cpu_online(cpu))
634                         bogosum += cpu_data(cpu)->loops_per_jiffy;
635
636         printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
637                (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
638 }
639
640 int __devinit
641 __cpu_up (unsigned int cpu)
642 {
643         int ret;
644         int sapicid;
645
646         sapicid = ia64_cpu_to_sapicid[cpu];
647         if (sapicid == -1)
648                 return -EINVAL;
649
650         /*
651          * Already booted.. just enable and get outa idle lool
652          */
653         if (cpu_isset(cpu, cpu_callin_map))
654         {
655                 cpu_enable(cpu);
656                 local_irq_enable();
657                 while (!cpu_isset(cpu, cpu_online_map))
658                         mb();
659                 return 0;
660         }
661         /* Processor goes to start_secondary(), sets online flag */
662         ret = do_boot_cpu(sapicid, cpu);
663         if (ret < 0)
664                 return ret;
665
666         return 0;
667 }
668
669 /*
670  * Assume that CPU's have been discovered by some platform-dependent interface.  For
671  * SoftSDV/Lion, that would be ACPI.
672  *
673  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
674  */
675 void __init
676 init_smp_config(void)
677 {
678         struct fptr {
679                 unsigned long fp;
680                 unsigned long gp;
681         } *ap_startup;
682         long sal_ret;
683
684         /* Tell SAL where to drop the AP's.  */
685         ap_startup = (struct fptr *) start_ap;
686         sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
687                                        ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
688         if (sal_ret < 0)
689                 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
690                        ia64_sal_strerror(sal_ret));
691 }
692