/* * PMac DBDMA lowlevel functions * * Copyright (c) by Takashi Iwai * code based on dmasound.c. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include "pmac.h" #include #include #include #ifdef CONFIG_PM static int snd_pmac_register_sleep_notifier(pmac_t *chip); static int snd_pmac_unregister_sleep_notifier(pmac_t *chip); static int snd_pmac_suspend(snd_card_t *card, pm_message_t state); static int snd_pmac_resume(snd_card_t *card); #endif /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ static int awacs_freqs[8] = { 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 }; /* fixed frequency table for tumbler */ static int tumbler_freqs[1] = { 44100 }; /* * allocate DBDMA command arrays */ static int snd_pmac_dbdma_alloc(pmac_t *chip, pmac_dbdma_t *rec, int size) { unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, &rec->dma_base, GFP_KERNEL); if (rec->space == NULL) return -ENOMEM; rec->size = size; memset(rec->space, 0, rsize); rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); return 0; } static void snd_pmac_dbdma_free(pmac_t *chip, pmac_dbdma_t *rec) { if (rec) { unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); } } /* * pcm stuff */ /* * look up frequency table */ unsigned int snd_pmac_rate_index(pmac_t *chip, pmac_stream_t *rec, unsigned int rate) { int i, ok, found; ok = rec->cur_freqs; if (rate > chip->freq_table[0]) return 0; found = 0; for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { if (! (ok & 1)) continue; found = i; if (rate >= chip->freq_table[i]) break; } return found; } /* * check whether another stream is active */ static inline int another_stream(int stream) { return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; } /* * allocate buffers */ static int snd_pmac_pcm_hw_params(snd_pcm_substream_t *subs, snd_pcm_hw_params_t *hw_params) { return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params)); } /* * release buffers */ static int snd_pmac_pcm_hw_free(snd_pcm_substream_t *subs) { snd_pcm_lib_free_pages(subs); return 0; } /* * get a stream of the opposite direction */ static pmac_stream_t *snd_pmac_get_stream(pmac_t *chip, int stream) { switch (stream) { case SNDRV_PCM_STREAM_PLAYBACK: return &chip->playback; case SNDRV_PCM_STREAM_CAPTURE: return &chip->capture; default: snd_BUG(); return NULL; } } /* * wait while run status is on */ static inline void snd_pmac_wait_ack(pmac_stream_t *rec) { int timeout = 50000; while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) udelay(1); } /* * set the format and rate to the chip. * call the lowlevel function if defined (e.g. for AWACS). */ static void snd_pmac_pcm_set_format(pmac_t *chip) { /* set up frequency and format */ out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); if (chip->set_format) chip->set_format(chip); } /* * stop the DMA transfer */ static inline void snd_pmac_dma_stop(pmac_stream_t *rec) { out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); snd_pmac_wait_ack(rec); } /* * set the command pointer address */ static inline void snd_pmac_dma_set_command(pmac_stream_t *rec, pmac_dbdma_t *cmd) { out_le32(&rec->dma->cmdptr, cmd->addr); } /* * start the DMA */ static inline void snd_pmac_dma_run(pmac_stream_t *rec, int status) { out_le32(&rec->dma->control, status | (status << 16)); } /* * prepare playback/capture stream */ static int snd_pmac_pcm_prepare(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs) { int i; volatile struct dbdma_cmd __iomem *cp; snd_pcm_runtime_t *runtime = subs->runtime; int rate_index; long offset; pmac_stream_t *astr; rec->dma_size = snd_pcm_lib_buffer_bytes(subs); rec->period_size = snd_pcm_lib_period_bytes(subs); rec->nperiods = rec->dma_size / rec->period_size; rec->cur_period = 0; rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); /* set up constraints */ astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); snd_runtime_check(astr, return -EINVAL); astr->cur_freqs = 1 << rate_index; astr->cur_formats = 1 << runtime->format; chip->rate_index = rate_index; chip->format = runtime->format; /* We really want to execute a DMA stop command, after the AWACS * is initialized. * For reasons I don't understand, it stops the hissing noise * common to many PowerBook G3 systems and random noise otherwise * captured on iBook2's about every third time. -ReneR */ spin_lock_irq(&chip->reg_lock); snd_pmac_dma_stop(rec); st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP); snd_pmac_dma_set_command(rec, &chip->extra_dma); snd_pmac_dma_run(rec, RUN); spin_unlock_irq(&chip->reg_lock); mdelay(5); spin_lock_irq(&chip->reg_lock); /* continuous DMA memory type doesn't provide the physical address, * so we need to resolve the address here... */ offset = runtime->dma_addr; for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { st_le32(&cp->phy_addr, offset); st_le16(&cp->req_count, rec->period_size); /*st_le16(&cp->res_count, 0);*/ st_le16(&cp->xfer_status, 0); offset += rec->period_size; } /* make loop */ st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS); st_le32(&cp->cmd_dep, rec->cmd.addr); snd_pmac_dma_stop(rec); snd_pmac_dma_set_command(rec, &rec->cmd); spin_unlock_irq(&chip->reg_lock); return 0; } /* * PCM trigger/stop */ static int snd_pmac_pcm_trigger(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs, int cmd) { volatile struct dbdma_cmd __iomem *cp; int i, command; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: if (rec->running) return -EBUSY; command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; spin_lock(&chip->reg_lock); snd_pmac_beep_stop(chip); snd_pmac_pcm_set_format(chip); for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) out_le16(&cp->command, command); snd_pmac_dma_set_command(rec, &rec->cmd); (void)in_le32(&rec->dma->status); snd_pmac_dma_run(rec, RUN|WAKE); rec->running = 1; spin_unlock(&chip->reg_lock); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: spin_lock(&chip->reg_lock); rec->running = 0; /*printk("stopped!!\n");*/ snd_pmac_dma_stop(rec); for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) out_le16(&cp->command, DBDMA_STOP); spin_unlock(&chip->reg_lock); break; default: return -EINVAL; } return 0; } /* * return the current pointer */ inline static snd_pcm_uframes_t snd_pmac_pcm_pointer(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs) { int count = 0; #if 1 /* hmm.. how can we get the current dma pointer?? */ int stat; volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; stat = ld_le16(&cp->xfer_status); if (stat & (ACTIVE|DEAD)) { count = in_le16(&cp->res_count); if (count) count = rec->period_size - count; } #endif count += rec->cur_period * rec->period_size; /*printk("pointer=%d\n", count);*/ return bytes_to_frames(subs->runtime, count); } /* * playback */ static int snd_pmac_playback_prepare(snd_pcm_substream_t *subs) { pmac_t *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_prepare(chip, &chip->playback, subs); } static int snd_pmac_playback_trigger(snd_pcm_substream_t *subs, int cmd) { pmac_t *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); } static snd_pcm_uframes_t snd_pmac_playback_pointer(snd_pcm_substream_t *subs) { pmac_t *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_pointer(chip, &chip->playback, subs); } /* * capture */ static int snd_pmac_capture_prepare(snd_pcm_substream_t *subs) { pmac_t *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_prepare(chip, &chip->capture, subs); } static int snd_pmac_capture_trigger(snd_pcm_substream_t *subs, int cmd) { pmac_t *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); } static snd_pcm_uframes_t snd_pmac_capture_pointer(snd_pcm_substream_t *subs) { pmac_t *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_pointer(chip, &chip->capture, subs); } /* * update playback/capture pointer from interrupts */ static void snd_pmac_pcm_update(pmac_t *chip, pmac_stream_t *rec) { volatile struct dbdma_cmd __iomem *cp; int c; int stat; spin_lock(&chip->reg_lock); if (rec->running) { cp = &rec->cmd.cmds[rec->cur_period]; for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ stat = ld_le16(&cp->xfer_status); if (! (stat & ACTIVE)) break; /*printk("update frag %d\n", rec->cur_period);*/ st_le16(&cp->xfer_status, 0); st_le16(&cp->req_count, rec->period_size); /*st_le16(&cp->res_count, 0);*/ rec->cur_period++; if (rec->cur_period >= rec->nperiods) { rec->cur_period = 0; cp = rec->cmd.cmds; } else cp++; spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(rec->substream); spin_lock(&chip->reg_lock); } } spin_unlock(&chip->reg_lock); } /* * hw info */ static snd_pcm_hardware_t snd_pmac_playback = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_8000_44100, .rate_min = 7350, .rate_max = 44100, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 131072, .period_bytes_min = 256, .period_bytes_max = 16384, .periods_min = 3, .periods_max = PMAC_MAX_FRAGS, }; static snd_pcm_hardware_t snd_pmac_capture = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_8000_44100, .rate_min = 7350, .rate_max = 44100, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 131072, .period_bytes_min = 256, .period_bytes_max = 16384, .periods_min = 3, .periods_max = PMAC_MAX_FRAGS, }; #if 0 // NYI static int snd_pmac_hw_rule_rate(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule) { pmac_t *chip = rule->private; pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]); int i, freq_table[8], num_freqs; snd_runtime_check(rec, return -EINVAL); num_freqs = 0; for (i = chip->num_freqs - 1; i >= 0; i--) { if (rec->cur_freqs & (1 << i)) freq_table[num_freqs++] = chip->freq_table[i]; } return snd_interval_list(hw_param_interval(params, rule->var), num_freqs, freq_table, 0); } static int snd_pmac_hw_rule_format(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule) { pmac_t *chip = rule->private; pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]); snd_runtime_check(rec, return -EINVAL); return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), rec->cur_formats); } #endif // NYI static int snd_pmac_pcm_open(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs) { snd_pcm_runtime_t *runtime = subs->runtime; int i, j, fflags; static int typical_freqs[] = { 44100, 22050, 11025, 0, }; static int typical_freq_flags[] = { SNDRV_PCM_RATE_44100, SNDRV_PCM_RATE_22050, SNDRV_PCM_RATE_11025, 0, }; /* look up frequency table and fill bit mask */ runtime->hw.rates = 0; fflags = chip->freqs_ok; for (i = 0; typical_freqs[i]; i++) { for (j = 0; j < chip->num_freqs; j++) { if ((chip->freqs_ok & (1 << j)) && chip->freq_table[j] == typical_freqs[i]) { runtime->hw.rates |= typical_freq_flags[i]; fflags &= ~(1 << j); break; } } } if (fflags) /* rest */ runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; /* check for minimum and maximum rates */ for (i = 0; i < chip->num_freqs; i++) { if (chip->freqs_ok & (1 << i)) { runtime->hw.rate_max = chip->freq_table[i]; break; } } for (i = chip->num_freqs - 1; i >= 0; i--) { if (chip->freqs_ok & (1 << i)) { runtime->hw.rate_min = chip->freq_table[i]; break; } } runtime->hw.formats = chip->formats_ok; if (chip->can_capture) { if (! chip->can_duplex) runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; } runtime->private_data = rec; rec->substream = subs; #if 0 /* FIXME: still under development.. */ snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, snd_pmac_hw_rule_rate, chip, rec->stream, -1); snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, snd_pmac_hw_rule_format, chip, rec->stream, -1); #endif runtime->hw.periods_max = rec->cmd.size - 1; if (chip->can_duplex) snd_pcm_set_sync(subs); /* constraints to fix choppy sound */ snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return 0; } static int snd_pmac_pcm_close(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs) { pmac_stream_t *astr; snd_pmac_dma_stop(rec); astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); snd_runtime_check(astr, return -EINVAL); /* reset constraints */ astr->cur_freqs = chip->freqs_ok; astr->cur_formats = chip->formats_ok; return 0; } static int snd_pmac_playback_open(snd_pcm_substream_t *subs) { pmac_t *chip = snd_pcm_substream_chip(subs); subs->runtime->hw = snd_pmac_playback; return snd_pmac_pcm_open(chip, &chip->playback, subs); } static int snd_pmac_capture_open(snd_pcm_substream_t *subs) { pmac_t *chip = snd_pcm_substream_chip(subs); subs->runtime->hw = snd_pmac_capture; return snd_pmac_pcm_open(chip, &chip->capture, subs); } static int snd_pmac_playback_close(snd_pcm_substream_t *subs) { pmac_t *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_close(chip, &chip->playback, subs); } static int snd_pmac_capture_close(snd_pcm_substream_t *subs) { pmac_t *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_close(chip, &chip->capture, subs); } /* */ static snd_pcm_ops_t snd_pmac_playback_ops = { .open = snd_pmac_playback_open, .close = snd_pmac_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_pmac_pcm_hw_params, .hw_free = snd_pmac_pcm_hw_free, .prepare = snd_pmac_playback_prepare, .trigger = snd_pmac_playback_trigger, .pointer = snd_pmac_playback_pointer, }; static snd_pcm_ops_t snd_pmac_capture_ops = { .open = snd_pmac_capture_open, .close = snd_pmac_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_pmac_pcm_hw_params, .hw_free = snd_pmac_pcm_hw_free, .prepare = snd_pmac_capture_prepare, .trigger = snd_pmac_capture_trigger, .pointer = snd_pmac_capture_pointer, }; static void pmac_pcm_free(snd_pcm_t *pcm) { snd_pcm_lib_preallocate_free_for_all(pcm); } int __init snd_pmac_pcm_new(pmac_t *chip) { snd_pcm_t *pcm; int err; int num_captures = 1; if (! chip->can_capture) num_captures = 0; err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); if (chip->can_capture) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); pcm->private_data = chip; pcm->private_free = pmac_pcm_free; pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; strcpy(pcm->name, chip->card->shortname); chip->pcm = pcm; chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; if (chip->can_byte_swap) chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; chip->playback.cur_formats = chip->formats_ok; chip->capture.cur_formats = chip->formats_ok; chip->playback.cur_freqs = chip->freqs_ok; chip->capture.cur_freqs = chip->freqs_ok; /* preallocate 64k buffer */ snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, &chip->pdev->dev, 64 * 1024, 64 * 1024); return 0; } static void snd_pmac_dbdma_reset(pmac_t *chip) { out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); snd_pmac_wait_ack(&chip->playback); out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); snd_pmac_wait_ack(&chip->capture); } /* * handling beep */ void snd_pmac_beep_dma_start(pmac_t *chip, int bytes, unsigned long addr, int speed) { pmac_stream_t *rec = &chip->playback; snd_pmac_dma_stop(rec); st_le16(&chip->extra_dma.cmds->req_count, bytes); st_le16(&chip->extra_dma.cmds->xfer_status, 0); st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr); st_le32(&chip->extra_dma.cmds->phy_addr, addr); st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS); out_le32(&chip->awacs->control, (in_le32(&chip->awacs->control) & ~0x1f00) | (speed << 8)); out_le32(&chip->awacs->byteswap, 0); snd_pmac_dma_set_command(rec, &chip->extra_dma); snd_pmac_dma_run(rec, RUN); } void snd_pmac_beep_dma_stop(pmac_t *chip) { snd_pmac_dma_stop(&chip->playback); st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP); snd_pmac_pcm_set_format(chip); /* reset format */ } /* * interrupt handlers */ static irqreturn_t snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs) { pmac_t *chip = devid; snd_pmac_pcm_update(chip, &chip->playback); return IRQ_HANDLED; } static irqreturn_t snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs) { pmac_t *chip = devid; snd_pmac_pcm_update(chip, &chip->capture); return IRQ_HANDLED; } static irqreturn_t snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs) { pmac_t *chip = devid; int ctrl = in_le32(&chip->awacs->control); /*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/ if (ctrl & MASK_PORTCHG) { /* do something when headphone is plugged/unplugged? */ if (chip->update_automute) chip->update_automute(chip, 1); } if (ctrl & MASK_CNTLERR) { int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; if (err && chip->model <= PMAC_SCREAMER) snd_printk(KERN_DEBUG "error %x\n", err); } /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ out_le32(&chip->awacs->control, ctrl); return IRQ_HANDLED; } /* * a wrapper to feature call for compatibility */ static void snd_pmac_sound_feature(pmac_t *chip, int enable) { if (ppc_md.feature_call) ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); } /* * release resources */ static int snd_pmac_free(pmac_t *chip) { /* stop sounds */ if (chip->initialized) { snd_pmac_dbdma_reset(chip); /* disable interrupts from awacs interface */ out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); } snd_pmac_sound_feature(chip, 0); #ifdef CONFIG_PM snd_pmac_unregister_sleep_notifier(chip); #endif /* clean up mixer if any */ if (chip->mixer_free) chip->mixer_free(chip); snd_pmac_detach_beep(chip); /* release resources */ if (chip->irq >= 0) free_irq(chip->irq, (void*)chip); if (chip->tx_irq >= 0) free_irq(chip->tx_irq, (void*)chip); if (chip->rx_irq >= 0) free_irq(chip->rx_irq, (void*)chip); snd_pmac_dbdma_free(chip, &chip->playback.cmd); snd_pmac_dbdma_free(chip, &chip->capture.cmd); snd_pmac_dbdma_free(chip, &chip->extra_dma); if (chip->macio_base) iounmap(chip->macio_base); if (chip->latch_base) iounmap(chip->latch_base); if (chip->awacs) iounmap(chip->awacs); if (chip->playback.dma) iounmap(chip->playback.dma); if (chip->capture.dma) iounmap(chip->capture.dma); #ifndef CONFIG_PPC64 if (chip->node) { int i; for (i = 0; i < 3; i++) { if (chip->of_requested & (1 << i)) { if (chip->is_k2) release_OF_resource(chip->node->parent, i); else release_OF_resource(chip->node, i); } } } #endif /* CONFIG_PPC64 */ if (chip->pdev) pci_dev_put(chip->pdev); kfree(chip); return 0; } /* * free the device */ static int snd_pmac_dev_free(snd_device_t *device) { pmac_t *chip = device->device_data; return snd_pmac_free(chip); } /* * check the machine support byteswap (little-endian) */ static void __init detect_byte_swap(pmac_t *chip) { struct device_node *mio; /* if seems that Keylargo can't byte-swap */ for (mio = chip->node->parent; mio; mio = mio->parent) { if (strcmp(mio->name, "mac-io") == 0) { if (device_is_compatible(mio, "Keylargo")) chip->can_byte_swap = 0; break; } } /* it seems the Pismo & iBook can't byte-swap in hardware. */ if (machine_is_compatible("PowerBook3,1") || machine_is_compatible("PowerBook2,1")) chip->can_byte_swap = 0 ; if (machine_is_compatible("PowerBook2,1")) chip->can_duplex = 0; } /* * detect a sound chip */ static int __init snd_pmac_detect(pmac_t *chip) { struct device_node *sound = NULL; unsigned int *prop, l; struct macio_chip* macio; u32 layout_id = 0; if (_machine != _MACH_Pmac) return -ENODEV; chip->subframe = 0; chip->revision = 0; chip->freqs_ok = 0xff; /* all ok */ chip->model = PMAC_AWACS; chip->can_byte_swap = 1; chip->can_duplex = 1; chip->can_capture = 1; chip->num_freqs = ARRAY_SIZE(awacs_freqs); chip->freq_table = awacs_freqs; chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ /* check machine type */ if (machine_is_compatible("AAPL,3400/2400") || machine_is_compatible("AAPL,3500")) chip->is_pbook_3400 = 1; else if (machine_is_compatible("PowerBook1,1") || machine_is_compatible("AAPL,PowerBook1998")) chip->is_pbook_G3 = 1; chip->node = find_devices("awacs"); if (chip->node) sound = chip->node; /* * powermac G3 models have a node called "davbus" * with a child called "sound". */ if (!chip->node) chip->node = find_devices("davbus"); /* * if we didn't find a davbus device, try 'i2s-a' since * this seems to be what iBooks have */ if (! chip->node) { chip->node = find_devices("i2s-a"); if (chip->node && chip->node->parent && chip->node->parent->parent) { if (device_is_compatible(chip->node->parent->parent, "K2-Keylargo")) chip->is_k2 = 1; } } if (! chip->node) return -ENODEV; if (!sound) { sound = find_devices("sound"); while (sound && sound->parent != chip->node) sound = sound->next; } if (! sound) return -ENODEV; prop = (unsigned int *) get_property(sound, "sub-frame", NULL); if (prop && *prop < 16) chip->subframe = *prop; prop = (unsigned int *) get_property(sound, "layout-id", NULL); if (prop) layout_id = *prop; /* This should be verified on older screamers */ if (device_is_compatible(sound, "screamer")) { chip->model = PMAC_SCREAMER; // chip->can_byte_swap = 0; /* FIXME: check this */ } if (device_is_compatible(sound, "burgundy")) { chip->model = PMAC_BURGUNDY; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (device_is_compatible(sound, "daca")) { chip->model = PMAC_DACA; chip->can_capture = 0; /* no capture */ chip->can_duplex = 0; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (device_is_compatible(sound, "tumbler")) { chip->model = PMAC_TUMBLER; chip->can_capture = 0; /* no capture */ chip->can_duplex = 0; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->num_freqs = ARRAY_SIZE(tumbler_freqs); chip->freq_table = tumbler_freqs; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (device_is_compatible(sound, "snapper")) { chip->model = PMAC_SNAPPER; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->num_freqs = ARRAY_SIZE(tumbler_freqs); chip->freq_table = tumbler_freqs; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (device_is_compatible(sound, "AOAKeylargo") || device_is_compatible(sound, "AOAbase") || device_is_compatible(sound, "AOAK2")) { /* For now, only support very basic TAS3004 based machines with * single frequency until proper i2s control is implemented */ switch(layout_id) { case 0x48: case 0x46: case 0x33: case 0x29: case 0x24: case 0x50: case 0x5c: chip->num_freqs = ARRAY_SIZE(tumbler_freqs); chip->model = PMAC_SNAPPER; chip->can_byte_swap = 0; /* FIXME: check this */ chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */ break; case 0x3a: chip->num_freqs = ARRAY_SIZE(tumbler_freqs); chip->model = PMAC_TOONIE; chip->can_byte_swap = 0; /* FIXME: check this */ chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */ break; } } prop = (unsigned int *)get_property(sound, "device-id", NULL); if (prop) chip->device_id = *prop; chip->has_iic = (find_devices("perch") != NULL); /* We need the PCI device for DMA allocations, let's use a crude method * for now ... */ macio = macio_find(chip->node, macio_unknown); if (macio == NULL) printk(KERN_WARNING "snd-powermac: can't locate macio !\n"); else { struct pci_dev *pdev = NULL; for_each_pci_dev(pdev) { struct device_node *np = pci_device_to_OF_node(pdev); if (np && np == macio->of_node) { chip->pdev = pdev; break; } } } if (chip->pdev == NULL) printk(KERN_WARNING "snd-powermac: can't locate macio PCI" " device !\n"); detect_byte_swap(chip); /* look for a property saying what sample rates are available */ prop = (unsigned int *) get_property(sound, "sample-rates", &l); if (! prop) prop = (unsigned int *) get_property(sound, "output-frame-rates", &l); if (prop) { int i; chip->freqs_ok = 0; for (l /= sizeof(int); l > 0; --l) { unsigned int r = *prop++; /* Apple 'Fixed' format */ if (r >= 0x10000) r >>= 16; for (i = 0; i < chip->num_freqs; ++i) { if (r == chip->freq_table[i]) { chip->freqs_ok |= (1 << i); break; } } } } else { /* assume only 44.1khz */ chip->freqs_ok = 1; } return 0; } /* * exported - boolean info callbacks for ease of programming */ int snd_pmac_boolean_stereo_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } int snd_pmac_boolean_mono_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } #ifdef PMAC_SUPPORT_AUTOMUTE /* * auto-mute */ static int pmac_auto_mute_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol) { pmac_t *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = chip->auto_mute; return 0; } static int pmac_auto_mute_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol) { pmac_t *chip = snd_kcontrol_chip(kcontrol); if (ucontrol->value.integer.value[0] != chip->auto_mute) { chip->auto_mute = ucontrol->value.integer.value[0]; if (chip->update_automute) chip->update_automute(chip, 1); return 1; } return 0; } static int pmac_hp_detect_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol) { pmac_t *chip = snd_kcontrol_chip(kcontrol); if (chip->detect_headphone) ucontrol->value.integer.value[0] = chip->detect_headphone(chip); else ucontrol->value.integer.value[0] = 0; return 0; } static snd_kcontrol_new_t auto_mute_controls[] __initdata = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Auto Mute Switch", .info = snd_pmac_boolean_mono_info, .get = pmac_auto_mute_get, .put = pmac_auto_mute_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Detection", .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_pmac_boolean_mono_info, .get = pmac_hp_detect_get, }, }; int __init snd_pmac_add_automute(pmac_t *chip) { int err; chip->auto_mute = 1; err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); if (err < 0) { printk(KERN_ERR "snd-powermac: Failed to add automute control\n"); return err; } chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); return snd_ctl_add(chip->card, chip->hp_detect_ctl); } #endif /* PMAC_SUPPORT_AUTOMUTE */ /* * create and detect a pmac chip record */ int __init snd_pmac_new(snd_card_t *card, pmac_t **chip_return) { pmac_t *chip; struct device_node *np; int i, err; unsigned long ctrl_addr, txdma_addr, rxdma_addr; static snd_device_ops_t ops = { .dev_free = snd_pmac_dev_free, }; snd_runtime_check(chip_return, return -EINVAL); *chip_return = NULL; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) return -ENOMEM; chip->card = card; spin_lock_init(&chip->reg_lock); chip->irq = chip->tx_irq = chip->rx_irq = -1; chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; if ((err = snd_pmac_detect(chip)) < 0) goto __error; if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) { err = -ENOMEM; goto __error; } np = chip->node; if (chip->is_k2) { if (np->parent->n_addrs < 2 || np->n_intrs < 3) { err = -ENODEV; goto __error; } for (i = 0; i < 2; i++) { #ifndef CONFIG_PPC64 static char *name[2] = { "- Control", "- DMA" }; if (! request_OF_resource(np->parent, i, name[i])) { snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i); err = -ENODEV; goto __error; } chip->of_requested |= (1 << i); #endif /* CONFIG_PPC64 */ ctrl_addr = np->parent->addrs[0].address; txdma_addr = np->parent->addrs[1].address; rxdma_addr = txdma_addr + 0x100; } } else { if (np->n_addrs < 3 || np->n_intrs < 3) { err = -ENODEV; goto __error; } for (i = 0; i < 3; i++) { #ifndef CONFIG_PPC64 static char *name[3] = { "- Control", "- Tx DMA", "- Rx DMA" }; if (! request_OF_resource(np, i, name[i])) { snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i); err = -ENODEV; goto __error; } chip->of_requested |= (1 << i); #endif /* CONFIG_PPC64 */ ctrl_addr = np->addrs[0].address; txdma_addr = np->addrs[1].address; rxdma_addr = np->addrs[2].address; } } chip->awacs = ioremap(ctrl_addr, 0x1000); chip->playback.dma = ioremap(txdma_addr, 0x100); chip->capture.dma = ioremap(rxdma_addr, 0x100); if (chip->model <= PMAC_BURGUNDY) { if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0, "PMac", (void*)chip)) { snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line); err = -EBUSY; goto __error; } chip->irq = np->intrs[0].line; } if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)) { snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line); err = -EBUSY; goto __error; } chip->tx_irq = np->intrs[1].line; if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line); err = -EBUSY; goto __error; } chip->rx_irq = np->intrs[2].line; snd_pmac_sound_feature(chip, 1); /* reset */ if (chip->model == PMAC_AWACS) out_le32(&chip->awacs->control, 0x11); /* Powerbooks have odd ways of enabling inputs such as an expansion-bay CD or sound from an internal modem or a PC-card modem. */ if (chip->is_pbook_3400) { /* Enable CD and PC-card sound inputs. */ /* This is done by reading from address * f301a000, + 0x10 to enable the expansion-bay * CD sound input, + 0x80 to enable the PC-card * sound input. The 0x100 enables the SCSI bus * terminator power. */ chip->latch_base = ioremap (0xf301a000, 0x1000); in_8(chip->latch_base + 0x190); } else if (chip->is_pbook_G3) { struct device_node* mio; for (mio = chip->node->parent; mio; mio = mio->parent) { if (strcmp(mio->name, "mac-io") == 0 && mio->n_addrs > 0) { chip->macio_base = ioremap(mio->addrs[0].address, 0x40); break; } } /* Enable CD sound input. */ /* The relevant bits for writing to this byte are 0x8f. * I haven't found out what the 0x80 bit does. * For the 0xf bits, writing 3 or 7 enables the CD * input, any other value disables it. Values * 1, 3, 5, 7 enable the microphone. Values 0, 2, * 4, 6, 8 - f enable the input from the modem. */ if (chip->macio_base) out_8(chip->macio_base + 0x37, 3); } /* Reset dbdma channels */ snd_pmac_dbdma_reset(chip); #ifdef CONFIG_PM /* add sleep notifier */ if (! snd_pmac_register_sleep_notifier(chip)) snd_card_set_pm_callback(chip->card, snd_pmac_suspend, snd_pmac_resume, chip); #endif if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) goto __error; *chip_return = chip; return 0; __error: if (chip->pdev) pci_dev_put(chip->pdev); snd_pmac_free(chip); return err; } /* * sleep notify for powerbook */ #ifdef CONFIG_PM /* * Save state when going to sleep, restore it afterwards. */ static int snd_pmac_suspend(snd_card_t *card, pm_message_t state) { pmac_t *chip = card->pm_private_data; unsigned long flags; if (chip->suspend) chip->suspend(chip); snd_pcm_suspend_all(chip->pcm); spin_lock_irqsave(&chip->reg_lock, flags); snd_pmac_beep_stop(chip); spin_unlock_irqrestore(&chip->reg_lock, flags); if (chip->irq >= 0) disable_irq(chip->irq); if (chip->tx_irq >= 0) disable_irq(chip->tx_irq); if (chip->rx_irq >= 0) disable_irq(chip->rx_irq); snd_pmac_sound_feature(chip, 0); return 0; } static int snd_pmac_resume(snd_card_t *card) { pmac_t *chip = card->pm_private_data; snd_pmac_sound_feature(chip, 1); if (chip->resume) chip->resume(chip); /* enable CD sound input */ if (chip->macio_base && chip->is_pbook_G3) { out_8(chip->macio_base + 0x37, 3); } else if (chip->is_pbook_3400) { in_8(chip->latch_base + 0x190); } snd_pmac_pcm_set_format(chip); if (chip->irq >= 0) enable_irq(chip->irq); if (chip->tx_irq >= 0) enable_irq(chip->tx_irq); if (chip->rx_irq >= 0) enable_irq(chip->rx_irq); return 0; } /* the chip is stored statically by snd_pmac_register_sleep_notifier * because we can't have any private data for notify callback. */ static pmac_t *sleeping_pmac = NULL; static int snd_pmac_sleep_notify(struct pmu_sleep_notifier *self, int when) { pmac_t *chip; chip = sleeping_pmac; snd_runtime_check(chip, return 0); switch (when) { case PBOOK_SLEEP_NOW: snd_pmac_suspend(chip->card, PMSG_SUSPEND); break; case PBOOK_WAKE: snd_pmac_resume(chip->card); break; } return PBOOK_SLEEP_OK; } static struct pmu_sleep_notifier snd_pmac_sleep_notifier = { snd_pmac_sleep_notify, SLEEP_LEVEL_SOUND, }; static int __init snd_pmac_register_sleep_notifier(pmac_t *chip) { /* should be protected here.. */ snd_assert(! sleeping_pmac, return -EBUSY); sleeping_pmac = chip; pmu_register_sleep_notifier(&snd_pmac_sleep_notifier); return 0; } static int snd_pmac_unregister_sleep_notifier(pmac_t *chip) { /* should be protected here.. */ snd_assert(sleeping_pmac == chip, return -ENODEV); pmu_unregister_sleep_notifier(&snd_pmac_sleep_notifier); sleeping_pmac = NULL; return 0; } #endif /* CONFIG_PM */